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Preface

Trust me, it’s not that hard

In 1951, I had the good fortune of listening to Professor
Racah’s lecture on Lie groups at Princeton. After attending
these lectures, I thought, “This is really too hard. I cannot learn
all this . . . too damned hard and unphysical.”

—A. Salam, 1979 Nobel laureate in physics1

Trust me, it’s not that hard. And as Salam’s own Nobel-winning work helped show, group
theory is certainly relevant to physics. We now know that the interweaving gauge bosons
underlying our world dance to the music2 of Lie groups and Lie algebras.

This book is about the use of group theory in theoretical physics. If you are looking
for a mathematics book on group theory complete with rigorous proofs, the abstract3

modern definition4 of tensors and the like, please go elsewhere. I will certainly prove every
important statement, but only at a level of rigor acceptable to most physicists. The emphasis
will be on the intuitive, the concrete, and the practical.

I would like to convince a present day version of Salam that group theory is in fact very
physical. With due respect to Racah, I will try to do better than him pedagogically. My goal
is to show that group theoretic concepts are natural and easy to understand.
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Elegant mathematics and profound physics: Honor your inheritance

In great mathematics, there is a very high degree of unexpected-
ness, combined with inevitability and economy.

—G. H. Hardy5

Group theory is a particularly striking example of what Hardy had in mind. For me, one
of the attractions of group theory is the sequence of uniqueness theorems, culminating
in Cartan’s classification of all Lie algebras (discussed in part VI). Starting from a few
innocuous sounding axioms defining what a group is, an elegant mathematical structure
emerges, with many unexpected theorems.

My colleague Greg Huber pointed out to me that group theory is an anagram for rough
poetry. Rough? I’ve always thought that it’s close to pure poetry.

Although group theory is certainly relevant for nineteenth-century physics, it really
started to play an important role with the work of Lorentz and Poincaré, and became
essential with quantum mechanics. Heisenberg opened up an entire new world with his
vision of an internal symmetry, the exploration of which continues to this very day in one
form or another. Beginning in the 1950s, group theory has come to play a central role in
several areas of physics, perhaps none more so than in what I call fundamental physics,
as we will see in parts V, VII, VIII, and IX of this book. There are of course some areas6 of
physics that, at least thus far, seem not7 to require much of group theory.

I understand that group theory has also played a crucial role in many areas of mathe-
matics, for example, algebraic topology, but that is way outside the scope of this book. As a
one-time math major who saw the light, while I do not know what mathematicians know
about groups, I know enough to know that what I cover here is a tiny fraction of what
they know.

This is a book about a branch of mathematics written by a physicist for physicists. One
immediate difficulty is the title: the disclaimer “for physicists” has to be there; also the
phrase “in a nutshell” because of my contractual obligations to Princeton University Press.
The title “Group Theory for Physicists in a Nutshell” would amount to a rather lame joke,
so the actual title is almost uniquely determined.

This is my third Nutshell book. As for my motivation for writing yet another textbook,
Einstein said it better than I could: “Bear in mind that the wonderful things that you learn
in your schools are the work of many generations. All this is put into your hands as your
inheritance in order that you may receive it, honor it, add to it, and one day faithfully hand
it on to your children.”8

Advice to the reader

Some advice to the reader, particularly if you are self-studying group theory in physics.
The number one advice is, of course, “Exercise!” I strongly recommend doing exercises
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as you read along, rather than waiting until the end of the chapter, especially in the early
chapters. To the best of my knowledge, nobody made it into the NBA by watching the
sports channels. Instead of passively letting group theory seep into your head, you should
frequently do the mental equivalent of shooting a few baskets. When given a theorem, you
should, in the spirit of doubting Thomas, try to come up with counterexamples.

I am particularly worried about the readers who are shaky about linear algebra. Since this
is not a textbook on linear algebra, I did not provide lots of exercises in my coverage (see
below) of linear algebra. So, those readers should make up their own (even straightforward)
exercises, multiplying and inverting a few numerical matrices, if only to get a sense of how
matrices work.

For whom is this book written

This brings me to prerequisites. If you know linear algebra, you can read this book. For the
reader’s convenience, I had planned to provide a brief appendix reviewing linear algebra.
It grew and grew, until it became essentially self-contained and clamored to move up front.
I ended up covering, quite completely, at least those aspects of linear algebra needed for
group theory. So, yes, even if you don’t know linear algebra, you could still tackle this book.

Several blurbers and reviewers of my Quantum Field Theory in a Nutshell9 have said
things along the line of “This is the book I wish I had when I was a student.”10 So that’s
roughly the standard I set for myself here: I have written the book on group theory I wished
I had when I was a student.11

My pedagogical strategy is to get you to see some actual groups, both finite and continu-
ous, in action as quickly as possible. You will, for example, be introduced to Lie algebra by
the third chapter. In this strategy, one tactic is to beat the rotation group to death early on.
It got to the point that I started hearing the phrase “beat rotation to death” as a rallying cry.

Group theory and quantum mechanics

I was not entirely truthful when I said “If you know linear algebra, you can read this
book.” You have to know some quantum mechanics as well. For reasons to be explained in
chapter III.1, group theory has played much more of a role in quantum mechanics than in
classical mechanics. So for many of the applications, I necessarily have to invoke quantum
mechanics. But fear not! What is needed to read this book is not so much quantum
mechanics itself as the language of quantum mechanics. I expect the reader to have heard
of states, probability amplitudes, and the like. You are not expected to solve the Schrödinger
equation blindfolded, and certainly those murky philosophical issues regarding quantum
measurements will not come in at all.

For some chapters in parts V, VII, and IX, some rudimentary knowledge of quantum
field theory will also be needed. Some readers may wish to simply skip these chapters.
For braver souls, I try to provide a gentle guide, easing into the subject with a review of
the Lagrangian and Hamiltonian in chapters III.3 and IV.9. The emphasis will be on the
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group theoretic aspects of quantum field theory, rather than on the dynamical aspects, of
course. I believe that readers willing to work through these chapters will be rewarded with
a deeper understanding of the universe. In case you run into difficulties, my advice is to
muddle through and provisionally accept some statements as given. Of course, I also hope
that some readers will go on and master quantum field theory (smile).

Applications of group theory

My philosophy here is not to provide a compendium of applications, but to endow the
reader with enough of an understanding of group theory to be able to approach individual
problems. The list of applications clearly reflects my own interests, for instance, the
Lorentz group and its many implications, such as the Weyl, Dirac, and Majorana equations.
I think that this is good. What is the sense of my transporting calculations from some
crystallography and materials science textbooks (as some colleagues have urged me to
do “to broaden the market”), when I do not feel the subject in my bones, so to speak?
In the same way, I do not expect existing books on group theory in solid state physics
to cover the Majorana fermion. To be sure, I cover some standard material, such as the
nonexistence of crystals with 5-fold symmetry. But, judging from recent advances at the
frontier of condensed matter theory, some researchers may need to get better acquainted
with Weyl and Majorana rather than to master band structure calculations.

I try to give the reader some flavor of a smattering of various subjects, such as Euler’s
function and Wilson’s theorem from number theory. In my choice of topics, I tend to favor
those not covered in most standard books, such as the group theory behind the expanding
universe. My choices reflect my own likes or dislikes.12 Since field theory, particle physics,
and relativity are all arenas in which group theory shines, it is natural and inevitable that
this book overlaps my two previous textbooks.

The genesis of this book

This book has sat quietly in the back of my mind for many years. I had always wanted
to write textbooks, but I am grateful to Steve Weinberg for suggesting that I should write
popular physics books first. He did both, and I think that one is good training for the other.
My first popular physics book is Fearful Symmetry,13 and I am pleased to say that, as it
reaches its thirtieth anniversary, it is still doing well, with new editions and translations
coming out. As the prospective reader of this book would know, I could hardly talk about
symmetry in physics without getting into group theory, but my editor at the time14 insisted
that I cut out my attempt to explain group theory to the intelligent public. What I wrote
was watered down again and again, and what remained was relegated to an appendix. So,
in some sense, this book is a follow-up on Fearful, for those readers who are qualified to
leap beyond popular books.

Physics students here at the University of California, Santa Barbara, have long asked for
more group theory. In an interesting pedagogical year,15 I taught a “physics for poets”
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course for nonphysics majors, discussing Fearful over an entire quarter, and during
the following quarter, a special topics course on group theory addressed to advanced
undergraduates and graduate students who claimed to know linear algebra.

Teaching from this book and self-studying

As just mentioned, I taught this material (more than once) at the University of California,
Santa Barbara, in a single quarter course lasting ten weeks with two and a half hours’ worth
of lectures per week. This is too short to cover all the material in the book, but with some
skipping around, I managed to get through a major fraction. Here is the actual syllabus.

Week 1: Definition and examples of groups, Lagrange’s theorem, constructing multiplication

tables, direct product, homomorphism, isomorphism

Week 2: Finite group, permutation group, equivalence classes, cycle structure of permutations,

dihedral group, quarternionic group, invariant subgroup, simple group

Week 3: Cosets, quotient group, derived subgroup, rotation and Lie’s idea, Lie algebra

Week 4: Representation theory, unitary representation theorem, orthogonality theorem, char-

acter orthogonality

Week 5: Regular representation; character table is square; constructing character table

Week 6: Tray method; real, pseudoreal, and complex; crystals; Fermat’s little theorem (state-

ment only);16 group theory and quantum mechanics

Week 7: SO(N): why SO(3) is special, Lie algebra of SO(3), ladder operators, Casimir invari-

ants, spherical harmonics, SU(N)

Week 8: SU(2) double covers SO(3), SO(4), integration over group manifolds

Week 9: SU(3), roots and weights, spinor representations of SO(N)

Week 10: Cartan classification, Dynkin diagrams

Thus, the single quarter course ends with part VI.
Students were expected to do some reading and to fill in some gaps on their own. Of

course, instructors may want to deviate considerably from this course plan, emphasizing
one topic at the expense of another. It would be ideal if they could complement this book
with material from their own areas of expertise, such as materials science. They might also
wish to challenge the better students by assigning the appendices and some later chapters.
A semester would be ideal.

Some notational alerts

Some books denote Lie groups by capital letters, for example, SU(2), and the correspond-
ing algebras by lower case letters, for example, su(2). While I certainly understand the need
to distinguish group and algebra, I find the constant shifting between upper and lower
case letters rather fussy looking. Most physicists trust the context to make clear whether



xvi | Preface

the group or the algebra is being discussed. Thus, I will follow the standard physics usage
and write SU(2) for both group and algebra. An informal survey of physics students indi-
cates that most agree with me. Of course, I am careful to say that, for example, SU(2) and
SO(3) are only locally isomorphic and that one covers the other (as explained in detail in
part IV).

In general, I vote for clarity over fussiness; I try not to burden the reader with excessive
notation.

Parting comments: Regarding divines and dispensable erudition

A foolish consistency is the hobgoblin of little minds, adored by
little statesmen and philosophers and divines.

—Ralph Waldo Emerson

I made a tremendous effort to be consistent in my convention, but still I have to invoke
Emerson and hope that the reader is neither a little statesman nor a divine. At a trivial level,
I capriciously use “1, 2, 3” and “x , y , z” to denote the same three Cartesian axes. Indeed,
I often intentionally switch between writing superscript and subscript (sometimes driven
by notational convenience) to emphasize that it doesn’t matter. But eventually we come to
a point when it does matter. I will then explain at length why it matters.

In Zvi Bern’s Physics Today review of QFT Nut, he wrote this lovely sentence: “The
purpose of Zee’s book is not to turn students into experts—it is to make them fall in love
with the subject.”17 I follow the same pedagogical philosophy in all three of my textbooks.
This echoes a sage18 who opined “One who knows does not compare with one who likes,
one who likes does not compare with one who enjoys.”

As I have already said, this is not a math book, but a book about math addressed to
physicists. To me, math is about beauty, not rigor, unexpected curves rather than rock
hard muscles.

Already in the nineteenth century, some mathematicians were concerned about the
rising tide of rigor. Charles Hermite, who figures prominently in this book, tried to show
his students the simple beauty of mathematics, while avoiding what Einstein would later
refer to as “more or less dispensable erudition.”19 In this sense, I am Hermitean, and also
Einsteinian.

Indeed, Einstein’s aphorism, that “physics should be made as simple as possible, but
not any simpler,” echoes throughout my textbooks. I have tried to make group theory as
simple as possible.20
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Notes

1. Quoted in J-Q. Chen, Group Representation Theory for Physicists, p. 1.
2. I will get up to a “faint echo” in the closing parts of this book.
3. George Zweig, who independently discovered the notion of quarks, had this to say about the abstract

approach: “Mathematics in the US was taught in a very formal manner. I learned algebra from a wonderful
algebraist, Jack McLaughlin, but the textbook we used was Jacobson’s two-volume set, ‘Lectures in Abstract
Algebra,’ and abstract it was! It seemed like there were as many definitions as results, and it was impossible
to see how Mr. Jacobson actually thought. The process was hidden, only polished proofs were presented.”
Hear, hear!

4. In contrast to the concrete “archaic” definition that physicists use.
5. G. H. Hardy, A Mathematician’s Apology, Cambridge University Press, 1941.
6. I am often surprised by applications in areas where I might not expect group theory to be of much use.

See, for example, “An Induced Representation Method for Studying the Stability of Saturn’s Ring,” by
S. B. Chakraborty and S. Sen, arXiv:1410.5865. Readers who saw the film Interstellar might be particularly
interested in this paper.

7. To paraphrase Yogi Berra, if some theoretical physicists do not want to learn group theory, nobody is going
to make them.

8. Albert Einstein, speaking to a group of school children, 1934.
9. Henceforth, QFT Nut.

10. See, for example, F. Wilczek on the back cover of the first edition of QFT Nut or the lead page of the second
edition.

11. Indeed, it would have been marvelous if I had had something like this book after I had learned linear algebra
in high school.

12. Or even other people’s dislikes. For instance, my thesis advisor told me to stay the heck away from Young
tableaux, and so I have ever since.

13. Henceforth, Fearful.
14. He had heard Hawking’s dictum that every equation in a popular physics book halves its sale.
15. At the urging of the distinguished high energy experimentalist Harry Nelson.
16. That is, the full proof is given here, but was not entered into when I taught the course.
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17. Niels Bohr: “A expert is someone . . . who goes on to know more and more about less and less, and ends up
knowing everything about nothing.”

18. This represents one of the few instances in which I agree with Confucius. Alas, I am often surrounded by
people who know but do not enjoy.

19. In fact, Einstein was apparently among those who decried “die Gruppenpest.” See chapter I.1. I don’t know
of any actual documentary evidence, though.

20. While completing this book, I came across an attractive quote by the mathematician H. Khudaverdyan: “I
remember simple things, I remember how I could not understand simple things, this makes me a teacher.”
See A. Borovik, Mathematics under the Microscope, p. 61.
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Algebra is generous; she often gives more than is asked of her.
—Jean-Baptiste le Rond d’Alembert (1717–1783)

Linear algebra is a beautiful subject, almost as beautiful as group theory. But who is
comparing?

I wrote this originally as a review for those readers who desire to learn group theory
but who need to be reminded of some key results in linear algebra. But then the material
grew, partly because I want to have a leisurely explanation of how the basic concepts of
matrix and determinant arise naturally. I particularly want to give a step-by-step derivation
of Cramer’s formula for the matrix inverse rather than to plop it down from the sky. So
then in the end, I decided to put this review at the beginning.

This is of course not meant to be a complete treatment of linear algebra.∗ Rather, we
will focus on those aspects needed for group theory.

Coupled linear equations

As a kid, I had a run-in with the “chicken and rabbit problem.” Perhaps some readers had
also? A farmer has x chickens and y rabbits in a cage. He counted 7 heads and 22 legs.
How many chickens and rabbits are in the cage? I was puzzled. Why doesn’t the farmer
simply count the chickens and rabbits separately? Is this why crazy farmers have to learn
linear algebra?

In fact, linear algebra is by all accounts one of the most beautiful subjects in mathemat-
ics, full of elegant theorems, contrary to what I thought in my tender years. Here I will
take an exceedingly low-brow approach, eschewing generalities for specific examples and
building up the requisite structure step by step.

∗ Clearly, critics and other such individuals looking for mathematical rigor should also look elsewhere. They
should regard this as a “quick and dirty” introduction for those who are unfamiliar (or a bit hazy) with linear
algebra.
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Instead of solving x + y = 7, 2x + 4y = 22, let us go up one level of abstraction and
consider

ax + by = u (1)

cx + dy = v (2)

Subtracting b times (2) from d times (1), we obtain

(da − bc)x = du− bv (3)

and thus

x = du− bv
ad − bc =

1
ad − bc (d , −b)

(
u

v

)
(4)

Note that the scalar product∗ of a row vector with a column vector naturally appears.

Given a row vector �PT = (p , q) and a column vector �Q =
(
r

s

)
, their scalar product is

defined to be �PT . �Q= (p , q)
(
r

s

)
= pr + qs. (The superscript T on �P will be explained

in due time.)
Similarly, subtracting a times (2) from c times (1), we obtain

(cb − ad)y = cu− av (5)

and thus

y =− cu− av
ad − bc =

1
ad − bc (−c, a)

(
u

v

)
(6)

(With a = 1, b = 1, c = 2, d = 4, u= 7, v = 22, we have x = 3, y = 4, but this is all child’s
play for the reader, of course.)

Matrix appears

Packaging (4) and (6) together naturally leads us to the notion of a matrix:†(
x

y

)
= 1
ad − bc

(
du− bv
−cu+ av

)
= 1
ad − bc

(
d −b
−c a

) (
u

v

)
(7)

The second equality indicates how the action of a 2-by-2 matrix on a 2-entry column
vector is defined. A 2-by-2 matrix acting on a 2-entry column vector produces a 2-entry
column vector as follows. Its first entry is given by the scalar product of the first row of the
matrix, regarded as a 2-entry row vector, with the column vector, while its second entry is
given by the scalar product of the second row of the matrix, regarded as a 2-entry row vector,
with the column vector. I presume that most readers of this review are already familiar with

∗ Also called a dot product.
† “Matrix” comes from the Latin word for womb, which in turn is derived from the word “mater.” The term

was introduced by J. J. Sylvester.
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how a matrix acts on a column vector. As another example,(
a b

c d

) (
x

y

)
=
(
ax + by
cx + dy

)
(8)

At this point, we realize that we could write (1) and (2) as(
a b

c d

) (
x

y

)
=
(
u

v

)
(9)

Define the matrix M =
(
a b

c d

)
and write �x =

(
x

y

)
and �u=

(
u

v

)
. Then we can express

(9) as

M �x = �u (10)

Thus, given the matrix M and the vector �u, our problem is to find a vector �x such that M
acting on it would produce �u.

Turning a problem around

As is often the case in mathematics and physics, turning a problem around1 and looking
at it in a novel way could open up a rich vista. Here, as some readers may know, it is fruitful
to turn (10) around into �u=M �x and to look at it as a linear transformation of the vector �x
by the matrixM into the vector �u, conceptualized asM : �x→ �u, rather than as an equation
to solve for �x in terms of a given �u.

Once we have the notion of a matrix transforming a vector into another vector, we could
ask what happens if another matrix N comes along and transforms �u into another vector,
call it �p:

�p =N �u=NM �x = P �x (11)

The last equality defines the matrix P . At this point, we may become more interested in
how two matricesN andM could be multiplied together to form another matrix P =NM ,
and “dump”2 the vectors �p, �u, and �x altogether, at least for a while.

The multiplication of matrices provides one of the central themes of group theory. We
will see presently that (11) tells us how the product NM is to be determined, but first we
need to introduce indices.

Appearance of indices and rectangular matrices

If we want to generalize this discussion on 2-by-2 matrices to n-by-n matrices, we risk
running out of letters. So, we are compelled to use that marvelous invention known as the
index.

WriteM =
(
M11 M12
M21 M22

)
. Here we have adopted the totally standard convention of denot-

ing by Mij the entry in the ith row and j th column of M . The reader seeing this for the
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first time should make sure that he or she understands the convention about rows and
columns by writing downM31 andM23 in the following 3-by-3 matrix:

M =

⎛⎜⎜⎝
a b c

d e f

g h i

⎞⎟⎟⎠ (12)

The answer is given in an endnote.3

Starting with the chicken and rabbit problem, we were led to square matrices. But we
could just as well definem-by-n rectangular matrices withm rows and n columns. Indeed, a
column vector could be regarded as a rectangular matrix withm rows and only one column.
A row vector is a rectangular matrix, with one row and n columns.

Rectangular∗ matrices could be multiplied together only if they “match”; thus an m-by-
n rectangular matrix can be multiplied from the right by an n-by-p rectangular matrix to
form an m-by-p rectangular matrix.

Writing �x =
(
x1
x2

)
and �u=

(
u1
u2

)
(which amounts to regarding a vector as a rectangular

matrix with two rows but only one column), we could restate (10) (or in other words, (1) and
(2), the equations we started out with) as ui =Mi1x1+Mi2x2=

∑2
j=1Mijxj , for i = 1, 2.

Multiplying matrices together and the Kronecker delta

Now the generalization to n-dimensional vectors and n-by-n matrices is immediate. We
simply allow the indices i and j to run over 1, . . . , n and extend the upper range in the
summation symbol to n:

ui =
n∑
j=1

Mijxj (13)

The rule for multiplying matrices then follows from (11):

pi =
n∑
j=1

Nijuj =
n∑
j=1

n∑
k=1

NijMjkxk =
n∑
k=1

Pikxk (14)

Hence P =NM means

Pik =
n∑
j=1

NijMjk (multiplication rule) (15)

We now define the identity matrix I by Iij = δij , with the Kronecker delta symbol δij
defined by

δij =
{

1 if i = j
0 if i �= j

(16)

∗ We will seldom encounter rectangular matrices other than vectors; one occasion would occur in the proof
of Schur’s lemma in chapter II.2.
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In other words, I is a matrix whose off-diagonal elements all vanish and whose diagonal

elements are all equal to 1. In particular, for n= 2, I =
(

1 0
0 1

)
.

It follows from (15) that (IM)ik =
∑n
j=1 δijMjk =Mik. Similarly, (MI)ik =Mik. In other

words, IM =MI =M .
If the reader feels a bit shaky about matrix multiplication, now is the time to practice with

a few numerical examples.4 Please also do exercises 1–5, in which the notion of elementary
matrices is introduced; we will need the results later.

I also mention here another way of looking at matrix multiplication that will be useful
later. Regard the n columns inM as n different column vectors �ψ(k), k = 1, . . . , n, where
by definition the j th component of �ψ(k) is equal toMjk. (The parenthesis is a bit pedantic:
it emphasizes that k labels the different column vectors.) Thus, schematically,

M =
(
�ψ(1), . . . , �ψ(k), . . . , �ψ(n)

)
(17)

For example, for the 3-by-3 matrix in (12), �ψ(1) =
(
a

d

g

)
, �ψ(2) =

(
b

e

h

)
, and �ψ(3) =

(
c

f

i

)
.

Similarly, regard the n columns in P as n different column vectors �φ(k), k = 1, . . . , n,
where by definition the j th component of �φ(k) is equal to Pjk. Looked at this way, (15) is
telling us that �φ(k) is obtained by acting with the matrix N on �ψ(k):

P =
(
�φ(1), . . . , �φ(n)

)
=NM =

(
N �ψ(1), . . . , N �ψ(n)

)
(18)

Einstein’s repeated index summation

Let us now observe that whenever there is a summation symbol, the index being summed
over is repeated. For example, in (15) the summation symbol instructs us to sum over the
index j , and indeed the index j appears twice in NijMjk, in contrast to the indices i and
k, which appear only once each and are sometimes called free indices.

Notice that the free indices also appear in the left hand side of (15), namely in Pik. This
is of course as it should be: the indices on the two sides of the equation must match. In
contrast, the index j , which has been summed over, must not appear in the left hand side.

As you can see (and as could Einstein), the summation symbol is redundant in many
expressions and may be omitted if we agree that any index that is repeated, such as j in this
example, is understood to be summed over. In the physics literature, Einstein was among
the first to popularize this repeated index summation, which many physicists regard as
one of Einstein’s important contributions.5 We will adopt this convention and hence write
(15) simply as Pik =NijMjk.

The index being summed over (namely, j in this expression) is sometimes called the
dummy index, in contrast to the free indices i and k, which take on fixed values we are
free to assign. Here is a self-evident truth seemingly hardly worth mentioning, but yet it
sometimes confuses some abecedarians: it does not matter what we call the dummy index.
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For example,N1jMj3=N1mMm3=N1hMh3=N11M13+N12M23+ . . .+N1nMn3 if we are
dealing with n-by-nmatrices.

Not commutative, but associative

Matrix multiplication is not commutative; that is, in generalNM �=MN : no reason for the
two sums�jNijMjk and�jMijNjk to be equal. You could verify this with a few examples.

For instance, define the matrices σ3=
(

1 0
0 −1

)
and σ1=

(
0 1
1 0

)
; then σ3σ1=−σ1σ3 �= σ1σ3.

Matrix multiplication is, however, associative: (AB)C = A(BC). We show this by brute
force: ((AB)C)ik = (AB)ijCjk = AilBljCjk, while (A(BC))ik = Aij(BC)jk = AijBjlClk,
but these two expressions are the same, because in both the index j and index l are
summed over according to Einstein’s convention. They are dummies and can be renamed.

Keep in mind that

NM �=MN but (AB)C = A(BC) (19)

Transpose

We now go back to the superscript T slipped in earlier when we wrote PT .Q. The
transpose of a matrixM , denoted byMT , is defined by interchanging the rows and columns
inM . In other words, (MT )ij =Mji. The transpose of a column vector is a row vector, and
vice versa.

A small∗ but important theorem: The transpose of a product is the product of the
transposes, but in reversed order:

(NM)T =MTNT (20)

Proof: ((NM)T )ij = (NM)ji = NjkMki = NTkjMT
ik
=MT

ik
NT
kj
= (MTNT )ij . Note that in

three of these expressions the index k is summed over.

Trace

An important concept is the trace of a matrix, defined as the sum of the diagonal elements:

trM =
∑
i

Mii =Mii (21)

In the second equality we invoke Einstein’s summation convention. For example,

tr
(
a b

c d

)
= a + d .

Another important theorem states that although in general AB and BA are not equal,
their traces are always equal:

AB �= BA but tr AB = tr BA (22)

∗ By the way, this shows that exercise 4 follows from exercises 1–3 by transposition.
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Proof: tr AB = (AB)ii = AijBji, while tr BA= (BA)ii = BijAji. But since the index i
and index j are both summed over, these two expressions are in fact the same. In other
words, we could simply rename the indices: BijAji = BjiAij = AijBji. The last equality
just states that the multiplication of numbers is commutative.

Using this and associativity, we see the cyclicity of the trace:

tr ABC = tr(AB)C = tr C(AB)= tr CAB (23)

Under a trace, a product of matrices could be cyclically permuted. In particular, the trace
in (23) is also equal to tr BCA.

A quick summary

Here is a quick summary of what we have done thus far. From a system of linear equations,
we abstracted the notion of a matrix and then were led naturally to multiplying matrices
together. We discovered that matrix multiplication was associative but not commutative.
Operations such as transposition and trace suggest themselves.

But we have not yet solved the system of linear equations we started out with. We will
do so shortly.

The inverse

Another simple observation is that an n-by-nmatrixM reduces to just an ordinary number
m for n= 1. Ifm �= 0, then it has an inversem−1 such thatm−1m= 1. Indeed,m−1= 1/m.

We might hope that if a matrix M satisfies some condition analogous to m �= 0, then it
has an inverse M−1 such that M−1M = I . (Call this an example of physicist intuition if
you like.) We will presently discover what that condition is.

If M does have an inverse, then (10), the equation M �x = �u that started this entire
discussion (for example, the chicken and rabbit problem), could be solved immediately
by multiplying the equation byM−1 from the left:

�x = I �x =M−1M �x =M−1�u (24)

If we knowM−1, then we simply act with it on �u to obtain �x.
We are talking as if the existence ofM−1 is hypothetical, but in fact, comparing (24) with

(7), we can immediately read off the inverseM−1 of any 2-by-2 matrixM =
(
a b

c d

)
, namely

M−1= 1
D

(
d −b
−c a

)
(25)

where we have defined

D ≡ ad − bc (26)

Check it! The all-important quantity D is known as the determinant of the matrix M ,
written as detM .



8 | A Brief Review of Linear Algebra

Note that M−1 exists if and only if the determinant, D = detM , does not vanish. This
condition, that D �= 0, generalizes, to 2-by-2 matrices, the conditionm �= 0 that you learned
in school necessary for a number m to have an inverse.

Inverting a matrix

Surely you know that famous joke about an engineer, a physicist, and a mathematician
visiting New Zealand for the first time. No?

Well then, an engineer, a physicist, and a mathematician were traveling by train in New
Zealand when they saw a black sheep. The engineer exclaimed, “Look, the sheep in
New Zealand are black.” The physicist objected, saying “You can’t claim that. But wait,
if we see another black sheep, or maybe yet another, then we can say almost for sure that
all the sheep in New Zealand are black.” The mathematician smirked, “All you can say is
that, of the sheep in New Zealand we could see from this train, their sides facing the train
are black.”

Our strategy here, now that we have shown explicitly that the generic 2-by-2 matrix has
an inverse, is that we will try to find the inverse of the generic 3-by-3 matrix. If we could do
that, then by the standards of theoretical physics, we would have pretty much shown (hear
the derisive howls of the mathematicians?) that the generic n-by-nmatrix has an inverse.

Actually, our approach of inverting 2-by-2 and 3-by-3 matrices and hoping to see a pattern
is in the spirit of how a lot of research in theoretical physics proceeds (rather than by the
textbook “stroke of genius” method).

To find the inverse of the generic 3-by-3 matrix, we adopt the poor man’s approach of
solving the 3-by-3 analog of (1) and (2):

ax + by + cz= u (27)

dx + ey + f z= v (28)

gx + hy + iz= w (29)

Perhaps the most elementary method is to eliminate one of the unknowns, say z, by
forming the combination i(27)− c(29):

(ai − cg)x + (bi − ch)y = iu− cw (30)

Also, the combination i(28)− f (29) gives

(di − fg)x + (ei − f h)y = iv − fw (31)

We have thus reduced the problem to a previously solved problem,6 namely, the system
of equations

a′x + b′y = u′ (32)

c′x + d ′y = v′ (33)
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with a′ = ai − cg and so on, with the solution given in (4), (6), and (7), namely, x = d ′u′−b′v′
a′d ′−b′c′

and so on. We note that as i→ 0 both the numerator and denominator vanish. For example,
a′d ′ − b′c′ → cgf h− chfg = 0. Thus, the numerator and the denominator must have a
factor of i in common. Canceling this factor, we obtain

x = (ei − f h)u− (bi − ch)v + (bf − ce)w
aei − bdi − af h− ceg + cdh+ bfg (34)

Compare with (4). I cordially request the reader seeing this for the first time to solve for y
and z. I will wait for you.

With M =
(
a b c

d e f

g h i

)
, �x =

(
x

y

z

)
, and �u=

(
u

v

w

)
, write the three linear equations (27),

(28), and (29) asM �x = �u.
Next, write the solution (a piece of which is in (34)) we (that includes you!) have just

found as �x =M−1�u, and read off the desired inverseM−1.
For example, in the matrix M−1, the entry in the first row and third column is equal

to (M−1)13 = (bf − ce)/D. (Do you see why?) Here we have once again defined the
determinant D ofM as the denominator in (34):

D = detM = aei − bdi − af h− ceg + cdh+ bfg (35)

Since you have solved for y and z, you can now write downM−1 in its entirety.

The determinant and the Laplace expansion

By the way, we could of course also have foundM−1 by brute force: in the 2-by-2 case write

it as
(
p r

q s

)
and solve the four equations contained in

(
p r

q s

) (
a b

c d

)
=
(

1 0
0 1

)
for the four

unknowns p , q , r , s. (For example, one of the equations is pa + rc = 1.) Similarly for the
3-by-3 case, in which we have to solve nine equations for nine unknowns.

Clearly, neither this brute force method nor the method we followed by repeatedly
reducing the problem to a problem we have solved before generalizes easily to the n-by-
n case.

Instead, stare at the determinant D = ad − bc of the matrix M =
(
a b

c d

)
. Note that,

remarkably, if we define A= d , B =−c, C =−b, D = a, we can write D in four (count
them, four) different ways, namely

D = aA+ bB = cC + dD = aA+ cC = bB + dD (36)

You say, this is silly. We have simply rewritten a , b, c, d using capital letters and thrown
in some signs.

Indeed, apparently so, but the important point to focus on is that D can be written in
four different ways. This is known as the Laplace expansion, named after a very clever guy
indeed.
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Notice that(
A C

B D

) (
a b

c d

)
=D

(
1 Y

X 1

)
(37)

where the symbols X , Y denote elements as yet unknown. That the diagonal elements in
the matrix on the right hand side are equal to 1 is guaranteed by the third and fourth form
of D in (36).

We now show that both X and Y vanish.
By matrix multiplication, we see that in (37) X = aB + cD. By comparing this with the

fourth form of D in (36), D = bB + dD, we see that this is the determinant of a matrix

obtained from
(
a b

c d

)
by replacing b→ a and d→ c, namely,

(
a a

c c

)
. Invoking (26), we

see that the determinant of this matrix equals ac − ac, which all educated7 people agree
vanishes. I leave it to you to argue that Y also vanishes. Thus, we have found the inverse

M−1= 1
D

(
A C

B D

)
in agreement with the result in (7) and (25).

By now, the reader may be chuckling that this has got to be the most longwinded method
for finding the inverse of a 2-by-2 matrix. But in mathematics and theoretical physics, it
often pays to wander around the bush for a while rather than zero in by brute force.

Let’s see if the pattern in the preceding discussion continues to hold in the 3-by-3

case. For the matrix M =
(
a b c

d e f

g h i

)
, we have D = aei − bdi − af h− ceg + cdh+ bfg

as in (35).
Notice that in the 2-by-2 case, in the Laplace expansion, we can write D in (36) in 2+ 2= 4

ways; namely, (i) of a linear combination of a , b, the two elements in the first row; (ii) of a
linear combination of c, d , the two elements in the second row; (iii) of a linear combination
of a , c, the two elements in the first column; and (iv) of a linear combination of b, d, the
two elements in the second column. So, the poor man reasons, there ought to be 3+ 3= 6
ways of writing D in the 3-by-3 case.

Sure enough, in the 3-by-3 case, we can collect terms and write

D = aA+ bB + cC (38)

as a linear combination of a , b, c, the three elements in the first row. This is the analog of
way (i). Inspecting (35), we have

A≡ (ei − f h), B ≡−(di − fg), C ≡ (dh− eg) (39)

Furthermore, we recognize A≡ (ei − f h) as the determinant of the 2-by-2 matrix
(
e f

h i

)
obtained by crossing out inM the row and column a belongs to:⎛⎜⎜⎝

Xa Xb Xc

Xd e f

Xg h i

⎞⎟⎟⎠ (40)

Similarly, B ≡−(di − fg) is the determinant of the 2-by-2 matrix obtained by crossing
out the row and column b belongs to, but now multiplied by (−1). I leave it to you to work
out what C is.
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Thus, in this case, the determinant is obtained as follows.

1. Take an entry in a particular row (namely, the first row).

2. Cross out the row and column the entry belongs to.

3. Calculate the determinant of the resulting 2-by-2 matrix.

4. Multiply the entry by this determinant.

5. Repeat for each entry in the row.

6. Sum with alternating signs.

In other words, the problem of evaluating a 3-by-3 determinant reduces to the previously
solved problem of evaluating a 2-by-2 determinant.

Iterative evaluation of determinants

This yields an efficient way to evaluate determinants by hand, for 3-by-3 or even larger
matrices, depending on your physical stamina. One standard notation for the determinant
involves replacing the parentheses around the matrix by two vertical bars. Thus, we have
found∣∣∣∣∣∣∣∣

a b c

d e f

g h i

∣∣∣∣∣∣∣∣= a
∣∣∣∣∣ e f

h i

∣∣∣∣∣− b
∣∣∣∣∣ d f

g i

∣∣∣∣∣+ c
∣∣∣∣∣ d e

g h

∣∣∣∣∣ (41)

For those readers who are seeing this for the first time, a numerical example is∣∣∣∣∣∣∣∣
2 0 1

3 1 1

1 2 1

∣∣∣∣∣∣∣∣= 2

∣∣∣∣∣ 1 1

2 1

∣∣∣∣∣+
∣∣∣∣∣ 3 1

1 2

∣∣∣∣∣= 2(1− 2)+ (6− 1)= 3 (42)

Note that this way of evaluating determinants applies to the 2-by-2 case also.
Nothing special about the first row. No surprise, we can also write D in (35) as a linear

combination of the elements in the second row:

D = dD + eE + fF (43)

with

D ≡−(bi − ch), E ≡ (ai − cg), F ≡−(ah− bg) (44)

In other words just the analog of (41) above. For example, F is just minus the determinant
of the 2-by-2 matrix left over after crossing out the second row and the third column:⎛⎜⎜⎝

a b Xc

Xd Xe Xf

g h Xi

⎞⎟⎟⎠ (45)
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You should do the same for the third row, working it out before reading further to make
sure that you have it. You should find

D = gG+ hH + iI (46)

with

G≡ (bf − ce), H ≡−(af − cd), I ≡ (ae − bd) (47)

Indeed, what is the difference between rows and columns? None, in this context. We
could also Laplace expand D as a linear combination of the elements in the first column:

D = aA+ dD + gG (48)

Again, by simply staring at (35), we write down without any further ado that

A≡ (ei − f h), D ≡−(bi − ch), G≡ (bf − ce) (49)

The expressions for A, D, and G are manifestly consistent with what we have already
gotten. I will leave you the pleasure of working out the second and third columns.

Clearly then, for the method of evaluating determinants given in (41), we could Laplace
expand in any row or column we choose. The wise person would choose a row or a column
with the largest number of zeroes in it. Let’s illustrate with the numerical example in (42),
now expanding in the second column instead of the first row:∣∣∣∣∣∣∣∣

2 0 1

3 1 1

1 2 1

∣∣∣∣∣∣∣∣=
∣∣∣∣∣ 2 1

1 1

∣∣∣∣∣− 2

∣∣∣∣∣ 2 1

3 1

∣∣∣∣∣= (2− 1)− 2(2− 3)= 3 (50)

in agreement with (42).
We can now findM−1 by the same laborious method we followed in the 2-by-2 case:⎛⎜⎜⎝
A D G

B E H

C F I

⎞⎟⎟⎠
⎛⎜⎜⎝
a b c

d e f

g h i

⎞⎟⎟⎠=D

⎛⎜⎜⎝
1 X1 X2

X3 1 X4

X5 X6 1

⎞⎟⎟⎠ (51)

Again, the 1s in the matrix on the right hand side are guaranteed by the various expansions
of D we have. Next, we show that the elements denoted generically by X vanish. For
example, by matrix multiplication, X1= bA+ eD + hG. Looking at (48), we see that this
is the determinant of the matrix that results from the replacement (a , d , g)→ (b, e, h),⎛⎜⎜⎝

b b c

e e f

h h i

⎞⎟⎟⎠ (52)

which manifestly vanishes. (Just evaluate the determinant by Laplace expanding in the
third column.)

Notice that the first and second columns are identical. In the spirit of the physicist
observing the sheep in New Zealand, we might propose a lemma that when two columns
of a matrix are identical, the determinant vanishes; similarly when two rows are identical.
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(Indeed, the astute reader might recall that the explanation I gave for X and Y vanishing
in (37) invokes this lemma in the 2-by-2 case.)

Thus, we find

M−1= 1
D

⎛⎜⎜⎝
A D G

B E H

C F I

⎞⎟⎟⎠ (53)

The right inverse is equal to the left inverse

Thus far, we have found the left inverse. To find the right inverse, we use a simple trick. Take
the transpose of M−1M = I to obtain MT (M−1)T = I . In other words, the right inverse

of MT is just (M−1)T . Since the left inverse of M =
(
a b

c d

)
is 1

D

(
A C

B D

)
(and we might

as well illustrate with the 2-by-2 case), it follows that the right inverse of MT =
(
a c

b d

)
is

1
D

(
A B

C D

)
. But these squiggles called letters are just signs left to us by the Phoenicians;

thus, we simply rename the letters b and c, B and C, and conclude that the right inverse

ofM =
(
a b

c d

)
is 1

D

(
A C

B D

)
, which is exactly and totally the left inverse ofM . Similarly for

the 3-by-3 case. Of course, you could have also checked that the left inverse also works as
the right inverse by direct multiplication.

The inverse is the inverse, no need to specify left or right. Groups also enjoy this
important property, as we shall see.

Determinant and permutation

After this “baby stuff” we are now ready for the n-by-n case.
That D has 2= 2! terms for a 2-by-2 matrix and 6= 3! terms for a 3-by-3 matrix suggests

that D for an n-by-n matrix has n! terms. Since the number of permutations of n objects
is given by n!, this suggests that D consists of a sum over permutations.

Evidently, continuing to write letters a , b, c, . . . is a losing proposition at this point. We
invoke the magic trick of using indices.

To warm up, let us (once again, it would be instructive for you to do it) write the known
expressions for D in terms of the matrix elementsMij . For n= 2,

D = ac − bd =M11M22−M12M21 (54)

and for n= 3,

D = aei − bdi − af h− ceg + cdh+ bfg
=M11M22M33+M13M21M32+M12M23M31

−M12M21M33−M11M23M32−M13M22M31 (55)

Stare at these expressions for D for a while, and see if you can write down the expression
for general n. The pattern in (55) is clear: write down M1( )M2( )M3( ), and insert all 3!
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permutations of 1, 2, 3 into the empty slots, and attach a+ or− sign according to whether
the permutation is even or odd.

I trust that you would see that the general expression is given by

D =
∑
P

sign(P )M1P(1)M2P(2)M3P(3) . . .MnP(n) (56)

This may look complicated, but is actually very simple to describe in words. The sum
runs over the n! permutations of n objects. The permutation P takes the ordered set
(123 . . . n) to (P (1)P (2)P (3) . . . P(n)). Each term is given by the product of n matrix
elements,MiP(i) for i = 1, . . . , n, multiplied by sign(P )=±1 depending on whether the
permutation P is even or odd, respectively. Check this for n= 2, 3.

General properties of the determinant

We can now deduce various properties of the determinant.

1. If we multiply all the elements in any one row of the matrixM by λ, D→ λD.

This is clear. Suppose we pick the fifth row. Then, in (56),M5P(5)→ λM5P(5), and hence

the stated property of D follows. In particular, if we flip the sign of all the elements in any

one row ofM , then D flips sign. Note the emphasis on the word “all.”

2. If we interchange any two rows, D flips sign.

To be definite and to ease writing, suppose we interchange the first two rows. The

elements of the new matrixM ′ are related to the old matrixM by (for k = 1, . . . , n)M ′
ik
=Mik

for i �= 1, 2 (in other words, anything outside the first two rows is left untouched) and

M ′1k =M2k,M ′2k =M1k. According to (56),

D(M ′)=
∑
P

sign(P )M ′1P(1)M
′
2P(2)M

′
3P(3)

. . .M ′
nP (n)

=
∑
P

sign(P )M1P(2)M2P(1)M3P(3) . . .MnP(n)

=−
∑
Q

sign(Q)M1Q(1)M2Q(1)M3Q(3) . . .MnQ(n)

=−D(M) (57)

For the next to last equality, we define the permutation Q by Q = PX, where X is the

permutation that exchanges 1 and 2, leaving the other (n− 2) integers unchanged. (The

multiplication of permutations should be intuitively clear: we first perform one permutation

X, and then the permutation P . In fact, this foreshadows group multiplication, as will be

discussed in chapter I.1.)

3. If any two rows of a matrix are identical, the determinant of the matrix vanishes.

This follows immediately from property 2. If we interchange the two identical rows, the

matrix remains the same, but the determinant flips sign.

4. If we multiply any row (say, the j th row) by a number λ and then subtract the result from

any other row (say, the ith row), D remains unchanged.
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For the sake of definiteness, let i = 3, j = 5. We change the matrix by letting M3k→
M3k − λM5k, for k = 1, . . . , n. Then according to (56),

D→
∑
P

sign(P )M1P(1)M2P(2)(M3P(3) − λM5P(3))M4P(4)M5P(5) . . .MnP(n)

=D − λ
∑
P

sign(P )M1P(1)M2P(2)M5P(3)M4P(4)M5P(5) . . .MnP(n)

=D (58)

The last equality follows from property 3, because the displayed sum is the determinant of

a matrix whose third and fifth rows are identical.

5. All the preceding statements hold if we replace the word “row” by the word “column.”

A really simple proof: Just rotate your head by 90◦.

The reader who did the exercises as we went along will recognize that the operations
described here are precisely the elementary row and column operations described in
exercises 1–5.

Since we can interchange rows and columns, it follows that

detM = detMT (59)

Evaluating determinants

In simple cases, these properties enable us to evaluate determinants rather quickly. Again,
let us illustrate with the example in (42):∣∣∣∣∣∣∣∣

2 0 1

3 1 1

1 2 1

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

0 0 1

1 1 1

−1 2 1

∣∣∣∣∣∣∣∣=
∣∣∣∣∣ 1 1

−1 2

∣∣∣∣∣= 2− (−1)= 3 (60)

The first equality results when we multiply the third column by 2 and subtract it from
the first column, and the second equality follows when we Laplace expand in the first
row. The object is clearly to maximize the number of zeroes in a single row (or column).
It goes without saying that the reader seeing this for the first time should practice this
procedure. Make up your own numerical exercises. (Check your answers by evaluating the
determinant in some other way or against a computer if you have one.)

This procedure could be systematized as follows. Given an arbitrary matrixM , we apply
the various rules listed above to generate as many zeroes as possible, taking care not to
change the determinant at each step. As we shall see presently, we could turn M into an
upper triangular matrix, with all elements below the diagonal equal to 0.

