PDH method - How can we lock laser frequency? Theory Part

Last updated on December 28, 2022 9:52:24 PM

PDH method for laser locking: basic idea

Motivation

Pound-Drever-Hall (PDH) method: first used in microwave frequency stabilization, then expanded to optical field in LIGO project.

A naive idea to lock the laser is to lock the laser on the transmission signal of FP cavity.

transmission signal

Transmitted intensity profile for a cavity with two identical mirrors. The blue curve represents the transmission profile of a cavity without losses. Mirror losses are considered for the orange curve.

However, for photon in a high finesse cavity, the lifetime is pretty long (τ=FL/πc\tau = \mathcal{F}L / \pi c, ~10μs\mu \mathrm{s}), which means the transmission signal have a delay on laser frequency.

cavity photon lifetime

This is fatal, as any noise whose frequency is higher than 1/10μs100kHz1/10\mu\mathrm{s} \sim 100\mathrm{kHz} cannot be cancelled.

The solution is to utilize the reflection signal.

Cavity

cavity

The cavity mirrors reflect and transmit at the red edge.

The reflected field amplitude

Er=Eincr(t2rei2ΔφEinc+t2r3ei4ΔφEinc+)=Einc[rt2rei2Δφn=0(r2ei2Δφ)n]=r(1ei2Δφ)1r2ei2ΔφEinc=F(ω)Einc\begin{aligned} E_r &= E_{inc} r - \left( t^2 r e^{\mathrm{i}2\Delta\varphi} E_{inc} + t^2 r^3 e^{\mathrm{i}4\Delta\varphi} E_{inc} + \cdots \right) \\ &= E_{inc}\left[ r - t^2 r e^{\mathrm{i}2\Delta\varphi} \sum_{n=0}^{\infty} \left( r^2 e^{\mathrm{i}2\Delta\varphi} \right)^n \right] \\ &= \frac{r(1-e^{\mathrm{i}2\Delta\varphi})}{1-r^2e^{\mathrm{i}2\Delta\varphi}} E_{inc} \\ &= F(\omega) E_{inc} \end{aligned}

where the minus sign in the second term comes from half-wave loss (the light reflects from dense medium) and Δφ=kLζ(L)=ωcLζ(L)\Delta\varphi = kL-\zeta(L) = \frac{\omega}{c}L-\zeta(L) is the single-trip accumulated phase (from one mirror to the other) for TEM00\text{TEM}_{00} mode. Here mirror losses are not considered.

The reflected intensity

Ir=Iinc4r2sin2(Δφ)t4+4r2sin2(Δφ)=Iincsin2(πννFSR)(π2F)2+sin2(πννFSR)I_r = I_{inc} \frac{4 r^2 \sin^2 (\Delta\varphi)}{t^4 + 4 r^2 \sin^2 (\Delta\varphi)} = I_{inc} \frac{\sin^2 \left(\pi \frac{\nu}{\nu_{FSR}}\right)}{\left(\frac{\pi}{2\mathcal{F}}\right)^2 + \sin^2 \left(\pi \frac{\nu}{\nu_{FSR}}\right)}

where νFSR=c2L\nu_{FSR} = \frac{c}{2L} is the free spectral range only dependent on the cavity length LL, F=πr1r2\mathcal{F} = \frac{\pi r}{1-r^2} is the finesse of the cavity only dependent on the reflection coefficient rr.

cavity reflection

From the intensity expression, we can get the FWHM (assuming F1\mathcal{F} \gg 1 which is usually satisfied)

ΔνFWHM=νFSRF\Delta \nu_{FWHM} = \frac{\nu_{FSR}}{\mathcal{F}}

Insight: I

If we want to lock a laser on the edge of cavity signal, the signal should satisfy the following requirements:

  1. The signal should change quickly when laser frequency changes.
  2. The signal should be odd about the cavity resonance, to give information of the direction of laser drift.
  3. The signal should be robust against perturbations.

The phase of F(ω)F(\omega) is a good signal for locking. However, we cannot directly measure phase.

F phase

Nevertheless, the imaginary part of F(ω)F(\omega) has similar properties as its phase, and PDH method provides a way to extract F(ω)\Im F(\omega).

F

PDH method

A EOM gives the laser a phase modulation (PM):

E0eiω0tiΔφsin(Ωt)=E0J0(Δφ)eiω0t+E0n=1Jn(Δφ)[ei(ω0+nΩ)t+(1)nei(ω0nΩ)t]\begin{aligned} E_0 e^{-\mathrm{i} \omega_0 t - \mathrm{i} \Delta \varphi \sin (\Omega t)} &= E_0 J_0(\Delta \varphi) e^{-\mathrm{i} \omega_0 t} \\ &+ E_0 \sum_{n=1}^{\infty} J_n(\Delta \varphi) \left[ e^{-\mathrm{i} (\omega_0+n\Omega) t} + (-1)^n e^{-\mathrm{i} (\omega_0-n\Omega) t} \right] \end{aligned}

where Δφ\Delta \varphi is the PM depth and Ω\Omega is the PM frequency. JnJ_n is the Bessel function, we can ignore n>1|n|>1 terms if Δφ1\Delta \varphi \ll 1.