So let’s do it. Subtract the first row times (M21/M11) from the second row. (I will let you
figure out what to do if M11= 0.) The new matrix M ′ has M ′21= 0; that is, the element
in the second row and first column ofM ′ vanishes. Erase the prime onM ′. Next, subtract
the first row times (M31/M11) from the third row. The new matrixM ′ hasM ′31= 0. Erase the
prime on M ′. Repeat this process until Mk1= 0 for k > 1, that is, until the entire first
column has only one nonvanishing element.
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Next, subtract the second row times (M32/M22) from the third row. The new matrixM ′

has M ′32= 0. Erase the prime on M ′. Repeat this process until Mk2= 0 for k > 2, that is,
until the entire second column has only one nonvanishing element.

Eventually, we end up with an upper triangular matrix of the form

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
0 0 ∗ . . . ∗
...

...
...

. . .
...

0 0 0 . . . ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(61)

where ∗ denotes elements that are in general not zero. We have succeeded in our stated
goal of making all elements below the diagonal vanish.

Throughout this process, the determinant of M remains unchanged. Now we can
evaluate the determinant by Laplace expanding in the first column, then in the second
column, and so on. It follows that D(M) is given by the product of the diagonal elements
in (61).

We illustrate the procedure described in this section with the same numerical example
in (42):∣∣∣∣∣∣∣∣

2 0 1

3 1 1

1 2 1

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

2 0 1

0 1 − 1
2

0 2 1
2

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

2 0 1

0 1 − 1
2

0 0 3
2

∣∣∣∣∣∣∣∣= 2 . 1 . 3
2
= 3 (62)

The first equality follows from subtracting appropriate multiples of the first row from
the second and from the third row. The second equality follows from subtracting an
appropriate multiple of the second row from the third row. The result agrees (of course)
with the result we already have obtained three times.

Evaluating the determinant by reducing the matrix to diagonal form

The readers who dutifully did exercises 1–3 will recognize that the manipulations we used
to reach (61) are the three elementary row operations. For the purpose of evaluating the
determinant, we might as well stop once we get to (61), but we could also continue using
the three elementary column operations to knock off all the off-diagonal elements.

For the first step, multiply the first column by (M12/M11) and subtract it from the second
column. The new matrixM ′ hasM ′12= 0; that is, the element in the first row and second
column of M ′, an element located above the diagonal, also vanishes. Erase the prime on
M ′. Subtracting the appropriate multiple of the first column and of the second column
from the third column, we could set M13 and M23 to 0. I will let you carry on. Eventually,
you end up with a diagonal matrix.

This is best illustrated by the example in (62). Here the first step is not needed since
M12= 0 already; we knock offM13 andM23 in two steps:
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∣∣∣∣∣∣∣∣
2 0 1

0 1 − 1
2

0 0 3
2

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

2 0 0

0 1 − 1
2

0 0 3
2

∣∣∣∣∣∣∣∣=
∣∣∣∣∣∣∣∣

2 0 0

0 1 0

0 0 3
2

∣∣∣∣∣∣∣∣ (63)

We end up with a diagonal matrix, as promised. Note that the diagonal elements are
unaffected in this procedure, and so the determinant is still equal to 3, of course.

In practice, few physicists these days would evaluate anything larger than a 3-by-3 matrix
by hand, unless the matrix in question is full of zeroes.

Proof of the Laplace expansion

The general expression (56) for the determinant now allows us to prove the Laplace
expansion. Write it (using what we all learned in elementary school) as

D =
∑
P

M1P(1)[sign(P )M2P(2)M3P(3) . . .MnP(n)] (64)

namely, a linear combination of the elements M1j , j = 1, . . . , n in the first row with
coefficients given by the square bracket. Probably many readers will have already seen that
the expression in the square bracket is equal to, up to a sign, the determinant of an (n− 1)-
by-(n− 1) matrix, and so the case is more or less closed. I will try to describe the square
bracket in words, but this may be one of those instances when a mathematical expression
says it much more clearly than the words that describe the expression. But still, let me try.

For definiteness, let n = 4 and P(1) = 3. The coefficient of M13 in D is then
(−1)3−1{∑Q sign(Q)M2Q(2)M3Q(3)M4Q(4)}, whereQ is a permutation defined as follows.
Since P(1) is already nailed down to be 3, write P(2)= α, P(3)= β, and P(4)= γ , with
α , β , γ = 1, 2, 4 in some order. Then the sum over Q runs over Q of the form Q(2)= α,
Q(3)= β, Q(4)= γ . The curly bracket is precisely the determinant of the 3-by-3 matrix
obtained by crossing out inM the first row and the third column.

Indeed, define M̃(�j , � i) as the (n− 1)-by-(n− 1) matrix obtained by crossing out in M
the j th row and the ith column. Then we can write (64) as

D =
∑
P

M1,P(1)(−1)P (1)−1 det M̃(�1, �P(1)) (65)

This gives the Laplace expansion in the first row. I invite you to write the corresponding
expression for Laplace expanding in an arbitrary row and in an arbitrary column.

We have thus derived in (56) the iterative structure of the determinant (as we have
encountered in our examples above), allowing us to write the determinant of an n-by-n
matrix in terms of the determinant of an (n− 1)-by-(n− 1)matrix.

The determinant and the antisymmetric symbol

The determinant of an n-by-n matrix can be written compactly in terms of the anti-
symmetric symbol εijk...m carrying n indices, defined by the two properties:



18 | A Brief Review of Linear Algebra

ε
...l...m... =−ε...m...l... and ε12...n = 1 (66)

Each index can take on only values 1, 2, . . . n. The first property listed says that ε flips sign
upon the interchange of any pair of indices. It follows that ε vanishes when two indices
are equal. (Note that the second property listed is then just normalization.) For example,
for n= 2, ε12 =−ε21= 1, with all other components vanishing. For n= 3, ε123= ε231=
ε312=−ε213=−ε132=−ε321= 1, with all other components vanishing.

The determinant of any matrixM is then given by

εpqr
...s detM = εijk...mMipMjqMkr . . .Mms (67)

where the repeated indices ijk . . .m are summed over. You can readily see how this works.
For example, setpqr . . . s = 123 . . . n. Then the sum over the repeated indices on the right
hand side just reproduces (56) with rows and columns interchanged. The relation (67) will
be of great importance when we discuss the special orthogonal groups in chapter IV.1.

Cramer’s formula for the inverse

In 1750, the Swiss mathematician Gabriel Cramer published the formula for the inverse
of an n-by-nmatrix:

(M−1)ij = 1
D
(−)i+j det M̃(�j , � i) (68)

The matrix M̃(�j , � i) was defined earlier as the (n − 1)-by-(n − 1) matrix obtained by
crossing out in M the j th row and the ith column. As usual, D = det M . Indeed, (25)
furnishes the simplest example of Cramer’s formula (for n= 2).

Note the transposition of i and j in the definition of M̃(�j , � i). In the 3-by-3 example in
(53), the (1, 3) entry of M−1 for instance (namely, the quantity G), is equal to (bf − ce),
the determinant of the 2-by-2 matrix obtained by crossing out in M the row and column
the (3, 1) (note (3, 1), not (1, 3)!) entry, namely g, belongs to.

All this is a mouthful to say, but easy to show on a blackboard. Anyway, the diligent
reader is cordially invited to verify Cramer’s formula by calculatingMki(M

−1)ij (repeated
index summation convention in force). You will need (56), of course.

Another interim summary

Again, an interim summary is called for, as we have covered quite a bit of ground. In
our quest for the matrix inverse M−1, we encounter the all-important concept of the
determinant. We learned how to evaluate the determinant D(M) by Laplace expanding and
discovered some properties of D(M). Any matrix can be transformed to an upper triangular
form and to a diagonal form without changing the determinant. The entries of the inverse,
M−1, which sparked our quest in the first place, are given as ratios of determinants.
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Hermitean conjugation

There exists, if I am not mistaken, an entire world which is the
totality of mathematical truths, to which we have access only
with our mind, just as a world of physical reality exists, the one
like the other independent of ourselves, both of divine creation.

—Charles Hermite8

I totally agree with Hermite. No doubt, intelligent beings everywhere in the universe would
have realized the importance of hermitean conjugation.

In our discussion, what is required of the entries of the matrices, which we denote by
a , b, c, d , . . . , is that we are able to perform the four arithmetical operations on them,
namely, addition, subtraction, multiplication, and division. (These operations are needed
to evaluate Cramer’s formula, for example.) Entities on which these four operations are
possible are called fields or division algebras. Real and complex numbers are of course the
standard ones that physicists deal with.9

Therefore, in general, we should think of the entries in our matrices as complex num-
bers, even though our illustrative examples thus far favor simple real numbers.

Given a matrix M , its complex conjugate M∗ is defined to be the matrix whose entries
are given by (M∗)ij = (Mij)

∗. To obtainM∗, simply complex conjugate every entry inM .
The transpose of M∗, namely (M∗)T = (MT )∗ (verify the equality), is called the her-

mitean conjugate of M , in honor of the French mathematician Charles Hermite, and is
denoted by M†. Hermitean conjugation turns out to be of fundamental importance in
quantum physics.

A matrix whose entries are all real is called a real matrix. More formally, if M∗ =M ,
thenM is real.

A matrix such thatMT =M is called symmetric.
A matrix such that

M†=M (69)

is called hermitean. As we shall see, hermitean matrices have many attractive properties.
A real symmetric matrix is a special case of a hermitean matrix.

Matrices that are not invertible

The appearance of D = det M in the denominator in (68) is potentially worrisome; we’ve
been told since childhood to stay away from vanishing denominators.

If D = 0, then (68) informs us that M−1∝ 1/D does not exist, and thus the solution
�x =M−1�u of the problemM �x = �u we started out with does not exist. An example suffices

to show what is going on: suppose we are given
(

2 1
6 3

) (
x

y

)
=
(
u

v

)
, that is, 2x + y = u,
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6x + 3y = v, to solve. The determinant of the relevant matrixM is equal to 2 . 3− 1 . 6= 0,
and thus its inverseM−1 does not exist. There is no solution for arbitrary u and v. (To see
this, multiply the first equation by 3 and compare with the second equation. A solution
exists only if v happens to be equal to 3u.)

But what if �u also vanishes? In other words, suppose we were asked to solve

M �x = �0 (70)

Then in the purported solution �x =M−1�u we have 0/0 on the right hand side, and there
is a fighting chance that a solution might exist. In the example just given, set u= 0, v = 0.
Then y =−2x solves it. In fact, an infinite number of solutions exist: if �x solvesM �x = �0,
then s �x is also a solution for any number s. (In the example, only the ratio of x and y is
fixed.)

Finally, if D �= 0, then M �x = �0 does not have a nontrivial (that is, �x �= �0) solution. This
follows since in this case the inverse exists, which implies that �x =M−1�0= �0.

The bottom line:M �x = �0 has a solution (other than �x = �0) if and only if detM = 0.

Eigenvectors and eigenvalues

A matrixM acting on some arbitrary vector �x will in general take it into some other vector
�y =M �x, pointing in some direction quite different from the direction �x points in.

An interesting question: Does there exist a special vector, call it �ψ , such thatM �ψ = λ �ψ
for some complex number λ?

A vector with this special property is known as an eigenvector of the matrix M . The
number λ is known as the eigenvalue associated with the eigenvector �ψ . In other words,
M acting on �ψ merely stretches �ψ by the factor λ, without rotating it to point in some other
direction. Evidently, �ψ is a very special vector among all possible vectors.

Note that if �ψ is an eigenvector, then s �ψ is also an eigenvector for any number s: we are
free to fix the normalization of the eigenvector.

Thus far, we speak of one eigenvector, but as we shall see presently, an n-by-nmatrix in
general has n eigenvectors, each with a corresponding eigenvalue.

So, let us now solve

M �ψ = λ �ψ (71)

For a givenM , both �ψ and λ are unknown and are to be determined. The equation (71) is
called an eigenvalue problem.

The first step is to rewrite (71) as (M − λI) �ψ = 0, which we recognize as an example of
(70). For �ψ �= 0, the preceding discussion implies that

det(M − λI)= 0 (72)

The matrix (M − λI) differs fromM only along the diagonal, with the entryMii replaced
by Mii − λ (here the repeated index summation convention is temporarily suspended).
Laplace expanding, we see that, for M an n-by-n matrix, det(M − λI) is an nth-degree
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polynomial in λ. The equation (72), with λ regarded as the unknown, will have n solutions
according to the fundamental theorem of algebra.

For pedagogical clarity, let us first develop the theory for n= 2. For M =
(
a b

c d

)
, the

eigenvalue equation is a simple quadratic equation∣∣∣∣∣ a − λ b

c d − λ

∣∣∣∣∣= (a − λ)(d − λ)− bc = λ2− (a + d)λ+ ad − bc = 0

with the two solutions: λ± = 1
2

[
(a + d)±√(a − d)2+ 4bc

]
.

What about the eigenvectors? For each of the two λs, the corresponding eigenvec-

tor
(
x

y

)
is determined only up to a multiplicative constant (as remarked above) by(

a−λ b

c d−λ
) (

x

y

)
= 0. By inspection, we see that the solution can be written as either(

b

λ−a
)

or
(
λ−d
c

)
. Indeed, the condition that these two vectors are proportional to each

other, b/(λ− a)= (λ− d)/c, gives precisely the quadratic equation for λ above. Thus, we
can take the two eigenvectors to be

�ψ+ =
(

b

λ+ − a

)
=
(
λ+ − d
c

)
and �ψ− =

(
λ− − d
c

)
=
(

b

λ− − a

)
(73)

Understand clearly that there are two eigenvectors, �ψ+ associated with λ+ and �ψ−
associated with λ−. (Henceforth we will omit the arrow on top of the eigenvector.) Note
that the overall normalization of the two eigenvectors is left for us to choose.

Hermitean and real symmetric matrices

Here a, b, c, and d are four complex numbers, and so the eigenvalues λ± are com-
plex in general. Now notice that if M happens to be hermitean, that is, if M =M† =
M∗T, that is, if

(
a b

c d

)
=
(
a∗ c∗
b∗ d∗

)
, so that a and d are real and c = b∗, then λ± =

1
2

[
(a + d)±√(a − d)2+ 4|b|2

]
. The eigenvalues are guaranteed to be real! But note that

the eigenvectors (73) are still complex.
Now that we understand the 2-by-2 case, we can readily prove the same theorem for the

generaln-by-n case. Since annth-degree polynomial equation in general hasn solutions, we
label the eigenvalues λa and the corresponding eigenvectors ψa by an index a = 1, . . . , n,
satisfying the eigenvalue equation

Mψa = λaψa (74)

Taking the hermitean conjugate of the eigenvalue equation gives ψ†
aM

†= ψ†
a λ
∗
a
, and thus

ψ
†
aM

†ψb = λ∗aψ†
aψb upon multiplying by ψb from the right. In contrast, multiplying the

eigenvalue equation from the left by ψ†
b gives ψ†

bMψa = λaψ†
bψa.

That’s that in general, two equations, one involvingM , the otherM†. But now suppose
thatM is hermitean:M =M†. Relabel the indices a↔ b in the first of these two equations
and subtract to obtain 0= (λa − λ∗b)ψ†

bψa.
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Let a = b. Then λa = λ∗a, which implies that λa is real (in agreement with the 2-by-2
case). All eigenvalues of a hermitean matrix are real.

Set a �= b. In general, λa �= λb, and we conclude that ψ†
bψa = 0. For a hermitean matrix,

different eigenvectors are complex orthogonal. (If for some reason, λa = λb, we have what
is known as a degeneracy in quantum mechanics. See chapter III.1.)

We already mentioned that a real symmetric matrix is just a special case of a hermitean
matrix. Note that for real symmetric matrices, not only are the eigenvalues real, but the
eigenvectors also are real. You can see this explicitly in the 2-by-2 case. Prove it for the
general case.

In summary, a hermitean matrix has real eigenvalues, and the eigenvectors are orthogo-
nal:ψ†

bψa = 0 for a �= b. This is an important theorem for subsequent development. Since

ψ
†
aψa =

∑n
i=1(ψa)

∗
i
(ψa)i is a fortiori nonzero (for ψa �= 0), we can always normalize the

eigenvectors by ψa→ ψa/(ψ
†
aψa)

1
2 , so that ψ†

aψa = 1. Thus,

H =H †�⇒ λa = λ∗a and ψ†
a
ψb = δab (75)

Some readers may know that the concepts of eigenvalue and eigenvector are central
to quantum mechanics. In particular, physical observables are represented by hermitean
operators, or loosely speaking, hermitean matrices. Their eigenvalues are postulated to be
measurable quantities. For example, the Hamiltonian is hermitean, and its eigenvalues
are the energy levels of the quantum system. Thus, the theorem that the eigenvalues of
hermitean matrices are real is crucial for quantum mechanics. Again, see chapter III.1.

Scalar products in complex vector space

When we first learned about vectors in everyday Euclidean spaces, we understood that
the scalar product �v . �w = vTw =∑n

i=1 viwi tells us about the lengths of vectors and the
angle between them. For complex vectors, the theorem in (75) indicates that the natural
generalization of the scalar product involves complex conjugation as well as transposition,
that is, hermitean conjugation. The scalar product of two complex vectors φ and ψ is
defined as φ†ψ = φ∗T ψ =∑n

i=1 φ
∗
i
ψi. The length squared ψ†ψ of a complex vector is

then manifestly real and positive.

A useful notation

At this point, let us introduce a notation commonly used in several areas of physics. Up
to now, the indices carried by vectors and matrices have been written as subscripts. My
only justification is that it would be sort of confusing for beginners to see superscripts
right from the start. Anyway, I now decree that complex vectors carry an upper index: ψi.
Next, for each vector carrying an upper index φi, introduce a vector carrying a lower index
by defining
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φi ≡ φi∗ (76)

To be precise, the right hand side here is (φi)∗, the complex conjugate of φi.
At the most pedestrian level, you could regard this as a cheap move merely to avoid

writing the complex conjugation symbol ∗. But then it follows that the scalar product of
two complex vectors is given by

φ†ψ = φiψi (77)

The right hand side is shorthand for
∑
i φiψ

i =∑i φ
i∗ψi.

To Einstein’s repeated index summation convention we can now add another rule: an
upper index must be summed with a lower index. We will never sum an upper index with
an upper index, or sum a lower index with a lower index. With this rule, the matrixM would
then have to be written asMi

j so that the vectorMψ would be given by (Mψ)i =Mi
jψ

j .
In some sense, then, the upper index is a row index, and the lower index a column index.
This is consistent with the fact that in the scalar product (77) φ†ψ = φiψi, the vector φ† is
a row vector, that is, a 1-by-n rectangular matrix, and the lower index labels the n different
columns.

Diagonalization of matrices

We can now show how to diagonalize a general n-by-n matrix M (not necessarily her-
mitean). Denote the n eigenvalues and eigenvectors of M by λa and ψa, respectively, for
a = 1, . . . , n. Define the n-by-nmatrix

S = (ψ1, ψ2, . . . , ψn) (78)

In other words, the ath column of S is equal to ψa. (This notation was introduced earlier
in (17), but now that we are more sophisticated, we drop the arrows and the small
parentheses.) For example, for the 2-by-2 matrix we had before, S = (ψ+, ψ−), with ψ±
given by (73).

Write the inverse of the n-by-nmatrix S in the form

S−1=

⎛⎜⎜⎜⎜⎜⎝
φ1

φ2
...

φn

⎞⎟⎟⎟⎟⎟⎠ (79)

where each φa is to be regarded as a row vector. That S−1S = I implies that φaψb = δab:
the row vectors φa and the column vectors ψb are orthonormal to each other.

With this notation, we see that the product ofM and S is given by

MS = (Mψ1, Mψ2, . . . , Mψn)= (λ1ψ1, λ2ψ2, . . . , λnψn) (80)
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The ath column of S is multiplied by the number λa. Multiplying from the left by S−1 gives

S−1MS =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 . . . 0

0 λ2 0 . . . 0

0 0 λ3 . . . 0

0 0 0
. . .

...

0 0 0 . . . λn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
≡ diag{λ1, λ2, . . . , λn} = (81)

(The self-evident notation diag{. . .} introduced here will clearly be useful.)
GivenM , S−1MS defines the similarity transform ofM by S. Here, a similarity transfor-

mation by the specific S in (78) has turnedM into a diagonal matrixwith the eigenvalues
ofM along the diagonal. This makes total intuitive sense. The similarity transformation S

takes the standard basis vectors

⎛⎝ 1
0...
0

⎞⎠,

⎛⎝ 0
1...
0

⎞⎠, and so on into the eigenvectors ψas. In the

basis furnished by the ψas, the matrix M stretches each one of them by some factor λa.
The matrix S−1 then takes the eigenvectors ψa back to the standard basis vectors. Thus,
the net effect of S−1MS is described simply by the matrix .

Note also that the eigenvectors ψa need not be normalized.
Occasionally, it does pay to be slightly more rigorous. Let us ask: Are there matrices

that cannot be diagonalized? See if you can come up with an example before reading on.
(Hint: Try some simple 2-by-2 matrices.) Scrutinize the construction given here for hidden
assumptions. Indeed, we implicitly assumed that S has an inverse. This holds generically,
but for some exceptional Ms, the determinant of S could vanish. This is explored further
in exercise 9.

Diagonalizing hermitean matrices

The preceding discussion is for a general M . If M is hermitean, then we can say more.
According to an earlier discussion, the eigenvalues λa are real and the eigenvectors are
orthogonal: ψ†

aψb = 0 for a �= b.
Let us give S in the preceding section a new name: U = (ψ1, ψ2, . . . , ψn). By nor-

malizing the eigenvectors, we can write ψ†
aψb = δab; that is, φa = ψ†

a . In other words,

S−1=

⎛⎜⎜⎝
ψ

†
1

ψ
†
2...
ψ

†
n

⎞⎟⎟⎠, namely, U†. The identity S−1S = I translates to

U†U = I (82)

A matrix U that satisfies (82) is said to be unitary.
For later use, we mention parenthetically that a real matrixO that satisfies the condition

OTO = I (83)
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is said to be orthogonal. IfU happens to be real, the condition (82) reduces to (83). In other
words, a real unitary matrix is orthogonal.

Now repeat the argument in the preceding section: MU = (λ1ψ1, λ2ψ2, . . . , λnψn),
and U†MU =≡ diag{λ1, λ2, . . . , λn}. The input that M is hermitean has given us the
additional information that  is real and that U is unitary.

We obtain another important theorem that we will use often. IfM is hermitean, then it
can be diagonalized by a unitary transformation; that is, for M hermitean, there exists a
unitary matrix U such that

U†MU = (84)

is diagonal and real.
Again, a special case occurs whenM is real symmetric. We learned earlier that not only

are its eigenvalues real but also its eigenvectors are real. This implies that U is not
only unitary, it is also orthogonal. To emphasize this fact, we give U a new name, O.
ForM real symmetric, there exists an orthogonal matrix O such that

OTMO = (85)

is diagonal and real.
Applying the theorem in (22) about the trace we had before, we obtain

tr S−1MS = tr SS−1M = trM = tr =
∑
a

λa (86)

The trace of a matrix is the sum of its eigenvalues. As special cases, we have for M
hermitean, tr U†MU = tr M = tr , and for M real symmetric, tr OTMO = tr M
= tr .

With the notation discussed earlier (see (77)), the matrix U†MU is written as

(U†MU)i
j
= (U†)i

k
Mk

l
Ul
j

(87)

When we discuss complex, hermitean, and unitary matrices, this notation, with upper and
lower indices, will prove to be extremely useful, as we shall see in chapter II.2, for example.
In contrast, when we discuss real and orthogonal matrices, we could stay with a notation
in which all indices are subscripts.

Simultaneously diagonalizable

Given two matrices A and B, suppose we manage to diagonalize A. In other words, we
find a matrix S such thatAd = S−1AS is diagonal. There is no reason that in the new basis
B would also be diagonal. But this would be true if A and B commute.

First, let us define the commutator [M , N ]≡MN −NM for any two n-by-nmatricesM
and N . Thus, [A, B]= 0 if A and B commute.
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To prove the assertion above, apply the similarity transformation to the vanishing
commutator:

0= S−1[A, B]S = S−1ABS − S−1BAS = S−1ASS−1BS − S−1BSS−1AS

= AdBd − BdAd = [Ad , Bd ] (88)

In the fourth equality, we have merely defined Bd ≡ S−1BS. But in fact the preceding
equation tells us that Bd is diagonal. Simply write out the ij entry in this matrix equation:

0= (AdBd)ij − (BdAd)ij =
∑
k

Ad
ik
Bd
kj
−
∑
k

Bd
ik
Ad
kj
= (Ad

ii
− Ad

jj
)Bd
ij

(89)

Thus, for i �= j , if Adii �= Adjj , then the off-diagonal elements Bdij = 0. In other words, Bd

is diagonal.
What if Adii = Adjj for some specific i and j? For ease of exposition, relabel rows and

columns so that i = 1, j = 2, and write a =Ad11=Ad22. Then the northwest corner of Ad is
proportional to the 2-by-2 unit matrix I2:

Ad =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

aI2 0 0 0 0

0 Ad33 0 0 0

0 0 Ad44 0 0

0 0 0
. . . 0

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(90)

Assuming that Ad11 and Ad22 are the only two diagonal elements of Ad that are equal, we
could conclude that Bd is diagonal except for the 2-by-2 block in its northwest corner. But
now we could focus on this 2-by-2 matrix and diagonalize it by a similarity transformation.
SinceAd is proportional to the identity matrix in that corner, it remains unchanged by this
similarity transformation.

At this point, you could generalize to the case when three diagonal elements of Ad are
equal, and so on.

If two matrices commute, then they are simultaneously diagonalizable. This important
theorem, which we will use repeatedly in this book, is worth repeating. If [A, B]= 0, and
if Ad = S−1AS is diagonal for some S, then Bd = S−1BS is also diagonal for the same S.

Count components

Let’s count the independent components of different kinds of matrices. An n-by-n complex
matrix M has n2 complex components, that is, 2n2 real components. The hermiticity
condition (69) actually amounts to n + 2 . 1

2n(n − 1) = n2 real conditions; the diagonal
elements are required to be real, while the entries below the diagonal are determined by
the entries above the diagonal. It follows that a hermitean matrixH has 2n2− n2= n2 real
components. In particular, a general hermitean matrix has four real components for n= 2
and nine real components for n= 3.
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Similarly, the unitary condition (82) amounts ton2 real conditions. Thus, a unitaryn-by-n
matrix U also has n2 real components.

In chapter IV.4, we will see that a general unitary matrix U can always be specified by a
hermitean matrix H . This statement is indeed consistent with the counting done here.

Functions of matrices

Given a function f (x) =∑∞
k=0 akx

k defined by its power series, we can define f (M),
for M some matrix, by the power series f (M)=∑∞

k=0 akM
k. For example, define eM ≡∑∞

k=0 M
k/k!; since we know how to multiply and add matrices, this series makes perfect

sense. (Whether any given series converges is of course another issue.) We must be care-
ful, however, in using various identities, which may or may not generalize. For example,
the identity eaea = e2a for a a real number, which we could prove by applying the binomial
theorem to the product of two series (square of a series in this case) generalizes immedi-
ately. Thus, eMeM = e2M . But for two matricesM1 andM2 that do not commute with each
other, eM1eM2 �= eM1+M2.

Let M be diagonalizable so that M = S−1S with = diag{λ1, λ2, . . . , λN} a diagonal
matrix. SinceMk = (S−1S) . . . (S−1S)= S−1kS, we have

f (M)=
∞∑
k=0

akS
−1kS = S−1f ()S (91)

But since  is diagonal, k is easily evaluated: k = diag{λk1, λk2, . . . , λkN}, so that f ()
is just the diagonal matrix with the diagonal elements f (λj). Functions of a matrix are
readily evaluated after it is diagonalized.

Note also that

tr f (M)= tr S−1f ()S = tr f () (92)

The function f (x) does not have to be Taylor expanded around x = 0. For instance, to
define logM , the logarithm of a matrix, we could use the series log x = log(1− (1− x))=
−∑∞

k=1
1
n
(1− x)n.

In particular, we learned that

tr log M = tr log =
∑
a

log λa = log
∏
a

λa (93)

More on determinants

To proceed further, we need to prove a theorem about determinants:

det AB = det A det B (94)

The determinant of a product is the product of the determinants.
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To prove this, we have to go back to the elementary row and column operations discussed
earlier in connection with the evaluation of determinants and in the exercises. Refer back to
the discussion around (61). Denote the matrices effecting the elementary row and column
operations by E generically. (The Es are sometimes called elementary matrices.) We will
need a series of “small” lemmas, left for you to verify.

Lemma 1. The inverse ofE is anotherE. For example, the inverse ofE =
(

1 0
s 1

)
isE =

(
1 0
−s 1

)
.

Lemma 2. We have det EM = det E det M . For example, the E corresponding to multiplying

a row by s has determinant equal to s, and indeed, the determinant of EM is equal to s times

the determinant ofM . Similarly, detME = det E detM for the analogous column operations.

Lemma 3. As we have shown in the discussion around (61), any matrix M can be turned into

a diagonal matrix D by the various elementary operations, thus D = EE . . .EME . . .E. The

schematic notation should be clear: the Es denote a generic elementary matrix. But by lemma

1, this meansM = EE . . . EDE . . . E.

Lemma 4. In lemma 3,D itself has the form of an E (that is, when it multiplies a matrix, from

the right say, it multiplies each of the columns of the matrix by one of its diagonal elements).

In other words, any matrix can be written as

M = EEE . . . E (95)

But then by repeated use of lemma 2, det M = det E det(EE . . . E) is a product of det E. By

construction, the allowed Es have det E �= 0 (that is, we are not allowed to multiply a row by 0

on our way to (95)). The exceptional but trivial case is when D has some vanishing diagonal

elements, in which case D does not have the form of an E, and detM = det D = 0.

We are now ready to prove the theorem. Let C = AB. Write C = EE . . . EB. Then
using the lemmas repeatedly, we obtain det C = det E det E . . . det(EB)= det E det E . . .

det E det B = det(E . . .) det B = det A det B. The theorem is proved.
Setting B = A−1 in (94), we obtain

det A−1= (det A)−1 (96)

More generally, setting B = A repeatedly, we obtain

det An = (det A)n (97)

The integer n can take on either sign.
Here is a slick plausibility argument. By the definition of the determinant, det AB is an

elementary algebraic expression obtained by performing various arithmetical operations
on the matrix elements of A and B. Think of it as a polynomial of the matrix elements of
B. Suppose det B = 0. Then there exists a vector �v such that B �v = 0. It follows thatAB �v =
0, and hence det AB = 0 also. In other words, det AB vanishes when det B vanishes,
whatever A might be. Hence det B must be a factor of det AB; that is, det AB = ρ det B
for some ρ.
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But from (59) and (20), we have det AB = det(AB)T = det BTAT , and hence by the same
argument, det AB = φ det AT = φ det A for some φ. It follows that det AB = det A det B.
The matrices A and B have equal rights.

A useful identity for the determinant of a matrix

The theorem in the preceding section implies that det S−1MS = det S−1(MS) =
det(MS)S−1= det MSS−1= det M . Thus, if M is diagonalizable, then det M = det =∏n
a=1 λa. The determinant of a matrix is equal to the product of its eigenvalues.
A useful identity then follows from (93):

detM = etr log M (98)

which is equivalently written as log detM = tr logM .
Note that varying (98) in the manner of Newton and Leibniz, we obtain

δ detM = etr log M tr δ(log M)= (detM) trM−1δM = (detM)
∑
ij

(M−1)ijδMji (99)

This amounts to a formula for the ij element of the inverseM−1, consistent of course with
Cramer’s formula.

The direct product of matrices

Given an n-by-n matrix Cab, a , b = 1, . . . , n, and a ν-by-ν matrix �αβ , α , β = 1, . . . , ν,
define the direct productM = C ⊗ � as the nν-by-nν matrix given by

Maα ,bβ = Cab�αβ (100)

(Think of the two indices of M as aα and bβ, with the symbols aα and bβ running over

nν values.) For example, given the 2-by-2 matrix τ =
(

0 −i
i 0

)
and C some n-by-n matrix,

thenM = C ⊗ τ is the 2n-by-2nmatrix
(

0 −iC
iC 0

)
.

Since Maα ,bβM
′
bβ ,cγ = Cab�αβC′bc�′βγ = (CabC′bc)(�αβ�′βγ ), it is particularly easy to

multiply two direct product matrices together:

MM ′ = (C ⊗ �)(C′ ⊗ �′)= (CC′ ⊗ ��′) (101)

The direct product is a convenient way of producing larger matrices from smaller ones.
We will use the direct product notation in chapters II.1, IV.8, and VII.1.

Dirac’s bra and ket notation

I now introduce Dirac’s bra and ket notation. Unaccountably, a few students would oc-
casionally have difficulty understanding this elegant, and exceedingly useful, notation.
Perhaps the association with a revered name in physics suggests something profound and
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mysterious, such as the Dirac equation∗ or the Dirac monopole. But heavens to Betsy, it is
just an extremely appealing notation. Let me explain, adopting the lowest brow approach
imaginable.

A glib way of explaining bras and kets is to appeal to the saying about “the tail that
wags the dog.” We will keep the tail and throw away the dog. I have already written the
eigenvectors asψa, a = 1, . . . , n. Here a labels the eigenvector: it tells us which eigenvector
we are talking about. Note that we are suppressing the index specifying the components
of ψa. If we want to be specific, we write the j th component of ψa as ψj

a
. One reason j is

often suppressed is that the specific value of ψj
a

is basis dependent. Our friend could be
using a different basis related to our basis by a similarity transformation S, so that the j th
component of her eigenvector ψ

′j
a

, which for maximal clarity we might want to denote by
a different Greek letter, φj

a
, is given by ψ

′j
a
= φj

a
= Sjlψla.

After all this verbiage, you realize that the most important element in the symbol ψj
a

is
a! In particular, the letter ψ is really redundant, considerably more so than j ; it is what I
would call a coatrack to hang a on. In a flash of genius, Dirac said that we might as well
write ψj

a
as |a〉, known as a ket. The conjugate, (ψj

a
)∗, regarded as a row vector, is written

as 〈a|, known as a bra. Thus, under hermitean conjugation, |a〉 ↔ 〈a|. By the way, Dirac
invented the peculiar terms, bra and ket, by splitting the word bracket, as in the bracket 〈.〉.

The scalar product
∑
j (ψ

j
a
)∗ψj

a
is then written as 〈a|a〉, which is equal to 1 if ψa

is properly normalized. Similarly,
∑
j (ψ

j

b )
∗ψj
a

is written as 〈b|a〉 and orthonormality is
expressed by

〈b|a〉 = δba (102)

One tremendous advantage of Dirac’s notation is that we could put whatever label into
|〉 or 〈| that we think best characterizes that ket or bra. For example, given a matrixM , we
could denote the eigenvector with the eigenvalue λ by |λ〉: that is, define |λ〉 byM|λ〉 = λ|λ〉.

Let us prove the important theorem we proved earlier about the eigenvalues of a her-
mitean matrix using Dirac’s notation. Hermitean conjugatingM|λ〉 = λ|λ〉 gives 〈λ|M†=
〈λ| λ∗. Contracting with |ρ〉 then leads to 〈λ|M† |ρ〉 = λ∗〈λ|ρ〉. But contracting M |ρ〉 =
ρ |ρ〉 with 〈λ| gives 〈λ|M |ρ〉 = ρ〈λ |ρ〉. If M =M†, then we can subtract one equation
from another and obtain 0= (λ∗ − ρ)〈λ|ρ〉, which implies that λ is real if ρ = λ (so that
〈λ|λ〉 �= 0) and that 〈λ|ρ〉 = 0 if λ∗ �= ρ.

Of course this proof is exactly the same as the proof we gave earlier, but we have avoided
writing a lot of unnecessary symbols, such asψ , a, and b. Things look considerably cleaner.

Another advantage of the Dirac notation is that we can study a matrix M without
committing to a specific basis. Let |i〉, i = 1, 2, . . . , n furnish an orthonormal complete set
of kets, that is,

∑n
i=1 |i〉 〈i| = I . We often omit the summation symbol and write I = |i〉 〈i|.

The specific components of M in this basis are then given by 〈i|M |j〉 =Mi
j . Change of

basis is then easily done. Let |p〉, p = 1, 2, . . . , n furnish another orthonormal complete

∗ See chapter VII.3, for example.
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set of kets. Then 〈p|M |q〉 = 〈p |i〉 〈i|M |j〉 〈j | q〉. (We merely inserted I twice, omitting
the summation symbol; in other words, the left hand side here is simply 〈p| IMI |q〉.) This
is just the similarity transformationM ′p

q
= (S−1)

p

iM
i
jS
j
q
, with the transformation matrix

Sj
q
= 〈j | q〉. (Note that (S−1)

p

iS
i
q
= 〈p |i〉 〈i| q〉 = 〈p|q〉 = δp

q
.) We see the advantage of the

Dirac notation: we don’t have to bother putting a prime on M and to “waste” the letter S.
These may seem like small things, but the notation, once you get used to it, renders a lot
of equations more transparent just because of less clutter. We will be using this notation
in chapter IV.2.

I might conclude this quick review of linear algebra by noting that what d’Alembert said
was very French indeed. Still, I hope that you agree with what he said.

The reader being exposed to linear algebra for the first time could safely skip the following
appendices, at least for now.

Appendix 1: Polar decomposition

Any matrixM can be written asM =HU , with H hermitean and U unitary.
This generalizes the usual polar decomposition of a complex number z= reiθ .
Proof: The matrix MM† is hermitean and has real eigenvalues. These eigenvalues are not negative, since

MM† |λ〉 = λ |λ〉 implies λ= 〈λ|MM† |λ〉 = 〈λ|M |ρ〉 〈ρ|M† |λ〉 = | 〈λ|M |ρ〉 |2≥ 0. In other words, there exists
a unitary matrix V and a real diagonal matrix D2 with non-negative elements such that

MM†= VD2V †= VDV †VDV †= (VDV †)(VDV †)=H 2 (103)

where H ≡ VDV † is hermitean. In a sense, we have taken the square root of MM†. (Note that we could also
choose D to be non-negative real diagonal.) Define the matrix U =H−1M , where we are assuming that H does
not have zero eigenvalues and letting you deal with what happens otherwise. We now show that U is unitary by
direct computation: UU†=H−1MM†H−1=H−1H 2H−1= I . The theorem is proved.

We counted the real components of complex, hermitean, and unitary matrices earlier, and indeed 2n2 =
n2 + n2. Note the composition is unique but not particularly attractive.

Appendix 2: Complex and complex symmetric matrices

The polar decomposition theorem (appendix 1) has a number of useful applications, in particle physics, for
example.

Given a complex n-by-nmatrixM , write it10 in polar decomposition:M =HU = VDV †U . Thus we have

V †MW =D (104)

where W = U†V is a unitary matrix, and D is a positive real diagonal matrix. Let � denote a phase matrix
diag{eiψ1, . . . , eiψn}, then �†D� =D. Thus (104) determines the two unitary matrices V and W only up to
V → V� andW →W�.

Furthermore, let M =MT be symmetric.11 Transpose V †MW =D to get WTMTV ∗ =WTMV ∗ =D. Now
compare V †MW =D andWTMV ∗ =D.

You may be tempted to conclude thatW = V ∗, but first we have to deal with some phase degrees of freedom.
Again, let �2 be an arbitrary phase matrix (the square is for later convenience).

We replaceD in the equationWTMV ∗ =D byD =�∗2D�2 and conclude thatW = V ∗�2. Then the equation
V †MW =D becomes �∗2WTMW =D. Multiplying this equation by � from the left and �∗ from the right, we
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obtain W
′TMW

′ =D where W
′ =W�∗. Dropping the prime, we have proved that for a symmetric complex

matrixM , there always exists a unitary matrixW such that

WTMW =D (105)

with D positive real diagonal. Note thatWT , notW†, appears here.
It is worthwhile to remark that, in general, the diagonal elements of D are not the eigenvalues of M ,

since det(D − λI)= det(WTMW − λI) �= det(M − λI). The inequality follows because W is unitary but not
orthogonal. For the same reason, trM �= tr D.

Exercises

1 Let E =
(

0 1
1 0

)
and M be a 2-by-2 matrix. Show that the matrix EM is obtained from M by interchanging

the first and second rows.

2 Let E =
(
s1 0
0 s2

)
andM be a 2-by-2 matrix. Show that the matrix EM is obtained fromM by multiplying the

elements in the first row by s1 and the elements in the second row by s2.

3 Let E =
(

1 0
s 1

)
andM be a 2-by-2 matrix. Show that the matrix EM is obtained fromM by multiplying the

first row by s and adding it to the second row. Similarly for the matrix E =
(

1 s
0 1

)
: EM is obtained fromM

by multiplying the second row by s and adding it to the first row.

4 The three operations effected in exercises 1–3 are known as elementary row operations. TheEs defined here
are called elementary matrices. How do you effect the corresponding three elementary column operations
on an arbitrary 2-by-2 matrixM? Hint: MultiplyM by the appropriate E from the right.

5 Let e =
(

1 0 0
0 0 1
0 1 0

)
. Show that multiplying a 3-by-3 matrixM from the right with e interchanges two columns

inM , and that multiplyingM from the left with e interchanges two rows inM .

6 Generalize the elementary row and column operations to n-by-nmatrices.

7 Let c=
(

0 0 1
1 0 0
0 1 0

)
and d be a 3-by-3 diagonal matrix. Show that the similarity transformation c−1dc permutes

the diagonal elements of d cyclically.

8 Show that the determinant of antisymmetric n-by-nmatrices vanishes if n is odd.

9 Diagonalize the matrixM =
(
a 1
0 b

)
. Show thatM is not diagonalizable if a = b.

10 Write the polynomial equation satisfied by the eigenvalues of a matrix M that is diagonalizable as λn +∑n
k=1 ckλ

n−k = 0. Show that the matrixM satisfies the equationMn +∑n
k=1 ckM

n−k = 0.

11 Show by explicit computation that the eigenvalues of the traceless matrix M =
(

c a−b
a+b −c

)
with a , b, c real

have the form λ=±w, with w either real or imaginary. Show that for b = 0, the eigenvalues are real. State
the theorem that this result verifies.

12 Let the matrix in exercise 11 be complex. Find its eigenvalues. When do they become real?
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13 There were of course quite a few nineteenth-century theorems about matrices. Given A and B an m-by-
n matrix and an n-by-m matrix, respectively, Sylvester’s theorem states that det(Im + AB)= det(In + BA).
Prove this for A and B square and invertible.

14 Show that (M−1)T = (MT )−1 and (M−1)∗ = (M∗)−1. Thus, (M−1)†= (M†)−1.

15 The n-by-n matrix M defined by Mij = xi−1
j plays an important role in random matrix theory, for example.

Show that detM , known as the van der Monde determinant, is equal to (up to an overall sign)�i<j(xi − xj).
Hint: Write outM for n= 2, 3 to see what is going on.

16 Let the Cartesian coordinates of the three vertices of a triangle be given by (xi , yi) for i = 1, 2, 3. Show that
the area of the triangle is given by

Area of triangle= 1
2

det

⎛⎜⎝ x1 x2 x3

y1 y2 y3

1 1 1

⎞⎟⎠
Interestingly, this expression is the beginning of the notion of projective geometry and plays a crucial role in
recent development in theoretical physics (see, for example, Henriette Elvang and Yu-tin Huang, Scattering
Amplitudes in Gauge Theory and Gravity, p. 203).

Notes

1. Philip Roth told of a writer who wrote a sentence every day before lunch, and who would then turn the
sentence around after lunch. See Fearful, p. 97.

2. This illustrates a basic principle of French haute cuisine made popular in the particle physics community by
Murray Gell-Mann. See Fearful, p. 178. The matrices correspond to the pheasant, the vectors to the veal.

3. M31= g,M23= f .
4. Assuming that you can check your answers against those given by a friend or by a computer program capable

of multiplying matrices together.
5. See Einstein Gravity in a Nutshell, p. 46, particularly the footnote.
6. About the reduction of a problem to a previously solved problem, there is also a famous joke about an engi-

neer, a physicist, and a mathematician, but this time the joke is at the expense of the ethereal mathematician
in favor of the practical engineer.

7. We are implicitly assuming that the entries in the matrices discussed here are either real or complex
numbers, which commute on multiplication. Thus, some of the standard theorems of linear algebra do
not hold for matrices whose elements are quarternions. Technically, real or complex numbers form a field,
but quarternions do not.

8. Gaston Darboux. Eloges académiques et discours. Hermann, Paris, 1912, p. 142.
9. Some readers might know about quarternions, invented by W. R. Hamilton, as the next division of algebra

after complex numbers. Complex numbers a + bi are generalized to quarternionic numbers a + bi + cj +
dk, with a , b, c, d real numbers and the “quarternionic units” postulated to satisfy i2 = j2 = k2 =−1, and
ij =−ji = k, jk =−kj = i, and ki =−ik = j . Note that (a − bi − cj − dk)(a + bi + cj + dk)= a2+ b2+
c2 + d2, which allows us to divide quarternionic numbers. The difficulty is that quarternionic numbers do
not commute (this is conceptually to be distinguished from the noncommutativity of matrix multiplication)
and hence many of the theorems we have proved do not hold for matrices with entries given by quarternionic

numbers. For example, the determinant of
(
q1 q1
q2 q2

)
either vanishes or does not vanish, depending on whether

we Laplace expand in the first row or the first column, respectively.
10. In particle physics, the M here stands for a quark or lepton mass matrix, and this discussion shows how to

diagonalize such mass matrices. See chapter VII.4.
11. The neutrino Majorana mass matrix has this form. See chapter VII.4.





Part I Groups: Discrete or Continuous, Finite or Infinite

The notion of a group is defined and then illustrated with many examples. Finite groups
are studied. The rotation group, as the canonical example of a continuous group, is
approached in two different ways. The all-important concepts of Lie group and Lie algebra
are introduced.





I.1 Symmetry and Groups

Symmetry and Transformation

Symmetry plays a central role in modern theoretical physics.1

As the etymologist tells us, symmetry (“equal measure”) originates in geometry (“earth
measure”). We have a sense that an isosceles triangle is more symmetrical than an arbitrary
triangle and that an equilateral triangle is more symmetrical than an isosceles triangle.
Going further, we feel that a pentagon is more symmetrical than a square, a hexagon more
symmetrical than a pentagon, and an (n+ 1)-sided regular polygon is more symmetrical
than an n-sided regular polygon. And finally, a circle is more symmetrical than any regular
polygon.

The n-sided regular polygon is left unchanged by rotations through any angle that is
an integer multiple of 2π/n, and there are n of these rotations. The larger n is, the more
such rotations there are. This is why mathematicians and physicists feel that the hexagon
is more symmetrical than a pentagon: 6> 5, QED.

To quantify this intuitive feeling, we should thus look at the set of transformations that
leave the geometrical figure unchanged (that is, invariant). For example, we can reflect the
isosceles triangle across the median that divides it into equal parts (see figure 1a).

Call the reflection r ; then the set of transformations that leave the isosceles triangle
invariant is given by {I , r}, where I denotes the identity transformation, that is, the
transformation that does nothing. A reflection followed by a reflection has the same effect
as the identity transformation. We write this statement as r . r = I .

In contrast, the equilateral triangle is left invariant not only by reflection across any
of its three medians (figure 1b) but also by rotation R1 through 2π/3= 120◦ around its
center, as well as rotation R2 through 4π/3= 240◦. The set of transformations that leave
the equilateral triangle invariant is thus given by {I , r1, r2, r3, R1, R2}. That this set is larger
than the set in the preceding paragraph quantifies the feeling that the equilateral triangle is
more symmetrical than the isosceles triangle. Note that R1 . R1= R2 and that R1 . R2= I .
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(a) (b)

Figure 1

A circle is left invariant by an infinite number of transformations, namely, rotationR(θ)
through any angle θ , and reflection across any straight line through its center. The circle
is more symmetrical than any regular polygon, such as the equilateral triangle.

Symmetry in physics

In physics we are interested in the symmetries enjoyed by a given physical system. On a
more abstract level, we are interested in the symmetries of the fundamental laws of physics.
One of the most revolutionary and astonishing discoveries in the history of physics is that
objects do not fall down, but toward the center of the earth. Newton’s law of gravitation
does not pick out a special direction: it is left invariant by rotations.

The history of theoretical physics has witnessed the discoveries of one unexpected
symmetry after another. Physics in the late twentieth century consists of the astonishing
discovery that as we study Nature at ever deeper levels, Nature displays more and more
symmetries.2

Consider a set of transformations T1, T2, . . . that leave the laws of physics invariant.
Let us first perform the transformation Tj , and then perform the transformation Ti. The
transformation that results from this sequence of two transformations is denoted by the
“product” Ti . Tj . Evidently, if Ti and Tj leave the laws of physics invariant, then the
transformation Ti . Tj also leaves the laws of physics invariant.3

Here we label the transformations by a discrete index i. In general, the index could
also be continuous. Indeed, the transformation could depend on a number of continuous
parameters. The classic example is a rotation R(θ , ϕ , ζ ), which can be completely charac-
terized by three angles, as indicated. For example, in one standard parametrization,4 the
two angles θ and ϕ specify the unit vector describing the rotation axis, while the angle ζ
specifies the angle through which we are supposed to rotate around that axis.

Groups

This discussion rather naturally invites us to abstract the concept of a group.
A groupG consists of a set of entities {gα} called group elements (or elements for short),

which we could compose together (or more colloquially, multiply together). Given any two
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elements gα and gβ , the product gα . gβ is equal to another element,∗ say, gγ , inG. In other
words, gα . gβ = gγ . Composition or multiplication5 is indicated by a dot (which I usually
omit if there is no danger of confusion). The set of all relations of the form gα . gβ = gγ is
called the multiplication table of the group.

Composition or multiplication (we will use the two words interchangeably) satisfies the
following axioms:†

1. Associativity: Composition is associative: (gα . gβ) . gγ = gα . (gβ . gγ ).

2. Existence of the identity: There exists a group element, known as the identity and denoted

by I , such that I . gα = gα and gα . I = gα.

3. Existence of the inverse: For every group element gα, there exists a unique group element,

known as the inverse of gα and denoted by g−1
α

, such that g−1
α

. gα = I and gα . g−1
α
= I .

A number of comments follow.

1. Composition is not required to commute.6 In general, gα . gβ is not equal to gβ . gα. In

this respect, the multiplication of group elements is, in general, like the multiplication of

matrices but unlike that of ordinary numbers.

A group for which the composition rule is commutative is said to be abelian,‡ and a group

for which this is not true is said to be nonabelian.§

2. The right inverse and the left inverse are by definition the same. We can imagine mathemat-

ical structures for which this is not true, but then these structures are not groups. Recall (or

read in the review of linear algebra) that this property holds for square matrices: provided

that the inverseM−1 of a matrixM exists, we haveM−1M =MM−1= I with I the identity

matrix.

3. It is often convenient to denote I by g0.

4. The label α that distinguishes the group element gα may be discrete or continuous.

5. The set of elements may be finite (that is, {g0, g1, g2, . . . , gn−1}), in which caseG is known

as a finite group with n elements. (Our friend the jargon guy7 informs us that n is known

as the order of the group.)

Mathematicians8 of course can study groups on the abstract level without tying gi to
any physical transformation, but in some sense the axioms become clearer if we think of
transformations in the back of our mind. For example, gI = Ig = g says that the net effect
of first doing nothing and then doing something is the same as first doing something and
then doing nothing, and the same as doing something. Existence of the inverse says that
the transformations of interest to physics can always9 be undone.10

∗ This property, known as closure, is sometimes stated as an axiom in addition to the three axioms given
below.

† See also appendices 1 and 2.
‡ Named after the mathematician Niels Henrik Abel, one of the founders of group theory.
§ As the reader might have heard, in contemporary physics, the theory of the strong, weak, and electromagnetic

interactions are based on nonabelian gauge symmetries. See chapter IX.1.
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Examples of groups

To gain a better understanding of what a group is, it is best to go through a bunch of
examples. For each of the following examples, you should verify that the group axioms are
satisfied.

1. Rotations in 3-dimensional Euclidean space, as already mentioned, form the poster child

of group theory and are almost indispensable in physics. Think of rotating a rigid object,

such as a bust of Newton. After two rotations in succession, the bust, being rigid, has not

been deformed in any way: it merely has a different orientation. Thus, the composition of

two rotations is another rotation.

Rotations famously do not commute. See figure 2.

Descartes taught us that 3-dimensional Euclidean space could be thought of as a linear

vector space, coordinatized with the help of three unit basis vectors �ex =
( 1

0
0

)
, �ey =

( 0
1
0

)
,

and �ez =
( 0

0
1

)
, aligned along three orthogonal directions traditionally named x, y, and z. A

rotation takes each basis vector into a linear combination of these three basis vectors, and is

thus described by a 3-by-3 matrix. This group of rotations is called SO(3). We shall discuss

rotations in great detail in chapter I.3; suffice it to mention here that the determinant of a

rotation matrix is equal to 1.

(a)

(b)

Figure 2
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Figure 3

2. Rotations in 2-dimensional Euclidean space, namely a plane, form a group called SO(2),

consisting of the set of rotations around an axis perpendicular to the plane. Denote a

rotation through angle φ by R(φ). Then R(φ1)R(φ2) = R(φ1+ φ2) = R(φ2)R(φ1). These

rotations commute. (See figure 3. I was surprised to discover that this bust of Dirac at St.

John’s College, Cambridge University, was not nailed down but could be rotated around the

vertical axis. The photo depicts my attempt to give the bust a half-integral amount of angular

momentum.)

3. The permutation group S4 rearranges an ordered set of four objects, which we can name

arbitrarily, for example, (A, B , C ,D) or (1, 2, 3, 4). An example would be a permutation that

takes 1→ 3, 2→ 4, 3→ 2, and 4→ 1. As is well known, there are 4!= 24 such permutations

(since we have four choices for which number to take 1 into, three choices for which number

to take 2 into, and two choices for which number to take 3 into). The permutation group Sn
evidently has n! elements. We discuss Sn in detail in chapter I.2.

4. Even permutations of four objects form the group A4. As is also well known, a given

permutation can be characterized as either even or odd (we discuss this in more detail in

chapter I.2). Half of the 24 permutations in S4 are even, and half are odd. Thus, A4 has 12

elements. The jargon guy tells us that A stands for “alternating.”

5. The two square roots of 1, {1, −1}, form the group Z2 under ordinary multiplication.

6. Similarly, the three cube roots of 1 form the group Z3= {1, ω, ω2} with ω ≡ e2πi/3.

Chugging right along, we note that the four fourth roots of 1 form the group Z4 =
{1, i , −1, −i}, where famously (or infamously) i = eiπ/2.

More generally, the N N th roots of 1 form the group ZN = {ei2πj/N : j = 0, . . . , N − 1}.
The composition of group elements is defined by ei2πj/Nei2πk/N = ei2π(j+k)/N .

Quick question: Does the set {1, i , −1} form a group?



42 | I. Groups: Discrete or Continuous, Finite or Infinite

7. Complex numbers of magnitude 1, namely eiφ, form a group called U(1), with eiφ1eiφ2 =
ei(φ1+φ2). Since ei(φ+2π)= eiφ, we can restrict φ to range from 0 to 2π . At the level of physicist

rigor, we can think of U(1) as the “continuum limit” of ZN with ei2πj/N→ eiφ in the limit

N→∞ and j →∞ with the ratio held fixed 2πj/N = φ.

8. The addition of integers mod N generates a group. For example, under addition mod 5 the

set {0, 1, 2, 3, 4} forms a group: 2+ 1= 3, 3+ 2= 0, 4+ 3= 2, and so on. The composition

of the group elements is defined by j . k = j + k mod 5. The identity element I is denoted

by 0. The inverse of 2, for example, is 3, of 4 is 1, and so on. The group is clearly abelian.

Question: Have you seen this group before?

9. The addition of real numbers form a group, perhaps surprisingly. The group elements are

denoted by a real number u and u . v ≡ u+ v, where the symbol + is what an elementary

school student would call “add.” You can easily check that the axioms are satisfied. The

identity element is denoted by 0, and the inverse of the element u is the element −u.

10. The additive group of integers is obtained from the additive group of real numbers by

restricting u and v in the preceding example to be integers of either sign, including 0.

11. As many readers know, in Einstein’s theory of special relativity,11 the spacetime coordinates

used by two observers in relative motion with velocity v along the x-direction (say) are related

by the Lorentz transformation (with c the speed of light):

ct ′ = cosh ϕ ct + sinh ϕ x

x′ = sinh ϕ ct + cosh ϕ x

y′ = y
z′ = z (1)

where the “boost angle”ϕ is determined by tanh ϕ = v. (In other words, cosh ϕ = 1/
√

1− v2

c2 ,

and sinh ϕ = v
c
/

√
1− v2

c2 .) Suppressing the y- and z-coordinates, we can describe the Lorentz

transformation by(
ct ′

x′

)
=
(

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

) (
ct

x

)
(2)

Physically, suppose a third observer is moving at a velocity defined by the boost angle ϕ2

relative to the observer moving at a velocity defined by the boost angle ϕ1 relative to the first

observer. Then we expect the third observer to be moving at some velocity determined by

ϕ1 and ϕ2 relative to the first observer. (All motion is restricted to be along the x-direction

for simplicity.) This physical statement is expressed by the mathematical statement that the

Lorentz transformations form a group:(
cosh ϕ2 sinh ϕ2

sinh ϕ2 cosh ϕ2

) (
cosh ϕ1 sinh ϕ1

sinh ϕ1 cosh ϕ1

)
=
(

cosh(ϕ1+ ϕ2) sinh(ϕ1+ ϕ2)

sinh(ϕ1+ ϕ2) cosh(ϕ1+ ϕ2)

)
(3)

The boost angles add.∗

12. Consider the set of n-by-n matrices M with determinants equal to 1. They form a group

under ordinary matrix multiplication, since as was shown in the review of linear algebra,

∗ To show this, use the identities for the hyperbolic functions.
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the determinant of the product two matrices is equal to the product of the determinants of

the two matrices: det(M1M2)= det(M1) det(M2). Thus, det(M1M2)= 1 if det(M1)= 1 and

det(M2)= 1: closure is satisfied. Since detM = 1 �= 0, the inverseM−1 exists. The group is

known as SL(n, R), the special linear group with real entries. If the entries are allowed to be

complex, the group is called SL(n, C). (Matrices with unit determinant are called special.)

From these examples, we see that groups can be classified according to whether they
are finite or infinite, discrete or continuous. Note that a discrete group can well be infinite,
such as the additive group of integers.

Concept of subgroup

In group theory, many concepts are so natural that they practically suggest themselves,12

for example, the notion of a subgroup. Given a set of entities {gα} that form a group G, if
a subset {hβ} also form a group, call it H , then H is known as a subgroup of G and we
write H ⊂G.

Here are some examples.

1. SO(2)⊂ SO(3). This shows that, in the notation {gα} and {hβ} we just used, the index sets

denoted by α and β can in general be quite different; here α consists of three angles and β

of one angle.

2. Sm ⊂ Sn for m< n. Permuting three objects is just like permuting five objects but keeping

two of the five objects untouched. Thus, S3⊂ S5.

3. An ⊂ Sn.
4. Z2⊂ Z4, but Z2 �⊂ Z5.

5. SO(3)⊂ SL(3, R).

Verify these statements.

Cyclic subgroups

For a finite groupG, pick some element g and keep multiplying it by itself. In other words,
consider the sequence {g , g2= gg , g3= g2g , . . .}. As long as the resulting product is not
equal to the identity, we can keep going. SinceG is finite, the sequence must end at some
point with gk = I . The set of elements {I , g , g2, . . . , gk−1} forms a subgroup Zk. Thus,
any finite group has a bunch of cyclic subgroups. If k is equal to the number of elements
in G, then the group G is in fact Zk.

Lagrange’s theorem

Lagrange13 proved the following theorem. Let a groupGwith n elements have a subgroup
H with m elements. Then m is a factor of n. In other words, n/m is an integer.



44 | I. Groups: Discrete or Continuous, Finite or Infinite

The proof is as follows. List the elements of H : {h1, h2, . . . , hm}. (Note: Since H forms
a group, this list must contain I . We do not list any element more than once; thus, ha �= hb
for a �= b.) Let g1 ∈G but �∈H (in other words, g1 is an element ofG outsideH ). Consider
the list {h1g1, h2g1, . . . , hmg1}, which we denote by {h1, . . . , hm}g1 to save writing. Note
that this set of elements does not form a group. (Can you explain why not?)

I claim that the elements on the list {h1g1, h2g1, . . . , hmg1} are all different from one
another. Proof by contradiction: For a �= b, hag1= hbg1�⇒ ha = hb upon multiplication
from the right by (g1)

−1 (which exists, since G is a group).
I also claim that none of the elements on this list are on the list {h1, . . . , hm}. Proof: For

some a and b, hag1= hb �⇒ g1= h−1
a
hb, which contradicts the assumption that g1 is not

in H . Note that H being a group is crucial here.
Next, pick an element g2 of G not in the two previous lists, and form {h1g2, h2g2, . . . ,

hmg2} = {h1, h2, . . . , hm}g2.
I claim that thesem elements are all distinct. Again, this proof follows by contradiction,

which you can supply. Answer: For a �= b, hag2= hbg2�⇒ ha = hb. I also claim that none
of these elements are on the two previous lists. Yes, the proof proceeds again easily by
contradiction. For example, hag2= hbg1�⇒ g2= h−1

a
hbg1= hcg1, sinceH is a group, but

this would mean that g2 is on the list {h1, h2, . . . , hm}g1, which is a contradiction.
We repeat this process. After each step, we ask whether there is any element ofG left that

is not on the lists already constructed. If yes, then we repeat the process and construct yet
another list containingmdistinct elements. Eventually, there is no group element left (since
G is a finite group). We have constructed k lists, including the original list {h1, h2, . . . , hm},
namely, {h1, h2, . . . , hm}gj for j = 0, 1, 2, . . . , k − 1 (writing I as g0).

Therefore n=mk, that is, m is a factor of n. QED.
As a simple example of Lagrange’s theorem, we can immediately state that Z3 is a

subgroup of Z12 but not of Z14. It also follows trivially that if p is prime, then Zp does not
have a nontrivial subgroup. From this you can already sense the intimate relation between
group theory and number theory.

Direct product of groups

Given two groups F and G (which can be continuous or discrete), whose elements we
denote by f and g, respectively, we can define another group H ≡ F ⊗G, known as the
direct product of F and G, consisting of the elements (f , g). If you like, you can think of
the symbol (f , g) as some letter in a strange alphabet. The product of two elements (f , g)
and (f ′, g′) of H is given by (f , g)(f ′, g′)= (ff ′, gg′). The identity element of H is evi-
dently given by (I , I ), since (I , I )(f , g)= (If , Ig)= (f , g) and (f , g)(I , I )= (f I , gI)=
(f , g). (If we were insufferable pedants, we would write IH = (IF , IG), since the identity
elements IH , IF , IG of the three groups H , F , G are conceptually quite distinct.)

What is the inverse of (f , g)? IfF andG havem and n elements, respectively, how many
elements does F ⊗G have?

Evidently, the inverse of (f , g) is (f−1, g−1), and F ⊗G has mn elements.
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Klein’s Vierergruppe V

A simple example is given by Z2⊗ Z2, consisting of the four elements: I = (1, 1), A=
(−1, 1), B = (1, −1), and C = (−1, −1). For example, we have AB = (−1, −1)= C. Note
that this group is to be distinguished from the group Z4 consisting of the four elements
1, i , −1, −i. The square of any element in Z2⊗ Z2 is equal to the identity, but this is not
true of Z4. In particular, i2=−1 �= 1.

Incidentally, Z2⊗ Z2, also known as Klein’s Vierergruppe (“4-group” in German) and
denoted by V , played an important historical role in Klein’s program.

Note that the elements of F , regarded as a subgroup of F ⊗G, are written as (f , I ).
Similarly, the elements of G are written as (I , g). Clearly, (f , I ) and (I , g) commute.

The direct product would seem to be a rather “cheap” way of constructing larger groups
out of smaller ones, but Nature appears to make use of this possibility. The theory of the
strong, weak, and electromagnetic interaction is based on the group∗ SU(3)⊗ SU(2)⊗
U(1).

A teeny14 bit of history: “A pleasant human flavor”

Historians of mathematics have debated about who deserves the coveted title of “the
founder of group theory.” Worthy contenders include Cauchy, Lagrange, Abel, Ruffini,
and Galois. Lagrange was certainly responsible for some of the early concepts, but the
sentimental favorite has got to be Évariste Galois, what with the ultra romantic story of
him feverishly writing down his mathematical ideas the night before a fatal duel at the
tender age of 20. Whether the duel was provoked because of the honor of a young woman
named du Motel or because of Galois’s political beliefs† (for which he had been jailed)
is apparently still not settled. In any case, he was the first to use the word “group.” Nice
choice.

To quote the mathematician G. A. Miller, it is silly to argue about who founded group
theory anyway:

We are inclined to attribute the honor of starting a given big theory to an individual just as we

are prone to ascribe fundamental theorems to particular men, who frequently have added only

a small element to the development of the theorem. Hence the statement that a given individual

founded a big theory should not generally be taken very seriously. It adds, however, a pleasant

human flavor and awakens in us a noble sense of admiration and appreciation. It is also of

value in giving a historical setting and brings into play a sense of the dynamic forces which

have contributed to its development instead of presenting to us a cold static scene. Observations

become more inspiring when they are permeated with a sense of development.15

∗ The notation SU(n) and U(n) will be explained in detail later in chapter IV.4.
† Galois was a fervent Republican (in the sense of being against the monarchy, not the Democrats).
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While symmetry considerations have always been relevant for physics, group theory did
not become indispensable for physics until the advent of quantum mechanics, for reasons
to be explained in chapter III.1. Eugene Wigner,16 who received the Nobel Prize in 1963
largely for his use of group theory in physics, recalled the tremendous opposition to group
theory among the older generation (including Einstein, who was 50 at the time) when he
first started using it around 1929 or so.17 Schrödinger told him that while group theory
provided a nice derivation of some results in atomic spectroscopy, “surely no one will still
be doing it this way in five years.” Well, a far better theoretical physicist than a prophet!

But Wigner’s childhood friend John von Neumann,18 who helped him with group theory,
reassured him, saying “Oh, these are old fogeys. In five years, every student will learn group
theory as a matter of course.”19

Pauli20 coined the term “die Gruppenpest” (“that pesty group business”), which probably
captured the mood at the time. Remember that quantum mechanics was still freshly weird,
and all this math might be too much for older people to absorb.

Multiplication table: The “once and only once rule”

A finite group with n elements can be characterized by its multiplication table,21 as shown
here. We construct a square n-by-n table, writing the product gigj in the square in the ith
row and the j th column:

. . . gj . . .
...

. . .

gi gigj
...

. . .

A simple observation is that, because of the group properties, in each row any group
element can appear once and only once. To see this, suppose that in the ith row, the same
group element appears twice, that is, gigj = gigk for j �= k. Then multiplying by g−1

i from
the left, we obtain gj = gk, contrary to what was assumed. It follows that each of the n
elements must appear once to fill up the n slots in that row. We might refer to this as the
“once and only once rule.”

The same argument could be repeated with the word “row” replaced by “column,” of
course.

For n small, all possible multiplication tables and hence all possible finite groups with
n elements can readily be constructed. Let us illustrate this for n = 4. For pedagogical
reasons, we will do this in two different ways, one laborious,∗ the other “slick.”

∗ An undergraduate in my class advised me to include also this laborious way as being the more instructive
of the two ways. I agree with him that textbooks tend to contain too many slick proofs.
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Finite groups with four elements: The slow way

First, we proceed very slowly, by brute force. Call the four elements I , A, B, and C.

1. By definition of the identity, the first row and first column can be filled in automatically:

I A B C

I I A B C

A A

B B

C C

2. We are to fill in the second row with I , B, and C. The first entry in that row is A2. There are

two possible choices: choice (a): A2= B, or choice (b): A2= I . (You might think that there

is a third choice, A2 = C, but that is the same as choice (a) upon renaming the elements.

What you call C I will call B.)

Let us now follow choice (a) and come back to choice (b) later.

3. The multiplication table now reads

I A B C

I I A B C

A A B 2 3

B B 4 5 6

C C

where for your and my convenience I have numbered some of the boxes yet to be filled in.

4. We have to put C and I into boxes 2 and 3. But we cannot put C into box 3, since otherwise

the fourth column will break the “once and only once rule”: C would appear twice:

I A B C

I I A B C

A A B C I

B B 4 5 6

C C

5. Again by the “once and only once rule,” box 4 can only be C or I . The latter choice

would mean BA= I and hence B = A−1, but we already know from the second row of

the multiplication table that AB = C �= I . Thus, box 4 can only be C. Hence box 5 is I , and

6 is A.
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6. Finally, the last three blank entries in the fourth column are fixed uniquely by the “once and

only once rule.” We obtain22

I A B C

I I A B C

A A B C I

B B C I A

C C I A B

Now that we have the multiplication table, we know everything about the group, and
we can ask: What group is this? From the second row, we read off A2= B, A3= AA2=
AB = C, A4 =AA3=AC = I . The group is Z4. Interestingly, we don’t even have to finish
constructing the entire multiplication table. In this simple case, by the time we had filled
in the second row, we could have quit.

The rest of the table, however, provides us with a lot of consistency checks to ensure that
we have not messed up. For example, from the last row, we have CB = A. But we know
from the second row that B =A2 and C =A3, and hence the statement CB =A says that
A3A2= A5= A, showing that indeed A4 = I .

We now go back to choice (b): A2= I , so that

I A B C

I I A B C

A A I 2 3

B B 4 5 6

C C 7 8 9

1. We are to fill boxes 2 and 3 with C and B. By the “once and only once rule” in the third and

fourth columns, these boxes can only be C and B in that order.

2. By the same reasoning, we can only fill boxes 4 and 7 with C and B, respectively. We thus

obtain

I A B C

I I A B C

A A I C B

B B C

C C B
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3. Now it looks like we could fill in the four remaining empty boxes with either

I A

A I

or

A I

I A

But the two choices amount to the same thing. We simply rename B and C. Thus, we

obtain

I A B C

I I A B C

A A I C B

B B C I A

C C B A I

Again, what group is this? It is just Z2⊗ Z2:A2= I , B2= I , C =AB = BA (and hence
also C2= I ).

A quick way: Construct the cyclic subgroups

Here is an alternative to this laborious procedure of constructing the multiplication table
step by step. We use the earlier observation that in a finite group, if we keep multiplying
an element by itself, we will reach the identity I .

Given a group G of four elements {I , A, B , C}, we keep multiplying A by itself. If
A4 = I , then G = Z4. By Lagrange’s theorem, the possibility A3 = I is not allowed. If
A2 = I , then we multiply B by itself. Either B2 or B4 equals I . The latter is ruled out,
so the only possibility is that B2= I , andAB = BA= C. ThenG= Z2⊗ Z2, with the four
elements represented by (1, 1), (1, −1), (−1, 1), and (−1, −1).

If you are energetic and driven, you could try to construct all possible finite groups with
n elements, and see how large an n you could get to.23 A quick hint: It’s easy if n is prime.

Presentations

For large groups, writing down the multiplication table is clearly a losing proposition.
Instead, finite groups are defined by their properties, as in the examples listed above, or by
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their presentations,24 which list the elements (sometimes called generators) from which
all other elements can be obtained by group multiplication, and the essential relations the
generators satisfy. Thus, in a self-evident notation, the groups Z4 and Z2⊗ Z2 are defined
by their presentations as follows:

Z4 : 〈A|A4 = I 〉 (4)

Z2⊗ Z2 : 〈A, B |A2= B2= I , AB = BA〉 (5)

The two groups are clearly distinct. In particular, Z4 contains only one element that
squares to I , namely A2.

Homomorphism and isomorphism

A map f :G→G′ of a groupG into the groupG′ is called a homomorphism if it preserves
the multiplicative structure ofG, that is, if f (g1)f (g2)= f (g1g2). Clearly, this requirement
implies that f (I)= I (more strictly speaking, the identity of G is mapped to the identity
of G′). A homomorphism becomes an isomorphism if the map is one-to-one and onto.

Now we can answer the question posed earlier: the additive group of integers mod N is
in fact isomorphic∗ to ZN .

For a more interesting example, consider Z2⊗ Z4. We use the additive notation here
and thus write the elements as (n, m) and compose them according to (n, m) . (n′, m′)=
(n+ n′mod 2, m+m′mod 4). We start with (0, 0) and add (1, 1) repeatedly: (0, 0)

+(1, 1)−→
(1, 1)→ (0, 2)→ (1, 3)→ (0, 4)= (0, 0); we get back to where we started. Next, we start

with (0, 1) and again add (1, 1) repeatedly: (0, 1)
+(1, 1)−→ (1, 2)→ (0, 3)→ (1, 0)→ (0, 1),

getting back to where we started. Thus we can depict Z2 ⊗ Z4 by a rectangular 2-by-4
discrete lattice on a torus (see figure 4).

Now we come in for a bit of a surprise. ConsiderZ2⊗ Z3 consisting of (n, m), which we
compose by (n+ n′mod 2, m+m′mod 3). Again, we start with (0, 0) and add (1, 1) re-

peatedly: (0, 0)→ (1, 1)
+(1, 1)−→ (2, 2)= (0, 2)→ (1, 3)= (1, 0)→ (2, 1)= (0, 1)→ (1, 2)→

(2, 3)= (0, 0). We are back where we started! In the process, we cycled through all six ele-
ments of Z2⊗ Z3. We conclude that the six elements (0, 0), (1, 1), (0, 2), (1, 0), (0, 1), and
(1, 2) describe Z6.

Thus, Z2⊗ Z3 and Z6 are isomorphic; they are literally the same group. Note that this
phenomenon, of a possible isomorphism between Zp ⊗ Zq and Zpq , does not require p
and q to be prime, only relatively prime. (Consider the example of Z4 ⊗ Z9.)

As another example of isomorphism, the groups SO(2) and U(1) introduced earlier
in the chapter are isomorphic. The map f : SO(2)→ U(1) is defined simply by f (R(φ))
= eiφ.

∗ That the additive group of integers mod N is also isomorphic to the multiplicative group Zn foreshadows
the confusion some students have between the addition and multiplication of angular momenta in quantum
mechanics. We discuss this later in chapter IV.3.
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(0, 0)

(0, 1)

(0, 2)

(0, 3)

(1, 0)
Z2 − Z4

(1, 1)

(1, 2)

(1, 3)

Figure 4

Appendix 1: Weakening the axioms

Two of the three axioms that define a group can in fact be weakened to the following:

2′. Existence of the left identity: A left identity I exists, such that for any element g, Ig = g.

3′. Existence of a left inverse: For any element g, there exists an element f , such that fg = I .

We now show that these imply axioms 2 and 3 given in the text. In other words, given the left identity and the
left inverse, we are guaranteed that the right identity and the right inverse also exist.

Take the left inverse f of g. By 3′, there exists an element k, such that kf = I . Multiplying this by g from
the right, we obtain (kf )g = Ig = g = k(fg)= kI , where the second equality is due to 2′, the third equality to
associativity, and the fourth equality to 3′. Therefore g = kI . We want to show that k = g.

To show this, let us multiply g = kI by I from the right. We obtain gI = (kI )I = k(II )= kI = g, where the
second equality is due to associativity, and the third equality to 2′, since I also qualifies as “any element.” Thus,
gI = g, so that I is also the right identity. But if I is also the right identity, then the result g = kI becomes g = k.
Multiplying by f from the right, we obtain gf = kf = I . Therefore, the left inverse of g, namely f , is also the
right inverse of g.

Appendix 2: Associativity

Mathematically, the concept of a group is abstracted from groups of transformations. To physicists, groups are
tantamount to transformation groups. In fact, if we are allowed to think of group elements as acting on a set of
things S = {p1, p2, . . .}, we can prove associativity. The “things” could be interpreted rather generally. For the
geometrical examples given in this chapter, pi could be the points in, for example, a triangle. Or for applications
to fundamental physics, pi could be some physical law as known to a particular observer, for example, an inertial
observer in discussions of special relativity.

Suppose the group element g takes p1→ p′1, p2→ p′2, . . . , so that the things in S are rearranged (as, for
example, when a triangle is rotated). Suppose the group element g′ takes p′1→ p′′1 , p′2→ p′′2 , . . ., and the group
element g′′ takes p′′1 → p′′′1 , p′′2 → p′′′2 , . . ., and so on.

Now consider the action of g′′(g′g) on S. The element g′g takes pj to p′′
j
, and then the element g′′ takes p′′

j

to p′′′
j

. Compare this with the action of (g′′g′)g on S. The element g takes pj to p′
j
, and then the element g′′g′

takes p′
j

to p′′′
j

. The final result is identical, and associativity is proved.
Most physicists I know would probably regard this kind of fundamental proof as painfully self-evident.
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Appendix 3: Modular group

The modular group has become important in several areas of physics, for example, string theory and condensed
matter physics. Consider the set of transformations of one complex number into another given by

z→ az+ b
cz+ d (6)

with a, b, c, and d integers satisfying ad − bc = 1. The transformation (6) can be specified by the matrix

M =
(
a b

c d

)
with detM = 1 (7)

Clearly,M and −M correspond to the same transformation in (6).
In the text, I introduced you to SL(n, R), the special linear group of n-by-n matrices with real entries, and

SL(n, C), the special linear group of n-by-nmatrices with complex entries. The matrices in (7) define the group
SL(2, Z), the special linear group of 2-by-2 matrices with integer entries.∗ The group that results upon identifying
M and −M in SL(2, Z) is known as PSL(2, Z) (the letter P stands for “projective”), otherwise known as the
modular group.

The transformation in (6) can be generated by repeatedly composing (that is, multiplying together) the two
generating transformations

S : z→− 1
z

(8)

and

T : z→ z+ 1 (9)

They correspond to the matrices S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
, respectively.

Using the language of presentation introduced in the text, we can write

PSL(2, Z) : 〈S , T | S2 = I , (ST )3= I 〉 (10)

Incidentally, the modular group can be generalized to the triangular group T , denoted by (2, 3, n) and
presented by

T : 〈S , T | S2 = I , (ST )3= I , T n = I 〉 (11)

The modular group is thus sometimes written as (2, 3,∞).

Exercises

1 The center of a group G (denoted by Z) is defined to be the set of elements {z1, z2, . . .} that commute with
all elements of G, that is, zig = gzi for all g. Show that Z is an abelian subgroup of G.

2 Letf (g) be a function of the elements in a finite groupG, and consider the sum
∑
gεG f (g). Prove the identity∑

gεG f (g)=
∑
gεG f (gg

′)=∑gεG f (g
′g) for g′ an arbitrary element ofG. We will need this identity again

and again in chapters II.1 and II.2.

∗ In mathematics, Z denotes the set of all integers, of either sign, including 0.
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3 Show that Z2⊗ Z4 �= Z8.

4 Find all groups of order 6.

Notes

1. See Fearful.
2. See parts VII and VIII.
3. We go into this in detail in chapter III.3.
4. See chapter IV.7.
5. Of course, we could also be more abstract and say that a group G is a structure endowed with the map
(G, G)→G and so on and so forth.

6. In Strange Beauty, the biography of Murray Gell-Mann by G. Johnson, the following explanation about
commutation is mentioned. When Gell-Mann was admitted only to MIT rather than the graduate school
of his choice, he resolved to kill himself. But then he realized that killing himself and attending MIT do not
commute, and so decided that he should go to MIT first and kill himself later, rather than the other way
around.

7. He is one of several characters that populate my previous books Quantum Field Theory in a Nutshell and
Einstein Gravity in a Nutshell. Hereafter QFT Nut and G Nut, respectively.

8. In the late nineteenth century, mathematicians felt that, with group theory, they had finally invented
something of no use to the physicists. See p. v in R. Gilmore, Lie Groups, Lie Algebras, and Some of Their
Applications.

9. Note the conceptual distinction between transformation and invariance. For example, the laws governing
the weak interaction are famously not invariant under the interchange of left and right (known as a parity
transformation P ). But, regardless of whether a given law is invariant under parity, we still have P . P = I .

10. This unfortunately is not true of many transformations in everyday life, such as cooking and aging.
11. See, for example, G Nut.
12. I once had a math professor who spoke of self-proving theorems. In the same sense, there are self-suggesting

concepts.
13. Lagrange fell into a deep depression in his old age. Fortunately for him, the daughter of Lemonnier, an

astronomer friend of Lagrange’s, managed to cheer him up. Almost forty years younger than Lagrange, the
young woman offered to marry him. Soon Lagrange was productive again. “Mathematicians Are People,
Too,” by L. Reimer and W. Reimer, p. 88.

14. “Teeny bit of history,” because you can easily read your fill on the web.
15. “The Founder of Group Theory” by G. A. Miller, American Mathematical Monthly 17 (Aug–Sep 1910), pp.

162–165. http://www.jstor.org/stable/2973854.
16. My senior colleague Robert Sugar, who took a course on group theory at Princeton from Wigner, told me the

following story. On the first day, Wigner asked the students whether they knew how to multiply matrices.
Given Wigner’s reputation of delivering long dull discourses, the students all said yes of course, and in
fact, as graduate students at Princeton, they all knew how to do it. But Wigner was skeptical and asked a
student to go up to the blackboard and multiply two 2-by-2 matrices together. The guy did it perfectly, but
unfortunately, Wigner used a convention opposite to what was (and still is) taught in the United States.
Wigner was convinced that the students did not know how to multiply matrices, and proceeded to spend a
week tediously explaining matrix multiplication. If you look at the English edition of Wigner’s group theory
book, you would read that the translator had, with Wigner’s permission, reversed all of his conventions.

17. The stories Wigner told about the early days of group theory used here and elsewhere in this bookare taken
from The Recollections of Eugene P. Wigner as told to Andrew Szanton, Plenum Press, 1992.

18. As you might have heard, the four Hungarians, Leo Szilard, Eugene Wigner, John von Neumann, and Edward
Teller, all Jewish, formed a legendary group that had major impact on physics. Listed here in order of age,
they were born within 10 years of one another. Wigner considered himself to be the slowest of the four, and
anecdotal evidence suggests that this assessment is not due to exaggerated modesty; yet he is the only one
of the four to have received a Nobel Prize.

19. Well, not quite—not even close.

http://www.jstor.org/stable/2973854
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20. This surprises me, since one of Pauli’s famous contributions involves group theory. See the interlude to
part VII. From what I have read, Pauli was brilliant but mercurial and moody, and always ready for a good
joke.

21. As a child you memorized the standard 9-by-9 multiplication table; now you get the chance to construct your
own.

22. Conspiracy nuts might notice that the acronym CIA appears not once, but four times, in this table.
23. Mathematicians have listed all possible finite groups up to impressively large values of n.
24. As in the rather old-fashioned and formal “May I present [Title] So-and-so to you?”



I.2 Finite Groups

Let me first give you an overview or road map to this introduction to the theory of finite
groups. We discuss various important notions, including equivalence classes, invariant
subgroups, simple groups, cosets, and quotient groups. These notions are illustrated
mostly with the permutation groups, which are the easiest to grasp and yet have enough
structure for them to be highly nontrivial. We also introduce the dihedral groups and the
quarternionic group.

Permutation groups and Cayley’s theorem

The permutation group Sn and its natural subgroupAn are sort of like the poster children of
group theory, easy to define and to understand. Everybody knows how permutations work.

Furthermore, a theorem due to Cayley states that any finite groupG with n elements is
isomorphic (that is, identical) to a subgroup of Sn. (Try to figure this one out before reading
on. Hint: Think about the multiplication table of G.)

List the n elements of G as {g1, g2, . . . , gn} in the order pertaining to the row in the
multiplication table corresponding to the identity element. Then in the row in the multi-
plication table corresponding to the element gi we have, in order, {gig1, gig2, . . . , gign}. By
an argument∗ familiar from chapter I.1, this amounts to a permutation of {g1, g2, . . . , gn}.
Thus, we can associate an element of Sn with gi. This mapsG into a subgroup of Sn. Note
that Lagrange’s theorem is satisfied.

For n large, we see thatG is a tiny subgroup of Sn, which has n! elements, as compared
to n elements. In contrast, for n small, the situation is quite different, as shown by the
following examples. The group Z2 is in fact the same as S2. (Check this; it’s trivial.) But
the group Z3, with three elements, clearly cannot be the same as S3, with 3!= 6 elements,
but it is the same as A3. (Why?)

∗ Basically, the “once and only once rule.”
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Cycles and transpositions

As is often the case in mathematics and physics, a good notation is half the battle. To

be specific, consider S5. A “typical” element might be g =
(

1 2 3 4 5
4 1 5 2 3

)
. This denotes a

permutation that takes 1→ 4, 2→ 1, 3→ 5, 4→ 2, and 5→ 3, that is, a permutation that
cyclically permutes 1→ 4→ 2→ 1and interchanges 3→ 5→ 3. A more compact notation
suggests itself: write g = (142)(35). In our convention, (142)means 1→ 4→ 2→ 1, and
(35)means 3→ 5→ 3.

The permutation (a1a2 . . . ak) is known as a cycle of length k and cyclically permutes
a1→ a2→ a3→ . . .→ ak→ a1. A cycle of length 2 is called a transposition, or more
informally, an exchange. In the example above, (35) exchanges 3 and 5.

For brevity, we will call a cycle of length k a k-cycle. Clearly, the k numbers (a1a2 . . . ak)
defining the k-cycle can be cyclically moved around without changing anything: for exam-
ple, (35) and (53) are the same; (142), (421), and (214) are the same.

Any permutation P can be written as the product of cycles of various lengths, including
cycles of length 1 (that is, consisting of an element untouched by P ), with none of the
cycles containing any number in common.∗ (An example is g = (142)(35).) To see this,
start by picking some integer between 1 and n, call it a1, which is taken by P into some
other number, call it a2, which is in turn taken to a3 by P , and so on, until we come back to
a1. This forms a cycle (a1a2 . . . aj) of some length, say j . If there are any numbers left over,
pick one, call it b1, which is taken by P into some other number, call it b2, and so on, until
we come back to b1. We keep repeating this process until there aren’t any numbers left.
Then P = (a1 . . .)(b1 . . .) . . . (. . .), consisting of nj cycles of length j (with

∑
j jnj = n,

of course). By construction, the cycles do not have any number in common. For example,
in the preceding discussion g = (142)(35) with n2= 1, n3= 1.

Incidentally, the 1-cycle is trivial and does nothing. Hence it is usually omitted. For

example, the permutation g =
(

1 2 3 4 5
1 5 3 4 2

)
could be written as g = (25)(1)(3)(4) but is

normally written as g = (25).

Rules for multiplying permutations

Theorem: Any permutation can be written as a product of 2-cycles, that is, exchanges or
transpositions.

This merely expresses the everyday intuition that a permutation can be performed in
steps, exchanging two objects at a time. In some sense, exchanges are the “atoms” out of
which permutations are built.

In our example, g = (142)(35) is the product of a 3-cycle with a 2-cycle. Does this
contradict the theorem?

∗ This is sometimes called resolving P into cycles.
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No, as we will now show, (142) can itself be written as a product of exchanges. We write

(14)(42)=
(

1 2 4

4 2 1

) (
1 2 4

1 4 2

)
=

⎛⎜⎜⎝
1 2 4

1 4 2

4 1 2

⎞⎟⎟⎠= (142). (1)

In the first equality, we merely go back to the more explicit notation, for example, (14)=(
1 2 4
4 2 1

)
. (Of course, 3 and 5 are not even in the game, so the upper row is written in the

“canonical order” 124.) In the second equality, we invent on the spot a 3-tiered notation.
The final equality is merely a simple way of representing the net effect of the two operations
specified by the 3-tiered notation.

Thus, g = (14)(42)(35) in accord with the theorem. Note that, when we resolve a
permutation into cycles and write g = (142)(35), the 3-cycle (142) and the 2-cycle (35) do
not have any integer in common by construction. But there is no such restriction in the
statement of the theorem. In our example, 4 appears in two separate 2-cycles.

We can readily develop some rules for multiplying 2-cycles:

1. If the two 2-cycles do not have a “number” in common, for example, (12) and (34), then

they commute, and we have nothing more to say.

2. (12)(23)= (123). (This was already shown earlier, if we simply rename the numbers; we

had (14)(42) = (142).) Note that since (32) = (23), we can adopt the convention, when

multiplying two 2-cycles, to match the head of one 2-cycle to the tail of the other 2-cycle.

3. We need hardly mention that (12)(21)= I .

4. (12)(23)(34)= (12)(234)=
( 1 2 3 4

1 3 4 2
2 3 4 1

)
= (1234).

5. (123)(345)= (12)(23)(34)(45)= (12)(234)(45)= (12345).

And so it goes.
Indeed, we now see in hindsight that the preceding theorem is trivial.
Since any permutation can be decomposed into 2-cycles, these rules allow us to multiply

permutations together.
As remarked earlier (without going into details), a permutation is either even or odd. The

2-cycle is clearly odd. (At the risk of being pedantic, let us observe that the 2-cycle (12) can

be represented by the matrix
(

0 1
1 0

)
, which has determinant =−1. We are anticipating a

bit here by using the word∗ “represent.”) The 3-cycle is even, since it is equal to the product

of two 2-cycles. (We also note that (123) can be represented by
(

0 0 1
1 0 0
0 1 0

)
, with determinant

=+1.) A permutation is even or odd if it decomposes into the product of an even or odd
number of exchanges (aka 2-cycles or transpositions), respectively.

∗ To be discussed in detail in chapter II.1.
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Square root of the identity

The theory of finite groups is a rich subject with many neat theorems. You have already
seen Lagrange’s theorem. Here is another theorem for you to cut your teeth on.

Many of us were astonished to learn in school that there is another number besides 1
that would square to 1, namely, −1. Is there an analogous phenomenon for groups?

Theorem: Let G be a group of even order, that is, G has an even number of elements.
There exists at least one element g, which is not the identity I , that also squares to the
identity1 g2= I .

You will prove this as an exercise. The alternating groupsAn for n≥ 4 and the permuta-
tion groups Sn for n≥ 2 are of even order, and the theorem holds for them. For example,
in A4, (12)(34) squares to the identity. In contrast, A3 has three elements and does not
have any element other than the identity that squares to the identity.

Equivalence classes

Given a group G, distinct group elements are of course not the same, but there is a sense
that some group elements might be essentially the same. The notion of equivalence class
makes this hunch precise.

Before giving a formal definition, let me provide some intuitive feel for what “essentially
the same” might mean. Consider SO(3). We feel that a rotation through 17◦ and a rotation
through 71◦ are in no way essentially the same, but that, in contrast, a rotation through 17◦

around the z-axis and a rotation through 17◦ around the x-axis are essentially the same.
We could simply call the x-axis the z-axis.

As another example, consider S3. We feel that the elements (123) and (132) are
equivalent, since they offer essentially the same deal; again, we simply interchange the
names of object 2 and object 3. We could translate the words into equations as follows:
(23)−1(123)(23) = (32)(12)(23)(32) = (32)(21) = (321) = (132), where we use the rules
just learned; for instance, in the first equality, we wrote (123) = (12)(23). Note that at
every step, we manipulate the 2-cycles so as to match head to tail. (Or, simply write
123→ 132→ 213→ 312.) A transformation using (23) has turned (123) and (132) into
each other, as expected. Similarly, you would think that (12), (23), and (31) are essentially
the same, but that they are in no way essentially the same as (123).

In a group G, two elements g and g′ are said to be equivalent (g ∼ g′) if there exists
another element f such that

g′ = f−1gf (2)

The transformation g→ g′ is like a similarity transformation in linear algebra, and I will
refer to it as such.

Since equivalence is transitive (friend of a friend is a friend)—that is, g ∼ g′ and g′ ∼ g′′
imply that g ∼ g′′—we can gather all the elements that are equivalent into equivalence
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classes.∗ The number of elements in a given equivalence class c, denoted by nc, plays a
crucial role in the representation theory to be discussed in part II.