If PM frequency ΩΔνFWHM\Omega \gg \Delta\nu_{FWHM}, two sidebands are reflected from the cavity unaffected. The reflected light will be

ErEinc=F(ω)J0(Δφ)+F(ω+Ω)J1(Δφ)eiΩtF(ωΩ)J1(Δφ)eiΩt\frac{E_r}{E_{inc}} = F(\omega) J_0(\Delta \varphi) + F(\omega+\Omega) J_1(\Delta \varphi) e^{-\mathrm{i} \Omega t} - F(\omega-\Omega) J_1(\Delta \varphi) e^{\mathrm{i} \Omega t}

Hence the reflected intensity

IrIinc=(ErEinc)2=F(ω)2J02(Δφ)+F(ω+Ω)2J12(Δφ)+F(ωΩ)2J12(Δφ)(DC terms)+2J0(Δφ)J1(Δφ)[F(ω)F(ω+Ω)F(ω)F(ωΩ)]cos(Ωt)2J0(Δφ)J1(Δφ)[F(ω)F(ω+Ω)+F(ω)F(ωΩ)]sin(Ωt)(Ω oscillating terms)+O(2Ω)\begin{aligned} \frac{I_r}{I_{inc}} =& \left( \frac{E_r}{E_{inc}} \right)^2 \\ =& |F(\omega)|^2 J_0^2(\Delta \varphi) + |F(\omega+\Omega)|^2 J_1^2(\Delta \varphi) + |F(\omega-\Omega)|^2 J_1^2(\Delta \varphi) \\ & (\text{DC terms}) \\ +& 2 J_0(\Delta \varphi)J_1(\Delta \varphi) \Re[F(\omega)F^*(\omega+\Omega) - F(\omega)F^*(\omega-\Omega)] \cos(\Omega t) \\ -& 2 J_0(\Delta \varphi)J_1(\Delta \varphi) \Im[F(\omega)F^*(\omega+\Omega) + F(\omega)F^*(\omega-\Omega)] \sin(\Omega t) \\ & (\text{$\Omega$ oscillating terms}) \\ +& \mathcal{O}(2\Omega) \end{aligned}

Insight: II

Note that when ΩΔνFWHM\Omega \gg \Delta\nu_{FWHM}, F(ωΩ)=F(ω+Ω)=1F(\omega-\Omega) = F(\omega+\Omega) = 1, then the imaginary part of F(ω)F(ω+Ω)+F(ω)F(ωΩ)F(\omega)F^*(\omega+\Omega) + F(\omega)F^*(\omega-\Omega) is exactly 2F(ω)2 \Im F(\omega), which is the ideal signal we want. The real part term is trivial. We only need to extract the sin(Ωt)\sin(\Omega t) term with a mixer.

error signal

The idea of PDH method is discussed above. The error signal is the reflected light instead of transmitted light. When laser frequency drifts, reflected light hence the error signal changes immediately. The instant laser phase interferes with the phase of the time-averaging frequency.

Mixer

A mixer forms the product of its inputs. Feed the RF signal driving the EOM and the PD signal into a mixer:

(Rcos(Ωt)+Isin(Ωt))×sin(Ωt+θ)=12Rsinθ+12Icosθ+O(2Ω)(\mathcal{R}\cos(\Omega t) + \mathcal{I}\sin(\Omega t)) \times \sin(\Omega t + \theta) = \frac{1}{2}\mathcal{R}\sin\theta + \frac{1}{2}\mathcal{I}\cos\theta + \mathcal{O}(2\Omega)

By choosing a proper θ\theta, we can compensate experimental delays and filter out unwanted signals.

Order of magnitude

F106L10cmνFSR1GHzΔνFWHM1kHzΔνlaser(0.1%0.01%)ΔνFWHM1Hz\begin{aligned} \mathcal{F} &\sim 10^6 \\ L &\sim 10 \text{cm} \\ \nu_{FSR} &\sim 1 \text{GHz} \\ \Delta \nu_{FWHM} &\sim 1 \text{kHz} \\ \Delta \nu_{laser} &\sim (0.1\% - 0.01\%) \Delta \nu_{FWHM} \sim 1 \text{Hz} \end{aligned}

Reference

https://zhuanlan.zhihu.com/p/83987752

Laser Locking For Trapped-Ion Quantum Networks (Thesis)

Quantum Metrology and Many-Body Physics Pushing the Frontier of the Optical Lattice Clock (Thesis)

Frequency stabilization of a 729 nm diode laser to an external high finesse reference cavity (Thesis)


PDH method - How can we lock laser frequency? Theory Part
https://zuqingwang.github.io/posts/laser-locking/PDH-method-thoery
Author
zq
Posted on
October 14, 2022
Licensed under