Consider S4 with 4!= 24 elements. The even permutations form the subgroup A4, with
4!/2= 12 elements. Given the preceding remarks, the even permutations fall into four
equivalence classes:

{I }, {(12)(34), (13)(24), (14)(23)}, {(123), (142), (134), (243)}, and

{(132), (124), (143), (234)} (3)

For example, ((12)(34))−1(123)(12)(34) = (43)(21)(12)(23)(12)(34) = (43)(234)(12) =
(43)(34)(42)(21)= (421)= (142), where we used the various rules for multiplying 2-cycles
repeatedly (for example, in the third equality, we write (234)= (342)= (34)(42)). As was
explained earlier, we can also obtain the result more quickly by just performing the two
exchanges 1↔ 2 and 3↔ 4: (123)→ (213)→ (214)= (142).

The group S4 is obtained by adjoining to A4 the 12 odd permutations (12), (13), (14),
(23), (24), (34), (1234), (1342), (1423), (1324), (1243), and (1432). Note that within S4,
(124) and (134) are equivalent, but within A4, they are not: the element (23) is in S4 but
is not in A4.

This example shows that, while permutations in the same equivalence class necessarily
have the same cycle structure (more on this concept below), elements with the same cycle
structure are not necessarily equivalent.

Three facts about classes

1. In an abelian world, everybody is in a class by himself or herself. Show this.

2. In any group, the identity is always proudly in its own private class of one. Show this.

3. Consider a class c consisting of {g1, . . . , gnc}. Then the inverse of these nc elements, namely,

{g−1
1 , . . . , g−1

nc
}, also form a class, which we denote by c̄. Show this.

Cycle structure and partition of integers

We explained above that any permutation in Sn can be written as a product of nj j -cycles
with

∑
j jnj = n. For example, a permutation with the cycle structure written schemati-

cally as (xxxxx)(xxxxx)(xxxx)(xx)(xx)(xx)(x)(x)(x)(x) has n5= 2, n4 = 1, n3= 0, n2=
3, and n1= 4 (and so n= 24) and is an element of S24. As was remarked earlier, normally,
the 1-cycles are not shown explicitly, a convention we have elsewhere followed.

Question: Given a cycle structure characterized by the integers nj , determine the num-
ber of permutations in Sn with this cycle structure.

∗ The terms conjugate and conjugacy classes are also used, but physicists probably prefer to avoid these terms,
since they often talk about complex conjugate and hermitean conjugate.
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n even n odd

Figure 1

Exercise! The desired number is

N (n1, . . . , nj , . . .)= n!
�jj

njnj !
(4)

For example, for A4 (or S4), the number of elements with the cycle structure (xx)(xx)
is (since n2 = 2, with all other nj = 0) 4!/(222!)= 3, in agreement with what we wrote.
Similarly, the number of elements with the cycle structure (xxx) is (since n3= 1, with all
other nj = 0) 4!/(311!)= 4 . 2= 8, also in agreement with what we wrote.

From these examples, we also see that the cycle structures in the permutation group
correspond to partitions of the integer n. For instance, for S4, we have 1+ 1+ 1+ 1, 2+ 2,
3+ 1, 2+ 1+ 1, and 4. Note that the first three partitions appear in A4.

The dihedral group Dn

There are of course many other finite groups besides the permutation groups. In chapter
I.1, we already mentioned the set of transformations that leave the n-sided regular polygon
invariant, forming a group known∗ as the dihedral group2 Dn.

The group is generated by the rotation R through 2π/n and the reflection r through a
median. For n odd (think equilateral triangle and pentagon), a median is a straight line
going through the center of the polygon from one vertex to the midpoint of the opposite
side. For n even (think square and hexagon), there are two types of median: a median is a
straight line through the center of the polygon going from one vertex to another, or going
from the midpoint of a side to another midpoint. There are always nmedians (figure 1).

Clearly, Rn = I and r2 = I . Furthermore,† rRr = R−1. Verify this! Thus, Dn has 2n
elements, namely, {I , R , R2, . . . , Rn−1, r , Rr , R2r , . . . , Rn−1r}. (Compare with the in-
variance group D3 of the equilateral triangle in chapter I.1.)

∗ The terminology for finite groups can get quite confusing; this group is also known as Cnv in some circles.
† This just states the everyday fact that a rotation reflected in a mirror is a rotation in the opposite sense.
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Figure 2

Using a language introduced in chapter I.1, we say that Dn is presented by

Dn = 〈R , r|Rn = I , r2= I , Rr = rR−1〉 (5)

In exercise 11, you will work with Dn.

The quarternionic group Q

Some readers may have heard that Hamilton generalized the imaginary unit i by adding
two other units j and k satisfying the multiplication rules (see figure 2)

i2= j2= k2=−1 and ij =−ji = k , jk =−kj = i , ki =−ik = j (6)

The quarternionic group Q consists of eight elements: 1, −1, i, −i, j , −j , k, and −k,
with group multiplication given by Hamilton’s rules. As an exercise, show that Q forms a
group.

Our long-time friend Confusio3 looks a bit confused. He mutters, “In the review of linear
algebra, I read in an endnote that the quarternionic numbers a + bi + cj + dk form a
division algebra.”

No, we tell Confusio, quarternionic numbers are not to be confused with Q. The eight-
element quarternionic group Q is to quarternionic numbers as the four-element cyclic
group Z4 is to complex numbers.

Coxeter groups

One more example. A Coxeter group is presented by

〈a1, a2, . . . , ak|(ai)2= I , (aiaj)
nij = I , nij ≥ 2, with i , j = 1, 2, . . . , k〉 (7)
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In other words, each generator squares to the identity (note that this does not mean that
every group element squares to the identity), and for every pair of generators, there exists
an integer nij ≥ 2 such that (aiaj)

nij = I . The ais correspond to reflections. As you can
see, the Coxeter groups are inspired by the kaleidoscope.

Coxeter groups have many interesting properties. For example, we can readily show that
nij = nji. Proof: Given (ab)n = I , multiply from left and right by b. Using associativity, we
have I = b2= b(ab)nb = b(abab . . . ab)b = baba . . . ba = (ba)n. QED.

Invariant subgroup

We know what a subgroup is, but now let us talk about a very special kind of subgroup,
known as an invariant subgroup. LetH , consisting of elements {h1, h2, . . .}, be a subgroup
ofG. Take any element g not in H . Then the set of elements {g−1h1g , g−1h2g , . . .} forms
a subgroup (exercise!), which we naturally denote by g−1Hg. In general, the subgroupsH
and g−1Hg are distinct.

But if H and g−1Hg are the same for all g ∈G (note the emphasis on “all”) then H is
called an invariant subgroup. In other words,H is invariant if the two lists {h1, h2, . . .} and
{g−1h1g , g−1h2g , . . .} are the same∗ for any g. In other words, similarity transformations
generated by the group elements of G leave H unchanged. (The jargon guy tells us that
an invariant subgroup is also known as a normal subgroup. I prefer the term “invariant
subgroup” as being more informative.)

An example is offered by A4. The subgroup {I , (12)(34), (13)(24), (14)(23)} = Z2 ⊗
Z2= V is invariant.† Verify this!

Another example: in a direct product group G= E ⊗ F , E and F are invariant sub-
groups.‡ Verify this as well.

Yet another example is Z4 = {1, −1, i , −i} with the invariant subgroup Z2 = {1, −1}.
One easy check: (−i){1, −1}i = {1, −1}.

In fact,Z4 is itself an invariant subgroup of the quarternionic group Q. (Please do check
that it is invariant. For example, j−1{1, −1, i , −i}j = {1, −1, i , −i}.)

We can have invariant subgroups inside invariant subgroups, like nested Russian dolls.
That G contains an invariant subgroup H is denoted by a funny-looking triangular

symbol G � H . Similarly, that H is an invariant subgroup of G is denoted by H � G.
These are evidently more restrictive forms of G ⊃ H and H ⊂ G.

Derived subgroup

Given a group G, grab two elements a , b, and calculate

〈a , b〉 ≡ a−1b−1ab = (ba)−1(ab) (8)

∗ But of course the elements in these lists need not appear in the same order. The ordering {h1, h2, . . .} is
arbitrary.

† Recall that V denotes Klein’s Vierergruppe Z2⊗ Z2 (see chapter I.1).
‡ More precisely, by E we mean E ⊗ IF .
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First, note that 〈a , a〉 = I and 〈a , b〉−1= 〈b, a〉. Denote by {x1, x2, . . .} the objects 〈a , b〉 as
a and b range over all the elements in the group. These objects, together with the products
of these objects with each other, that is, group elements of the form xixj . . . xk, constitute
a subgroup of G, known as the derived subgroup D.

Note that the product 〈a , b〉〈c, d〉 need not have the form 〈e, f 〉 for some e and f . The
derived subgroup D is not necessarily equal to the set of all objects of the form 〈a , b〉 as a
and b range over G.

As an example, the derived subgroup of Sn is An. The objects 〈a , b〉 = a−1b−1ab, being
the product of four permutations, are necessarily even permutations.

A more involved example: the derived subgroup of A4 is V = Z2⊗ Z2. Calculate, for
instance, that∗ 〈(12)(34), (123)〉 = (14)(23).

Our friend Dr. Feeling† strolls by. “Note that for an abelian group G, the derived
subgroup is just the trivial group consisting of only the identity, since 〈a , b〉 = I for any
a , b,” he mumbles. “The object 〈a , b〉 = (ba)−1(ab) measures how much ab differs from
ba. Therefore, the derived subgroup tells us how nonabelian the groupG is. The larger D
is, the farther away G is from being abelian, roughly speaking.”

Let’s try out what he said using the quarternionic group Q. We have 〈i , j〉 =
(−i)(−j)ij = (−i)kj = jj = −1. Thus, D = Z2. In contrast, the derived subgroup of
Z4 = {1, −1, i , −i}, an abelian subgroup of Q, is manifestly just I .

Let us now show that D is an invariant subgroup of G. Use the convenient notation
ã = g−1ag (keeping in mind ã depends implicitly on g). Note that (g−1ag)(g−1a−1g)=
g−1aa−1g = I , which shows that g−1a−1g = ã−1. Now we simply calculate: g−1〈a , b〉g =
g−1(a−1b−1ab)g = ã−1b̃−1ãb̃= 〈ã , b̃〉, which shows that the derived subgroup is an invari-
ant subgroup. As an exercise, find the derived subgroup of the dihedral group and show
that it is invariant.

In the example of Q, its derived subgroup D = Z2 is certainly an invariant subgroup.
But we also know that Q contains the larger group Z4 as an invariant subgroup.

I have to say a few words about terminology, but, to avoid interrupting the narrative flow,
I have moved them to appendix 2.

A simple group does not contain a (nontrivial) invariant subgroup

In what follows, it is convenient to restrict the term “invariant subgroup” to mean proper
invariant subgroup; we exclude G itself and the trivial subgroup consisting of only the
identity.

A group is called simple4 if it does not have any invariant subgroup.

∗ We have (12)(34)(213)(12)(34)(123) = (12)(34)(21)(13)(12)(34)(12)(23) = (34)(13)(34)(23) = (34)(134)
(23)= (34)(341)(23)= (34)(34)(41)(23)= (41)(23). This calculation would go much faster using the matrices
to be introduced in part II.

† Like Confusio and the jargon guy, Dr. Feeling has appeared previously in G Nut. To paraphrase a review
of QFT Nut published by the American Mathematical Society, it is often more important to feel why something
must be true rather than to prove that it is true. For all we know, Dr. Feeling might be a real person, rather than
an imaginary friend from the author’s childhood.
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Dr. Feeling wanders by and explains: “We want to express the notion of a group being
simple, of not containing smaller pieces. The naive first thought is that the group should
not contain any subgroup, but subgroups are a dime a dozen. As we saw in chapter I.1,
we could take any element g: it and its integer powers would form a cyclic subgroup. So,
a garden variety cyclic subgroup does not count; any decent-sized group would be full
of them. But an invariant subgroup is sort of special. Finding V inside A4 is sort of like
physicists finding quarks inside a hadron!”

As a physicist, I thought that was a bit of an exaggeration. But in any case, it provides
a good mnemonic: not having an invariant subgroup makes a group simple.5 Thus, Z4,
A4,∗ and Q are all not simple.

By the way, given a group G, computing its derived subgroup is algorithmic, a task we
can relegate to a computer or a student. If the derived subgroup is nontrivial, then we
immediately realize that G is not simple.

Let f be a homomorphic6 map of a groupG into itself; in other words, the map is such
that f (g1)f (g2)= f (g1g2). Show that the kernel of f , that is, the set of elements that are
mapped to the identity, is an invariant subgroup of G. Exercise!

Invariant subgroup, cosets, and the quotient group

Let G � H . To repeat, this means that all the elements equivalent to the elements in the
subgroup H are also in H , which makes H very special indeed, as we shall now see.

Having an invariant subgroup empowers us to form objects called cosets and construct
another group called the quotient group.

For an element g, consider the set of elements {gh1, gh2, . . .}, which we will denote by†

gH . We have a whole bunch of such sets, gaH , gbH , . . . .
We can naturally multiply two of these sets together: simply multiply each group element

in the set gaH by every group element in the set gbH and look at the resulting set:

(gahi)(gbhj)= ga(gbg−1
b )higbhj = gagb(g−1

b higb)hj = (gagb)(hlhj) (9)

In the third equality, we make crucial use of the fact that H is an invariant subgroup, so
that g−1

b higb is some element hl of H . (This step would not work if H is some garden
variety subgroup of G.) Since H is a group, the product hlhj is an element of H . Thus,
(gahi)(gbhj)= (gchk), where gc = gagb, and hk depends on ga, gb, hi, and hj .

The objects gH , which our friend the jargon guy tells us are called left cosets, close
under multiplication:

(gaH)(gbH)= (gagbH) (10)

The natural question is whether they form a group.

∗ A famous theorem states that An is simple for n≥ 5. We will prove in chapter II.3 that A5 is simple.
† The set gH is definitely not to be confused with gHg−1, which would be H itself, since H is an invariant

subgroup. (Here g denotes a generic element not inH .) Indeed, unless g = I , the set gH is not a group; for one
thing, the identity is not contained in gH .
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Sure! Indeed, (10) maps the pair ga and gb to the product gagb.
Thus, the identity of this group is IH =H , namely, H itself, since (IH)(gH)= gH .

The inverse of gH is g−1H , since (g−1H)(gH)= (gH)(g−1H)= IH =H . I will let you
show associativity.

The left cosets form a group.
Thus, if a group G has an invariant subgroup H , then we can construct another group

consisting of left cosets gH , a group known as the quotient group and written asQ=G/H .
Why quotient? Well, ifN(G) denotes the number of elements inG andN(H) the number
of elements in H , each coset {gaH } contains N(H) elements of G. Hence there can only
beN(Q)=N(G)/N(H) cosets. It is entirely reminiscent of how we first learned to divide,
by putting, say, oranges into separate baskets.

The number of elements in Q is∗ N(Q)= N(G)/N(H) (strong shades of Lagrange’s
theorem). In general,Q is not a subgroup of G.

There is nothing special about the left, of course. We could equally well have played
with the right cosets, namely, the sets {h1g , h2g , . . .} =Hg. Indeed, if H � G, then the
left cosets gH and right cosets Hg are manifestly the same.

As an example, consider the quarternionic group Q, which has the invariant subgroup
Z4 = {1, −1, i , −i}, as we showed earlier. Construct the quotient group†Q=Q/Z4, which
consists of only 2= 8/4 elements: {1, −1, i , −i} and j{1, −1, i , −i} = {j , −j , k , −k}.
(Note that k{1, −1, i , −i} = {j , −j , k , −k}, for example, does not give a different left
coset.)

Indeed,Q is just the group Z2. An easy check:

(jZ4)(jZ4)= {j , −j , k , −k}{j , −j , k , −k} = {1, −1, i , −i} = Z4

namely, the identity of Z2.
Given a groupG, since its derived subgroup D is an invariant subgroup, we can always

construct the quotient groupQ=G/D. This process can then be repeated withQ playing
the role of G. Since taking the quotient G/H amounts to setting H to the identity, and
since D measures how nonabelian G is, this process is known as abelianization.

A preview

In chapter I.3, we start discussing continuous groups, such as the rotation group. As
you will see immediately, continuous groups are easier to deal with than finite groups
in many respects: Newton and Leibniz come flying in with their wonderful concept of
differentiation! We then have the concept of one group element being near another group
element, in particular, the identity.

∗ The jargon guy tells us that N(G)/N(H) is known as the index of H in G.
† The Q for the quotient group is not to be confused with the Q for the quarternionic group of course.

Somewhat unfortunate; normally, not that many words start with the letter q.
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Appendix 1 to this chapter gives you a tiny taste of finite group theory.7 Indeed, the clas-
sification of all simple finite groups∗ is one of the crowning achievements of mathematics
in modern times.8

Appendix 1: The composition series and the maximal invariant subgroup

Readers being exposed to group theory for the first time may safely skip this appendix.
Suppose we found an invariant subgroup H1 of G. Then nothing prevents us from looking for an invariant

subgroup H2 of H1. And so on. The sequence

G �H1 �H2 � . . . �Hk � I (11)

is called a composition series. By assumption, theH s are invariant, and so we have a sequence of quotient groups
G/H1⊃H1/H2⊃H2/H3⊃ . . .⊃Hk. The physics analogy might be that molecules contain atoms, atoms contain
nuclei, nuclei contain nucleons, and nucleons contain quarks.

Again, use Q, the eight-element quarternionic group, as an example. Then

Q � Z4 � Z2 � I (12)

where Z4 = {1, i , −1, −i}, and Z2 = {1, −1}. The quotient groups are Q/Z4 = Z2 and Z4/Z2 = Z2.
How do we know whether H1 is the largest invariant subgroup of G?
Dr. Feeling strolls by. “In elementary school, we learned that we get a small number if we divide by a large

number. So we might think that if the quotient groupG/H is really small, then the invariant subgroupH should
be the largest possible.” This kind of intuition suggests the following theorem.

Given a group G and one of its invariant subgroups H , form the quotient group Q=G/H . Suppose that Q
has no invariant subgroup. Then H is the maximal invariant subgroup.

The claim is that H is not contained in some larger invariant subgroup of G. Our intuitive feel is that if
Q=G/H is the smallest possible, thenH is the largest possible, and ifQ=G/H does not contain an invariant
subgroup, then it’s kind of small.

Proof: We want to show that H is maximal. Assume to the contrary that H is not the maximal invari-
ant subgroup. Then there exists an invariant subgroup F of G that contains H , that is, G � F ⊃ H . Let
us list the elements of these various groups as follows: H = {h1, h2, . . .}, F = {f1, f2, . . . , h1, h2, . . .}, G =
{g1, g2, . . . , f1, f2, . . . , h1, h2, . . .}. In other words, the f s are those elements in F but not in H , and the gs
those elements in G but not in F . Note that since H is a group, one of the hs, say h1, is the identity.

First, H is an invariant subgroup of F a fortiori, since it is an invariant subgroup of G. This implies that
the quotient group K = F/H , consisting of {H , fH } (the notation is compact but self-evident†) is a group. The
quotient group Q=G/H consists of {H , fH , gH }, and so, evidently, K ⊂ Q. But we will make the stronger
claim that K � Q. Simply check: for example, (g−1H)(fH)(gH)= (g−1H)(fgH)= (g−1fg)H = f ′H , where
in the last step we use the fact that F is an invariant subgroup ofG. This contradicts the assumption thatQ has
no invariant subgroup. But it does: namely, K . QED.9

To illustrate the theorem, use Q, which has Z2 = {1, −1} as an invariant but not maximal subgroup. Then
Q/Z2 is an (8/2= 4)-element group with the elements {Z2, iZ2, jZ2, kZ2}. What is this group?

There are only two possibilities: Z4 or the Vierergruppe V = Z2⊗ Z2. It is in fact the latter. We will work out
presently the correspondence between the elements of Q/Z2 andZ2⊗ Z2. To do this, first note that (iZ2)(iZ2)=
−Z2= Z2, and (iZ2)(jZ2)= kZ2, so that we identifyZ2↔ (+, +), (iZ2)↔ (−, +), (jZ2)↔ (+, −), and kZ2↔
(−, −). But V has an invariant subgroup consisting of the elements (+, +) and (−, −) (check that it is in fact
invariant), which formsZ2. Hence Q/Z2, which we have just shown is equal to V , also has an invariant subgroup
Z2. (This is admittedly a bit confusing. A cast of characters might help:G=Q, H = Z2, Q=Q/Z2= V .) Since
V =Q/Z2 does have an invariant subgroup, the invariant subgroup Z2 is in fact not maximal.

∗ Including the discovery of the Monster group with ∼ 8⊗ 1053 elements. See M. Ronan, Symmetry and the
Monster.

† By fH we mean, of course, f1H , f2H , . . . .
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Appendix 2: Commutators and commutator subgroups

This appendix is devoted to the vexing issue of divergent terminology. I am aware that mathematicians call
〈a , b〉 the commutator of the two group elements a and b. I would like to avoid this terminology, because the
term “commutator” is deeply ingrained in quantum physics and has a different meaning there. In physics, the
commutator of A and B is defined∗ as [A, B]= AB − BA, which makes sense only if the subtraction symbol is
defined (for matrices or operators in quantum mechanics, for example). When we discuss continuous groups in
chapter I.3, then the concept of group elements near the identity makes sense. For a � I + A, b � I + B near
the identity (in the sense that A and B are small compared to I ), then 〈a , b〉 = a−1b−1ab � I + [A, B]. Thus, for
continuous groups, 〈a , b〉 and [A, B] are intimately related but are still conceptually totally distinct.

In the text, I carefully refrained from giving 〈a , b〉 any name at all. This book is intended for physicists,
and from my experience, calling 〈a , b〉 = a−1b−1ab a commutator invariably confuses some students. Also, a
typical student statement is that it is really the same, since 〈a , b〉 = a−1b−1ab = I means that ab = ba and thus
ab − ba = 0, which ends up causing even more confusion, since the symbols − and 0 do not exist in the def-
inition of groups (think of the permutation group as an example). The student would then say something about
rings, but we are not talking about rings here.

During one of my discussions with students about this issue, the name “grommutator” was suggested; I rather
like it.10

Not surprisingly then, mathematicians usually call the derived subgroup the “commutator subgroup of G”
and write D = [G, G], which looks odd at first sight to many physicists.

Denoting G by G(0), we can define the series G(i+1) = [G(i) , G(i)] with i = 0, 1, . . . . This composition series
of invariant subgroups may or may not end with the trivial group consisting of only the identity. If it does, G is
known to mathematicians as solvable. If G(1) =G, then G is known as perfect.11

Exercises

1 Show that for 2-cycles (1a)(1b)(1a)= (ab).

2 Show that An for n≥ 3 is generated by 3-cycles, that is, any element can be written as a product of 3-cycles.

3 Show that Sn is isomorphic to a subgroup of An+2. Write down explicitly how S3 is a subgroup of A5.

4 List the partitions of 5. (We will need this later.)

5 Count the number of elements with a given cycle structure.

6 List the possible cycle structures in S5 and count the number of elements with each structure.

7 Show that Q forms a group.

8 Show that A4 is not simple.†

9 Show that A4 is an invariant subgroup (in fact, maximal) of S4.

10 Show that the kernel of a homomorphic map of a group G into itself is an invariant subgroup of G.

∗ As was already mentioned in the review of linear algebra.
† I can’t resist mentioning here the possibly physically relevant fact that alone among all the alternating groups

An, the group A4 is not simple.
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11 Calculate the derived subgroup of the dihedral group.

12 Given two group elements f and g, show that, while in general fg �= gf , fg is equivalent to gf (that is, they
are in the same equivalence class).

13 Prove that groups of even order contain at least one element (which is not the identity) that squares to the
identity.

14 Using Cayley’s theorem, map V to a subgroup of S4. List the permutation corresponding to each element of
V . Do the same for Z4.

15 Map a finite groupGwith n elements into Sn a l̀a Cayley. The map selects n permutations, known as “regular
permutations,” with various special properties, out of the n! possible permutations of n objects.
(a) Show that no regular permutation besides the identity leaves an object untouched.
(b) Show that each of the regular permutations takes object 1 (say) to a different object.
(c) Show that when a regular permutation is resolved into cycles, the cycles all have the same length. Verify

that these properties hold for what you got in exercise 14.

16 In a Coxeter group, show that if nij = 2, then ai and aj commute.

17 Show that for an invariant subgroup H , the left coset gH is equal to the right coset Hg.

18 In general, a group H can be embedded as a subgroup into a larger group G in more than one way. For
example, A4 can be naturally embedded into S6 by following the route A4 ⊂ S4 ⊂ S5⊂ S6. Find another way
of embedding A4 into S6. Hint: Think geometry!

19 Show that the derived subgroup of Sn isAn. (In the text, with the remark about even permutations we merely
showed that it is a subgroup of Sn.)

20 A set of real-valued functions fi of a real variable x can also define a group if we define multiplication as
follows: given fi and fj , the product fi . fj is defined as the function fi(fj(x)). Show that the functions
I (x) = x and A(x) = (1− x)−1 generate a three-element group.12 Furthermore, including the function
C(x)= x−1 generates a six-element group.

Notes

1. The jargon guy tells us that this is called an involution.
2. Dihedral means having two faces; in the context here, it means reflections are allowed. The root “hedra”

means seat, bottom, base. Compare to polyhedron. Dihedrals occur quite often in everyday life, for example,
in national emblems, such as the Ashok Chakra.

3. Some readers may know him as a much-loved personage who has appeared in QFT Nut and G Nut.
4. My preference for the term “invariant subgroup” over “normal subgroup” unfortunately deprives me of the

pleasure of telling an ultra-nerd mathematical joke taken from Foolproof: A Sampling of Mathematical Folk
Humor by Paul Renteln and Alan Dundes. But anyway, here it is. Question: What is purple and all of its
offspring have been committed to institutions? Answer: A simple grape: it has no normal subgrapes.

5. Our friend the jargon guy won’t give up; he tells us that furthermore a group is semi-simple if it does not
have an abelian invariant subgroup. For example, S3 is not semi-simple since it containsA3, which is abelian.

6. Not to be confused with the homomorphic map in topology: homo from a Greek root meaning same, homeo
meaning similar.

7. It used to be that finite groups appeared to be largely irrelevant for particle physics, but the situation may
have changed. It is amusing to note that Sheldon Glashow, in his foreword to the 1982 first edition of Georgi’s
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Lie Algebras in Particle Physics, praised the book by saying that it “summarily dealt with finite group theory
in the first seven pages.”

8. For an introductory account, see, for example, Wikipedia. The Monster was found in 1981, and victory
declared in 1983, but the full classification was only completed in 2004.

9. A naive physicist would just divide the number of elements to see whether N(Q) = N(G)/N(H) is the
smallest number “possible.”

10. “Commuter” was also mentioned, but it sounds too similar to commutator. It also reminds me of the old
nerd joke: what is purple and commutes? An abelian grape.

11. The smallest perfect group is A5.
12. This exercise is from G. Hall.



I.3 Rotations and the Notion of Lie Algebra

Two different approaches to rotations in the plane

If the permutation groups are the poster children for raising awareness of finite groups,
then the rotation groups are surely the poster children for continuous groups. Given that
we were all born into 3-dimensional Euclidean space, it is hardly surprising that the
rotation group plays a crucial role in physics. Indeed, the very concept of a group was
abstracted from the behavior of rotations.

My pedagogical strategy in this chapter1 is to first take something you know extremely
well, namely, rotations in the plane, present it in a way possibly unfamiliar to you, and go
through it slowly in great detail—“beating it to death,” so to speak. And then we will move
up to rotations in 3-dimensional space and beyond.

I start with two different approaches to rotations in the plane, the first based on
trigonometry, the second based on invariance considerations.

Cartesian coordinates and trigonometry

As you know, from a course on mechanics, we envisage either rotating the body we are
studying or rotating the observer. Here we consistently rotate the observer.∗

Put down Cartesian coordinate axes (see figure 1) so that a point P is labeled by two real
numbers (x , y). Suppose another observer (call him Mr. Prime) puts down coordinate
axes rotated by angle θ with respect to the axes put down by the first observer (call her Ms.
Unprime) but sharing the same origin O. Elementary trigonometry tells us that the coor-
dinates (x , y) and (x′, y′) assigned by the two observers to the same point P are related by†

x′ = cos θx + sin θy , y′ = − sin θx + cos θy (1)

∗ This point of view is closer in spirit to the convention used in several advanced areas of theoretical physics,
such as relativity and gravity.

† For example, by comparing similar triangles in the figure, we obtain x′ = (x/cos θ)+ (y − x tan θ) sin θ .
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y

O

P

x

y′
x′

θ

Figure 1

The distance from P to the origin O has to be the same for the two observers, of course.
According to Pythagoras, this requires

√
x′2+ y′2 =√x2+ y2, which you could check

using (1).

Introduce the column vectors �r =
(
x

y

)
and �r ′ =

(
x′
y′
)

and the rotation matrix

R(θ)=
(

cos θ sin θ

− sin θ cos θ

)
(2)

Then we can write (1) more compactly as �r ′ = R(θ)�r .
We have already used the word “vector” in the linear algebra review. For the purpose

of this chapter, a vector is a quantity (for example, the velocity of a particle in the plane)

consisting of two real numbers, such that if Ms. Unprime represents it by �p =
(
p1

p2

)
, then

Mr. Prime will represent it by �p′ = R(θ) �p. In short, a vector is something that transforms

like the coordinates
(
x

y

)
under rotation. The emphasis here is on the word “like.”

Invariance under linear transformations

Given two vectors �p =
(
p1

p2

)
and �q =

(
q1

q2

)
, the scalar or dot product is defined by �pT . �q =

p1q1+ p2q2. Here the transposed vector �pT is the row vector (p1, p2).
According to Pythagoras, the square of the length of �p is given by �p2 ≡ �pT . �p =

(p1)2 + (p2)2. By definition, rotations leave the length of �p, and hence �p2, invari-
ant. In other words, if �p′ = R(θ) �p, then �p′2 = �p2. Since this works for any vector �p,
including the case in which �p happens to be composed of two arbitrary vectors �u and
�v (namely, �p = �u + λ�v with λ an arbitrary real number), and since �p2 = (�u + λ�v)2 =
�u2 + λ2�v2 + 2λ�uT . �v, rotation also leaves the dot product between two arbitrary vectors
invariant: �p′2= �p2 (where �p′ = �u′ + λ�v′ = R �p = R�u+ λR�v) implies that �u′T . �v′ = �uT . �v,
since λ can be varied arbitrarily.

Since �u′ = R�u (to unclutter things, we often suppress the θ dependence in R(θ)) and
so �u′T = �uTRT , we now have �uT . �v = �u′T . �v′ = (�uTRT ) . (R�v)= �uT (RTR)�v. As this holds
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for any two vectors �u and �v, we must have the matrix equation

RTR = I (3)

This imposes a condition on R.
Matrices that satisfy (3) are called orthogonal.2 As was already mentioned in chap-

ter I.1, these orthogonal matrices generate the group O(2), with the multiplication law
R(θ1)R(θ2)= R(θ1+ θ2).

As promised, we followed two approaches to studying rotations. In the first approach,
we used trigonometry, in the second, we insisted on linear transformations that leave the
lengths of vectors unchanged.

At this point, we might pause to check that the two approaches are consistent by plugging
in the explicit form of the rotation, given in (2), into the condition (3):

R(θ)T R(θ)=
(

cos θ − sin θ

sin θ cos θ

) (
cos θ sin θ

− sin θ cos θ

)
=
(

1 0

0 1

)
(4)

Reflections

Recall from the linear algebra review that the determinant of a product of matrices is
equal to the product of the determinants: det M1M2 = (det M1)(det M2), and that the
determinant of the transpose of a matrix is the same as the determinant of that matrix:
detMT = detM . Taking the determinant of (3), we obtain (det R)2= 1, that is, det R =±1.
The determinant of an orthogonal matrix may be −1 as well as +1. In other words,

orthogonal matrices also include reflection matrices, such as P =
(

1 0
0 −1

)
, a reflection

flipping the y-axis.
To focus on rotations, let us exclude reflections by imposing the condition (since det P
=−1)

det R = 1 (5)

Matrices with unit determinant are called special (as already mentioned in chapter I.1).
Note that matrices of the form PR for any rotation R are also excluded by (5), since

det(PR) = det P det R = (−1)(+1) = −1. In particular, a reflection flipping the x-axis( −1 0
0 1

)
, which is the product of P and a rotation through 90◦, is also excluded.

We define a rotation as a matrix that is both orthogonal and special, that is, a matrix that
satisfies both (3) and (5). Thus, the rotation group of the plane consists of the set of all
special orthogonal 2-by-2 matrices and is known as SO(2).

In the linear algebra review, we mentioned in an endnote that it is good practice in
physics and mathematics to turn equations and logical sequences around. Starting from
(2), you can readily check (3) and (5). Verify that, given (3) and (5), you can also get to (2).
Indeed, in the next section, we will learn how to do this in arbitrary dimensions, not just
for the almost trivial 2-dimensional case.
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Act a little bit at a time

The Norwegian physicist Marius Sophus Lie (1842–1899) had the almost childishly obvious
but brilliant idea that to rotate through, say, 29◦, you could just as well rotate through
a zillionth of a degree and repeat the process 29 zillion times. To study rotations, it
suffices to study rotation through infinitesimal angles. Shades of Newton and Leibniz! A
rotation through a finite angle can always be obtained by performing infinitesimal rotations
repeatedly. As is typical with many profound statements in physics and mathematics, Lie’s
idea is astonishingly simple. Replace the proverb “Never put off until tomorrow what you
have to do today” by “Do what you have to do a little bit at a time.”

A rotation through an infinitesimal angle θ is almost the identity I , that is, no rotation
at all, and so can be written as

R(θ)� I + A (6)

Here A denotes some infinitesimal matrix of order θ . The neglected terms in (6) are of
order θ2 and smaller.

Let us imagine Lie saying to himself, “Pretend that I slept through trigonometry class
and I don’t know anything about (2). Instead, I will define rotations as the set of linear
transformations on 2-component objects �u′ = R�u and �v′ = R�v that leave �uT . �v invariant.
I will impose (3) RTR = I and derive (2). But according to my brilliant idea, it suffices to
solve this condition for rotations infinitesimally close to the identity.”

Following Lie, we plugR � I +A intoRTR = I . Since by assumptionA2, being of order
θ2, can be neglected relative to A, we have

RTR � (I + AT )(I + A)� (I + AT + A)= I (7)

Thus, this requires∗ AT =−A, namely, that Amust be antisymmetric.
But there is basically only one 2-by-2 antisymmetric matrix:

J ≡
(

0 1

−1 0

)
(8)

In other words, the solution ofAT =−A isA= θJ for some real number θ , which, as we
will discover shortly, is in fact the same as the angle θ we have been using. Thus, rotations
close to the identity have the form†

R = I + θJ +O(θ2)=
(

1 θ

−θ 1

)
+O(θ2) (9)

∗ Note that this result, obtained by equating terms of order θ , is exact.
† An equivalent way of saying this is that for infinitesimal θ , the transformation x′ � x + θy and y′ � y − θx

satisfies the Pythagorean condition x′2 + y′2 = x2 + y2 to first order in θ . (You could verify that (1) indeed
reduces to this transformation to leading order in θ .) Or, write x′ = x + δx, y′ = y + δy, and solve the condition
xδx + yδy = 0 that δ�r is perpendicular to �r .
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The antisymmetric matrix J is known as the generator of the rotation group. We obtain,
without knowing any trigonometry, that under an infinitesimal rotation, x→ x′ � x + θy,
and y→ y′ = −θx + y, which is of course consistent with (1). We could also obtain this
result by drawing an elementary geometrical figure involving infinitesimal angles.

Now recall the identity ex = limN→∞(1+ x
N
)N (which you can easily prove by differen-

tiating both sides). Then, for a finite (that is, not infinitesimal) angle θ , we have

R(θ)= limN→∞
(
R
(
θ

N

))N
= limN→∞

(
1+ θJ

N

)N
= eθJ (10)

The first equality represents Lie’s profound idea: we cut up the given noninfinitesimal
angle θ into N pieces so that θ/N is infinitesimal for N large enough and perform the
infinitesimal rotationN times. The second equality is just (9). For the last equality, we use
the identity just mentioned, which amounts to the definition of the exponential.

As an alternative but of course equivalent path to our result, simply assert that we have

every right, to leading order, to write R( θ
N
)= 1+ θJ

N
� e θJN . Thus

R(θ)= limN→∞
(
R
(
θ

N

))N
= limN→∞

(
e
θJ
N

)N = eθJ (11)

In calculus, we learned about the Taylor or power series. Taylor said that if we gave him
all the derivatives of a function f (x) at x = 0 (say), he could construct the function. In
contrast, Lie said that, thanks to the multiplicative group structure, he only needs the first
derivative of the group element R(θ) near the identity. Indeed, we recognize that J is just
dR(θ)
dθ
|θ=0. The reason that Lie needs so much less is of course that the group structure is

highly restrictive.
Finally, we can check that the formula R(θ)= eθJ reproduces (2) for any value of θ . We

simply note that J 2 =−I and separate the exponential series, using Taylor’s idea, into
even and odd powers of J :

eθJ =
∞∑
n=0

θnJ n/n!=
( ∞∑
k=0

(−1)kθ2k/(2k)!

)
I +

( ∞∑
k=0

(−1)kθ2k+1/(2k + 1)!

)
J

= cos θ I + sin θ J = cos θ

(
1 0

0 1

)
+ sin θ

(
0 1

−1 0

)
=
(

cos θ sin θ

− sin θ cos θ

)
(12)

which is preciselyR(θ) as given in (2). Note that this works, because J plays the same role
as i in Euler’s identity eiθ = cos θ + i sin θ .

To summarize, the condition RTR = I determines the rotation matrix obtained previ-
ously by using trigonometry.

An old friend of the author’s, Confusio, wanders by. He looks mildly puzzled. “How
come we don’t have to impose det R = 1?”

Ah, that’s because we are looking at Rs that are continuously related to the identity I .
The reflection P, with det P =−1, is manifestly not continuously related to the identity,
with det I =+1.



I.3. Rotations and the Notion of Lie Algebra | 75

Two approaches to rotation

To summarize, there are two different approaches to rotation.
In the first approach, applying trigonometry to figure 1, we write down (1) and hence (2).
In the second approach, we specify what is to be left invariant by rotations and hence

define rotations by the condition (3) that rotations must satisfy. Lie then tells us that it
suffices to solve (3) for infinitesimal rotations. We could then build up rotations through
finite angles by multiplying infinitesimal rotations together, thus arriving also at (2).

It might seem that the first approach is much more direct. One writes down (2) and
that’s that. The second approach appears more roundabout. The point is that the second
approach generalizes to higher dimensional spaces (and to other situations, for example
in chapter IV.4 on the unitary groups) much more readily than the first approach does, as
we shall see presently.

Distance squared between neighboring points

Before we go on, let us take care of one technical detail. We assumed that Mr. Prime and
Ms. Unprime set up their coordinate systems to share the same origin O. We now show
that this condition is unnecessary if we consider two points P and Q (rather than one point,
as in our discussion above) and study how the vector connecting P to Q transforms. Let
Ms. Unprime assign the coordinates �rP = (x , y) and �rQ = (x̃ , ỹ) to P and Q, respectively.
Then Mr. Prime’s coordinates �r ′

P
= (x′, y′) for P and �r ′

Q
= (x̃′, ỹ′) for Q are then given by

�r ′
P
= R(θ)�rP and �r ′

Q
= R(θ)�rQ. Subtracting the first equation from the second, we have

(�r ′
P
− �r ′

Q
) = R(θ)(�rP − �rQ). Defining �x = x̃ − x, �y = ỹ − y, and the corresponding

primed quantities, we obtain
(
�x′
�y′
)
=
(

cos θ sin θ
− sin θ cos θ

) (
�x

�y

)
. Rotations leave the distance

between the points P and Q unchanged: (�x′)2+ (�y′)2= (�x)2+ (�y)2. You recognize
of course that this is a lot of tedious verbiage stating the perfectly obvious, but I want to be
precise here. Of course, the distance between any two points is left unchanged by rotations.
(This also means that the distance between P and the origin is left unchanged by
rotations; ditto for the distance between Q and the origin.)

Let us take the two points P and Q to be infinitesimally close to each other and replace
the differences �x′, �x, and so forth by differentials dx′, dx, and so forth. Indeed, 2-
dimensional Euclidean space is defined by the distance squared between two nearby points:
ds2= dx2+ dy2. Rotations are defined as linear transformations (x , y)→ (x′, y′) such that

dx2+ dy2= dx′2+ dy′2 (13)

The whole point is that this now makes no reference to the origin O (or to whether Mr.
Prime and Ms. Unprime even share the same origin).

The column d �x =
(
dx1

dx2

)
≡
(
dx

dy

)
is defined as the basic or ur-vector, the template for

all other vectors. To repeat, a vector is defined as something that transforms like d �x under
rotations.
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From the plane to higher-dimensional space

The reader who has wrestled with Euler angles in a mechanics course knows that the
analog of (2) for 3-dimensional space is already quite a mess. In contrast, Lie’s approach
allows us, as mentioned above, to immediately jump to N -dimensional Euclidean space,
defined by specifying the distance squared between two nearby points as given by the
obvious generalization of Pythagoras’s theorem: ds2 =∑N

i=1(dx
i)2 = (dx1)2 + (dx2)2 +

. . .+ (dxN)2. Rotations are defined as linear transformations d �x′ = Rd �x (withR anN -by-
N matrix) that leave ds2 unchanged.

The preceding discussion allows us to write this condition as RTR = I . As before, we
want to eliminate reflection and to focus on rotations by imposing the additional condition
det R = 1. The set ofN -by-N matricesR that satisfy these two conditions forms the simple
orthogonal group SO(N), which is just a fancy way of saying the rotation group in N -
dimensional space.

In chapter I.1, we already talked about the rotation group as if it is self-evident that ro-
tations form a group. Let us make it official by checking that SO(N) satisfies all the group
axioms. The product of two rotations is a rotation: (R1R2)

T (R1R2) = (RT2 RT1 )(R1R2) =
RT2 (R

T
1 R1)R2= RT2 R2= I (is that slow enough?), and det(R1R2)= det R1 det R2= 1. Ma-

trix multiplication is associative. The condition det R = 1 guarantees the existence of the
inverse.

Lie in higher dimensions

The power of Lie now shines through when we want to work out rotations in higher-
dimensional spaces. All we have to do is satisfy the two conditionsRTR = I and det R = 1.

Lie shows us that the first condition, RTR = I , is solved immediately by writing R �
I + A and requiring A=−AT , namely, that A be antisymmetric.

That’s it. We could be in a zillion-dimensional space, but still, the rotation group is fixed
by requiring A to be antisymmetric.

But it is very easy to write down all possible antisymmetricN -by-N matrices! ForN = 2,
there is only one, namely, the J introduced earlier. For N = 3, there are basically three of
them:

Jx =

⎛⎜⎜⎝
0 0 0

0 0 1

0 −1 0

⎞⎟⎟⎠ , Jy =

⎛⎜⎜⎝
0 0 −1

0 0 0

1 0 0

⎞⎟⎟⎠ , Jz =

⎛⎜⎜⎝
0 1 0

−1 0 0

0 0 0

⎞⎟⎟⎠ (14)

Any 3-by-3 antisymmetric matrix can be written asA= θxJx + θyJy + θzJz, with three real
numbers θx , θy, and θz. The three 3-by-3 antisymmetric matrices Jx, Jy, Jz are known as
generators. They generate rotations, but are of course not to be confused with rotations,
which are by definition 3-by-3 orthogonal matrices with determinant equal to 1.
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One upshot of this whole discussion is that any 3-dimensional rotation (not necessarily
infinitesimal) can be written as

R(θ)= eθxJx+θyJy+θzJz = e�iθiJi (15)

(with i = x , y , z) and is thus characterized by three real numbers θx , θy , and θz. As I said,
those readers who have suffered through the rotation of a rigid body in a course on me-
chanics surely would appreciate the simplicity of studying the generators of infinitesimal
rotations and then simply exponentiating them.

To mathematicians, physicists often appear to use weird notations. There is not an i in
sight, yet physicists are going to stick one in now. If you have studied quantum mechanics,
you know that the generators J of rotation studied here are related to angular momentum
operators. You would also know that in quantum mechanics observables are represented by
hermitean operators or matrices. In contrast, in our discussion, the J s come out naturally
as real antisymmetric matrices and are thus antihermitean. To make them hermitean,
we multiply them by some multiples of the imaginary3 unit i. Thus, define4 Jx ≡−iJx,
Jy ≡−iJy, Jz ≡−iJz, and write a general rotation as

R(θ)= ei�jθjJj = ei �θ . �J (16)

treating the three real numbers θj and the three matrices Jj as two 3-dimensional vectors.
Now you should write down the generators of rotations in 4-dimensional space. At

least count how many there are. See how easy it is to study rotations in arbitrarily high
dimensional space? We will come back to this later in chapter IV.1.

Any student of physics knows that many physical situations exhibit spherical5 symmetry,
in which case the rotation group SO(3) plays a central role.

Lie algebra

In chapter I.1, we mentioned that, in general, rotations do not commute. Following Lie,
we could try to capture this essence of group multiplication by focusing on infinitesimal
rotations.

Let R � I + A be an infinitesimal rotation. For an arbitrary rotation R′, consider
RR′R−1 � (I + A)R′(I − A) � R′ + AR′ − R′A (where we have consistently ignored
terms of order A2). If rotations commute, then RR′R−1 would be equal to R′. Thus, the
extent to which this is not equal to R′ measures the lack of commutativity. Now, suppose
R′ is also an infinitesimal rotationR′ � I + B. ThenRR′R−1� I + B +AB − BA, which
differs from R′ � I + B by the matrix

[A, B]≡ AB − BA, (17)

known as the commutator∗ between A and B.

∗ And already mentioned in the review of linear algebra.
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For SO(3), for example, A is a linear combination of the Jis, which we shall call the
generators of the Lie algebra of SO(3). Thus, we can write A= i∑i θiJi and similarly
B = i∑j θ

′
j
Jj . Hence [A, B]= i2∑ij θiθ

′
j
[Ji , Jj ], and so it suffices to calculate the com-

mutators [Ji , Jj ] once and for all.
Recall that for two matricesM1 andM2, (M1M2)

T =MT
2 M

T
1 . Transposition reverses the

order.∗ Thus, ([Ji , Jj ])T =−[Ji , Jj ]. In other words, the commutator [Ji , Jj ] is itself an
antisymmetric 3-by-3 matrix and thus can be written as a linear combination of the Jks:

[Ji , Jj ]= icijkJk (18)

The summation over k is implied by the repeated index summation convention. The
coefficients cijk in the linear combination, with a factor of i taken out explicitly, are real
(convince yourself of this) numbers. Evidently, cijk =−cjik.

By explicit computation using (14), we find

[Jx , Jy]= iJz (19)

You should work out the other commutators or argue by cyclic substitution x→ y→ z→ x

that

[Jy , Jz]= iJx (20)

[Jz , Jx]= iJy (21)

The three commutation relations, (19), (20), and (21), may be summarized by

[Ji , Jj ]= iεijkJk (sum over k implied) (22)

We define the totally antisymmetric symbol† εijk by saying that it changes sign on the
interchange of any pair of indices (and hence it vanishes when any two indices are equal)
and by specifying that ε123= 1. In other words, we found that cijk = εijk. (Without further
apology, I will often commit minor notational abuses, such as jumping back and forth
between x , y , z and 1, 2, 3.)

The statement is that the commutation relations (22) tell us about the multiplicative
structure of infinitesimal rotations. By exponentiating the generators Ji, as in (15), we then
manage to capture the multiplicative structure of rotations not necessarily infinitesimal.

Note that the commutation relations fix the sign of Ji. In other words, the transformation
Ji→−Ji, i = 1, 2, 3 does not leave (22) invariant.

Structure constants

Lie’s great insight is that the preceding discussion holds for any group whose elements
g(θ1, θ2, . . .) are labeled by a set of continuous parameters such that g(0, 0, . . .) is the

∗ Note that this fact already played a crucial role in the section before last.
† Already introduced in the review of linear algebra.
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identity I . (For example, the continuous parameters would be the angles θi, i = 1, 2, 3 in
the case of SO(3).)

For these groups, now known as Lie groups, this is what you do in four easy steps:

1. Expand the group elements around the identity by letting the continuous parameters go to

zero: g � I + A.

2. Write A= i∑a θaTa as a linear combination of the generators Ta as determined by the

nature of the group.

3. Pick two group elements near the identity: g1� I + A and g2 � I + B. Then g1g2g
−1
1 �

I + B + [A, I + B]� I + B + [A, B]. The commutator [A, B] captures the essence of the

group near the identity.

4. As in step 2, we can write B = i∑b θ
′
b
Tb as a linear combination of the generators Tb.

Similarly, we can write [A, B] as a linear combination of the generators Tc. (We know this

because, for g1 and g2 near the identity, g1g2g
−1
1 is also near the identity.) Plugging in,

we then arrive at the analog of (18) for any continuous group, namely, the commutation

relations

[Ta , Tb]= ifabcTc (23)

The commutator between any two generators can be written as a linear combination of the

generators.

The commutation relations between the generators define a Lie algebra, with fabc
referred to as the structure constants of the algebra. The structure constants determine
the Lie algebra, which essentially determines the Lie group.

This brief introduction to Lie algebra at this stage is necessarily somewhat vague, but
we will go into more details soon enough. The key idea is that we can go a long way toward
understanding a continuous group by studying its Lie algebra.

Note that, while a Lie group is characterized by multiplication, its Lie algebra is charac-
terized by commutation.

Confusio said, “When I first studied group theory, I did not clearly distinguish between
Lie group and Lie algebra. That they allow totally different operations did not sink in. I was
multiplying the Jis together and couldn’t make sense of what I got.”

Absolutely, it is crucial to keep in mind that Lie group and Lie algebra are mathematically
rather different structures. In a group, you multiply (or if one wants to pick nits, compose)
two elements together to get another element. In the corresponding algebra (assuming of
course that the group is continuous), you take two elements, and you commute them to
get another element of the algebra. (Again, to keep the nitpickers at bay, it may be perhaps
better to say two members of the algebra, since we have spoken often of group elements.)

The rotation group offers a good example. The members J of its algebra are real
antisymmetric matrices,∗ but if you multiply two real antisymmetric matrices together,
you certainly do not get a real antisymmetric matrix. The algebra does not close under

∗ Or hermitean matrices, if you prefer to talk about J =−iJ .
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multiplication, only under commutation. Perhaps one confusing point for the beginner
is that to calculate the commutator, one has to, in an intermediate step, multiply two real
antisymmetric matrices together. Speaking somewhat colloquially, one has to first get out
of the algebra before one can get back in.

We give presently a more mathematical formulation.
A Lie algebra is a linear space spanned by linear combinations

∑
i θiJi of the generators.

In contrast, it makes no sense, in the rotation group, to form linear combinations of
rotations. Given two rotations R1 and R2, the linear sum Rs = c1R1+ c2R2 certainly is
not in general a rotation.

A mathematician might define a Lie algebra abstractly as a linear vector space V
equipped with a mapf : V ⊗ V → V satisfying various properties, for instance, f (A, B)=
−f (B , A).

Historically, the relation between Lie group and Lie algebra was also hinted at by the
Baker-Campbell-Hausdorff formula,6 stating that eAeB = eC, withC =A+ B + 1

2 [A, B]+
1

12([A, [A, B]]+ [B , [B , A]])+ . . . .

Rotations in higher-dimensional space

With your experience with (8) and (14), it is now a cinch for you to generalize and write
down a complete set of antisymmetric N -by-N matrices.

Start with an N -by-N matrix with 0 everywhere. Stick a 1 into the mth row and nth
column; due to antisymmetry, you are obliged to put a (−1) into the nth row and mth
column. Call this antisymmetric matrix J(mn). We put the subscripts (mn) in parentheses
to emphasize that (mn) labels the matrix. They are not indices to tell us which element
of the matrix we are talking about. As explained before, physicists like Hermite a lot and
throw in a −i to define the hermitean matrices J(mn) =−iJ(mn). Explicitly,

(J(mn))
ij =−i(δmiδnj − δmjδni) (24)

To repeat, in the symbol (J(mn))ij , which we will often write as J ij
(mn)

for short, the indices

i and j indicate, respectively, the row and column of the entry (J(mn))ij of the matrix J(mn),
while the indices m and n, which I put in parentheses for pedagogical clarity, indicate
which matrix we are talking about. The first index m on J(mn) can take on N values, and
then the second index n can take on only (N − 1) values, since, evidently, J(mm) = 0. Also,
since J(nm) =−J(mn), we require m> n to avoid double counting. Thus, there are only
1
2N(N − 1) real antisymmetricN -by-N matrices J(mn). The Kronecker deltas in (24) merely
say what we said in words in the preceding paragraph.

As before, an infinitesimal rotation is given by R � I + A with the most general A a
linear combination of the J(mn)s: A= i∑m,n θ(mn)J(mn), where the antisymmetric coeffi-
cients θ(mn) =−θ(nm) denote 1

2N(N − 1) generalized angles. (As a check, for N = 2 and
3, 1

2N(N − 1) equals 1 and 3, respectively.) The matrices J(mn) are the generators of the
group SO(N).
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Rotation around an axis or rotation in a plane

Confusio speaks up: “All this makes sense, but I am nevertheless puzzled. We physics
students are used to rotating around an axis,∗ in particular, the x , y , and z axes. ForN = 3,
the case that I am most familiar with, the generators are labeled by only one index, to wit,
Jx, Jy, and Jz. Strange that J(mn) is in general labeled by two indices.”

We should thank Confusio. This notational peculiarity has indeed confused many stu-
dents. The explanation is simple. Dear reader, please think: What does it mean to rotate
around the fifth axis in, say, 8-dimensional Euclidean space? It makes no sense! However,
it makes perfect sense to rotate in the (3-7) plane, for example: simply rotate the third axis
and the seventh axis into each other. For N = 3, the indicesm, n take on three values, and
so we can write† Jx = J23, Jy = J31, and Jz = J12. In 3-dimensional space, and only in 3-
dimensional space, a plane is uniquely specified by the vector perpendicular to it. Thus,
a rotation commonly spoken of as a rotation around the z-axis is better thought of as a
rotation in the (12)-plane, that is, the (xy)-plane.‡

The Lie algebra for SO(N)

Our next task is to work out the Lie algebra for SO(N), namely, the commutators between
the J(mn)s. You could simply plug in (24) and chug away. Exercise!

But a more elegant approach is to work out SO(4) as an inspiration for the general case.
First, [J(12), J(34)]= 0, as you might expect, since rotations in the (1-2) plane and in the (3-4)
plane are like gangsters operating on different turfs. Next, we tackle [J(23), J(31)]. Notice
that the action takes place entirely in the SO(3) subgroup of SO(4), and so we already
know the answer: [J(23), J(31)]= [Jx , Jy]= iJz = iJ(12). These two examples, together with
antisymmetry J(mn) =−J(nm), in fact take care of all possible cases. In the commutator
[J(mn), J(pq)], there are three possibilities for the index sets (mn) and (pq): (i) they have no
integer in common, (ii) they have one integer in common, or (iii) they have two integers in
common. The commutator vanishes in cases (i) and (iii), for trivial (but different) reasons.
In case (ii), suppose m = p with no loss of generality, then the commutator is equal
to iJ(nq).

We obtain, for any N ,

[J(mn), J(pq)]= i(δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np)) (25)

This may look rather involved to the uninitiated, but in fact it simply states in mathe-
matical symbols the last three sentences of the preceding paragraph. First, on the right
hand side, a linear combination of the J s (as required by the general argument above)

∗ For example, dance around the maypole.
† We will, as here, often pass freely between the index sets (123) and (xyz).
‡ In this connection, note that the J in (8) appears as the upper left 2-by-2 block in Jz in (14).
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is completely fixed by the first term by noting that the left hand side is antisymmetric
under three separate interchanges: m↔ n, p↔ q, and (mn)↔ (pq). Next, all those
Kronecker deltas just say that if the two sets (mn) and (pq) have no integer in com-
mon, then the commutator vanishes. If they do have an integer in common, simply
“cross off” that integer. For example, [J(12), J(14)]= iJ(24) and [J(23), J(31)]= −iJ(21) =
iJ(12). (Does this agree with what you got by the brute force approach? Surely you did
the exercise!)

Confusio looks a bit puzzled. “But (25) does not look much like the canonical definition
(23) of a Lie algebra.”

We tell him that his confusion is merely notational. The generators are labeled by the
peculiar symbol (mn)made out of two letters from a certain alphabet and parentheses. We
might as well call it a, with a = 1, 2, . . . , 1

2N(N − 1), and write Ja for the generator J(mn).
For an explicit example, consider SO(4) with its six generators J(mn). Make a 1-to-1 map of
the indices (mn)↔ a as follows: (12)↔ 1, (13)↔ 2, (14)↔ 3, (23)↔ 4, (24)↔ 5, (34)↔
6. How the 1

2N(N − 1) Jas are ordered does not matter as long as the correspondence
(mn)↔ a is 1-to-1.

The right hand of (25) is just a linear combination of Jcs, and hence (25) can indeed be
written as [Ta , Tb]= ifabcTc, as in (23).

We will come back to this point when we discuss the adjoint representation in chapter
IV.1.

Appendix 1: Differential operators rather than matrices

Instead of using matrices, we can also represent the operators Ji by differential operators, acting on the
coordinates (x , y , z). In particular, let Jz = −i(x ∂

∂y
− y ∂

∂x
), with similar expressions for Jx and Jy by cyclic

permutation. In other words,

�J =−i �x ⊗ �∇ (26)

Thus, Jzx =−i(x ∂
∂y
− y ∂

∂x
)x = iy, Jzy =−i(x ∂

∂y
− y ∂

∂x
)y =−ix, and Jzz=−i(x ∂

∂y
− y ∂

∂x
)z= 0.

The important point is to verify the commutators defining the Lie algebra SO(3). Simply note that [ ∂
∂z

, z]= 1,
and so forth, and that, for example, [y ∂

∂z
, z ∂
∂x

]= y( ∂
∂z
z) ∂
∂x
= y ∂

∂x
. Thus,

[Jx , Jy ]=
[
−i
(
y
∂

∂z
− z ∂

∂y

)
, −i

(
z
∂

∂x
− x ∂

∂z

)]
= iJz (27)

and its cyclic permutations, in agreement with (22).
I have already mentioned, for those who have studied some quantum mechanics, that the generators of

rotation Ji are closely related to the angular momentum operators in quantum mechanics. The generators
of rotation are of course dimensionless, while angular momentum has dimension of length times momen-
tum, which is of course precisely the dimension of the new fundamental constant � ushered into physics by
quantum mechanics. Indeed, the angular momentum operators (26) are obtained by applying the Heisen-
berg prescription �p→−i �∇ to the classical expression for angular momentum �J = �x ⊗ �p. See chapter IV.3
for more.

By the way, our ability to pass back and forth between matrices and differential operators is of course what
underlies the equivalence between the Heisenberg and Schrödinger pictures in quantum mechanics.
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Appendix 2: How the SO(4) algebra falls apart

The group SO(4) has some rather attractive features. Use (25) to write down its Lie algebra, or better yet, work
it out ab initio. Write down the six 4-by-4 antisymmetric matrices J12, J23, J31, J14, J24, J34, and commute them
explicitly.

The six matrices naturally divide into two sets: J12, J23, J31, which generate the rotations in the 3-dimensional
subspace spanned by the 1-, 2-, and 3-axes, and J14, J24, J34, which rotate the 1-, 2-, and 3-axes, respectively, into
the 4-axis. A convenient notation is to write J3= J12, J1= J23, J2= J31 and K1= J14, K2= J24, K3= J34. Verify
that the Lie algebra takes on the attractive form

[Ji , Jj ]= iεijkJk (28)

[Ji , Kj ]= iεijkKk (29)

[Ki , Kj ]= iεijkJk (30)

The structure constants of SO(4) can be expressed entirely in terms of the antisymmetric symbol ε.
The first set of commutation relations (28) restates that the Jis generate, as in (22), an SO(3) algebra, a natural

subalgebra of SO(4).
The second set (29) tells us that the Kis transform like a vector under the SO(3) subalgebra. As an exercise,

show that, for example,

e−iϕJ3K1e
iϕJ3 = cos ϕ K1+ sin ϕ K2 (31)

Under a rotation around the third axis, (K1, K2) transform like a vector in the (1-2) plane.
The third set (30) confirms that the algebra closes: the commutator of two Ks does not give us something

new, which we know, since SO(4) is a group.
Note also that the algebra is invariant under the discrete transformation Ji→ Ji andKi→−Ki , which follows

upon reflection of the fourth axis, x4→−x4 while leaving x1, x2, and x3 unchanged. This implies that the
Kks cannot appear on the right hand side of (30). Alternatively, we could flip xi→−xi , i = 1, 2, 3, leaving x4

unchanged.
After staring at (28), (29), and (30) for a while, you might realize that the Lie algebra of SO(4) actually falls

apart into two pieces. Define J±, i = 1
2 (Ji ±Ki). Verify that

[J+, i , J−, j ]= 0 (32)

The six generators J±, i divide into two sets of three generators each, the J+s and the J−s, that commute right
past the other set. Furthermore,

[J+, i , J+, j ]= iεijkJ+,k and [J−, i , J−, j ]= iεijkJ−,k (33)

In other words, the three J+s, and the three J−s, separately generate an SO(3) algebra. The algebra of SO(4) is
the direct sum of two SO(3) algebras.

The group SO(4) is said to be locally∗ isomorphic with the direct product group SO(3)⊗ SO(3), that is, the two
groups, SO(4) and SO(3)⊗ SO(3) are identical near the identity. Note that under the discrete transformations
mentioned just now, J+ ↔ J−, thus interchanging the two SO(3) algebras.

One important consequence is that many results to be obtained later for SO(3) could be immediately applied
to SO(4).

Here we discuss rotations in a 4-dimensional Euclidean space. As you have no doubt heard, Einstein combined
space and time into a 4-dimensional spacetime. Thus, what you learn here about SO(4) can be put to good use.†

∗ In chapters IV.5 and IV.7, we will discuss how two groups could be locally isomorphic without being globally
isomorphic.

† Higher dimensional rotation groups often pop up in the most unlikely places in theoretical physics. For
example, SO(4) is relevant for a deeper understanding of the spectrum of the hydrogen atom. See part VII,
interlude 1.
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Appendix 3: Does exponentiating the Lie algebra cover the whole group?

For rotations, Lie’s idea that we can build up finite rotations by repeating infinitesimal rotations clearly holds
physically. For SO(2) this was verified explicitly in (12). For SO(3) we can simply call the rotation axis the z-axis,
and then an arbitrary finite rotation reduces basically to an element of SO(2). Similarly for SO(N).

Is it always true that by exponentiating a general element of a Lie algebra, we can recover the Lie group that
begot the Lie algebra? Think about this for a moment before reading on.

Cartan showed by a simple counterexample that this is not true. Consider the group SL(2, R) defined in
chapter I.1. Follow Lie, and write an element near the identity asM � I +A. Using the identity detM = etr logM

given in the review of linear algebra and expanding log(I + A)� A, we obtain det M � 1+ tr A; thus, the S in

SL(2, R) implies that A is traceless. The Lie algebra consists of traceless matrices of the form A=
(

c a−b
a+b −c

)
with a, b, and c real. From exercise 11 in the review of linear algebra, its eigenvalues have the form λ=±w, with
w either real or imaginary. (In fact, this follows immediately from the tracelessness of A.)

DoesM = eA range over the entire group? To disprove this, evaluate the trace

T ≡ trM = tr eA = tr eS
−1AS = ew + e−w (34)

where S denotes the similarity transformation that diagonalizes A. This is equal to either 2 cos θ or 2 cosh ϕ,

and in any case T ≥−2. On the other hand, the matrix U =
( −u 0

0 −u−1

)
for u real is manifestly an element of

the group SL(2, R). But tr U =−(u+ u−1) is in general ≤−2 for u > 0. Thus, not every element of the group
SL(2, R) can be written in the form eA.

You might say that O(3) provides another example: the reflection (−I ) is manifestly not connected to the
identity I . Its trace is −3, but the trace of a rotation matrix is 2 cos θ + 1≥ −2+ 1=−1. But this example is
not quite satisfying, since we could think of O(3) as formed by adjoining reflection to SO(3). When we say
“manifestly” above, we are appealing to physical experience: no matter how you rotate a rigid body, you are not
going to turn it inside out. In essence, Cartan’s argument is precisely a proof that the matrix U is manifestly not
continuously connected to the identity.

Exercises

1 Suppose you are given two vectors �p and �q in ordinary 3-dimensional space. Consider this array of three
numbers:⎛⎜⎝ p

2q3

p3q1

p1q2

⎞⎟⎠
Prove that it is not a vector, even though it looks like a vector. (Check how it transforms under rotation!) In
contrast,⎛⎜⎝ p

2q3− p3q2

p3q1− p1q3

p1q2 − p2q1

⎞⎟⎠
does transform like a vector. It is in fact the vector cross product �p ⊗ �q.

2 Verify that R � I + A, with A given by A= θxJx + θyJy + θzJz, satisfies the condition det R = 1.

3 Using (14), show that a rotation around the x-axis through angle θx is given by

Rx(θx)=
⎛⎜⎝ 1 0 0

0 cos θx sin θx
0 − sin θx cos θx

⎞⎟⎠
Write down Ry(θy). Show explicitly that Rx(θx)Ry(θy) �= Ry(θy)Rx(θx).
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4 Use the hermiticity of J to show that the cijk in (18) are real numbers.

5 Calculate [J(mn) , J(pq)] by brute force using (24).

6 Of the six 4-by-4 matrices J12, J23, J31, J14, J24, J34 that generate SO(4), what is the maximum number that
can be simultaneously diagonalized?

7 Verify (31).

Notes

1. This chapter is adapted from chapter I.3 of G Nut.
2. See the linear algebra review.
3. Nahin, An Imaginary Tale: The Story of

√−1, Princeton University Press, 2010.
4. The signs agree with standard usage, for example QFT Nut 2, p. 114.
5. Fritz Zwicky, known for proposing dark matter, introduced the concept of the spherical bastard, defined as

a person who is a bastard no matter which way you look at him (or her).
6. The matrix C is known only as a series, which can be obtained by brute force up to however many terms you

want:

C = log(eAeB)� log(1+ A+ 1
2A

2)(1+ B + 1
2B

2)� log{1+ A+ B + 1
2 (A

2 + B2)+ AB}
� A+ B + 1

2 (A
2 + B2)+ AB − 1

2 {A+ B}2 = A+ B + 1
2 [A, B]+ . . . (35)

(Try to get the next term!) The claim is that C is given entirely in terms of nested commutators of A and B.
To physicists, this follows immediately from the fact that the product of rotations is a rotation (which in turn
follows by rotating a rigid body in our mind’s eye). The mathematical proof is quite involved. For application
to lattice gauge theory, see chapter VII.1 in QFT Nut.





Part II Representing Group Elements by Matrices

Group elements may be represented by matrices. Representation theory is full of delightful
theorems and surprising results, such as the Great Orthogonality theorem. A favorite
saying: character is a function of class. Indeed, some of us feel that constructing character
tables is loads of fun.

The important concept of real, pseudoreal, and complex representations is studied,
culminating in the construction of a reality checker. Using the character table, you can
count the number of square roots of any element in a finite group.

The elegant theorem stating that crystals with five-fold symmetry are impossible is
proven. After that, we relax and have fun with number theory, discussing various results
associated with Euler, Fermat, Wilson, and Frobenius.





II.1 Representation Theory

Jancsi considered my group theory problem for about half an
hour’s time. Then he said, “Jenö, this involves representation
theory.” Jancsi gave me a reprint of a decisive 1905 article by
Frobenius and Schur. . . . He said, “. . . it’s one of the things on
which old Frobenius made his reputation. So it can’t be easy.”

—Wigner’s autobiography1

What is a representation?

More than a century later, while representation theory is not exactly easy, it does not seem
all that difficult, either.

The notion of representing group elements by matrices is both natural and intuitive.
Given a group, the idea is to associate each element g with a d ⊗ d matrix D(g) such that

D(g1)D(g2)=D(g1g2) (1)

for any two group elements g1 and g2. The matrix2 D(g) is said to represent the element
g, and the set of matrices D(g) for all g ∈G is said to furnish or provide a representation
of G. The size of the matrices, d , is known as the dimension of the representation.

The requirement (1) says that the set of matrices D(g) “reflects” or “mirrors” the
multiplicative table of the group. In words, the product g1g2 of two group elements g1

and g2 is represented by the product of the matrices representing g1 and g2 respectively.
To emphasize this all-important concept of representation, let us write (1) “graphically” as

(2)

g1 . g2 = g1 . g2

↓ ↓ ↓ ↓ ↓
D(g1) . D(g2) = D(g1 . g2)

Note that the symbol . denotes two distinct concepts: in the top row, the composition,
or more colloquially, the multiplication, of two group elements; in the bottom row, the
multiplication of two matrices. (As already mentioned in chapter I.1, we often omit the
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dot, as in (1), for example.) All this will become clearer with the examples to be given
here.

Consider S4, the permutation group of four objects. Think of the four objects as the

four vectors∗ v1=
( 1

0
0
0

)
, v2 =

( 0
1
0
0

)
, v3=

( 0
0
1
0

)
, and v4 =

( 0
0
0
1

)
. Then we can represent

the element (2413), which takes 2→ 4, 4→ 1, 1→ 3, and 3→ 2, by the 4-by-4 matrix

D(2413)=
( 0 0 0 1

0 0 1 0
1 0 0 0
0 1 0 0

)
. By construction,D(2413)v2= v4,D(2413)v4 = v1, and so on. The

action of the matrix D(2413) on the four vectors mirrors precisely the action of the
permutation (2413) on the four objects labeled 1, 2, 3, and 4. Similarly, we have, for

example, D(34)=
( 1 0 0 0

0 1 0 0
0 0 0 1
0 0 1 0

)
.

According to what we have learned in chapter I.2, we have (34)(2413)= (23)(14). Here,
let us multiply the two matrices D(34) and D(2413) together. (Go ahead, do it!) We find

D(34)D(2413)=
( 0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

)
, which is precisely D((23)(14)), as expected. This verifies

(1), at least in this particular instance. Exercise! Write down a few more matrices in this
4-dimensional representation of S4 and multiply them.

I presume that you are not surprised that we have found a 4-dimensional representation
of S4. In summary, the group S4 can be represented by 24 distinct 4 ⊗ 4 matrices. Note
that these are very special matrices, with 0 almost everywhere except for four 1s, with
one single 1 in each column (and in each row). All this should be fairly self-evident:
what is the difference between four vectors labeled v1, v2, v3, v4 and four balls labeled
1, 2, 3, 4?

Group elements and the matrices that represent them

In our example, the matrixD(34) represents the permutation (34), but physicists might say
that D(34) is essentially what they mean by (34). In fact, physicists often confound group
elements with the matrices that represent them. For example, when a physicist thinks of
a rotation, he or she typically has in mind a 3-by-3 matrix. A mathematician, in contrast,
might think of rotations as abstract entities living in some abstract space, defined entirely
by how they multiply together. In practice, many of the groups used in theoretical physics
are defined by the matrices representing them, for example, the Lorentz group described
in chapter I.1.

Very roughly speaking, the representation of a group is like a photograph or a map of
the group, to the extent that it preserves the multiplicative structure of the group. A photo
or a map of a village is of course not the village itself, but it shows accurately how various
buildings and geographical features are situated relative to one another.

∗ To lessen clutter, we omit the arrow on top of the vectors here.
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On a practical level, it is much easier to tell a computer to multiply matrices together
than to feed it the multiplication table of a group.

Note that (1) implies thatD(I)= Id . Here I have carefully distinguished the I on the left
(denoting that special group element called the identity) from the Id on the right (denoting
the d-by-d identity matrix). The meaning of Id depends on the particular representation
being discussed. In contrast, the other I is an abstract entity fixed once the group is
specified. More sloppily, I might have abused notation slightly and written the more
mystifying but fairly self-evident D(I)= I .

To show thatD(I)= Id , observe thatD(I)D(g)=D(Ig)=D(g) for any g. Multiply by
D(g−1) from the right, and we obtain (D(I)D(g))D(g−1)=D(I)(D(g)D(g−1)), which,
due to (1), reduces to D(I)D(I)=D(I). Multiplying by (D(I))−1, we obtain D(I)= Id .
This also tells us that D(g−1)=D(g)−1, as we would expect, since the representation is
supposed to mirror the multiplicative structure of the group.

Introduction to representation theory

Now that we know what a representation is, we can naturally think of many questions.
Does every group G have a representation? How many representations does it have? An
infinite number, perhaps? What are some general properties of representations? How do
we characterize these representations and distinguish among them?

How is your mathematical intuition? Do you feel that, the more sophisticated a group,
the more representations it ought to have? But then, how would you measure the “so-
phistication” of a group? Is it merely the number of elements? Or, more intelligently, do
you feel that sophistication would be measured more by the number of different types of
elements? Recall the notion of equivalence classes from chapter I.2.

We have a partial answer to the first question. We learned in chapter I.2 that every
finite group is isomorphic to a subgroup of Sn, and since Sn has a matrix representation,
every finite group can be represented by matrices. As for continuous groups, in the list
of examples given in chapter I.1, almost all groups—the rotation groups and the Lorentz
group, for example—are defined in terms of matrices, so a fortiori they can be represented
by matrices. An exception appears to be the additive group of real numbers. How in the
world could addition be represented by multiplication?

You smile, since you already know the answer. Let D(u) be the 1-dimensional matrix
eu: then D(u)D(v)=D(u+ v). Actually, we do not even have to invoke the exponential
function. Consider the 2-dimensional matrix

D(u)=
(

1 0

u 1

)
(3)

Verify that D(u)D(v)=D(u+ v) and D(0)= I . (Note that 0 denotes the identity of the
additive group.)

I bet you didn’t know that addition could be represented by multiplying 2-by-2 matrices
together. Let me also ask you, has the group described by (3) ever appeared in physics? For
those of you who do not know the answer, just wait, and it will be revealed in chapter VII.2.
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Indeed, the Lorentz group mentioned in chapter I.1 also defines a 2-dimensional repre-
sentation of the additive group, sinceD(φ1)D(φ2)=D(φ1+ φ2). (Recall that φ represents
the boost angle.) You may have realized that this representation of addition secretly also
involves the exponential function.

So by the physicist’s laughable standard of rigor (recall the black sheep), it certainly
seems that all the groups you are likely to encounter in physics can be represented by
matrices.

To answer the second question that introduced this section, namely, how many rep-
resentations a group might have, we are first obliged to mention that, in representation
theory, the trivial representationD(g)= 1, for every g ∈G, also counts as a perfectly valid
representation. The basic requirement (1) of being a representation is certainly satisfied,
since D(g1)D(g2)= 1 . 1= 1=D(g1g2).

Some readers might chuckle: in our photo analogy, the entire village appears as a single
dot. Yes indeed, this representation is trivial, hence the name. But as you will see, in
the representation theory to be developed in this chapter and the next, it is important to
include it. This is perhaps reminiscent of the introduction of the number 0 in the history
of mathematics.

Here the notion of faithful versus unfaithful representations naturally suggests itself. To
use a more mathematical language, we say that a d-dimensional representation is a map
of the group G into some subgroup of ∗ GL(d , C). The requirement (1) merely says that
the map is homomorphic. But if in addition the map is isomorphic, that is, one-to-one,
then the representation is faithful. Otherwise, it is unfaithful.

As already mentioned, many of the groups given in chapter I.1 are defined in terms of
matrices. For example, the rotation group SO(3) is defined by 3-by-3 orthogonal matrices,
as discussed in detail in chapter I.3. Naturally, these representations are known as defining
or fundamental representations. The defining representation of SO(3) is 3-dimensional.

As another example, the defining representation of ZN is 1-dimensional, namely, the
element ei2πj/N is represented by itself for j = 0, . . . , N − 1. But interestingly, after
some thought, we realize that we can also represent ei2πj/N by ei2πkj/N for some fixed
integer k, which can take on any of the values 0, . . . , N − 1. Check that this indeed
furnishes a representation: D(ei2πj1/N)D(ei2πj2/N)= ei2πkj1/Nei2πkj2/N = ei2πk(j1+j2)/N =
D(ei2π(j1+j2)/N). (I am being extra pedantic here.)

Thus, ZN actually hasN different 1-dimensional representations, labeled by the integer
k. What is the k = 0 representation? (Yes, it is the trivial representation.)

More specifically, the groupZ3 has not only the 1-dimensional representation {1, ω, ω2}
(where ω ≡ e2πi/3 is the cube root3 of 1) but also the nontrivial 1-dimensional repre-
sentation {1, ω2, ω}. (Before reading on, you should verify that this indeed furnishes a
representation. For example, ω2ω2= ω4 = ω.) Wait, you just read that Z3 has three differ-
ent irreducible representations. What is the third?4

∗ HereGL(d , C) denotes the group consisting of invertible d-by-d matrices with complex entries. It contains
the subgroup SL(d , C) introduced in chapter I.1.
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Character is a function of class

Now that we know that a given group can have many different representations, let us label
the different representations by a superscript r , s , . . . , and write D(r)(g) for the matrix
representing the element g in the representation r .

Given a representation D(r)(g), define the important concept of the character χ(r) of
the representation by χ(r)(g) ≡ tr D(r)(g). The character, as the name suggests, helps
characterize the representation.

Nominally, the character depends on r and g. Recall from chapter I.2, however, that the
elements of a group can be divided up into equivalence classes. Two elements g1 and g2

are equivalent (g1∼ g2) if there exists another element f such that

g1= f−1g2f (4)

We then find

χ(r)(g1)= tr D(r)(g1)= tr D(r)(f−1g2f )= tr D(r)(f−1)D(r)(g2)D
(r)(f )

= tr D(r)(g2)D
(r)(f )D(r)(f−1)= tr D(r)(g2)D

(r)(I )

= tr D(r)(g2)= χ(r)(g2) (5)

where in the third, fifth, and sixth equalities we used (1) and in the fourth equality we used
the cyclicity of the trace. In other words, if g1∼ g2, then χ(r)(g1)= χ(r)(g2). Thus,

χ(r)(c)= tr D(r)(g) (for g ∈ c) (6)

Here c denotes the equivalence class of which the element g is a member. The trace on
the right hand side does not depend on g as such, but only on the class that g belongs to.
All the elements of a given equivalence class have the same character.

As an example, we learned in chapter I.2 that A4 has four equivalence classes. For a
given representation r of A4, χ(r)(c) is a function of c, a variable that takes on four values.

We can now proudly utter perhaps the most memorable statement in group theory:
“Character is a function of class.”

Equivalent representations

As for how many representations a group might have, we all agree, first of all, that two
representations, D(g) and D′(g), are really the same representation (more formally, the
two representations are equivalent) if they are related by a similarity∗ transformation†

D′(g)= S−1D(g)S . (7)

∗ Similarity transformations are discussed in the review of linear algebra.
† Not to be confused with (4); here we are talking about two different matrices representing the same group

element.
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As explained in the review of linear algebra,D(g) andD′(g) are essentially the same matrix,
merely written in two different bases, with the matrix S relating one set of basis vectors
to the other set. Put another way, given a representation D(g), define D′(g) by (7) with
some S whose inverse exists. Then D′(g) is also a representation, since D′(g1)D

′(g2)=
(S−1D(g1)S)(S

−1D(g2)S)= S−1D(g1)D(g2)S = S−1D(g1g2)S =D′(g1g2).
Note that it is the same S for all g. Think of it as follows. Suppose we have found a

representation of a groupG, for example, the 4-dimensional representation of S4 described
above. In other words, we list 24= 4! 4-by-4 matricesD(g) satisfying (1). Some ugly dude
could come along, choose some ugly 4-by-4 matrix S, and use (7) to produce a list of 24
ugly 4-by-4 matricesD′(g) satisfying (1). If he chooses a particularly messy S, the two sets
of matrices D′(g) and D(g) could look very different.

If we are given two representations, how do we decide whether they are equivalent or not?
Taking the trace of (7) and once again using the cyclicity of the trace, we obtain

χ ′(c)= tr D′(g)= tr SD(g)S−1= tr D(g)S−1S = tr D(g)= χ(c) (8)

where g is a member of the class c. Thus, if there exists some class c for whichχ ′(c) �= χ(c),
we can conclude immediately that the two representations are in fact different. What if
χ ′(c)= χ(c) for all c? If this holds for only one or two c, physicists of the “black sheep school
of thought” might still admit that it could be a coincidence, but for all c? Most “reasonable”
theoretical physicists would say that it is strong circumstantial evidence indicating that the
two representations are in fact the same.

Indeed, physicist intuition is right. We will see in the next chapter that various the-
orems state that for two different representations r and s, the characters χ(r)(c) and
χ(s)(c) are “more different than different”: they are orthogonal in some well-defined
sense.

Reducible or irreducible representation

Now we come to the all-important notion of whether a given representation is reducible or
irreducible. For the sake of definiteness, focus on SO(3). We have the trivial 1-dimensional
representation D(1)(g) = 1 and the 3-dimensional defining representation D(3)(g). Are
there other representations? Think about it before reading on.

Can you give me an 8-dimensional representation?
“Sure,” you say, “you want an 8-dimensional representation for SO(3). I give you an

8-dimensional representation. Here it is:”

D(g)=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

D(1)(g) 0 0 0

0 D(1)(g) 0 0

0 0 D(3)(g) 0

0 0 0 D(3)(g)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(9)
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(The vertical and horizontal lines are merely to guide the eye. By the way, a matrix with this
form is said to be block diagonal: it contains smaller matrices along its diagonal, with all
other entries equal to zero. Note that the symbol 0 in (9) carries several different meanings:
it could denote a 1-by-1 matrix with its single entry equal to zero, or a 1-by-3 rectangular
matrix with all its entries equal to zero, or a 3-by-1 rectangular matrix with all its entries
equal to zero, or a 3-by-3 square matrix with all its entries equal to zero.)

Each element g is represented by an 8-by-8 matrixD(g) (8 since 1+ 1+ 3+ 3= 8). Show
that this is indeed a representation; that is, it satisfies (1).

Ah, you have stacked two copies of D(1)(g) and two of D(3)(g) together. Indeed, by this
cheap trick, you could construct representations with any dimension. You and I, being
reasonable people, should agree that D(g) does not count as a “new” representation.

The representation D(g) is known as reducible, and usually written as a direct sum of
the representations it reduces into: in our example,D(g)=D(1)(g)⊕D(1)(g)⊕D(3)(g)⊕
D(3)(g).

Representations that are not reducible are called irreducible. Clearly, we should focus
on irreducible, rather than reducible, representations.

It is clear as day that D(g) in the form given above is reducible. But that ugly dude
mentioned earlier could come along again and present you with a set of matricesD′(g)=
S−1D(g)S. If he chooses a particularly messy S, all those zeroes in (9) would get filled in,
and we would have a hard time recognizing that D′(g) is reducible.

Going back to the definition of the trivial representation D(1)(g)= 1, you might have
wondered why we used 1 and not the k ⊗ k identity matrix Ik for some arbitrary positive
integer k. The answer is that the representation would then be reducible unless k = 1. The
representation D(1) may be trivial, but it is not reducible.

One goal of representation theory is to develop criteria to determine whether a given
representation is irreducible or not and to enumerate all possible irreducible representa-
tions. Since every group has an infinity of reducible representations, the real question is
to figure out how many irreducible representations it has.

Restriction to a subgroup

A representation of a group G clearly also furnishes a representation of any of its sub-
groups. Denote the elements of the subgroup H by h. If D(g1)D(g2)=D(g1g2) for any
two group elements g1 and g2 ofG, then a fortioriD(h1)D(h2)=D(h1h2) for any two group
elements h1 and h2 of H . We refer to this representation of H as the representation of G
restricted to the subgroup H .

When restricted to a subgroup H , an irreducible representation of G will in general
not be an irreducible representation of H . It will, in all likelihood, decompose, or fall
apart, into a bunch of irreducible representations ofH . The reason is clear: there may well
exist a basis in which D(h) is block diagonal (that is, has the form such as that shown
in (9)) for all h in H , but there is no reason in general to expect that D(g), for all g in G
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but not in H , would also be block diagonal. Simply stated, there are, by definition, fewer
elements in H than in G.

How an irreducible representation of a groupG decomposes upon restriction ofG to a
subgroup H will be a leitmotif in this book.

Unitary representations

The all-important unitarity theorem states that finite groups have unitary representations,
that is to say, D†(g)D(g)= I for all g and for all representations.

In practice, this theorem is a big help in finding representations of finite groups. As
a start, we can eliminate some proposed representations by merely checking if the listed
matrices are unitary or not.

At this point, our friend Dr. Feeling strolls by. “Let’s get an intuitive feel for this theorem,”
he says helpfully. Suppose the representation D(g) is 1-by-1, that is, merely a complex
number reiθ . Back in chapter I.1, we showed that in a finite group, if we keep multiplying
g by itself, eventually it has to come back to the identity: gk = I for some integer k. But gk

is represented by D(gk)=D(g)k = rkeikθ . No way this could get back to 1 if r �= 1. But if
r = 1, then D†(g)D(g)= e−iθeiθ = 1; that is, D(g) is unitary. This, in essence, is why the
theorem must be true.

Proof of the unitarity theorem

You worked out the rearrangement lemma in chapter I.1 as an exercise. Let me merely
remind you what it says: Given a function on the group elements, we have, for any g′ ∈G,∑
g∈G

f (g)=
∑
g∈G

f (g′g)=
∑
g∈G

f (gg′) (10)

The three sums are actually the same sum; they differ only by having the terms rearranged.
We are now ready to prove the unitarity theorem.
Suppose that a given representation D̃(g) is nonunitary. Define

H =
∑
g

D̃(g)†D̃(g) (11)

where the sum runs over all elements g ∈G. We note that, for any g′,

D̃(g′)†HD̃(g′)=
∑
g

D̃(g′)†D̃(g)†D̃(g)D̃(g′)=
∑
g

(D̃(g)D̃(g′))†D̃(g)D̃(g′)

=
∑
g

(D̃(gg′))†D̃(gg′)=H (12)

The last equality holds because of the rearrangement lemma. The matrixH is remarkably
“invariant.”

SinceH is hermitean, there exists a unitary matrixW such that ρ2=W†HW is diagonal
and real. We now show that in addition, the diagonal elements are not only real but also
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positive. (Hence the notation ρ2: we can take the square root of the diagonal matrix ρ2

to obtain the diagonal and real matrix ρ.) To show this, we invoke a theorem, cited in
the review of linear algebra, that for any matrix M , the matrix M†M has non-negative
eigenvalues. Let ψ be the column vector with 1 in the j th entry and 0 everywhere else.
Then

(ρ2)jj = ψ†ρ2ψ = ψ†W†HWψ =
∑
g

(ψ†W†)D̃(g)†D̃(g)(Wψ)=
∑
g

φ(g)†φ(g) > 0 (13)

(Here we define φ(g)= D̃(g)Wψ .) Thus, the matrix ρ exists with the stated properties.
DefineD(g)≡ ρW†D̃(g)Wρ−1. (I will let you worry about niceties, such as whether ρ−1

exists.) We now show thatD(g) is unitary. Simply calculate:D†(g)= ρ−1W†D̃(g)†Wρ, so
that

D†(g)D(g)= ρ−1W†D̃(g)†Wρ2W†D̃(g)Wρ−1

= ρ−1W†D̃(g)†HD̃(g)Wρ−1

= ρ−1W†HWρ−1= ρ−1ρ2ρ−1= I (14)

where the third equality holds because of (12).
The unitarity theorem is proved. It is instructive to see how the theorem works if

D̃(g) is already unitary. Then H = N(G)I , with N(G) the number of elements in the
group, so that W = I , ρ =√N(G)I is proportional to the identity matrix, and hence
D(g)= ρD̃(g)ρ−1= D̃(g).

Note that in almost all the examples given thus far, the representation matrices are real
rather than complex. A real unitary matrix is orthogonal, of course;∗ in other words, for
D(g) real, DT (g)D(g)= I for all g. We will derive criteria for deciding whether a given
irreducible representation is real or complex in chapter II.4.

Compact versus non-compact

To physicists, the natural thing to do is to check whether the unitarity theorem holds for
groups other than finite groups. Well, it certainly works for SO(2): R(θ)TR(θ)= I , as was
verified explicitly in chapter I.3 essentially by definition. Indeed, by the discussion there,
it works for the rotation group in any dimension. To a sloppy physicist, finite, infinite,
what’s the difference? Assume everything converges unless proven otherwise. Shoot first,
and ask questions later. So surely group representations have to be unitary in general.

The mathematician is aghast: you can’t ignore rigor so blithely! What about the Lorentz

group with L(ϕ)=
(

cosh ϕ sinh ϕ
sinh ϕ cosh ϕ

)
? It is manifestly not true that L(ϕ)TL(ϕ) is equal to the

identity. In fact, nothing as fancy as the Lorentz group is needed for a counterexample;

how about the representation for the additive group mentioned earlier: D(x)=
(

1 0
x 1

)
?

Certainly, D(x)TD(x)=
(

1+x2 x

x 1

)
�= I .

∗ See the review of linear algebra if you need to be reminded of this point.
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Indeed, the claimed “physicist theorem” also fails for discrete groups if we restrict x to
the integers.5 So the issue is not a question of whether the group is discrete or continuous.
Rather the issue is whether the group is compact or not.

The notion of compactness arises naturally in the present context. The sloppy physicist
would say that the theorem that representations are unitary should also hold for continuous
groups; the jump from finite group to continuous group just amounts to replacing the
sum

∑
g over the elements of a finite group, following Newton and Leibniz, by some

kind of integral
∫
dμ(g) over the continuous group (with dμ(g) some kind of integration

measure).
Thus, if the relevant integral

∫
dμ(g)(. . .) converges, the group is known to be compact,

and the proof given above for finite groups formally goes through. The representations of
compact groups are unitary. But what if the integral diverges?

Precisely, growls our mathematician friend, if an integral diverges, even physicists have
to sit up and be on alert for possible danger.∗

We will come back later to a precise definition of compactness, but for the moment let us
simply note that this discussion makes a lot of sense. The rotation groups are parametrized
by angles that typically are bounded between 0 and 2π , but for the Lorentz group the boost
angle ϕ is not really an angle and ranges from −∞ to +∞. (Note that the issue is more
intricate than this naive view. As mentioned in chapter I.1, we could also parametrize the
Lorentz group using the more physical relative velocity v between inertial frames defined
by tanh ϕ ≡ v, with v ranging between −1 and +1. It really does matter what dμ(g) is.)

Product representation

Stacking representations on top of one another as in (9) gives an easy but mostly un-
interesting way of producing a larger representation, which we might call a direct sum
representation, out of smaller representations. The direct product of matrices discussed
in the review of linear algebra provides a more interesting way of constructing a larger
representation out of smaller ones.

Given two representations, of dimension dr and ds, with representation matricesD(r)(g)
and D(s)(g), respectively, we can define the direct product representation defined by the
direct product matricesD(g)=D(r)(g)⊗D(s)(g), namely, the drds-by-drds matrix given by

D(g)aα ,bβ =D(r)(g)abD(s)(g)αβ (15)

We have intentionally used different letters to denote the indices on D(r)(g) and D(s)(g)
to emphasize that they are entirely different beasts running over different ranges; in
particular, a , b = 1, . . . dr , and α , β = 1, . . . , ds.

∗ Incredulous at our insouciance, the mathematician demands, “Weren’t divergent integrals the cause of
the Stürm und Drang of quantum field theory in the early days, all that hand wringing over infinities and
renormalization?”
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The rule for multiplying direct product matrices together (derived in the review of linear
algebra)

D(g)D(g′)= (D(r)(g)⊗D(s)(g))(D(r)(g′)⊗D(s)(g′))
= (D(r)(g)D(r)(g′))⊗ (D(s)(g)D(s)(g′))=D(gg′) (16)

shows explicitly that the product representation is indeed a representation. In general,
however, there is no reason for this product representation to be irreducible. We will
learn to determine how the product representation reduces to a direct sum of irreducible
representations.

The character of the direct product representation is easily calculated by setting the index
aα equal to the index bβ in (15) and summing:

χ(c)=
∑
aα

D(g)aα ,aα =
(∑

a

D(r)(g)aa

)(∑
α

D(s)(g)αα

)
= χ(r)(c)χ(s)(c) (17)

As usual, c denotes the class that the group element g belongs to. The character of a direct
product representation is the product of the characters of the representations that produce
it. This result nicely parallels the statement mentioned earlier that the character of a direct
sum representation is the sum of the characters of the representations that produce it.

Notice that nothing in this discussion requires that the representations r and s be
irreducible.

In physics, it is often useful to think in terms of the objects furnishing the representa-
tions. Let φa , a = 1, . . . , dr , denote the dr objects that transform into linear combinations
of one another and thus furnish the representation r . Similarly, let ξα , α = 1, . . . , ds, de-
note the ds objects that furnish the representation s. Then, the drds objects φaξα furnish
the direct product representation r ⊗ s. As we shall see in chapter III.1, these abstract
mathematical objects are actually realized in quantum mechanics as wave functions.

Finally, let me quote what Wigner said about the article that von Neumann gave him: “Soon
I was lost in the enchanting world of vectors and matrices, wave functions and operators.
This reprint was my primary introduction to representation theory, and I was charmed by
its beauty and clarity. I saved the article for many years out of a certain piety that these
things create.”

I hope that you find it equally enchanting.

Exercises

1 Show that the identity is in a class by itself.

2 Show that in an abelian group, every element is in a class by itself.

3 These days, it is easy to generate finite groups at will. Start with a list consisting of a few invertible d-by-d
matrices and their inverses. Generate a new list by adding to the old list all possible pairwise products of
these matrices. Repeat. Stop when no new matrices appear. Write such a program. (In fact, a student did
write such a program for me once.) The problem is of course that you can’t predict when the process will
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(or if it will ever) end. But if it does end, you’ve got yourself a finite group together with a d-dimensional
representation.

4 In chapter I.2, we worked out the equivalence classes of S4. Calculate the characters of the 4-dimensional
representation of S4 as a function of its classes.

Notes

1. From “The Recollections of Eugene P. Wigner as told to Andrew Szanton.” Jancsi (Johnny) and Jenö (Gene)
are what John von Neumann and Eugene Wigner called each other in Hungarian.

2. D for the German word Darstellung, meaning “representation.”
3. Of course, 1 is the most famous of them all, then comes −1, the square root of 1. By rights, ω, the cube root

of 1, should be more famous than i, the fourth root of 1. Oh well, there is no justice in the world.
4. This recalls Eddington’s famous response “Who is the third?” to a question. See G Nut, p. 369.
5. Note that the matrix called H =∑x=integer D(x)

TD(x) does not exist.



II.2 Schur’s Lemma and the Great
Orthogonality Theorem

In this chapter1 we prove a number of elegant theorems, considered by many to be
among the most beautiful in mathematics. In chapter II.3, we will use these theorems to
determine the irreducible representations of various finite groups. Those readers exposed
to group theory for the first time might prefer to skip the detailed proofs and to merely
absorb what these theorems say.

Schur’s lemma

A crucial theorem in representation theory, known as Schur’s lemma,∗ states the following:
If D(g) is an irreducible representation of a finite group G and if there is some matrix A
such that AD(g)=D(g)A for all g, then A= λI for some constant λ.

What does this mean?
If I give you a bunch of matricesD1, D2, . . . , Dn, the identity matrix I commutes with

all these matrices, of course. But it is also quite possible for you to find a matrix A, not
the identity, that commutes with all nmatrices. The theorem says that you can’t do this if
the given matrices D1, D2, . . . , Dn are not any old bunch of matrices you found hanging
around the street corner, but the much-honored representation matrices furnishing an
irreducible representation of a group.

To prove Schur’s lemma, let’s start with a small lemma to the lemma: A can be taken to
be hermitean with no loss of generality.

To see this, recall that D(g) is unitary according to the “unitary theorem” (see chap-
ter II.1). Take the hermitean conjugate ofAD(g)=D(g)A to obtainD(g)†A†=A†D(g)†.
Since D(g) is unitary, we can write this as D(g)−1A†= A†D(g)−1, and hence A†D(g)=
D(g)A†. Adding and subtracting, we obtain (A+ A†)D(g)=D(g)(A+ A†) and i(A−
A†)D(g)=D(g)i(A−A†). The statement of Schur’s lemma holds for the two hermitean

∗ As we shall see in chapter III.1, Schur’s lemma amounts to an important statement in quantum mechanics.
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matrices (A+ A†) and i(A− A†). Thus, we might as well focus on each of them, and
rename the original matrix H to emphasize its hermiticity.

Proof of Schur’s lemma

We want to prove that if HD(g)=D(g)H for all g, then H = λI for some constant λ.
Since H is hermitean, it can be diagonalized: H =W†H ′W with H ′ diagonal and W

some unitary matrix. Transform to that basis: D(g)=W†D′(g)W . The statement of the
theorem HD(g) = D(g)H becomes (W†H ′W)(W†D′(g)W) = (W†D′(g)W)(W†H ′W),
which becomes, upon multiplication byW from the left andW† from the right,H ′D′(g)=
D′(g)H ′. Now drop the primes. In the statement of the theorem,H can be taken, not only
to be hermitean, but also to be diagonal.∗

Now take the ij -component of the statement HD(g)=D(g)H (using the upper and
lower indices explained in the review of linear algebra but suspending the repeated in-
dex summation convention for the moment): (HD(g))i

j
= Hi

iD
i
j(g) = (D(g)H)ij =

Dij(g)H
j

j , which implies that (H i
i −Hj

j)D
i
j(g)= 0. Note that there are many equations

here, as i, j , and g run over their ranges.
We are almost there. For a given pair i , j , unlessDij(g)= 0 for all g (note the emphasis

on “all” here), we can concludeHi
i =Hj

j . We already know thatH is diagonal; now we have
shown that different diagonal elements are equal. Taking all possible i , j , we conclude that
H is proportional to the identity matrix. This proves Schur’s lemma.

The irreducibility of the representation is precisely to protect us against that “unless”
clause in the preceding paragraph. Suppose that the representation reduces to a direct sum
of a 3-dimensional and a 7-dimensional representation:

D(g)=
⎛⎝ D(3)(g) 0

0 D(7)(g)

⎞⎠.

Then the element of D(g) in the second row and fifth column, for example, vanishes for
all g. In the proof, we could not show thatH 2

2=H 5
5. Hence we cannot conclude thatH is

proportional to the identity matrix, only† that

H =
⎛⎝ μI3 0

0 νI7

⎞⎠
is equal to two identity matrices I3 and I7 stacked together, with μ, ν two arbitrary real
numbers.

∗ In the future, we will not go through the analog of these steps in detail again, but simply say, in this context,
that we can go to a basis in which H is diagonal.

† This already provides us with very valuable information in physical applications. See chapters III.1 and III.2.
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To repeat, the stipulation that the representation is irreducible is crucial. Otherwise,
H could have the form just shown, for example, and is assuredly not proportional to the
identity matrix.

The Great Orthogonality theorem

Now we are ready for the central theorem of representation theory: Given a d-dimensional
irreducible representation D(g) of a finite group G, we have∑

g

D†(g)i
j
D(g)k

l
= N(G)

d
δi
l
δk
j

(1)

with N(G) the number of group elements.
The heart of the theorem is the assertion that the sum on the left hand side is propor-

tional to δilδ
k
j , which is either 0 or 1.

Dr. Feeling saunters by, muttering, “What this tells us is that when we sum over an
entire group, any ‘orientational’ information is washed out. This is analogous to a common
situation in physics: a physical result, after angles are integrated or averaged over,∗ cannot
favor any particular direction.”

Note also that we are again using the upper and lower index convention appropriate for
unitary matrices, as explained in detail in the linear algebra review.

You need not remember the proportionality constant on the right hand side; that is easily
determined by setting j = k and summing over all d values that the index ranges over. The
left hand side becomes

∑
g δ
i
l =N(G)δil, which fixes the constant to be N(G)/d.

Here is the proof of the theorem.
Form the matrixA=∑g D

†(g)XD(g) for some arbitrary matrixX. Observe that, for any
g,D†(g)AD(g)=D†(g)(

∑
g′ D

†(g′)XD(g′))D(g)= (∑g′ D
†(g′g)XD(g′g))=Abecause

of the group axioms. (We invoked the rearrangement lemma again.) By Schur’s lemma,
A = λId . Trace this to obtain tr A = λd =∑g tr D†(g)XD(g) =∑g tr X = N(G) tr X,

which determines λ= N(G)
d

tr X.
Thus far, the discussion is for any X. We now choose it to be 0 everywhere except

for the entry Xjk = 1 in the j th row and kth column (for some specific j and k, for
example, 3 and 11), which is set equal to 1. Thus† tr X = δkj . Now let us evaluate a specific

entry Ail in the matrix A, using what we have just learned: Ail =
∑
g(D

†(g)XD(g))il =∑
g D

†(g)ijD(g)
k
l = λδil = N(G)

d
δil tr X = N(G)

d
δilδ

k
j , which is precisely (1).

Clearly, (1) imposes a powerful constraint on the representation matrices, a constraint
that we will exploit mercilessly to determine D(g).

An important corollary is the following: If r and s are two inequivalent representations,
then

∑
g D

(r)†(g)ijD
(s)(g)kl = 0.

∗ Think of integrating over the group elements of the rotation group SO(3).
† It may look strange that we have something without indices on the left hand side and δjk on the right hand

side, but in the present context, j , k are just two numbers we have arbitrarily chosen. In other words,X depends
on j , k by construction.
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One quick nonrigorous “physicist type” argument is that if the two irreducible rep-
resentations are inequivalent, then the indices i , j and the indices k , l live in entirely
different spaces, and there is no way to write Kronecker deltas on the right hand side.
Strictly speaking, we should have written

∑
g D

(r)†(g)μ
ν
D(s)(g)kl = 0 to emphasize this

point. Specifically, if r and s have different dimensions, then Kronecker deltas do not even
make sense. The proof of the corollary involves several steps, and to avoid interrupting the
narrative flow, I am relegating it to appendix 1.

With this corollary, we can then write (1) in the more complete form∑
g

D(r)†(g)i
j
D(s)(g)k

l
= N(G)

dr
δrsδi

l
δk
j

(2)

The Kronecker δrs is equal to 1 if the two irreducible representations are the same (that is,
equivalent) and 0 if not.

Behold, the Great2 Orthogonality theorem!

Character orthogonality

The representation matrices D(r)(g) are of course basis dependent: we can always make
a similarity transformation D(r)(g)→ S−1D(r)(g)S. Take the trace to get rid of the basis
dependence. The character χ(r)(c)≡ tr D(r)(g) depends only on the class c that g belongs
to, as discussed in chapter II.1.

Indeed, (2) contains so much information that we can afford to trace out some of it. Set
i = j and k = l and sum. Invoke the celebrated saying “Character is a function of class!”
and obtain

∑
g(χ

(r)(g))∗χ(s)(g)=∑c nc(χ
(r)(c))∗χ(s)(c)=N(G)δrs, with nc denoting the

number of elements belonging to class c. We have thus derived a statement about the
characters:∑

c

nc(χ
(r)(c))∗χ(s)(c)=N(G)δrs (3)

This result will turn out to be enormously useful.
We will study plenty of examples of (3) in chapter II.3, but for the time being note that

this works nicely for ZN . Indeed, the orthogonality in (3) for ZN amounts essentially to
the idea behind Fourier3 analysis. For ZN , the representations are labeled by an integer k
that can take on the values 0, . . . , N − 1. The equivalence classes are labeled by an integer
j that also can take on the values 0, . . . , N − 1. Since the irreducible representations are
1-dimensional, the characters are trivially determined to be χ(k)(j)= ei2πkj/N . Character
orthogonality (3) then says

∑N−1
j=0 e

−i2πlj/Nei2πkj/N =∑N−1
j=0 e

i2π(k−l)j/N =Nδlk, which is
pretty much the basis of Fourier’s brilliant idea.

Character table

For a given finite group, we can construct its “character table” displaying χ(r)(c). Along
the vertical axis, we list the different equivalence classes c, and along the horizontal
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axis,∗ the different irreducible representations r . To have something definite to wrap
our minds around, I will give here, without derivation,† the character table for A4 (with
ω = ei2π/3, as was defined earlier):

(4)

A4 nc c 1 1′ 1′′ 3

1 I 1 1 1 3

Z2 3 (12)(34) 1 1 1 −1

Z3 4 (123) 1 ω ω∗ 0

Z3 4 (132) 1 ω∗ ω 0

To the left of the vertical line, the third column lists the four different equivalence classes of
A4, as described in chapter I.2. Each equivalence class is identified by a “typical” member:
I , (12)(34), (123), (132). The second column lists nc, the number of elements belonging
to each class: 1, 3, 4, 4. As always, the identity belongs to a “class of one.” The first column
indicates the subgroup generated by each of these classes. For example, (123)3= I , and
so (123) generates Z3.

The top row lists (to the right of the vertical line) the four different irreducible represen-
tations ofA4 (as will be derived in chapter II.3). They are named by their dimensions: three
of them are 1-dimensional and known as 1, 1′, 1′′, and one is 3-dimensional, known as 3.

The irreducible representation 1 is just the trivial representation, representing every
element of the group by the number 1. Thus, the first column in the table proper (just to
the right of the vertical line) is fixed trivially.

The first row (again in the table proper; in the future this will be what we mean) gives
χ(r)(I )= dr , the dimension of the representation, since in the representation r the identity
I , as explained earlier, is always represented by the dr ⊗ dr identity matrix.

One consequence follows immediately. Let us first define two numbers characteristic
of the group G: N(C)= the number of equivalence classes and N(R)= the number of
irreducible representations. (For A4, they are both 4.) Consider, for each s, the array of

the (in general) complex numbers (nc)
1
2χ(s)(c) as c ranges over its N(C) possible values.

Regard this array as a vector in an N(C)-dimensional complex vector space. We are told
by (3) that these vectors, altogether N(R) of them, are orthogonal to one another. In other
words, the four columns in the table are orthogonal to one another. This is known as
column orthogonality.

But in an N(C)-dimensional complex vector space, there are at most (do exercise 1)
N(C) such vectors. We have just proved that

N(R)≤N(C) (5)

∗ The opposite convention, listing the equivalence classes along the horizontal axis and the irreducible
representations along the vertical axis, is also commonly used. I am used to the convention I was taught in
school.

† In chapter II.3, we will use what we learn in this chapter to determine the character table for various finite
groups, in particular the one given here.
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The number of irreducible representations of a finite group is bounded above by the
number of classes. This answers one of the questions raised in chapter II.2. Intuitively,
you might not be surprised. We sense that the number of classes sort of measures how
complicated the group is.

We will show later in this chapter that the inequality (5) is in fact an equality. Indeed,
the equality holds for ZN , which as we noted earlier, has N(C)=N (“everybody in his or
her own class”) and N(R)=N . (OK, even physicists wouldn’t call this a proof.)

We can go back to the orthogonality theorem (2) before we took the trace and play the
same game. Clearly, we should expect to get more information. (See if you can do it before
reading on.)

So, consider, for each triplet (s , k , l), the array of complex numbers D(s)(g)kl as g
ranges over itsN(G) possible values. Regard this array as a vector in anN(G)-dimensional
complex vector space. Since, for each s, the indices k and l each range over ds values, there
are altogether

∑
s d

2
s

of these vectors. We are told by (2) that they are orthogonal to one
another. Thus, reasoning as before, we obtain∑

s

d 2
s
≤N(G) (6)

Intuitively, just as above, you might not be surprised that there is some kind of upper
bound. For a group of a certain “size” N(G), the irreducible representations can’t be “too
big.” (Reducible representations, in contrast, can be as big as you care to stack them.)

Later, we will show that the inequality (6) is actually also an equality.

A test for reducibility

Suppose a dubious looking character wants to sell you a used representation, swearing
that it won’t fall apart on you. Is there any way to tell if that’s true?

Given a representation, how can we test whether it is reducible or not? Suppose it
is reducible. Picture the representation matrices as consisting of a stack of irreducible
representations:

D(g)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0

0 D(r)(g) 0 0 0

0 0
. . . 0 0

0 0 0 D(s)(g) 0

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for all g ∈G (7)

In particular, the irreducible representation r with dimension dr can appear nr times
possibly. (For example,∗ in (II.1.9), the irreducible representations 1 and 3 each appear

∗ Yes, (II.1.9) refers to the rotation group, while the discussion in this chapter is focused on finite groups.
Note that the concept of the number of times an irreducible representation appears in a reducible representation
applies to both continuous and finite groups.
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twice.) Then this representation has characters given by χ(c)=∑r nrχ
(r)(c). According

to (3),∑
c

ncχ
∗(c)χ(c)=

∑
c

nc

∑
r , s

nrnsχ
∗(r)(c)χ(s)(c)=N(G)

∑
r , s

nrnsδ
rs =N(G)

∑
r

(nr)
2 (8)

This is a powerful result that we will see in action repeatedly in chapter II.3; here let’s see
what it tells us.

Given a representation, all we have to do is to take some traces to compute χ(c), then a
quick sum over c yields the quantity

∑
r(nr)

2. If this quantity is equal to 1, we would know
that one of the nrs is equal to 1, with all the other nrs equal to 0. (Since nr is the number
of times the irreducible representation r appears in the representation we are given, it
has to be a non-negative integer.) The given representation D(g) contains the irreducible
representation r once and only once. In other words, D(g) is irreducible; in fact, it is just
D(r)(g).

In contrast, if the quantity
∑
r(nr)

2 is larger than 1, then the representation we are
given is in fact reducible. Indeed, for smallish

∑
r(nr)

2> 1, we can immediately see the
dimensions of the irreducible representations it breaks apart into. For example, suppose∑
r(nr)

2= 3; then the only possibility is for three different irreducible representations to
each occur once.

We could go further. Take the character of the representation you are being offered and
contract it against the character of the representation r :∑

c

ncχ
∗(r)(c)χ(c)=

∑
c

nc

∑
s

nsχ
∗(r)(c)χ(s)(c)=N(G)nr (9)

Thus, nr is determined. Not only can we tell whether the used representation we are being
shown will fall apart, we even know how many pieces it will fall apart into.

Notational alert: In this game, many numbers appear. It is easy to confound them. Let’s
take stock:N(C) is the number of equivalence classes, while nc is the number of members
in the class c; N(G) is the number of elements in the group; N(R) is the number of
irreducible representations the group has. These numbers are all properties specific to the
given group. In contrast, nr , the number of times the representation r appears in a possibly
reducible representation we are given, merely reflects on that particular representation. It
is important to sharply distinguish these different concepts.

The characters of the regular representation
are ridiculously easy to compute

In chapter I.2, you learned about Cayley’s theorem: any finite groupGwithN(G) elements
is a subgroup of the permutation group SN(G). Since, as was explained in chapter II.1,
SN(G) has a defining representation with dimension N(G), any finite group G has an
N(G)-dimensional representation, known as the regular representation.

Let us apply the result of the previous section to the regular representation of a finite
group G. Note that the matrices furnishing the regular representation are rather large,
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with size given by N(G). (For example, for A4 they are 12 by 12.) But these matrices are
full of zeroes, as was shown for S4 in chapter II.1.

Dr. Feeling wanders by, muttering, “With that huge factorial size and all those zeroes, I
feel that the regular representation has to be massively reducible.”

With all those zeroes, the characters for the regular representation are ridiculously easy
to compute: except for the identity matrix representing the identity element I , none of
the other matrices have any diagonal entries by construction. The characters all vanish,
except for the character χ(I) of the identity (which is in a class by itself, and hence a
class with a membership of 1). The character χ(I) is equal to—as is always the case for
any representation—the dimension of the representation, which is N(G) for the regular
representation by construction.

Let us apply the reducibility test (8) to the regular representation:
∑
c ncχ

∗(c)χ(c)=
(χ(I ))2=N(G)2=N(G)∑r(nr)

2. Hence
∑
r(nr)

2=N(G), which for sure is larger than
1. We thus learned that the regular representation is reducible. Dr. Feeling’s intuition is
on the mark.

Also, for the regular representation, (9) gives
∑
c ncχ

∗(r)(c)χ(c) = χ∗(r)(I )χ(I ) =
drN(G)=N(G)nr , and thus

nr = dr (10)

This remarkable result says that in the regular representation, each irreducible repre-
sentation r appears as many times as its dimension dr . So, the matrices in the regular
representation have the form

Dreg(g)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0

0 D(r)(g) 0 0 0

0 0
. . . 0 0

0 0 0 D(r)(g) 0

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

where the dr -by-dr matrix D(r)(g) appears dr times. Since we know that Dreg(g) is an
N(G)-by-N(G)matrix, we learn that∑

r

d 2
r
=N(G) (12)

The inequality (6) is actually an equality, as promised.

The character table is square

At this point, we can go on and show that N(C)≤N(R), which together with (5) implies

N(C)=N(R) (13)

Since the proof of the inequality just cited is a bit involved, I have relegated it to appendix 4.
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Knowing the structure of the group practically amounts to knowing how its elements
fall into classes, and in particular, N(C), the number of classes. Then we know N(R),
the number of irreducible representations, which tells us how many terms there are
in the sum

∑
r d

2
r
= N(G). For low N(G), this is such a powerful constraint that the

dimensions of the irreducible representations are often uniquely fixed. For example, for
A4 with four equivalence classes, we have 12 + d2

1 + d2
2 + d2

3 = 12. The unique solution
is 12 + 12 + 12 + 32 = 12. We conclude that there are three inequivalent 1-dimensional
irreducible representations and one 3-dimensional irreducible representation.

Knowing that the character table is square, we could invite ourselves to write Uc
s
=√

nc
N(G)

χ(s)(c). Then column orthogonality (3) takes on the suggestive form
∑
c(U

c
r
)∗Uc

s
=∑

c(U
†)r
c
Uc
s
= δr

s
(where we have invented a new notation for the Kronecker delta, as

we are free to do). In other words, if we regard the character table suitably normalized
as a matrix, that matrix is unitary. But U†U = I implies UU† = I , and hence U†U =
I . But written out, this says that different rows are orthogonal:

∑
r χ

(r)(c)∗χ(r)(c′) =
N(G)δcc

′
/nc. Note also that the orthonormality of the first row reproduces (12).

I should caution the reader that this is not a proof ∗ of row orthogonality.4 In the proof
that the character table is square given in appendix 4, we need to show row orthogonality
along the way.

Dr. Feeling wanders by again. “What was your intuition regarding how many irreducible
representations a group could have?” he asks, and then mutters, “Mine was that the more
complicated a group, the more irreducible representations it would have. What (13) shows
is that, not only is this feeling correct, but also it is the number of classes that measures
how complicated a group is.”

Appendix 1: Different irreducible representations are orthogonal

Let us now discuss what happens when dr �= ds , the case not treated in the text. As before, construct A =∑
g D

(r)†(g)XD(s)(g), but now A and X are dr -by-ds rectangular matrices. As before, we then have

D(r)†(g)AD(s)(g)= A, so that

AD(s)(g)=D(r)(g)A and hence A†D(r)†(g)=D(s)(g)†A† (14)

Multiply this by A to obtain AA†D(r)†(g)= AD(s)(g)†A†, which we can write as

AA†D(r)(g−1)= AD(s)(g−1)A† (15)

Here we have used the unitarity of the two representations D(r)†(g)D(r)(g) = I , which together with
D(r)(g−1)D(r)(g)= I imply thatD(r)†(g)=D(r)(g−1), and similarly for r→ s. Using (14), we haveAA†D(r)(g−1)

=D(r)(g−1)AA†. Note that with A dr -by-ds and A† ds-by-dr the matrix AA† is actually a dr -by-dr square matrix.
But since g−1 is also “any group element,” the equality we just obtained amounts to the input to Schur’s lemma,
which thus tells us that AA†= λIdr . (Similarly, we can prove that A†A∝ Ids .)

We can now show that λ= 0. It is pedagogically clearer if we take specific values of dr and ds , say, 7 and 3
respectively. Then picture the equality (7⊗ 3)︸ ︷︷ ︸

A

(3⊗ 7)︸ ︷︷ ︸
A†

= λI7.

∗ But it is a useful mnemonic.
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Look at this schematic picture:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x x

x x x

x x x

x x x

x x x

x x x

x x x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎝ x x x x x x x

x x x x x x x

x x x x x x x

⎞⎟⎠= λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Here x denotes various generic numbers. Simply construct a new matrix B by adding four extra columns of
zeroes to A, that is, define Bij = Aij , j ≤ 3, and Bij = 0, j ≥ 4. It follows trivially that (7⊗ 7)︸ ︷︷ ︸

B

(7⊗ 7)︸ ︷︷ ︸
B†

= λI7.

Again, the following schematic picture makes it clear:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x x 0 0 0 0

x x x 0 0 0 0

x x x 0 0 0 0

x x x 0 0 0 0

x x x 0 0 0 0

x x x 0 0 0 0

x x x 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x x x x x x x

x x x x x x x

x x x x x x x

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= λ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Now take the determinant of this equation to obtain∗ λ= 0. We have thus proved thatA=∑g D

(r)†(g)XD(s)(g)=
0 (for any X), as desired.

We are not quite done. What if the two inequivalent representations r and s happen to have the same
dimension?

Since dr = ds ,A is square. Case 1: det A= 0�⇒ λ= 0 and the theorem is proved. Case 2: det A �= 0�⇒ λ �= 0.
Then A−1 exists, and our earlier equation AD(s)(g)=D(r)(g)A impliesD(s)(g)=A−1D(r)(g)A, which says that
the representations r and s are in fact equivalent.

Appendix 2: First hint of row orthogonality

In the text, we showed that the representation r appears in the regular representation dr times, and so the
character of the class c in the regular representation is given by χ reg(c)=∑r drχ

(r)(c).
With an infinitesimal abuse of notation, let us denote by I the class of one that the identity proudly be-

longs to. Since χ(r)(I ) (the character of the identity in the representation r) is just dr (the dimension of
the representation r), we can also write the result just stated about the regular representation as χ reg(c) =∑
r χ

(r)(I )χ(r)(c). In particular, if c is not I , then 0 = χ reg(c)=∑r χ
(r)(I )χ(r)(c). But if c is I , then N(G)=

χ reg(I ) =∑r(χ
(r)(I ))2, where the first equality simply states the dimension of the regular representation.

We obtain (12) again.
Interestingly, the result

∑
r χ

(r)(I )χ(r)(c) = 0 for c �= 1 states that in the character table, the first row
is orthogonal to all the other rows. This gives a first hint of row orthogonality, which states that all rows are
orthogonal to one another. We will prove this in appendix 3.

∗ We have used two results from the linear algebra review: the determinant of the product is the product of
the determinants, and the Laplace expansion.
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Appendix 3: Frobenius algebra, group algebra, and class algebra

Groups are defined by their multiplicative structure, and it does not make sense in this structure to add group
elements together. What would it mean to add the permutations (12)(34) and (123)? But mathematicians are
certainly free to consider an algebra consisting of objects of the form

∑
i aigi where the ai are a bunch of numbers.

In a rather natural fashion, we can add and multiply such objects together:
∑
i aigi +

∑
i bigi =

∑
i(ai + bi)gi

and (
∑
i aigi)(

∑
j bjgj )=

∑
ij aibj (gigj ). This algebraic structure is known as the Frobenius algebra (or group

algebra) of the group G.
Consider an equivalence class c = {g(c)1 , . . . , g(c)

nc
}. The superscript c indicates the class c the group element

belongs to, while the subscript distinguishes one member of that class from another. Define the class average∗

K(c)≡ 1
nc

∑
i

g
(c)
i (16)

We name the various classes as c, d , e, . . . and multiply the various class averages together: K(c)K(d)=
n−1
c
n−1
d

∑
i

∑
j g

(c)
i g

(d)
j . Note that the double sum contains ncnd terms. For any g ∈G,

g−1

(∑
i

∑
j

g
(c)
i g

(d)
j

)
g =

∑
i

∑
j

(g−1g
(c)
i g)(g

−1g
(d)
j g)=

∑
i

∑
j

g
(c)
i g

(d)
j (17)

Thus, under a similarity transformation by any g, the set of ncnd group elements just get permuted among
themselves.

This does not mean that they necessarily form one single class; they can in general form a bunch of classes
e. Hence, the product K(c)K(d) is equal to a linear combination of class averages. We are licensed to write

K(c)K(d)=
∑
e

�(c, d; e)K(e) (18)

thus defining the class coefficients �(c, d; e), which are positive integers by construction. The class coefficients
measure how many times the class e appears in the product of classes c and d. This subalgebra of the group
algebra is known as the class algebra (see appendix 5).5 If you are a bit confused here, simply work out the class
algebra for your favorite finite group. Exercise!

Appendix 4: The character table is square

Now go to the level of the representation matrices and, for some class c, define†

D(c)≡ 1
nc

∑
g∈c

D(g) (19)

for some representation D(g). (To lessen clutter, we suppress the superscript (r) on D(r)(g) temporarily.) Note
that D(c) is a sum of representation matrices (which as matrices can certainly be added together) but is not itself
a representation matrix. It is certainly not to be confused with D(g).

Once again, we are up to our usual trick and notice that, for any g′,

D(g′−1)D(c)D(g′)= 1
nc

∑
g∈c

D(g′−1gg′)=D(c) (20)

Thus, by Schur’s lemma, D(c)= λ(c)I , with I the identity matrix with the same dimension as D(g) and λ(c)
some class-dependent constant. Take the trace to obtain χ(c)= λ(c)χ(I ), thus fixing λ(c)= χ(c)/χ(I).

∗ The analogous object, defined without the factor nc−1, is known as the class sum.
† Be sure to distinguish D and D.
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Referring to (18), we now have

D(c)D(d)=
∑
e

�(c, d; e)D(e) (21)

Using D(c)= λ(c)I , we obtain λ(c)λ(d)=∑e �(c, d; e)λ(e). Plugging in λ(c)= χ(c)/χ(I), we finally obtain

χ(c)χ(d)= χ(I)
∑
e

�(c, d; e)χ(e) (22)

Note that nc, nd , ne, and �(c, d; e) are properties of the group, while χ(c), χ(d), χ(e), and χ(I) are also specific
to the representation r (which we had agreed earlier to suppress).

Now we restore the index r and write the preceding equation as χ(r)(c)χ(r)(d)= χ(r)(I )∑e �(c, d; e)χ(r)(e).
Sum over r to obtain∑

r

χ(r)(c)χ(r)(d)=
∑
e

�(c, d; e)
∑
r

χ(r)(I )χ(r)(e)= �(c, d; I )N(G) (23)

The last equality follows from the results obtained in the second paragraph of appendix 2, that
∑
r χ

(r)(I )χ(r)(e)

vanishes for e �= I and is equal to N(G) for e = I .
In chapter I.2, we defined the class c̄ to consist of the inverse of all the elements contained in the class

c. Since χ(r)(d)= χ(r)(d̄)∗, we can write (23) more conveniently for what will follow as
∑
r χ

(r)(d̄)∗χ(r)(c)=
�(c, d; I )N(G).

When we multiply c and c̄ together, by construction the identity appears nc times. In other words, noting the
factor of 1/nc in the definition of K , we have �(c, c̄; I )= 1/nc (where once again we denote by I the class to
which the identity belongs by itself). In contrast, �(c, d; I )= 0 if d �= c̄, since then the product of the two classes
c and d would not contain the identity. Thus, we arrive at

∑
r

χ(r)(c)∗χ(r)(c′)= N(G)
nc

δcc
′

(24)

The characters of two different classes c and c′ are orthogonal.
We have derived row orthogonality, as promised. This means that we have N(C) orthogonal vectors in an

N(R)-dimensional vector space. Thus, N(C)≤N(R). As mentioned in the text this means that N(C)=N(R).
The character table is indeed square.

Appendix 5: More on the class algebra

In appendix 3, we introduced the class algebra as a tool to prove row orthogonality. In fact, the class algebra is
interesting in itself and can tell us a fair amount about the group. In this appendix, we mention some more
properties of the class algebra.

First, it is an abelian algebra, since

K(c)K(d)=K(d)K(c) (25)

Next,

K(c)K(c̄)= 1
nc
I + . . . (26)

where we have written K(I) as I (without actual notational abuse, since I is in a class of one).
We now invite ourselves to rewrite (18) as

K(c)K(d)=
∑
e

nef (c, d , e)K(ē) (27)

We have defined f (c, d , e)≡ �(c, d , ē)/ne and have noted that summing over e and summing over ē amounts
to the same thing. You will see presently the convenience of making these (trivial) notational changes.
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Multiplying (27) by K(e) from the right gives

K(c)K(d)K(e)=
∑
a

naf (c, d , a)K(ā)K(e)= f (c, d , e)I + . . . (28)

To obtain the second equality, we note that the productK(ā)K(e) is equal to a sum over a bunch ofKs, butK(I)
can only appear in the term with a = e (since thenK(ē) contains the inverse of the group elements contained in
K(e)), and then we use (26) and (27). Thus, the structure constant f (c, d , e) of the class algebra measures the
extent to which the identity I appears in the product K(c)K(d)K(e) of three class averages.

But since the algebra is abelian, we have shown that the structure constant f (c, d , e) is totally symmetric in
its three arguments; that is, it is symmetric under the exchange of any pair of arguments:

f (c, d , e)= f (d , c, e)= f (d , e, c)= f (e, c, d)= f (c, e, d)= f (e, d , c) (29)

This symmetry property when expressed in terms of �(c, d; e) would be somewhat more awkward. This is
reflected in our notation: while �(c, d ; e) contains a colon, f (c, d , e) does not. Also, f (c, d , e)= f (c̄, d̄ , ē).
Exercise! Prove this. Next, use associativity to prove that∑

e

f (c, d , e)f (ē, a , b)=
∑
e

f (d , a , e)f (ē, c, b) (30)

Exercises

1 Show that in the 3-dimensional complex vector space, the three vectors
(

1
1
1

)
,
(

1
ω
ω∗

)
,
(

1
ω∗
ω

)
(where ω =

ei2π/3) are orthogonal to one another. Furthermore, a vector
(
u
v
w

)
orthogonal to all three must vanish. Prove

that in d-dimensional complex vector space there can be at most d mutually orthogonal vectors.

2 Determine the multiplication table of the class algebra for D5= C5v.

3 Show that f (c, d , I )= δc̄d/nc.

4 Show that f (c, d , e)= f (c̄, d̄ , ē).

5 Prove (30).

6 Use Schur’s lemma to prove the almost self-evident fact that all irreducible representations of an abelian
group are 1-dimensional.

Notes

1. Issai Schur is not to be confused with Friedrich Schur, another German mathematician.
2. Great in the sense used in connection with symphonies and emperors; see Newton’s two superb theorems

and Gauss’s Theorema Egregium.
3. Let us recall that many of the greats in physics and mathematics were artillery officers: C. Fourier, E.

Schrödinger, K. Schwarzschild, R. Thun, and so forth.
4. I have seen this argument given erroneously as a proof of row orthogonality in some books.
5. Not to be confused with the algebra class you no doubt cruised through (ha ha).



II.3 Character Is a Function of Class

In this chapter∗ I use the results of the preceding one to construct the character table
of various finite groups. I strongly recommend that you do not sit back and read this
like a novel with lots of characters; the construction of character tables is a participatory
sport. Trust me, for the mathematically inclined, constructing character tables can be quite
enjoyable.

Before we start, let us summarize some of the key results we have.

Dimensions of the irreducible representations:∑
r

d 2
r
=N(G) (1)

Column orthogonality:∑
c

nc(χ
(r)(c))∗χ(s)(c)=N(G)δrs (2)

Row orthogonality:∑
r

χ(r)(c)∗χ(r)(c′)= N(G)
nc

δcc
′

(3)

The character table is square:

N(C)=N(R) (4)

These results† impose powerful constraints on the character table.
For good measure, I display the Great Orthogonality theorem from which these results

were derived:∑
g

D(r)†(g)i
j
D(s)(g)k

l
= N(G)

dr
δrsδi

l
δk
j

(5)

∗ I need hardly suggest that the study of group theory will strengthen your mastery of character and enhance
your appreciation of class.

† Note that we obtain (1) as a special case of (3) by setting c and c′ equal to the class populated solely by the
identity.
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We also derived from (2) two results giving the number of times nr that the irreducible
representation r appears in a given (possibly) reducible representation:∑

c

ncχ
∗(c)χ(c)=N(G)

∑
r

n2
r

(6)

and∑
c

ncχ
∗(r)(c)χ(c)=N(G)nr (7)

As you will see, these two results are much used in this chapter.

The characters of A3

When I was a student, after I worked my way through the proofs of some powerful
theorems, I was often disappointed that those theorems were then applied to some pitifully
trivial examples. Well, for pedagogical clarity, my first example here is also rather trivial.
Consider A3, the group of even permutations of three objects. It contains three elements:
the identity I , the clockwise permutation c = (123), and the anticlockwise permutation
a = (132). The group is abelian, with c and a the inverse of each other.

As was noted in chapter I.2, in an abelian group, every element is a single member of its
own equivalence class. There are thus three equivalence classes and hence, according to
(4), three irreducible representations. Then (1) can only be satisfied by 12 + 12 + 12 =
3: there can only be three 1-dimensional irreducible representations; call them 1, 1′,
and 1′′.

Since c3= I , and since the representation matrix, being 1-by-1, is just a number, c can
only be represented by 1,ω≡ ei2π/3, orω∗ = ω2. These three possibilities correspond to the
three 1-dimensional irreducible representations, 1, 1′, and 1′′. The number representing
a is determined by ca = I . The character table∗ is thus fixed to be

(8)

A3 nc 1 1′ 1′′

1 I 1 1 1

Z3 1 c = (123) 1 ω ω∗

Z3 1 a = (132) 1 ω∗ ω

Note that column and row orthogonality are satisfied, because 1+ ω+ ω∗ = 0, namely, the
three cube roots of unity sum to 0.

∗ I have already explained in chapter II.2 the convention used in this book. The equivalence classes are listed
along the vertical, the irreducible representations along the horizontal. For each class c, the table indicates
the number of members nc, a typical member, and the cyclic subgroup Z? that a member of that class would
generate.
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Cyclic groups

Many of the considerations for A3 apply to any abelian finite group with N elements. The
N equivalence classes imply N irreducible representations, all 1-dimensional so that they
satisfy 12+ 12+ . . .+ 12=N . This certainly makes sense, since 1-by-1 matrices (namely,
numbers) all commute. Furthermore, we know that all irreducible representations are
unitary, and hence each irreducible representation must be simply some appropriate root
of unity.

In fact, sinceA3 is isomorphic toZ3, the discussion ofA3 here is just a special case of how
ZN can be represented. As was already mentioned in chapter II.2, the N 1-dimensional
irreducible representations of ZN are labeled by the integer k = 0, 1, 2, . . . , N − 1. The
group element ei2πj/N is represented byD(k)(ei2πj/N)= ei2πkj/N (so that k = 0 is the trivial
identity representation). As was also remarked there, for ZN , character orthogonality (2)
gives

N−1∑
j=0

ei2π(k−k′)j/N =Nδkk′ (9)

which is surely one of the most important identities in mathematics, science, and engi-
neering: the identity that motivates Fourier series.

From A3 to S3

It is instructive to go fromA3 toS3 with its 3!= 6 elements. As we shall see, S3 is nonabelian.
At this point, our friend Confusio comes by and offers, “This game is easy; I could do it.
Let me construct the character table of S3 for you!”

Going from A3 to S3, we add the elements (12), (23), and (31), namely, the three
transpositions or exchanges, which are the odd permutations not included in A3. They
clearly form an equivalence class by themselves.

“Four equivalence classes, and hence four irreducible representations,” Confusio mut-
ters. Since we always have the 1-dimensional trivial representation, the dimensions (call
them a, b, and c) of the three nontrivial irreducible representations must satisfy 12+ a2+
b2+ c2= 6.

But 12+ 12+ 12+ 22= 7> 6, and 12+ 12+ 12+ 12= 4< 6. “Oops!” exclaims Confusio.
Dear reader, can you see what’s wrong before reading on?
Confusio has unwittingly made a careless error. You and I gently point out that, since

(23) is now in the group, c = (123) and a = (132) become equivalent, and the two distinct
classes they belong to in A3 merge.

Thus, S3, just likeA3, has only three equivalence classes. There are only three irreducible
representations, not four, and now things work out nicely: 12 + 12 + 22 = 6. Call the
irreducible representations 1, 1̄, and 2, according to their dimensions.
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Let us now construct the character table. Note that, as always, the first column and first
row are automatically filled in:

(10)

S3 nc 1 1̄ 2

1 I 1 1 2

Z3 2 (123), (132) 1 1 −1 x

Z2 3 (12), (23), (31) 1 −1 0 y

Here 1̄denotes the signature representation: it is±1, according to whether the permutation
is even or odd. This explains why it does not appear in A3. Indeed, when we restrict S3 to
A3, 1̄ becomes 1.

The peculiar notation in the third column after the vertical line, the characters for the
representation 2, is because I want to show you how to start with the column (2, x , y) and
use the theorems we have learned to determine x and y.

There are many ways to do it, since the various orthogonality theorems actually over-
determine a simple character table like this one. One way to start is to observe that the
characters for 1 and 1̄ differ only in the last row. This immediately implies, by sub-
tracting two orthogonality relations, that y = 0. (In other words, take the difference of∑
c nc(χ

(1)(c))∗χ(2)(c)= 0 and
∑
c nc(χ

(1̄)(c))∗χ(2)(c)= 0.)
Next, the orthonormality (weighted by nc) of χ(2)(c) (that is,

∑
c nc(χ

(2)(c))∗χ(2)(c)= 6)
gives 1 . 22+ 2 . x2+ 3 . 02= 6= 4+ 2x2�⇒ x2= 1, and so x =±1. Choosing the+ sign
would contradict orthogonality with 1 and 1̄. So we are forced to choose x =−1, and the
table is completed. Let us double check that the solution x =−1 satisfies orthogonality
with the identity representation: 1 . 1 . 2+ 2 . 1 . (−1)+ 3 . 1 . 0= 0, indeed.

From the character table to the representation matrices

Now that we have constructed the character table, we might want to exhibit the 2-
dimensional representation matrices explicitly. In fact, the character table, particularly
for smaller groups, contains enough information to determine the actual representation
matrices.

The identity I is represented by the 2-by-2 identity matrix, of course. To exhibit repre-
sentation matrices explicitly, we have to commit to a particular basis. Let’s go to a basis in
which (123) and (132) are diagonal. Invoking the theorem that these representation ma-
trices must be unitary and the fact that these two elements generate a Z3 subgroup, we fix

that∗ (123)∼
(
ω 0
0 ω∗

)
and (132)∼

(
ω∗ 0
0 ω

)
. (Which is which is a matter of convention.)

The traces of these matrices are equal to ω + ω∗ = −1, in agreement with the character
table.

∗ Henceforth, we will denote “is represented by” by ∼.
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Next, what about (12), (23), and (31)? Confusio comes along and ventures an educated

guess: they must be represented by the three Pauli matrices
(

0 1
1 0

)
,
(

0 −i
i 0

)
, and

(
1 0
0 −1

)
.

Sounds very plausible: they are traceless (in accordance with the character table) and
unitary.

But, Confusio, the representation matrices must satisfy the multiplication table. Let

(12) be represented by
(

0 1
1 0

)
. Then since (12)(123)= (12)(12)(23)= (23), (23) is repre-

sented by
(

0 1
1 0

) (
ω 0
0 ω∗

)
=
(

0 ω∗
ω 0

)
. So, Confusio guessed wrong. The three transposi-

tions (12), (23), and (31) are represented by
(

0 1
1 0

)
,
(

0 ω∗
ω 0

)
, and

(
0 ω

ω∗ 0

)
.

Some simple checks: they are unitary, traceless, and generate Z2, since, for example,(
0 ω∗
ω 0

) (
0 ω∗
ω 0

)
=
(

1 0
0 1

)
. We could check the multiplication table some more, for exam-

ple, (23)(31)= (231)= (123):
(

0 ω∗
ω 0

) (
0 ω

ω∗ 0

)
=
(
ω 0
0 ω∗

)
, indeed. Or row orthogonality,

between the first two rows, for example: 1 . 1+ 1 . 1+ 2 . (−1)= 1+ 1− 2= 0, as required.
By the very presence of the 2-dimensional irreducible representation, S3, unlike its

subgroup A3, is not abelian.
The Great Orthogonality theorem is so constraining that there is usually more than one

way to arrive at the same conclusion. From (5), we note that any nontrivial irreducible
representation r must satisfy∑

g

D(r)(g)i
j
= 0 (11)

From this we can see that Confusio’s guess cannot be correct. We haveD(2)(I )+D(2)(123)
+D(2)(132) andD(2)(12)+D(2)(23)+D(2)(31) separately summing to 0, so that (11) holds
a fortiori, but the three Pauli matrices do not sum to 0. Note that for the correct set of
representation matrices, the even and odd permutations must separately sum to 0, because
of orthogonality with the 1̄ as well as with the 1 representation.

Link between group theory and geometry: Fixed points

You may recall from chapter I.1 that S3 is also the invariance group of the equilateral
triangle. The two elements (123) and (132) correspond to rotations through 2π/3 and
4π/3, respectively, and the three transpositions (12), (23), and (31) to reflections across
the three medians. If we label the three vertices of the triangle by a , b, c or 1, 2, 3 they can
be thought of as the objects being permuted by S3.

This remark provides a nice link between group theory and geometry.
Confusio asks, “You mean you paint 1, 2, 3 on the three vertices? Then the vertices would

be distinguishable, and rotation through 2π/3 would not leave the triangle invariant.”
No, Confusio. The labeling is just to help us keep track of which vertex we are talking

about. The three vertices are to be treated as identical. The triangle is meant to be a
mathematical triangle in your mind’s eye, not a physical triangle. For instance, suppose
you were to draw a triangle on a piece of lined paper which is blank on the other side. Then
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an exchange, (12) say, would flip the piece of paper over, and you could tell that this is not
quite the same triangle as before.

In chapter II.1, I remarked that Sn has an n-dimensional representation, its defining1

or fundamental representation. Since we surely do not have room for a 3-dimensional
representation for S3, this defining representation, which we shall refer to as 3, must be
reducible.

Now the orthogonality theorem leaps into action again. Let’s start by writing down the

characters for the 3:
3
0
1

Think of this as an extra column one could attach to the character table in (10). The
top entry is of course 3: the character of the identity is always just the dimension of the
representation. To understand the bottom entry, note that in the 3, an element like (12)

is represented by
(

0 1 0
1 0 0
0 0 1

)
. The third basis vector is untouched: it’s a “fixed point,” to

borrow the language of topological maps. Thus, the trace (namely, the character) is just 1.

In contrast, (123) is represented by
(

0 0 1
1 0 0
0 1 0

)
, which has no fixed point and hence has a

null character.2

OK, any guesses as to what irreducible representations this 3 reduces to? It could be
3→ 1+ 1̄+ 1̄, or 3→ 2+ 1, and so on. For a simple example like this, there are only so
many possibilities.

We simply plug in (7). Orthogonality of characters between 2 and 3 gives 1 . 2 . 3+ 2 .

(−1) . 0+ 3 . 0 . 1= 6= 1(6), and between 1 and 3 gives 1 . 1 . 3+ 2 . 1 . 0+ 3 . 1 . 1= 6=
1(6). Thus, 3 contains 2 once and 1 once; in other words, 3→ 2+ 1. Indeed, the characters

add up correctly:
3
0
1
=

2
−1
0
+

1
1
1

.

The reader might have recognized that this is the same problem as decomposing a vector

that we started the review of linear algebra with: let
(

3
0
1

)
= x

(
1
1
1

)
+ y

(
1
1
−1

)
+ z

(
2
−1
0

)
,

solve for x , y , z. (For ease of writing we use the “vector” notation instead of the square

boxes.) Write this as a matrix equation C
(
x

y

z

)
=
(

3
0
1

)
, where we regard the character

table of S3 in (10) as a matrix C =
(

1 1 2
1 1 −1
1 −1 0

)
. Use your knowledge of linear algebra to

find C−1 and verify that C−1
(

3
0
1

)
gives the solution listed above. For groups with large

numbers of equivalence classes, this procedure could then be performed by a machine.
We can perform some additional checks, for example, orthogonality between 3 and 1̄

gives 1 . 1 . 3+ 2 . 1 . 0+ 3 . (−1) . 1= 0, as expected (3 does not contain 1̄). Also, from (6),
1 . 32+ 2 . 02+ 3 . 12= 12= 2 . 6 tells us that 3 contains two irreducible representations.

As you can see, it is difficult to make a careless arithmetical error without catching our-
selves while playing this game; the orthogonality theorems provide a web of interlocking
checks.
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The class of inverses: Real and complex characters

Given the class c, we defined (in chapter I.2) the class c̄ to consist of the inverse of all
elements belonging to c. Since D(g) is unitary, we have D(g−1) = (D(g))−1=D(g)†.
Tracing, we obtain

χ(c̄)= χ(c)∗ (12)

One consequence of this is that if a class contains the inverses of its members, then c̄= c,
and χ(c) is real. Verify that this holds for the examples given thus far. For example, the
characters of S3 are all real, but not those of its subgroup A3.

Various approaches for determining the character table

We might summarize the discussion above by enumerating the various approaches for
determining the character table, at least in the case of a simple example like A3.

1. Method of algebraic insight

Recognize that A3 is the same as Z3, and look up the Fourier representations of Z3.

(13)

1 1 1

1 ω ω∗

1 ω∗ ω

(Here I am displaying only the heart of the character table.)

2. Method of geometrical insight

We realize that the three objects being permuted byA3 can be thought of as the three vertices

of an equilateral triangle. It follows that A3 has a 2-dimensional representation consisting

of {I , R , R2}, with R =
(
c s

−s c
)

, c ≡ cos(2π/3), and s ≡ sin(2π/3). But since the group is

abelian, we know that there is no irreducible 2-dimensional representation, so it must be

reducible.3 Diagonalize R. Since det R = 1, the diagonalized form of R must have the form(
eiθ 0
0 e−iθ

)
. But R3= I ; hence eiθ = e2πi/3= ω. (Indeed, by inspection we know that R is

diagonalized by S−1RS, with S =
(

1 i

i 1

)
/
√

2.)

3. Method of exploiting the orthogonality theorems

(14)

1 1 1

1 x u

1 y v

Various orthogonality constraints, for example, 1+ x + y = 0, 1+ |x|2+ |y|2= 3�⇒ |x| =
|y| = 1, and so on, quickly determine x = v = ω, y = u= ω∗.
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The invariance group T of the tetrahedron and A4

Plato particularly liked the tetrahedron and associated it with fire.4 Let’s find the characters
of its invariance group, known as T . We proceed using a mix of geometrical insight, appeal
to the orthogonality theorems, and informed guessing.

By now, it doesn’t take much brilliance to realize that if we mentally label the four vertices
of the tetrahedron∗ by 1, 2, 3, and 4, we see that T is isomorphic to A4, with 4!/2= 12
elements. Recall that in chapter I.2, we already listed the equivalence classes of A4. There
are four of them, with representative members I , (12)(34), (123), and (132), respectively.
Thus, there should be four irreducible representations.

The isomorphism with T immediately tells us that A4 has a 3-dimensional represen-
tation. Indeed, T = A4, being the invariance group of a geometrical object that lives in
3-dimensional Euclidean space, is necessarily a subgroup of the rotation group and hence
represented by 3-by-3 matrices.

Indeed, the orthogonality theorems assert that the dimensions of the irreducible rep-
resentations satisfy 12 + d2

1 + d2
2 + d2

3 = 12. Since 12 + 12 + 22 + 22 = 10 < 12, 12 + 22 +
22 + 22 = 13> 12, and so on, with the only possible solution 12 + 12 + 12 + 32 = 12, we
can proclaim (even if we are not genetically endowed with a modicum of geometrical in-
sight) that there must be a 3-dimensional representation. We also learned that A4 has two
other 1-dimensional representations, traditionally known as 1′ and 1′′, besides the trivial
representation 1.

Playing around a bit† with the orthogonality theorems, we soon manage to construct
the character table

(15)

A4 nc 1 1′ 1′′ 3

1 I 1 1 1 3

Z2 3 (12)(34) 1 1 1 −1

Z3 4 (123) 1 ω ω∗ 0

Z3 4 (132) 1 ω∗ ω 0

As always, we indicate for each class the number of members, a typical member, and
the cyclic subgroup a member of that class would generate.

The first column (all 1s) and the first row (just the dimensions) are immediately fixed.
The two 1-dimensional representations 1′ and 1′′ are easily fixed by virtue of their 1-
dimensionality, unitarity, and their having to represent elements generating Z3. Column
and row orthogonality are of course so restrictive as to practically determine everything.

∗ We have in mind a solid tetrahedron. If we also allow reflections, then we would be dealing with S4.
† And indulging in what pool players call shimmying or body English.
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For example, the two bottom entries in the column for the irreducible representation 3
follow immediately from the orthogonality between 3 and 1, and between 1′ and 1′′.

You might think that the fourth, rather than the cube, root of unity would appear in the
character table for A4. One way of seeing the appearance of ω and ω∗ is by restricting A4

toA3. We erase the second row (corresponding to (12)(34)) and the fourth column, get rid
of a few entries, and necessarily should recover the known character table for A3.

Beginners are also sometimes surprised that A4 does not have a 4-dimensional irre-
ducible representation. In exercise 1 you will show that the defining representation of A4

is in fact reducible: 4→ 1+ 3.

Exhibiting the 3 of A4

Once again, we are seized by ambition and would like to determine the actual matrices in
the 3-dimensional irreducible representation.5 A tedious but straightforward way would
be to center the tetrahedron and work out the rotation matrices that leave it unchanged.
Instead, we proceed by inspired and informed guessing. Actually, the character table
contains enough hints so that hardly any guesswork is needed.

First, note that the three elements (12)(34), (13)(24), and (14)(23) commute with one
another.∗ Thus, the matrices representing them can be simultaneously diagonalized,
according to a theorem discussed in the review of linear algebra. Let’s go to a basis in
which they are diagonal. The matrices each generate a Z2, and thus their diagonal entries
can only be±1. Since A4 consists of even permutations, these matrices have determinant
=+1. They can only be

r1≡

⎛⎜⎜⎝
1 0 0

0 −1 0

0 0 −1

⎞⎟⎟⎠, r2≡

⎛⎜⎜⎝
−1 0 0

0 1 0

0 0 −1

⎞⎟⎟⎠, r3≡

⎛⎜⎜⎝
−1 0 0

0 −1 0

0 0 1

⎞⎟⎟⎠ (16)

That there are precisely three such matrices and that they have trace =−1, agreeing with
the entry of −1 in the character table, provide strong evidence that we are on the right
track.

What about (123)? Since it generatesZ3, it is clearly represented by c≡
(

0 0 1
1 0 0
0 1 0

)
, which

cyclically permutes the three basis vectors in the clockwise sense. What about the other
three guys in the same equivalence class as c? Well, they are r1cr1, r2cr2, and r3cr3.

The inverse of (123), namely, (132), is then represented by the anticlockwise a ≡(
0 1 0
0 0 1
1 0 0

)
, which shares its equivalence class with r1ar1, r2ar2, and r3ar3.

As a check, all six of these matrices have zero trace, in agreement with the character
table.

∗ Let’s check: ((12)(34))((13)(24)) =
(

1 2 3 4
2 1 4 3

) (
1 2 3 4
3 4 1 2

)
=
(

1 2 3 4
3 4 1 2
4 3 2 1

)
=
(

1 2 3 4
4 3 2 1

)
versus

((13)(24))((12)(34))=
(

1 2 3 4
3 4 1 2

) (
1 2 3 4
2 1 4 3

)
=
(

1 2 3 4
2 1 4 3
4 3 2 1

)
=
(

1 2 3 4
4 3 2 1

)
.
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The tray method

For more practice with representations, I show you one way of constructing a larger (and
hence reducible) representation of A4. To be concrete, let us think of the four objects
permuted by A4 as four balls labeled 1, 2, 3, and 4. Denote by 〈12〉 a tray into which
we have put a 1-ball and a 2-ball (using an obvious terminology). With the rule of not
allowing the two balls in each tray to be of the same type, we can have 6= 4 . 3/2 different
types of trays, namely 〈12〉, 〈13〉, 〈14〉, 〈23〉, 〈24〉, and 〈34〉. This furnishes a 6-dimensional
representation of A4, each element of which takes a tray into some other type of tray. See
figure 1.

The characters of this representation, referred to as 6, are easy to write down: χ = 6
for I as always (namely, the dimension of the representation); χ = 0 for the class typified
by (123), which has no fixed point (so that the 6-by-6 matrix representing (123) vanishes
along the diagonal); similarly, χ = 0 for the class typified by (132); and finally, χ = 2 for
the class typified by (12)(34), which leaves the tray 〈12〉 and the tray 〈34〉 unchanged (so
that the 6-by-6 matrix representing (12)(34) has two 1s along the diagonal).

Thus, the characters for the 6 are given by

( 6
2
0
0

)
. First check: 1 . 62 + 3 . 22 + 0 + 0 =

36+ 12= 48= 4(12). So the 6 reduces into four irreducible representations. Orthogonality
with 1: 1 . 1 . 6+ 3 . 1 . 2+ 0+ 0= 6+ 6= 12, so 6 contains 1 once. Similarly, 6 contains
1′ once, and 1′′ once. Orthogonality with 3: 1 . 3 . 6+ 3 . (−1) . 2+ 0+ 0= 18− 6= 12, so
6 also contains 3 once.

We conclude that 6→ 1+ 1′ + 1′′ + 3 (and of course 6= 1+ 1+ 1+ 3 provides another

check). Indeed,

( 6
2
0
0

)
=
( 1

1
1
1

)
+
( 1

1
ω

ω∗

)
+
( 1

1
ω∗
ω

)
+
( 3
−1
0
0

)
. Note that 1′ and 1′′ are complex

conjugate of each other, and thus they must occur in 6 with equal weight, since the
representation matrices of 6 are manifestly real.

A geometrical fact

Before moving on, I mention one fact that seems strange at first sight. Consider the
element (12)(34): can we really simultaneously exchange vertices 1 and 2, and vertices
3 and 4, of a solid tetrahedron by rotation? Group theory assures us that yes, it is possible.

Denote bym12 the midpoint on the edge joining 1 and 2, and bym34 the midpoint on the
edge joining 3 and 4, as shown in figure 2. Imagine a line joiningm12 andm34. Rotate the
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tetrahedron around this line through 180◦. You should be able to see that this exchanges
vertices 1 and 2, and vertices 3 and 4.

Since there are three such lines joining midpoints to opposite midpoints, there are three
180◦ rotations, one around each line, corresponding to (12)(34), (13)(24), and (14)(23).

Another way of seeing this is to first rotate the base of the tetrahedron through 2π/3,
then rotate again through 2π/3 around a vertex on the base, as shown in figure 3. The net
result is indeed the simultaneous exchanges of vertices 1 and 2 and of vertices 3 and 4.
Perhaps you realize that this is just (12)(34)= (12)(23)(23)(34)= (123)(234) (recall the
rules you learned in chapter I.2).

Fun with character tables

It is instructive to go from A4 to S4. Going from four to five equivalence classes (with
typical members I , (12)(34), (123), (12), and (1234), respectively), we now should have
five irreducible representations, and the only solution for their dimensions is 12 + 12 +
22+ 32+ 32= 24. Next, we determine the number of members in each equivalence class,
namely, 1, 3, 8, 6, and 6 which adds up to 24, of course. Note that as remarked earlier,
upon S4→A4, the equivalence class to which (123) belongs splits up into two equivalence
classes: 8→ 4 + 4.
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I leave it to you to derive the character table.
Here it is:

(17)

S4 nc 1 1̄ 2 3 3̄

1 I 1 1 2 3 3

Z2 3 (12)(34) 1 1 2 −1 −1

Z3 8 (123) 1 1 −1 0 0

Z2 6 (12) 1 −1 0 1 −1

Z4 6 (1234) 1 −1 0 −1 1

The last two rows pertain to the 6+ 6= 12 elements that do not belong to A4.
Perhaps the appearance of a 2-dimensional irreducible representation is a bit of surprise,

now that we understand the presence of the 3-dimensional irreducible representations. On
restriction to A4, 2 breaks into 1′ + 1′′.

The dihedral group D4

By now, you should be able to construct the character table of just about any finite group
that comes your way. Personally, I rather enjoy6 constructing the character tables of (small)
finite groups. You might want to try a few.

Let us look at the invariance group of the square, called D4. As was already mentioned
in chapters I.1 and II.2, it consists of rotations R around its center, reflections r across
the two medians joining the center of the square to the midpoints of its sides, and reflec-
tions d across the two diagonals. See figure 4. The corresponding 2-by-2 transformation
matrices are

I =
(

1 0

0 1

)

R =
(

0 −1

1 0

)
, R2=

(−1 0

0 −1

)
=−I, R3=

(
0 1

−1 0

)

rx =
(−1 0

0 1

)
, ry =

(
1 0

0 −1

)

d1=
(

0 1

1 0

)
, d2=

(
0 −1

−1 0

)
(18)

I would like to pause and clear up a potential source of confusion. In a group, mi-
nus the identity (that is, −I ) does not exist and has no more meaning than, say, 3g or
−g for a group element g. Groups are defined in the abstract by some composition law,
which in everyday usage is often referred to as multiplication. It does not make sense,
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in general, to multiply a group element g by some number. Here, R represents a rota-
tion through 90◦, and R2, a rotation through 180◦, happens to be represented by a matrix
that is numerically (−1) times the identity matrix. If you like, you can think of −I as a
convenient symbol for R2. Or we should simply use some other symbol and not intro-
duce the symbol −I at all. Similarly, it may be confusing for some texts to refer to ry
as −rx.

Incidentally, to show that composition of group elements is noncommutative, the
rotational group SO(3) offers the canonical example, as was given in chapter I.1, but D4

provides an even simpler example. Under ryR, the northwest corner of the square goes to
the southeast, but under Rry, the northwest stays put. See figure 5.

The eight elements of D separate into five equivalence classes: {I }, {−I }, {R , R3},
{rx , ry}, and {d1, d2}. (Verify this!) Thus, there are five irreducible representations. Fur-
thermore, 8= 12 + 12 + 12 + 12 + 22 is the only way to decompose 8. We already know
about the 2-dimensional representation, the defining representation. Count them: four
1-dimensional representations!
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Thus, we immediately have most of the character table for D4 filled in already:

(19)

D4 nc 1 1′ 1′′ 1′′′ 2

1 I 1 1 1 1 2

Z2 1 −I 1 1 1 1 −2

Z4 2 R , R3 1 a d g 0

Z2 2 rx , ry 1 b e h 0

Z2 2 d1, d2 1 c f i 0

Row orthogonality between first and second rows: 12+ 12+ 12+ 12+ 2 . (−2)= 0, check.
Column orthogonality between first and fifth columns: 1 . 2+ 1 . (−2)+ 0 + 0 + 0 = 0,
check.

I leave it for you to fill in the entries purposely left undetermined in the table. Do exercise
4 now!

Incidentally, in the language of chapter I.2, we can present this group as

D4 : 〈R , r|R4 = r2= I 〉 (20)

Thus, the eight elements are {I , R , R2, R3, r , rR , rR2, rR3}.
The group D4 is a particular example of Dn, known as the dihedral group and defined

as the invariance group of the n-sided regular polygon, as already mentioned in chapters
I.1 and I.2. It so happens that D3 = S3, but in general Dn is not isomorphic to some
permutation group. (Just count the number of elements:D4 has 8 elements, but S4 already
has 24 elements. Also, number the vertices of the square by 1, 2, 3, and 4. No way that (12)
can be effected by a rotation or a reflection.)

The quarternionic group

In chapter I.2, I introduced the quarternionic group Q with the eight elements 1, −1,
i, −i, j , −j , k, and −k, with the multiplication table determined by the rules i2 = j2 =
k2=−1 and ij =−ji = k, jk =−kj = i, and ki =−ik = j . As an exercise, construct the
character table before reading on.

As always, 1 and −1, since they commute with everybody else, form two exclusive
equivalence classes with a single member each. Our intuition tells us that i and −i form
one equivalence class. Similarly, j and−j . And similarly, k and−k. (To check this explicitly,
compute (−j)ij =−jk =−i, and so indeed, i ∼−i. We can then cyclically permute this
computation.) Thus, there are five equivalence classes altogether, which means that there
are five irreducible representations.

The dimensions of the four nontrivial irreducible representations are determined
by 12 + a2 + b2 + c2 + d2 = 8, which has the unique solution a = b = c = 1 and d = 2.
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Again, I leave it to you to fill in the rest:

(21)

Q nc 1 1′ 1′′ 1′′′ 2

1 1 1 1 1 1 2

Z2 1 −1 1 1 1 1 −2

Z4 2 i , −i 1 1 −1 −1 0

Z4 2 j , −j 1 −1 1 −1 0

Z4 2 k , −k 1 −1 −1 1 0

Here is a sketch of how the construction might proceed. After filling in the first column
and the first row automatically, we proceed to the second row. For the 1-dimensional rep-
resentations 1′, 1′′, 1′′′ the entries can only be ±1, since the corresponding cyclic group
is Z2. Row orthonormality (3) can only work if the entry in the last column is ±2. Row
orthogonality (3) between the first two rows can then only work with the entries shown. Col-
umn orthonormality (2) for the last column 22+ (−2)2+ |a|2+ |b|2+ |c|2= 8 implies the
unique solution a = b= c= 0. (The notation here is self-explanatory.) Row orthonormality
(3) of the third row 12+ |x|2+ |y|2+ |z|2+ 02= 8/2= 4 only works if |x| = |y| = |z| = 1.
The cyclic group associated with the third row also requires x4 = y4 = z4 = 1. Row orthog-
onality (3) between the first and third row then fixes one of the x , y , z to be 1, with the
other two equal to −1. (It doesn’t matter which is which, since 1′, 1′′, and 1′′′ are labeled
arbitrarily. Democracy between i, j , and k then fixes the pattern shown.)

Did you notice that the character tables for Q and for D4 are the same? (Surely you did
exercise 4, didn’t you?) This answers the question about whether a character table uniquely
characterizes a group.

Hardy’s criteria

I conclude this chapter with three appendices, two of which involve constructing the
character table for S5 and A5. After working through these, you will be fully equipped
to go out into the world and construct character tables for hire.

I already mentioned G. H. Hardy’s criteria for great mathematics in the preface. The
theory of characters beautifully satisfies his three criteria: unexpectedness, inevitability,
and economy.

Appendix 1: S5

Here we construct the character table of S5 and A5. In exercise (I.2.4) you worked out the seven partitions of
5, which correspond to the seven equivalence classes denoted here by their typical members I , (12)(34), (123),
(12345), (12), (1234), and (12)(345). (Note that the last three permutations in the list are odd and therefore do
not appear in A5.) Using the formula you derived in (I.2.4), we determine nc to be, respectively, 1, 15, 20, 24, 10,
30, and 20, which, as a check, sum up to N(G)= 5!= 120. Thus, we know that there must be seven irreducible
representations.
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Of these we know the identity representation of course, but there is also the 1-dimensional signature rep-
resentation, being +1 on the even permutations and −1 on the odd permutations. This gives us the first two
columns of the character table for free.

To go farther, we again invoke the regular representation, with characters given by (5, 1, 2, 0, 3, 1, 0)T , where,
as in our discussion ofA4 in the text, we switch from the square boxes to vector notation. (It is understood that the
order of the equivalence classes is as in the character table.) By now, you should be able to write down this column
of characters by inspection: the characters are just the number of fixed points. For example, (12) is represented

by

⎛⎝ 0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞⎠, with trace = 3.

Now use column orthonormality of the 5 with itself: 1 . 52+ 15 . 12+ 20 . 22+ 24 . 02+ 10 . 32+ 30 . 12+ 20 .

02= 2(120). Thus, the 5 contains two irreducible representations. But as always (and from exercise 2), we know
that the vector with all 1’s is invariant when acted upon by the matrices in the regular representation, and thus
5→ 4 + 1. (We could of course check by column orthogonality that the 1 is indeed contained in the 5 once:
1 . 5+ 15 . 1+ 20 . 2+ 24 . 0+ 10 . 3+ 30 . 1+ 20 . 0= 120. Note that this can be obtained from the calculation
above by erasing the squares.)

The characters of the 4 are given by subtracting 1 from the characters of the 5, and thus equal
(4, 0, 1, −1, 2, 0, −1)T . (Check column orthonormality.)

Now we have another trick up our sleeves. Given the irreducible representation 4, we could construct an
irreducible representation 4̄ by simply reversing the signs of the matrices representing the odd permutations,
leaving unchanged the matrices representing the even permutations. (This works, since the product of two odd
permutations is even, of an odd with an even is odd, and of two even is even.) One way to say this is that the
direct product of 4 with 1̄ is 4̄.

Thus far, we have gotten 1, 1̄, 4, and 4̄. Our next task is to determine the other three irreducible representations.
Let us solve the constraint (1) that the sum of the dimensions squared of the irreducible representations is equal
toN(G)= 120: namely, 12+ 12+ 42+ 42+ a2+ b2+ c2= 120, that is, a2+ b2+ c2= 86. Interestingly, there are
three solutions: 12 + 22 + 92 = 86, 12 + 62 + 72 = 86, and 52 + 52 + 62 = 86. Here is a quick argument that the
third solution is the right one, since by the preceding discussion, we might expect the irreducible representations
5 and 5̄ to appear in a pair. If so, then the 6 and 6̄ must be equivalent. Also, we might argue that the other two
solutions are unlikely on the grounds that we can’t think of some way of constructing another 1-dimensional
irreducible representation. Indeed, its characters are severely constrained by column and row orthogonality and
by the various cyclic subgroups.

To be more sure of ourselves, however, we could invoke the tray argument used in connection with A4.
(For exercise, figure out the dimension of the reducible representation and its characters before reading on.)
There are 5 . 4/2= 10 trays, namely, 〈12〉, 〈13〉, 〈14〉, 〈15〉, 〈23〉, 〈24〉, 〈25〉, 〈34〉, 〈35〉, and 〈45〉. Once again,
the characters of this 10-dimensional reducible representation can be written down by counting fixed points
mentally: (10, 2, 1, 0, 4, 0, 1)T . For example, the permutation (12)(34) leaves 〈12〉 and 〈34〉 unchanged, giving
χ = 2, while (12) leaves 〈12〉, 〈34〉, 〈35〉, 〈45〉 unchanged. Column orthonormality gives 1 . 102+ 15 . 22+ 20 . 12+
24 . 02 + 10 . 42 + 30 . 02 + 20 . 12 = 3(120), telling us that the 10 contains three irreducible representations. A
quick calculation 1 . 10 + 15 . 2+ 20 . 1+ 24 . 0 + 10 . 4 + 30 . 0 + 20 . 1= 120 and 1 . 10 . 4 + 15 . 2 . 0 + 20 .
1 . 1+ 24 . 0 . (−1)+ 10 . 4 . 2+ 30 . 0 . 0 + 20 . 1 . (−1)= 120, telling us that 10 contains 1 and 4 each once.
Therefore, 10→ 1+ 4 + 5.

Indeed, there is a 5-dimensional irreducible representation. Its characters can be determined by subtracting
the characters of 1 and 4 from the characters of 10:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10

2

1

0

4

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1

1

1

1

1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4

0

1

−1

2

0

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5

1

−1

0

1

−1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(22)

By our previous argument, there is also a 5̄.
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Finally, the characters of the remaining 6-dimensional irreducible representation are readily determined by
orthogonality. We thus obtain the table shown here:

(23)

S5 nc 1 1̄ 4 4̄ 5 5̄ 6

1 I 1 1 4 4 5 5 6

Z2 15 (12)(34) 1 1 0 0 1 1 −2

Z3 20 (123) 1 1 1 1 −1 0 0

Z5 24 (12345) 1 1 −1 −1 0 0 1

Z2 10 (12) 1 −1 2 −2 1 −1 0

Z4 30 (1234) 1 −1 0 0 −1 1 0

Z6 20 (12)(345) 1 −1 −1 1 1 −1 0

(You could of course also check row orthogonality.) Note that c = c̄ for every c in S5, and thus the character table
is real.

Appendix 2: A5

Go ahead, try your hand at this game. Construct the character table for A5 before reading on.
Going from S5 to A5, we lose three classes, typified by (12), (1234), and (12)(345), namely, those classes on

which the irreducible representation 1̄ is represented by −1. From prior experience, we know to watch out for
classes splitting up. Indeed, the class containing (12345) now splits into two; since (45) is no longer around,
(12345) and (12354) are no longer equivalent. Some guys don’t stay friends when a mutual friend disappears.

Here is an easy mistake to make. You would think that the class containing (123) also splits; (123) shouldn’t
be equivalent to (124) without (34). But you would be wrong. Behold:

(45321)(123)(12354)= (45)(53)(32)(21)(12)(23)(12)(23)(35)(54)

= (45)(53)(12)(23)(35)(54)= (12)(45)(53)(32)(35)(54)

= (12)(45)(25)(53)(35)(54)= (12)(45)(25)(54)

= (124) (24)

(The fourth equality uses (53)(32)= (532)= (253)= (25)(53).) There are of course many alternate routes to the
same end result. Okay, (34) leaves town, but (123) and (124) are still both friends with (12354).

So, from S5 toA5, we lose three classes but have (only) one class splitting into two. The number of equivalence
classes goes down from seven to five. Thus, while N(G) halves from 120 to 60, the number of irreducible
representations only drops from seven to five.

Now we hunt for these five irreducible representations. There is always the trivial but trusty 1-dimensional
representation. As is familiar by now, the regular or defining representation decomposes as 1+ 4. The dimen-
sions of the other three irreducible representations are constrained by a2+ b2+ c2= 60− 12− 42= 43, with the
unique solution a = b = 3, c = 5.

The characters for the 4 and for the 5 can be read off from the character table for S5 by chopping off the
last three entries (since those three classes disappear), keeping in mind that one class has split into two. Thus,
(4, 0, 1, −1)T and (5, 1, −1, 0)T become (4, 0, 1, −1, −1)T and (5, 1, −1, 0, 0)T , respectively.

Here is an alternative way of getting at the characters of the 4 and of the 5. Suppose we have not yet
constructed the character table of S5, or that we are interested only in A5. We could follow our usual procedure
of starting with the 5-dimensional regular representation (5, 1, 2, 0, 0)T and subtract off the characters of the
trivial 1-dimensional representation to obtain the characters of the 4. (Note that the 5-dimensional irreducible
representation is not to be confused with the reducible regular representation.)

Again, we can use the “tray trick” to write down the characters of a (10 = 5 . 4/2)-dimensional reducible
representation (10, 2, 1, 0, 0)T . By column orthogonality, we find that 10→ 1+ 4 + 5. Since we know the
characters of the 1 and of the 4, we can obtain by subtraction the characters of the 5 to be (5, 1, −1, 0, 0)T ,
in agreement with what we had above.
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At this stage we have

A5 nc 1 3 3 4 5

1 I 1 3 3 4 5

Z2 15 (12)(34) 1 x y 0 1

Z3 20 (123) 1 z w 1 −1

Z5 12 (12345) 1 u v −1 0

Z5 12 (12354) 1 r s −1 0

The characters of the two 3-dimensional representations are still to be determined. Using row orthogonality
between the first row (the identity I row) and the second row, and row orthonormality of the second row, we
obtain x = y =−1. Similarly, z= w = 0.

Row orthogonality between the first row (the identity I row) and the fourth row gives 1+ 3(u+ v)− 4 + 0=
0�⇒ u+ v = 1, while row orthonormality of the fourth row gives 12(1+ u2+ v2+ 1+ 0)= 60�⇒ u2+ v2= 3.

Now a small surprise awaits us. We have to solve a quadratic equation u2 + (1− u)2 = 3. The solution is
u= (1+√5)/2≡ ζ , and hence v = (1−√5)/2= 1− ζ . With u and v fixed, column orthonormality then fixes r
and s.

We finally end up with

(25)

A5 nc 1 3 3 4 5

1 I 1 3 3 4 5

Z2 15 (12)(34) 1 −1 −1 0 1

Z3 20 (123) 1 0 0 1 −1

Z5 12 (12345) 1 ζ 1− ζ −1 0

Z5 12 (12354) 1 1− ζ ζ −1 0

The rabid empiricists among physicists might have been tempted to conclude, from the character tables we
have seen until now, that characters have to be either an integer or a root of unity.7 The appearance of ζ here
is like the sighting of a white sheep in our joke. The learned among the readers will recognize8 ζ as the golden
ratio9 or the divine section (sectio divina) that fascinated the ancients and played an important role in classical
architecture and art.10

Appendix 3: More about the tetrahedron and A4

I can’t resist saying a few more words about the tetrahedron. If Plato likes it, then so do we.11 We know from
chapter I.1 that the three elements (12)(34), (13)(24), and (14)(23) (together with I , of course) form an invariant
subgroup ofA4, namely, Klein’s V = Z2⊗ Z2. In this chapter, we learned about their representation by the three
matrices r1, r2, and r3 given in (16) and about their geometrical significance as 180◦ rotations about the
three median lines.

According to the discussion about invariant subgroups in chapter I.2, we can form the quotient group
Q= A4/V . It has 12/4 = 3 elements. What can they be?

The three left cosets are V , cV , and aV . Although there are 12− 4 = 8 elements not in V , they fall into two
equivalence classes. For example, r1cr1{I , r1, r2, r3} = c{I , r1, r2, r3}. Geometrically, if we think of c as a rotation
through 2π/3 around the line joining vertex 1 to the center of the triangle formed by vertices 2, 3, and 4, then
its fellow members in its equivalence class (namely, r1cr1, r2cr2, and r3cr3) are also rotations through 2π/3 but
giving the other vertices 2, 3, and 4 an equal opportunity for a turn.

The quotient group Q, as already noted, has three elements, and so by Lagrange’s theorem, can only be Z3.
We can also check this explicitly: cV . cV = aV , cV . aV = V , and so on.

Group theory provides a bridge between geometry and algebra.
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Appendix 4: A5 is simple: A simple proof

Of the various proofs that A5 is simple, I rather like this simple (in the everyday sense)“physicist-style”
demonstration.

We begin with a self-proving lemma. LetH ⊂G. If an element is inH , then all the elements in its equivalence
class are also inH . Proof: If h ∈H , then g−1hg ∈H by definition. (Have you ever seen something easier to prove
than this?)

It follows that H is the union of a bunch of equivalence classes of G. In particular, the bunch contains the
“class of one” the identity I belongs to.

Let us now prove that A5 is simple.12 Suppose that A5 is not simple and contains an invariant subgroup H .
From the character table in (25), we know that A5 has five equivalence classes, with nc = 1, 15, 20, 12, and 12,
respectively. According to the lemma, N(H), the number of elements in H , can take on only a few possible
values, such as 1+ 15= 16, 1+ 20 = 21, 1+ 15+ 12= 28, and so on. The important point is that there are a
finite number of possibilities that we can list.

But Lagrange’s theorem requires that 60= 5! (the number of elements in A5) divided by N(H) is an integer.
Let’s try the different possibilities forN(H). OK, 60/16 is not an integer. Next, 60/21, not an integer either. Next,
and so on. We find the only possibility is 1+ 15+ 20 + 12+ 12= 60, which means that the only (nontrivial)
invariant subgroup is A5 itself.

It is instructive to see how A4 evades this argument: there are four equivalence classes with nc = 1, 3, 4, and
4, and 4!/(1+ 3) is an integer. Sure enough, the three elements in the equivalence class (12)(34) together with
the identity form V = Z2⊗ Z2, the invariant subgroup of A4.

Appendix 5: The cube: Geometry and algebra

The neat linkage between geometry and algebra, exemplified by the tetrahedron and A4, suggests that we
play the same game for the other regular polyhedra. As you may know, one of the greatest discoveries in the
history of mathematics was the realization by the ancient Greeks that there are only five13 regular polyhedra: the
tetrahedron, the cube, the octahedron, the icosahedron, and the dodecahedron. In this brief appendix, I sketch
how things go with the cube, offering only physicist-style suggestive “proofs.” I also touch on the octahedron in
passing.

Align the cube with the x-, y-, and z-axes, and center it at the origin, so that the eight vertices have coordinates
(±1, ±1, ±1). Consider G the invariance group of the cube under rotations. How many elements does G have?
Let’s count, leaving the identity I aside (see figure 6).

Call the center of the top and bottom faces ct = (0, 0, 1) and cb = (0, 0, −1), respectively. Picture the line going
from ct to cb through the center of the cube. Rotations around this line through angles π/2, π , and 3π/2 leave
the cube invariant. Since we have three such lines (for example, going from (1, 0, 0) to (−1, 0, 0)) and for each
line three rotations, we count 3 . 3= 9 elements thus far. Needless to say, you should draw a figure as you read
along.

Next, picture the line going from the vertex (1, 1, 1) to the vertex farthest away from it, namely, (−1, −1, −1),
through the center of the cube. This is known as a principal diagonal of the cube (of length 2

√
3 just to make

sure that you are still following). Rotations through 2π/3 and 4π/3 leave the cube invariant. Since there are four
principal diagonals, we count 4 . 2= 8 elements.

Finally, consider the midpoint m= (1, 0, 1) of one of the four edges on the top face of the cube. Consider the
line going from it to the midpoint of one of the four edges on the bottom face, the midpoint farthest away from
m, namelym′ = (−1, 0, −1), through the center of the cube. Rotation through π leaves the cube invariant. Since
there are 4 + 2= 6 such edges (don’t forget the ones on the side!), this accounts for 6 . 1= 6 elements.

Hence G has in all 9+ 8+ 6+ 1= 24 elements. (We did not forget the identity!) Cayley’s theorem assures
us that G is a subgroup of S24, but a very tiny subgroup indeed. A naive first thought might be to generalize
the discussion for the tetrahedron and consider A8, since the cube has 8 vertices. But 8!/2 is still much larger
than 24; clearly, many permutations in A8 cannot be realized on the eight vertices of the cube. The correct idea
is to realize that each of the rotations we described permute the four principal diagonals of the cube. Thus, the
physicist would guess that G= S4, which has precisely 4!= 24 elements.

The octahedron can be constructed readily from the cube as follows. See figure 7. We have named the center
of the top and bottom faces of the cube ct and cb, respectively. Now name the center of the four side faces of the
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Figure 7

cube c1, c2, c3, and c4 in order. (There are six faces all together, of course.) Connecting c1 to c2, c2 to c3, c3 to
c4, and c4 to c1 by straight lines, we obtain a square. Then, connecting c1, c2, c3, and c4 to ct by straight lines,
we obtain a regular pyramid with a square base. Next, connecting c1, c2, c3, and c4 to cb by straight lines gives
us another regular pyramid, inverted relative to the pyramid we already have. The two pyramids glued together
form an octahedron.

The octahedron is inscribed in the cube. Hence, any rotation that leaves the cube invariant also leaves the
octahedron invariant. The invariance group of the octahedron is also S4.

Note that the octahedron has V = 6 vertices,E = 12 edges, and F = 8 faces, while the cube has V = 8 vertices,
E = 12 edges, and F = 6 faces. The number of vertices and the number of faces are interchanged, so that the
Euler characteristic14 χ ≡ V − E + F equals15 2 for both the cube and the octahedron.

The icosahedron with 20 triangular faces and the dodecahedron with 12 pentagonal faces are similarly related
and have the same invariance group.16

A quick way of counting the number of elements in the rotational invariance groupG of the cube is as follows.
Imagine putting a cube down on a table. We can choose one of six faces to be the bottom face in contact with the
table. For each such choice, we can rotate around the vertical axis connecting the center of the top face and the
center of the bottom face through 0, π/2, π , and 3π/2. Thus,G contains 6 . 4= 24 elements, in agreement with
what we obtained above.

We can apply the same argument to the icosahedron. Choose one of 20 triangles to be the bottom face,
and for each choice, we can rotate through 0, 2π/3, and 4π/3, and thus its rotational invariance group G has
20 . 3= 60= 5!/2 elements. You might guess that G= A5.

The same counting works for the tetrahedron, with its four triangular faces, leading to 4 . 3= 12= 4!/2
elements in the rotational invariance group G, which we know full well is A4.
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Exercises

1 How does the 4-dimensional regular representation of A4 reduce?

2 Show that the defining representation of Sn, when it breaks up, always contains the identity representation 1.

3 Determine the character table of S4, and check the various orthogonality theorems.

4 Complete the table in (19).

5 Work out the character table (21) for Q.

6 For n≥ 5, any two 3-cycles in An are equivalent. Why is the restriction n≥ 5 needed?

7 Work out the character table for D5= C5v, the invariance group of the pentagon. You will find, perhaps
surprisingly (perhaps not), that the character table for D5 is smaller than the character table for D4.

Notes

1. Not to be confused with its regular representation, which is n!-dimensional.
2. Perhaps like some people you know?
3. We discuss this point further when we come to the 2-dimensional rotation group. The issue will be SO(2)

versus U(1).
4. For reasons we don’t care to know.
5. For reasons quite different from Plato’s, some particle physicists are quite fond of A4. E. Ma first suggested

that the 3-dimensional irreducible representation of A4 may have something to do with the mysterious
existence of three families in Nature. See chapter IX.4.

6. Perhaps it could be considered fool’s delight, but there is a certain peculiar pleasure to watching the laws of
mathematics actually work out consistently.

7. Incidentally, the correct theorem states that the character of a finite group has to be an algebraic integer,
defined to be a root of some monic polynomial (a polynomial whose leading coefficient is 1) with coefficients
equal to integers. For example, ζ is the solution of x2 − x − 1= 0.

8. The two numbers here, ζ and 1− ζ , also appear in the solution to the Fibonacci series. Some trivia:
According to Nahin (p. 97) the name Fibonacci (= son of Bonacci) was not used until long after his death.
The mathematician Leonardo Pisano (“Lenny from Pisa”) went by his nickname Bigollo during his lifetime.

9. The golden ratio will appear again in a discussion of crystals in interlude II.i.1. That the golden ratio can be
constructed using ruler and compass (an interesting result of classical Greek mathematics) implies that the
regular pentagon (unlike most regular n-sided polygons) can be constructed using ruler and compass. See
Hahn, Mathematical Excursions to the World’s Great Buildings. Here is the relevant mathematics in modern
language, given without further explanation: Let eiθ = x + iy. We require (eiθ )5= 1. The imaginary part of
this equation gives 5x4 − 10x2y2+ y4 = 0 which upon the substitution y2= 1− x2 becomes 16x4 − 12x2+
1= 0 which has a solution x = (√5− 1)/4.

10. For a discussion saying that the role of the golden ratio in good design is just a myth, see http://www.
fastcodesign.com/3044877/the-golden-ratio-designs-biggest-myth.

11. I am sort of reasoning like a humanities professor here. (Come on, lighten up, that was a joke.)
12. That A5 is simple is the key to Galois theory, which we do not go into here.
13. Listed by Plato (427–347 BC) in Timaeus.
14. For an elementary discussion of the Euler characteristic and Descartes angular deficit, see G Nut, pp. 725–727.
15. An easy proof, suitable for elementary school children, involves gluing tiny tetrahedrons together to form

any object topologically like a blob and showing that �χ =�V −�E +�F = 1− 3+ 2= 0.
16. Using the fact that the Euler characteristic χ = V − E + F = 2 for objects with the same topology as the

sphere, we can give an easy derivation of the regular polyhedra by making the simplifying assumption that

http://www.fastcodesign.com/3044877/the-golden-ratio-designs-biggest-myth
http://www.fastcodesign.com/3044877/the-golden-ratio-designs-biggest-myth
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each polyhedron is made ofN regular polygons with s sides each. For example, for the cube,N = 6 and s = 4;
that is, the cube is made of six squares. (By this assumption, we exclude the possibility that the polyhedron is
made of different types of polygons.) Let ζ denote the number of polygons that come together at a vertex (for
example, the cube has ζ = 3). Then V = sN/ζ , E = sN/2, and F = N . Plugging this into Euler’s formula
V − E + F = 2, we have

N = 4ζ
2s − (s − 2)ζ

For each s, the possible value of ζ is bounded above by positivity, and of course, to be sensible, we must have
ζ ≥ 3. Thus, we simply list all possible cases.

For s = 3, N = 4ζ/(6− ζ ). We have for ζ = 3, N = 4, the tetrahedron; for ζ = 4, N = 8, the octahedron;
and for ζ = 5, N = 20, the icosahedron.

For s = 4, N = 2ζ/(4 − ζ ). The only possibility is ζ = 3, N = 6, the cube.
For s = 5, N = 4ζ/(10− 3ζ ). The only possibility is ζ = 3, N = 12, the dodecahedron.
Incidentally, a neat way of drawing the icosahedron starting with a cube is given in A. Borovik, Mathematics

under the Microscope, p. 42. The method allegedly goes back to Piero della Francesca around 1480.



II.4 Real, Pseudoreal, Complex Representations,
and the Number of Square Roots

Complex or not

If someone gives us a number z, we can tell by a glance whether or not it is complex.
(Formally, we check if z is equal to its complex conjugate z∗.) But if someone gives us a
bunch of matrices D(g) furnishing an irreducible representation∗ r of a group G, it may
not be immediately evident whether or not the irreducible representation is complex.

Even if some or all the entries of D(g) are complex, it may not mean that the repre-
sentation r is complex. A bunch of apparently complex representation matrices could be
equivalent to their complex conjugates. In other words, even ifD(g)∗ �=D(g), there might
exist an S such that

D(g)∗ = SD(g)S−1 (1)

for all g ∈G. The representation matrices D(g) may not look real, but they and their
complex conjugates might be “secretly” related by a similarity transformation and hence
not really complex. Looks are not enough.

Conjugate representations

Before going on, let us make sure that D(g)∗ indeed forms a representation, which we
denote by r∗ and is known as the conjugate of r . That’s easy: simply complex conjugate
D(g1)D(g2)=D(g1g2) to obtain D(g1)

∗D(g2)
∗ =D(g1g2)

∗.
Another almost self-evident comment: the characters of the representation r∗ are given

by χ(r
∗)(c)= tr D(g)∗ = (tr D(g))∗ = χ(r)(c)∗, the complex conjugate of the characters of

r . We denote the class g belongs to by c.

∗ To lessen clutter, I suppress the superscript (r) onD(g); until further notice, we will be focusing on a specific
representation.
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The issue facing us is whether the two representations r and r∗ are equivalent or not.
By now, you know to trace over (1) to get rid of the unknown S. Thus, if r and r∗ are

equivalent, then χ(r
∗)(c)= χ(r)(c); in other words, the characters are real.

It follows that if a character χ(r)(c) is complex, then r∗ and r are not equivalent. We
say that the representations r and r∗ are complex. A rather trivial example: the two 1-
dimensional representations ofA4, 1′ and 1′′, are complex and are conjugate to each other.

In contrast, if the characters χ(r)(c) are real, then χ(r
∗)(c)= χ(r)(c)∗ = χ(r)(c); that is,

r and r∗ have the same characters. This does not, however, on the face of it, imply (1),
but is merely strongly suggestive, since the equality of characters holds for all equivalence
classes.

At this point, we have a binary classification of irreducible representations into complex
and noncomplex. We now show that the noncomplex representations can be subdivided
further.

Aside from the intrinsic interest of knowing whether a representation is complex or not,
this entire discussion is of great interest to high energy theorists. You have surely heard
of antimatter and antiparticles. In quantum field theory, if the particle transforms under
some symmetry group according to the representation r , then its antiparticle1 transforms
according to the representation r∗.

A restriction on the similarity transformation S: Real versus pseudoreal

Suppose that a given irreducible representation is not complex. Transposing (1), we have
D(g)† =D(g)∗T = (S−1)TD(g)T ST . Noting that the representation matrix is unitary so
that D(g)†=D(g−1), we obtain

D(g−1)= (S−1)TD(g)T ST (2)

This tells us that D(g−1) is related to D(g).
Our strategy, clearly, is to use this relationship twice to relate D(g) to itself and

hence obtain a condition on S. Substituting g for g−1 in this equation, we have D(g)=
(S−1)TD(g−1)T ST = (S−1)T (SD(g)S−1)ST = (S−1ST )−1D(g)(S−1ST ). (Here we use (2)
and its transpose, and also the elementary identity (M−1)T = (MT )−1.) In other words,
S−1ST commutes with D(g) for all g. Invoking Schur’s lemma once again, we conclude
that S−1ST = ηI , that is, ST = ηS, with η some constant. This implies S = (ST )T = ηST =
η2S, and hence η =±1. We conclude that ST =±S; in other words, S is either symmetric
or antisymmetric.

If S is symmetric, we say that the representation r is real.
If S is antisymmetric, we say that the representation r is pseudoreal.
From the result of exercise 8 in the review of linear algebra, we conclude that a repre-

sentation r can be pseudoreal only if its dimension is even.
To be sure, many of the representations we have encountered are manifestly real, in

the sense that the matrices D(g) have only real entries. In that case, S is just the identity
matrix.
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We now prove that up to an overall constant not fixed by (1), S is also unitary. From
(1), we have SD(g)=D(g)∗S = (D(g)−1)T S, and so S =D(g)T SD(g). Hermitean conju-
gating, we obtain S†=D(g)†S†D(g)∗. Now multiply S† and S to check unitarity: S†S =
D(g)†S†D(g)∗D(g)T SD(g)=D(g)†S†SD(g), and henceDS†S = S†SD. Thus, S†S com-
mutes withD(g) for all g and hence must be proportional to the identity. You might have
noticed that nothing thus far fixes the scale of S. In other words, we can multiply S by a
constant to make S†S = I .

Real representation is really real

Dr. Feeling wanders by, and says, “Don’t you feel that, if a representation is real, then it
really ought to be real? That is, in some basis, the matrices D(g) should only have real
entries, none of this ‘it is related to its complex conjugate by a similarity transformation’
stuff. Indeed, that’s true in all the examples we have seen!”

To prove this, we need a lemma. Given a unitary symmetric matrix U (that is, a unitary
matrix that also happens to be symmetric), there exists a unitary symmetric matrix W
such that W 2= U . More loosely speaking, the square root of a unitary symmetric matrix
is also unitary symmetric. With your permission, I will defer the proof of the lemma until
chapter IV.4 as an exercise.

Given the lemma, and given that S is unitary symmetric, let us write S =W 2 with W
unitary symmetric, which implies thatW−1=W†=W ∗. Then (1) gives

W 2D(g)W−2=D(g)∗
�⇒WD(g)W−1=W−1D(g)∗W =W ∗D(g)∗(W−1)∗ = (WD(g)W−1)∗ (3)

Thus, the representation matrices D′(g)≡WD(g)W−1 are real.

An invariant bilinear for a noncomplex representation

Denote by x the set of dr objects that transform under the dr -dimensional irreducible
representation r ; thus, x→D(g)x. Similarly, denote by y some other dr objects that
transform under r ; thus, y→D(g)y. (Think of x and y as two column vectors.) As before,
suppress a superscript r on D(g) to lessen clutter.

Let us now prove an important2 theorem.
If the irreducible representation r is real or pseudoreal, then yT Sx is an invariant

bilinear.
To see this, take the inverse of (1): DT (g)= SD†(g)S−1. Then

yT Sx→ yTD(g)T SD(g)x = yT SD†(g)S−1SD(g)x = yT Sx (4)

does not change.
Conversely, if yT Sx is invariant, this implies that D(g)T SD(g) = S, which implies

SD(g)=D(g)∗S, and hence the equivalence of D and D∗.
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To summarize, an invariant bilinear exists if and only if the irreducible representation
is real or pseudoreal.

The reality checker

Given an irreducible representation, how can we tell if it is real, pseudoreal, or complex?
We want to build a reality checker, so that, given a representation, we can give it a reality

check.
To start the construction, we play a by-now familiar game. Construct

S ≡
∑
g∈G

D(g)TXD(g)

for an arbitraryX. ThenD(g)T SD(g)=∑g′∈G D(g)TD(g′)TXD(g′)D(g)= S. Since this
holds for all g, we find that yT Sx is an invariant bilinear: yT Sx→ yTD(g)T SD(g)x =
yT Sx. But we just showed that the existence of this bilinear would imply that D and D∗

are equivalent.
Thus, if the irreducible representation is complex, then this S =∑g∈G D(g)TXD(g)

must vanish to avoid a contradiction.
As before, we now write this out explicitly. In the context of the present discussion,

let us suspend the upstairs-downstairs convention for indices, and treat all indices as
superscripts. (The reason for this is that transpose, unlike hermitean conjugate, is not
a “natural” operation on unitary matrices.)

Since S = 0 holds for any X, let us choose X to have only one nonvanishing entry in
the ith row and lth column, equal to 1. Then (D(g)TXD(g))jk = (D(g)T )ji(D(g))lk =
D(g)ijD(g)lk. Thus, the jk-entry of S = 0 gives us∑
g∈G

D(g)ijD(g)lk = 0 (5)

Remarkably, this holds for any i, j , k, and l. Set j = l, sum, and use the fact thatD(g) is a
representation (of course!), so that D(g)ijD(g)jk =D(g2)ik. We thus find

∑
g∈G D(g2)=

0, which when traced over gives
∑
g∈G χ(g2)= 0, if the representation is complex.

What if the representation is not complex?
Then ST = ηS with η=±1, as we discovered earlier. Transpose S =∑g∈G D(g)TXD(g)

to obtain ST =∑g∈G D(g)TXTD(g) = η
∑
g∈G D(g)TXD(g). Once again, set X to be

nonzero only in the ith row and lth column. Then the jkth-entry of the second equality
becomes

∑
g∈G D(g)ljD(g)ik = η

∑
g∈G D(g)ijD(g)lk. Setting i = j , k = l, and summing,

we obtain∑
g∈G

χ(g2)= η
∑
g∈G

χ(g)χ(g)= ηN(G) (6)

where we used character orthogonality in the last step (recall that χ is not complex by
assumption).
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We have thus built our trusty reality checker: for an irreducible representation r (here
we restore the superscript (r)),

∑
g∈G

χ(r)(g2)= η(r)N(G), with η(r) =

⎧⎪⎪⎨⎪⎪⎩
1 if real,

−1 if pseudoreal,

0 if complex

(7)

Thus, to give an irreducible representation r a reality check, use the character table to
evaluate the peculiar looking sum

∑
g∈G χ(r)(g2). It returns +N(G) if the representation

is real, −N(G) if pseudoreal, and 0 if complex.∗

At this point, we shout in unison “Character is a function of class!” The sum over group
elements in

∑
g∈G χ(g2) reduces to a sum over equivalence classes. Here a tiny lemma is

needed. If two elements g1 and g2 are equivalent to each other, then their squares g2
1 and

g2
2 are also equivalent to each other. Exercise!

Checking the reality checker

Let’s try out our brand new reality checker. Notice first that for the trivial representation,
which is as real as it can get, the sum

∑
g∈G χ(g2) trivially gives N(G), and thus, η =+1.

The checker tells us that the trivial representation is real. Thank you very much.
Take as our guinea pig the groupS3, whose character table was worked out in chapter II.3,

which you should look up now. For each of the three equivalence classes, the typical mem-
ber squares as follows: I 2= I (of course), (123)2= (132), and (12)2= I . Thus, examining
the character of the 1̄, we evaluate the sum to be 1 . 1+ 2 . 1+ 3 . 1= 6. The 1̄ is indeed real.
(We could also reach this conclusion in another way. The 1-by-1 representation matrices
for 1̄ are manifestly real, and we know that the 1̄ cannot be pseudoreal, since its dimension
is odd.)

On the 2 in S3, the sum gives 1 . 2+ 2 . (−1)+ 3 . 2= 6. Thus, we learn that the 2 is real
without ever having to write it out explicitly.

Confusio interjects excitedly, “The reality checker does not work! Remember that I
guessed the representation matrices of 2 incorrectly? So I made a point of memorizing
the correct matrices, as given in chapter II.3. They sure look complex to me!”

We did in fact work out the representation matrices of 2 as follows: I ≈
(

1 0
0 1

)
, (123)≈(

ω 0
0 ω∗

)
, (132)≈

(
ω∗ 0
0 ω

)
, (12)≈

(
0 1
1 0

)
, (23)≈

(
0 ω∗
ω 0

)
, and (31)≈

(
0 ω

ω∗ 0

)
. Confusio

is right that some of them are indeed complex, but he forgot that we can always make a

similarity transformation. Consider the unitary matrixV = 1√
2

(
1 i

i 1

)
. Denote the matrices

∗ And if it does not return one of these three possibilities, you better check your arithmetic. So the reality
checker is almost foolproof.
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listed here byD(2)(g). Verify that V †D(2)(g)V are real matrices. I did not point this out in
chapter II.3 in order to make a pedagogical point here.

Our next example is the 1′ of A4, which is manifestly complex. Recall that A4 has four
equivalence classes, whose typical member squares as follows: ((12)(34))2= I , (123)2=
(132), and (132)2= (123). Thus, the sum in (7) returns 1 . 1+ 3 . 1+ 4 . (ω + ω∗)= 4(1+
ω + ω∗)= 0.

The number of square roots

In school we learned that a number has not one, but two square roots.3 Similarly, given an
element f ofG, let σf be the number of square roots of f , in other words, the number of
different solutions to the equation g2= f .

Recall that in chapter I.2, we learned if a group has an even number of elements, then
it has at least one element not the identity that squares to the identity. Now that we are
“grown up,” we want to know more; we want to know how many, that is, what σI is.

The key observation is that g2 appears in (7). Hence, we can write our trusty reality
checker as∑

f

σf χ
(r)(f )= η(r)N(G) (8)

Note that σf is a property of the group and does not depend on the representation r .
Now that we have restored r , we use row orthogonality. Multiplying (8) by χ(r)∗(f ′) and
summing, we obtain

∑
r

(∑
f

σf χ
(r)(f )

)
χ(r)∗(f ′)=

∑
r

η(r)χ(r)∗(f ′)N(G)

=
∑
f

σf

(∑
r

χ(r)(f )χ(r)∗(f ′)
)

=
∑
f

σf
N(G)

nc
δcc′ = σf ′N(G) (9)

The first equality is due to (8). The third equality comes from row orthogonality, with c
and c′ denoting the equivalence classes f and f ′ belong to, respectively. We committed a
minor abuse of notation: by δcc′ we mean that there is a contribution only if f and f ′ are
in the same class, and hence the fourth equality follows. The factor of nc cancels out. We
thus obtain the interesting result

σf =
∑
r

η(r)χ(r)(f ) (10)

We have dropped the complex conjugation symbol ∗ on χ(r): since η(r) = 0 for complex
representations, the complex characters do not contribute to the sum anyway.
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Remarkably, given the character table, if we know whether each irreducible representa-
tion is real, pseudoreal, or complex (that is, if we know η(r) for all r), then we can determine
the number of square roots of any group element. In particular, the number of square roots
of the identity∗ I is given by

σI =
∑
r

η(r)dr =
∑
r=real

dr −
∑

r=pseudoreal

dr (11)

In other words, the sum of the dimension of the real irreducible representations minus
the sum of the dimension of the pseudoreal irreducible representations.

In particular, for groups without pseudoreal irreducible representations, the number
of square roots of the identity is equal to the sum of the dimension of the irreducible
representations

∑
r dr .

Let us try these results out onA3=Z3. For the rest of this discussion, it will be convenient
to have various character tables given in chapter II.3 in front of you, unless you have them
memorized.4 Recall that it has three irreducible representations, the 1, 1′, and 1′′. We have
σ(123) =

∑
r η

(r)χ(r)(123)= 1, because the 1′ and 1′′ are both complex, leaving only the
trivial identity representation to contribute to the sum. Indeed, the query g2= (123) has
only one response, namely, g = (132).

Similarly, σI = 1 . 1+ 0 . 1+ 0 . 1= 1, indicating that in Z3, I has only one square root,
namely, I itself.

What aboutZ2? It has two real irreducible representations. Thus, σI = 2, and the identity
has two square roots, exactly what we learned long ago in school! How aboutZ4? It has two
real and two complex irreducible representations. Again, the identity has two square roots.

Next, let’s try A4. It has no pseudoreal irreducible representation, two real irreducible
representations (namely, the 1 and the 3), and two complex irreducible representations
(which do not enter here). Thus, σI = 1+ 3= 4. Yes indeed, in A4 the identity I has four
square roots {I , (12)(34), (23)(41), (13)(24)}.

All hail the powers of mathematics!
Let us next count the square roots of (12)(34) in A4. It should be 0. According to (10),

σf = sum of the characters of the real irreducible representations− sum of the characters
of the pseudoreal irreducible representations, but there is no pseudoreal irreducible rep-
resentation. Thus, σ(12)(34) = 1+ (−1)= 0, check. I leave it to you to work out how many
square roots (123) has.

Next, how many square roots does the identity of S4 have? Plugging in, we find that it has
σI = 1+ 1+ 2+ 3+ 3= 10 square roots. It is instructive to count them all. I list them by
naming a representative member of each equivalence class, followed by the number in each
class: {I → 1; (12)(34)→ 3; (12)→ 6}, adding up to 1+ 3+ 6= 10. These 10 elements do
indeed all square to the identity.

∗ The jargon guy tells us that the square roots of the identity are called involutions.
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Sum of the representation matrices of squares

Now that we have (7), which gives the sum of the characters of squares, we can be more
ambitious and ask what we can say about the sum of the representation matrices of squares.

Given an irreducible representation, define A ≡∑g D(g
2). We play a by-now more-

than-familiar game. Consider

D−1(g′)AD(g′)=D−1(g′)
(∑

g

D(g2)

)
D(g′)=

∑
g

D(g′−1gg′g′−1gg′)= A

So by Schur’s lemma, A= cI , with the constant c to be determined presently by tracing
this equation (also, I restore the superscript (r)):∑

g

tr D(r)(g2)= cdr =
∑
g

χ(r)(g2)=
∑
f

σf χ
(r)(f )

=
∑
s

η(s)
∑
f

χ(s)∗(f )χ(r)(f )= η(r)N(G) (12)

We used (10) in the fourth equality and column orthogonality in the fifth equality. We have
thus proved that∑

g

D(r)(g2)=N(G)(η(r)/dr)I (13)

How many ways can a group element be written
as a product of two squares?

By now, perhaps you can see how we can have more fun and games along the same
lines. Let f be some arbitrary element (with a new discussion comes a new assignment of
letters; there are only so many of them) of the groupG. Multiply (13) byD(r)(f 2) to obtain∑
g D

(r)(f 2g2)=N(G)(η(r)/dr)D(r)(f 2). Tracing gives∑
g

χ(r)(f 2g2)=N(G)(η(r)/dr)χ(r)(f 2)

Now sum over f :∑
f

∑
g

χ(r)(f 2g2)=N(G)(η(r)/dr)
∑
f

χ(r)(f 2)= (N(G)η(r)))2/dr (14)

I used (7) to obtain the second equality. To proceed further, use the same “trick” as before.
Denote by τh the number of solutions of the equation f 2g2= h2 for a given element h of
G. Then we can write (14) as

∑
h τhχ

(r)(h)= (N(G)η(r))2/dr . Multiplying this by χ(r)∗(h′)
with h′ some arbitrary element of G and summing over r , we obtain
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∑
r

(∑
h

τhχ
(r)(h)

)
χ(r)∗(h′)=N(G)2

∑
r

((η(r))2/dr)χ
(r)∗(h′)

=
∑
h

τh

(∑
r

χ(r)(h)χ(r)∗(h′)
)

=
∑
h

τh
N(G)

nc
δcc
′ = τh′N(G) (15)

In the third equality, we used row orthogonality. As is evident (and just as in the earlier
discussion), c and c′ denote the classes that h and h′ belong to respectively, with δcc

′
picking

out only the hs that are in the same class as h′ (and there are nc of these). Thus, we obtain

τh =N(G)
∑
r

(η(r))2χ(r)(h)/dr (16)

As before, we are entitled to drop the complex conjugation symbol.
In particular, let us ask, In how many distinct ways can we write the identity as a product

of two squares I = f 2g2? The answer is

τI =N(G)
∑
r

(η(r))2 (17)

Since (η(r))2 = 1 for real and pseudoreal irreducible representations and vanishes for
complex irreducible representations, the sum here is simply equal to the total number of
real and pseudoreal irreducible representations. Remarkably, this number times the order
of the group determines the number of solutions to the equation f 2g2= I ! Compare with
(11): now we don’t even need to know the dimensions of the irreducible representations.

Let’s hasten to check this result on A3. Write the identity as a product of two squares:
(132)2(123)2= I , (123)2(132)2= I , and I 2I 2= I . In contrast, our result (17) gives 3

∑
r 1=

3 . 1= 3, check. (Evidently, in the present context,
∑
r 1 ranges over the noncomplex

irreducible representations.)
Next, look at S3. How many ways can we write the identity as a product of two squares?

There are the ways just listed for A3, plus (23)2(12)2= I with all possible exchanges, so
these count as 3 . 3= 9, plus I 2(12)2 = I , (12)2I 2 = I , 3 . 2= 6 of these. So, altogether
3+ 9+ 6= 18, while (17) gives 6

∑
r 1= 6 . 3= 18, check.

Some readers might have realized that we can keep on trucking, going down the same
road, figuring out how many solutions are there to the equation f 2g2h2= k2 for a given
element k of G.

Exercises

1 Show that the matrices D(g)T (in contrast to D(g)∗) do not form a representation.

2 Show that squares of elements that are equivalent to each other are also equivalent to each other.

3 Verify that the 2-dimensional irreducible representation ofD4, the invariance group of the square, is real, as
is almost self-evident geometrically.
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4 Give the 3 of A4 a reality check.

5 Give the 3 of S4 a reality check.

6 Show that the 2 of the quarternionic group is pseudoreal.

7 How many square roots does (123) in A4 have?

8 For S4, evaluate σ(12)(34), σ(123), σ(12), and σ(1234), and check your answers against the multiplication table.

9 For A5, evaluate σI , σ(12)(34), σ(123), σ(12345), and σ(12354), and check your answers against the multiplication
table.

10 Verify the (13) for
∑
g D

(r)(g2) in A4.

11 For A4, verify the result for the number of solutions of f 2g2 = I .

Notes

1. For instance, quarks transform like the 3 of SU(3), while antiquarks transform like the 3∗. We will discuss
this in parts V and IX in detail.

2. The existence of the invariant bilinears described here is important for neutrino masses. See chapter VII.4.
3. I daresay that for most of us, that was quite an eye opener!
4. Probably not a good use of your disk space.



I N T E R L U D E

II.i1 Crystals Are Beautiful

I start with a story. When Eugene Wigner wanted to leave Budapest to go study physics in
Germany, his father asked him how many jobs in physics there were in his native Hungary.
Wigner said that he thought there was perhaps one. So sure enough, after obtaining his
doctorate in physics, Wigner ended up working in his father’s leather factory. He soon
realized that he did not want to tan his life away, and so he wrote to his professors in Berlin
begging for a job. Fortunately, he found one with the crystallographer Weissenberg, who
told him to calculate the equilibrium position of atoms in various crystals, giving the young
Wigner a book on modern algebra and saying that some of this stuff might be useful.1

This started Wigner on the road to applying group theory to physics and to his eventual
Nobel Prize.

Crystallography

First, I certainly cannot and will not go into crystallography in any detail; there are
enormously thick treatises on the subject. Rather, I am content to discuss a fundamental,
and well celebrated, result2 that turns out to be rather easy to prove.

A crystal is defined to be a lattice of atoms invariant under translations �T = n1�u1+
n2�u2 + n3�u3, with �ui three vectors and ni three integers. The group consisting of these
translations, plus rotations, reflections, and possibly inversion (�x→−�x) is known as the
space group3 of the crystal. If translations are taken out, the resulting group is known
as a point group.4 All this is just terminology and jargon. The reader should be warned,
however, that crystallographers have their own notations.5

A great achievement of the subject is the classification of all point groups; there are only
a finite number of possibilities.

Crystallography has become a hugely important subject in light of the interest in mate-
rials science.
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Figure 1

No five-fold symmetry

Here is the famous theorem I would like to introduce you to.
Theorem: Let a crystal be invariant under rotations through 2π/n around an axis. The

only allowed possibilities are n = 1, 2, 3, 4, 6. In other words, n = 5 and n > 6 are not
allowed. (Note that n= 1 is a trivial special case that we do not need to cover in the following
argument.)

Call the axis of rotation the z-axis. Let �T1 be a translation vector. Under rotation this
gets taken into �T2, . . . , �Tn. See figure 1. Because translations form a group, �T = �T1− �T2 is
also a translation vector. By elementary geometry,6 �T is perpendicular to the rotation axis.7

Thus, we can restrict our attention to translation vectors in the x-y plane.
Denote the difference vectors (such as �T ) between Ti and Tj generically by �tij . As was

just noted, these vectors �tij live in the x-y plane. Now pick out the shortest such vector
(there may be more than one) and call it �t . Choose units so that �t has length 1. Now rotate
around the z-axis through angle 2π/n, and call the vector �t gets rotated to �t ′. Evidently, �t ′
also has length 1.

Then �t − �t ′ is also a translation vector. It has length ln= 2 sin π
n

, a result obtained readily
by either using basic trigonometry or squaring (�t − �t ′)2 = 2(1− cos 2π

n
)= 4 sin2 π

n
. But

we assumed �t to be the shortest such vector, and hence we require 4 sin2 π
n
≥ 1, that is,

sin π
n
≥ 1

2 .
This condition is violated for n > 6. We see from figure 2 that the result is almost trivial:

if the opening angle 2π/n between the vectors �t and �t ′ is too small, then the distance
between their tips will be too short.
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To rule out n= 5, rotate �t ′ around the z-axis through angle 2π/n (in the same sense as
the earlier rotation), and call the vector �t ′ gets rotated to �t ′′. The angle between �t and �t ′′ is
thus 2 . 2π/n= 4π/n. See figure 3. Then the translation vector �t + �t ′′ (note the + sign!)
has length 2| cos 2π

n
| (note the 2π rather than π ). Again, we obtain this by either using

basic trigonometry or squaring (�t + �t ′′)2 = 2(1+ cos 4π
n
)= 4 cos2 2π

n
. By assumption we

require |�t + �t ′′| to be larger than 1, and hence | cos 2π
n
| ≥ 1

2 . (The absolute value is put in
because cos 2π

n
is negative for n= 2, 3.) Since cos 2π

5 = (
√

5− 1)/4≈ 0.309, this inequality
is violated for n= 5.∗ The point is that | cos θ | has a downward cusp touching 0 at θ = 2π

4
and 2π

5 is too close to 2π
4 .

An alternative and somewhat simpler proof 8 is the following. We proceed as before until
we get to the point of choosing units such that �t has length 1. LetA be a point on a symmetry
axis and B be a point A gets translated to under �t . See figure 4. Let B ′ be the point B
gets rotated to under a rotation through 2π/n aroundA. Similarly, letA′ be the pointA gets
rotated to under a rotation through 2π/n aroundB. The distance betweenA′ andB ′, equal
to 1+ 2 sin( 2π

n − π
2 )= 1− 2 cos 2π

n , must be, by assumption, some nonnegative integer k.
This implies cos 2π

n = 1
2(1− k). Since the cosine is bounded by±1, the nonnegative integer

k is restricted to have the value 0, 1, 2, 3, corresponding to n= 6, 4, 3, 2, respectively. (In

∗ Recall the endnote about the golden ratio in chapter II.3. You might think that the inequality is also violated
for n= 4, but in that case �t + �t ′′ does not really exist.
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fact, the n= 2 case is trivial so that there are actually only 3 cases, for each of which I
encourage you to draw the quadrilateral ABA′B ′.)

One appealing feature of this proof is the immediate exclusion of n= 5 without further
ado. Indeed, unlike the previous proof, we do not need to know the approximate value of
cos 2π

5 . We can see graphically, since 2π
5 = 75◦ is less than 90◦, that the distance between

A′ and B ′ cannot be an integer multiple of 1.
The discovery of quasicrystals leading to a Nobel Prize for materials scientist Dan

Shechtman in 2011 makes for a fascinating story,9 particularly the fact that nontranslation
invariant five-fold symmetries exist in Islamic architecture.

I started this interlude talking about Wigner,10 and I now end with him also. By 1929
Wigner had started wondering about how he could contribute to quantum physics. He said
in his recollections, “[I thought that] perhaps the dabbling I had done for Dr. Weissenberg
might lead somewhere worthwhile. There was nothing brilliant in this insight—just a bit
of good instinct and much good fortune.”

Notes

1. Wigner’s autobiography cited in chapter I.1.
2. First proved by the French crystallographer Auguste Bravais in 1850. An early hint of this was provided by

the great Johannes Kepler; in his treatise (1619) on the harmony of the world, he failed to find a mosaic with
five-fold symmetry. See M. Kř́ıžek, J. Šolc, and A. Šolcová, Not. AMS 59 (2012), p. 22.

3. In two dimensions, the space group is also called the wallpaper group.
4. Thus, the point group applies to molecules also.
5. The Schönflies notation and the Hermann-Mauguin notation.

6. Or, by analytic geometry, simply observe that �T has no z-component.

7. For relativistic physicists, �T1, . . . , �Tn, together with − �T1, . . . , − �Tn, form a sort of discrete future and past
light cones with z as the time axis.

8. L. Landau and E. Lifshitz, Statistical Physics (second edition, 1969), p. 408.
9. There were also important contributions by the Chinese American mathematician Hao Wang and the English

physicist Roger Penrose. See Martin Gardner, Sci. Am. (1976), p. 110.
10. At that time, Weyl’s book on group theory was the only one available to physicists, and it was, according to

Wigner, “too dense for most people.” So Leo Szilard urged Wigner to write his own textbook, which was
published in 1931 and is still regarded as a classic.



I N T E R L U D E

II.i2 Euler’s ϕ-Function, Fermat’s Little Theorem,
and Wilson’s Theorem

Quick, if you divide 1010 by 11, what is the remainder?1

I follow this question with a story2 about the influential3 and Nobel Prize winning
physicist Ken Wilson. During a seminar at Caltech conducted by Feynman for graduate
students, Ken Wilson was caught talking to a fellow student. When asked by Feynman
what he was talking about, he said that they were discussing Wilson’s theorem, at which
point Feynman had Wilson up at the blackboard stating and proving Wilson’s theorem.

The group Gn

On several occasions, we have seen the close connection between group theory and number
theory. Here we explore one connection.4

Let n be some positive integer. Denote by Gn the set of integers m, 1≤m≤ n− 1, such
that the highest common factor of m and n is 1. In other words, m and n have no factor
in common except for 1 and hence are relatively prime; for example, neither 9 nor 16 is a
prime number, but they are relatively prime.

The claim is that under multiplication modulo n, Gn is a group.
Consider 2 elementsm1 andm2 ofGn. We want to show closure, that is,m1m2 (mod n) ∈

Gn.
To show this, first note that, since by assumption m1 and n have no factor in common

and since m2 and n have no factor in common, it follows that m1m2 and n have no
factor in common except for 1. But what about m1m2 (mod n) and n? Let us prove it by
contradiction. Suppose that m1m2 (mod n) and n have a highest common factor, call it
d > 1. In other words, n= kd and m1m2 (mod n)= jd for some integers k and j . Then
m1m2= jd + ln= (j + lk)d for some integer l. (Henceforth, I will not specify that various
quantities are integers when the context makes it clear that they are.) Thus, m1m2 and n
have a highest common factor d > 1, which contradicts what we just said. This proves
closure: m1m2 (mod n)=m3. For example, G9 consists of the integers m= 1, 2, 4, 5, 7, 8,
and 7 . 8 (mod 9)= 2, 2 . 7 (mod 9)= 5, and so forth.
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Associativity is trivial.
Next, the identity is just 1.
Finally, to prove that the inverse exists, we need a lemma.
Lemma: Given integers a and b with highest common factor = 1, then there exist

integers x and y such that xa + yb = 1.
For example, with a = 16 and b = 9, we have5 4 . 16− 7 . 9= 1. Note that the solution

is not unique: we also have 9 . 9− 5 . 16= 1. Try a few cases, and you might see why the
lemma holds. A proof is given in appendix 1.

Apply the lemma to m and n: xm+ yn= 1 means that xm= 1 (mod n). Hence x is the
inverse of m.

Thus, we have proved that Gn is a group: in fact, an abelian group.

Euler’s ϕ-function

The order of Gn, that is, the number of elements in Gn, is called Euler’s ϕ-function ϕ(n).
We have already seen that ϕ(9)= 6. Since there are not many groups with order 6 (or

any relatively small integer), we suspect thatG9 is in fact one of the groups we have already
encountered. Any intuitive guess here? Exercise! As another example,G16 consists of 1, 3,
5, 7, 9, 11, 13, 15, so that ϕ(16)= 8. Have you encountered the groupG16 before? Exercise!

Now Euler6 proves a theorem. If the highest common factor of a and n is 1, then

aϕ(n) = 1 (mod n) (1)

To prove this highly nonobvious theorem, all we have to do is to apply just about the most
elementary group theory theorem there is, mentioned in chapter I.1. Take any element g
of a finite groupG and keep multiplying it by itself. Then gN(G) is the identity. Here goes.
Divide a by n and take the remainder m, so that m< n (in other words, a = nk +m). We
claim that the highest common factor ofm and n is 1, since otherwise the highest common
factor of a and n would not be 1. (To see this, note that if m= bf , n= cf with f > 1,
then a = (ck + b)f , and a and n would have f for a common factor.) Thus, m ∈Gn. The
order of Gn is denoted by ϕ(n). Hence, mϕ(n) = 1 (mod n). Then aϕ(n) = (nk +m)ϕ(n) =
mϕ(n) + ϕ(n)mϕ(n)−1nk + . . .= 1 (mod n).

Fermat’s little theorem (called “little” to distinguish it from his last theorem) is then an
immediate corollary. For p prime and a not a multiple of p,

ap−1= 1 (mod p) (2)

Proof: For p prime, Gp = {1, 2, . . . , p − 1} and ϕ(p)= p − 1. Apply Euler’s theorem.
In particular, 1010 = 1011−1= 1 (mod 11), and the question at the beginning of this

section is answered.7 Furthermore, since a = 1 (mod n) and b= 1 (mod n) implies ab= 1
(mod n), we have 101010 = 1 (mod 11), and so forth. Dazzle your friends with such useless
facts!

Another way of stating Fermat’s little theorem is that, for p prime and a not a multiple
of p, ap−1− 1 is divisible by p.
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I hope that this brief interlude has convinced you that group theory can play an important
role in number theory.

Appendix 1: Proof of a lemma

First, some basic facts about modular arithmetic.
If a = b (mod n), then ka = kb (mod n); but the reverse clearly does not hold.
If a = b (mod n) and if c = d (mod n), then ac = bd (mod n).
The proof of the lemma stated in the text is by iterative reduction. With no loss of generality, let a > b. The

claim that there exist x and y such that xa + yb = 1 means that we can solve the equation xa = 1 (mod b). Let
a = a′ (mod b) with a′ < a. If we could solve xa′ = 1 (mod b), then we have solved xa = 1 (mod b). (Note that
xa′ = jb + 1 and a = a′ + lb mean that xa = (j + xl)b + 1, that is, xa = 1 (mod b).)

Hence we have reduced the problem specified by (a , b) to a problem specified by (b, a′) (where we have
exchanged the role played by the two integers, since b > a′). After another step, this problem is reduced to a
problem specified by (a′ , b′) with a′ > b′. At every step, one integer gets strictly smaller and so eventually one of
the two integers reaches 1, and we are done.

Appendix 2: Wilson’s theorem

The first theorem we proved in this interlude allows us to prove Wilson’s theorem with almost no effort. The
theorem, first proved by Lagrange in 1771, was discovered by John Wilson around 1770 but was known earlier
to Ibn al-Haytham around 1000. It was announced by Edward Waring in 1770, but neither he nor his student
Wilson was able to prove it.

Wilson’s theorem: (n− 1)!+ 1 is divisible by n if and only if n is a prime. (For example, 5 is a prime and
4!+ 1= 25 is divisible by 5, but 6 is not a prime and 5!+ 1= 121is not divisible by 6.) In other words, (n− 1)!=−1
(mod n) if and only if n is a prime.

Proof: If n is not a prime, then its factors are to be found among the set of integers {1, 2, . . . , n− 1}, and so
(n− 1)! is divisible by n, that is, (n− 1)!= 0 (mod n).

In contrast, if n is a prime, we have proved that the set of integers {1, 2, . . . , n− 1} form a group Gn under
multiplication modulo n. The inverse of 1 is itself, namely 1, and the inverse of n − 1 is also itself (since
(n− 1)2= n2− 2n+ 1= 1 (mod n)). The inverse of each of the remaining integers {2, . . . , n− 2} is to be found
among this subset of n− 3 integers. (For example, inG7, the inverse of 2 is 4, of 3 is 5, and so on.) This sentence
implies that (n− 1)!= (n− 1) . 1= n− 1 (mod n), where the first equality follows because in the factorial the
integers other than n− 1 and 1 cancel in pairs. This implies (n− 1)!=−1 (mod n). QED8

Appendix 3: A physicist’s proof of Fermat’s little theorem

Gutfreund and Little9 have given a nice physicist’s proof of Fermat’s little theorem. I content myself with giving
a baby version of the theorem, and challenge the reader to extend it.10

We now prove (2) for a = 2. Let p be a prime, and consider a ring of p Ising spins.∗ Physicists call a sequence
of p + and − signs a “spin configuration” (for example, for p = 5, ++−−+ is a configuration). We divide
the 2p possible configurations into equivalence classes as follows: define two configurations to be equivalent if
one configuration can be mapped into the other configuration by translation around the ring. (For example, for
p = 5, the 5 configurations++−−+,+−−++,−−+++,−+++−, and+++−− are equivalent. See
figure 1.) These equivalence classes each contain p configurations; this, by the way, amounts to the statement
proved way back in chapter I.1 that, for p prime, Zp does not have a subgroup. The configuration with all spins
equal to + is special; it is equivalent only to itself. Ditto for the configuration with all spins equal to −.

∗ I assume that the reader knows what an Ising spin is, since, in light of the title of this book, he or she is sort
of posing as a physicist. If not, there is always the web.
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It follows that the 2p − 2 configurations that are not these two special configurations are naturally divided into
equivalence classes, each with p configurations. Therefore, 2p − 2 is divisible by p. But 2p − 2 is also manifestly
an even integer. Thus, 2p − 2 is divisible by 2p, and hence 2p−1− 1 is divisible by p. In other words, 2p−1= 1
(mod p).

Exercises

1 Identify the group G10.

2 Show that G9 = Z6.

3 Show that G16 = Z4 ⊗ Z2.

Notes

1. 1010 = 11× 909090909+ 1.
2. P. Ginsparg, arXiv:1407.1855v1, p. 16.
3. In my essay “My Memory of Ken Wilson,” I spoke about the impact Wilson had on my career. See Ken Wilson

Memorial Volume: Renormalization, Lattice Gauge Theory, the Operator Product Expansion and Quantum
Fields, ed. B. E. Baaquie, K. Huang, M. E. Peskin, and K. K. Phua, World Scientific, 2015.

4. I follow the discussion in Armstrong.
5. Think of a horse race in which time is quantized. The two horses run a and b units of distance per unit time,

respectively. By adjusting the durations each horse can run, show that we can always arrange to have one
horse win by a nose.

6. Leonard Euler had extraordinary powers of concentration. He was extremely productive and averaged over
800 printed pages per year. He maintained his productivity long after he became blind by writing on a slate
board by his side, with a team of assistants copying everything down. One evening, while playing with a
grandson, he wrote “I die” and fell dead. See Mathematicians Are People, Too, by L. Reimer and W. Reimer,
p. 80.

7. At a more elementary level, note that 100/11= 9+ 1/11, and so 104/11= 100(9+ 1/11)= 900+ 9+ 1/11,
so on and so forth.

8. For a “physicist’s proof,” see E. Staring and M. Staring, Am. J. Phys. 51(5) (1983).
9. H. Gutfreund and W. A. Little, Am. J. Phys. 50(3) (1982).

10. Or, failing that, to look up the paper cited in the previous endnote.
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II.i3 Frobenius Groups

Presenting the Frobenius group T13

When you have some spare time, you might want to invent a group or two. Quite a few
very smart people did precisely that.

You already know about cyclic groups and direct product groups, and thus the group
Z13⊗ Z3. It contains two elements a and b such that

a13= I and b3= I (1)

with a and b commuting with each other, that is, with

bab−1= a (2)

which is of course equivalent to ba = ab. The group has 13 . 3= 39 elements of the form
g = ambn with 0 ≤m≤ 12 and 0 ≤ n≤ 2.

Instead of this baby stuff, Frobenius proposed modifying (2) to

bab−1= ar (3)

with r an integer to be determined. Equivalently, ba = arb.
Repeating the transformation in (3) three times, we obtain

a = IaI = b3ab−3= b2arb−2= b(bab−1)rb−1= bar2
b−1= ar3

(4)

Consistency thus requires the peculiar number theoretic condition r3= 1 (mod 13).
Consider the solution r = 3: indeed, 33= 27= 2 . 13+ 1.
The resulting group is known as the Frobenius group Z13 �Z3 = T13. It has the

presentation:

〈a , b|a13= I , b3= I , bab−1= a3〉 (5)

The jargon guy informs us that the funny symbol � is called a semidirect product. Sounds
like a wimpy name to me.
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Classes and irreducible representations

Our interest here is to turn the powerful machinery developed in part II on T13 and
determine its irreducible representations.

The group T13 has 13 . 3= 39 elements, of the form g = ambn with 0 ≤ m ≤ 12 and
0 ≤ n ≤ 2, just as in Z13⊗ Z3, but of course the structures of the two groups are quite
different. Let us work out the equivalence classes for T13.

First, the usual “class of one” consisting of the identity {I }. Next, by definition of the
group, we have bab−1= a3, and thus the equivalence relations a ∼ a3∼ a9. We have the
class

C3 : {a , a3, a9} (6)

But then also ba2b−1= (bab−1)2= (a3)2= a6, and ba6b−1= a18= a5. Thus, we have found
another class

C′3 : {a2, a5, a6} (7)

Similarly, the two classes

C∗3 : {a4, a10, a12} (8)

and

C′∗3 : {a7, a8, a11} (9)

(For example, ba7b−1= a7.3= a21= a13+8 = a8.) I hardly have to say that there’s a whole
lot of number theory going on.

In addition to these five classes, there are elements of the form amb and amb2, in particu-
lar, b. Start with a−1ba = a−1a3b= a2b, that is, b∼ a2b. Next, a−1(a2b)a = a−1a2a3b= a4b.
Note that when we reach a12b, we then find a−1(a12b)a = a−1a12a3b= a14b= ab. Proceed-
ing in this way, we obtain the class

C
(1)
13 : {b, ab, a2b, . . . , a11b, a12b}

Similarly, we have the class

C
(2)
13 : {b2, ab2, a2b2, . . . , a11b2, a12b2}

The group T13 has seven equivalence classes, and hence, by one of the theorems in
chapter II.2, seven irreducible representations. Thus, we have to find six integers di such
that

1+
6∑
i=1

d2
i
= 39 (10)

Let us start by seeing whether there are any other 1-dimensional representations besides
the trivial representation 1.
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If a and b are just numbers, then the condition bab−1= a3 collapses to a2= 1, but a =−1
is not allowed by the condition a13= 1. Thus, a = 1, and the condition b3= 1 allows three

possibilities b = 1, ω, ω∗ (as before, ω = e 2πi
3 denotes the cube root of the identity), which

thus correspond to three possible 1-dimensional representations. We will refer to these
representations as 1, 1′, and 1′∗.

After finding the pair of conjugate representations 1′ and 1′∗, we next have to find four
integers whose squares add up to 36. The unique possibility is 32+ 32+ 32+ 32= 36. (The
other possibility, 52+ 32+ 12+ 12= 25+ 9+ 1+ 1= 36, is ruled out by the fact that we
have already found all the 1-dimensional representations.)

To find the four 3-dimensional irreducible representations, we choose to diagonalize a.
Let us start with the condition b3= I and represent b by

b =

⎛⎜⎜⎝
0 1 0

0 0 1

1 0 0

⎞⎟⎟⎠ (11)

Define ρ = e 2πi
13 , the thirteenth root of the identity. Then the diagonal elements of a can

be any integral powers of ρ. From the review of linear algebra, we know that the similarity
transformation bab−1 with (11) moves the diagonal elements around cyclically. Thus, if
we choose the first diagonal element of a to be ρ, then the condition bab−1= a3 fixes

a =

⎛⎜⎜⎝
ρ 0 0

0 ρ3 0

0 0 ρ9

⎞⎟⎟⎠ (12)

This is of course consistent, since (ρ9)3= ρ27 = ρ. Call this irreducible representation 3.
Similarly, the irreducible representation 3′ has

a =

⎛⎜⎜⎝
ρ2 0 0

0 ρ6 0

0 0 ρ5

⎞⎟⎟⎠ (13)

and b as in (11).
The other two irreducible representations can be obtained by complex conjugation. In

3∗ and 3′∗, a is represented respectively by

a =

⎛⎜⎜⎝
ρ 0 0

0 ρ3 0

0 0 ρ9

⎞⎟⎟⎠
∗

=

⎛⎜⎜⎝
ρ12 0 0

0 ρ10 0

0 0 ρ4

⎞⎟⎟⎠ (14)

and

a =

⎛⎜⎜⎝
ρ2 0 0

0 ρ6 0

0 0 ρ5

⎞⎟⎟⎠
∗

=

⎛⎜⎜⎝
ρ11 0 0

0 ρ7 0

0 0 ρ8

⎞⎟⎟⎠ (15)
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The 3-dimensional matrices representing a and b all have unit determinant (for exam-
ple, in (15), det a = ρ11+7+8 = ρ26 = 1). According to a fundamental theorem proved in
chapter II.1, these matrices must be unitary, which by inspection is manifestly true. In
chapter IV.4 we will learn that the set of all unitary 3-by-3 matrices with unit determinant
forms the group SU(3). Thus, the Frobenius group T13 is a subgroup1 of SU(3).

Meanwhile, you could have fun discovering other Frobenius groups, for instance by
replacing the number 13 by 7.

Note

1. To determine various properties of T13, such as how the direct product of two of its irreducible representations
decompose, it is then easiest to exploit the properties of SU(3) (which we will derive in part V) and figure
out how the irreducible representations of SU(3) decompose upon restriction to T13.





Part III Group Theory in a Quantum World

Group theory has a somewhat limited impact on classical mechanics, but it really blos-
somed with the coming of the quantum era. Wigner is rightfully honored for introducing
group theory into quantum physics. You will learn that symmetry, degeneracy, and repre-
sentation theory are beautifully intertwined.

Modern physics is almost unthinkable without the Lagrangian and the Hamiltonian,
much zippier than the equations of motion. Group theory rules all of them.





III.1 Quantum Mechanics and Group Theory:
Parity, Bloch’s Theorem, and the Brillouin Zone

Quantum mechanics is linear

In my study of physics (and of a bit of mathematics), I am often astonished by how the
collective mind of the physicists and the collective mind of the mathematicians would
converge. Indeed, Eugene Wigner,1 who won the Nobel Prize for introducing group theory
into quantum mechanics, wrote an influential essay2 on the unreasonable effectiveness3

of mathematics in physics. He described mathematics as “a wonderful gift we neither
understand nor deserve.” In physics, representation theory came alive with the advent of
quantum mechanics.∗

In quantum mechanics, the states of a physical system, be it a molecule or a field or
a string, are described by a wave function �, evolving in time according to Schrödinger
equation

i�
∂

∂t
� =H� (1)

Here � denotes Planck’s constant,† which we already encountered in chapter I.3. Writ-
ing‡ �(t)= ψe−iEt/�, where ψ depends on the coordinates but not time, we obtain the
eigenvalue equation

Hψ = Eψ (2)

At the most elementary level, the HamiltonianH is given by a linear differential operator,
for instance, for a particle moving in a potential in 1-dimension, H =− 1

2m
d2

dx2 + V (x). In

other situations, for a particle with spin in a magnetic field �B, for example, H is given by
H = �B . �S, with �S the spin operator. At the physicist’s level of rigor, and for the purposes

∗ As I said in the Preface, I assume that most readers have at least a nodding acquaintance with quantum
mechanics. Evidently, I can only describe the minimum necessary to appreciate the role of group theory in
quantum mechanics.

† Later in this text, I will often choose units such that � = 1.
‡ I use E here instead of the more standard E in order to reserve E for later use.
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here, we can simply think of any linear operator, includingH , as a matrix,4 albeit often an
infinite dimensional one.

Degeneracy was a mystery

The Hamiltonian H has eigenfunctions ψα with eigenvalues Eα and with the index∗ α
possibly taking on an infinite number of values:

Hψα = Eαψα (3)

(Here we temporarily suspend the repeated index summation convention.)
In general, Eα �= Eβ for α �= β. But often, among all these eigenfunctions ψα, there may

exist a subset (call them ψa) with a = 1, . . . , d, having exactly the same eigenvalue, call
it E:

Hψa = Eψa , with a = 1, . . . , d (4)

Assume that these eigenfunctions are finite in number, so that d <∞. The set of eigen-
functions ψa is said to exhibit a d-fold degeneracy. The important point is that E does not
depend on a.

In the early days of quantum physics, the existence of degeneracy was enormously
puzzling. When you diagonalize a matrix, the eigenvalues will in general be distinct. It
became clear that there must be a reason behind the degeneracy. (Also, do not forget the
heroic experimental task of unraveling the degeneracy, given that in atomic spectroscopy,
experimentalists could only measure the energy difference |Eα − Eβ|, so that degeneracy
resulted in many lines superposed on top of one another. The situation was only clarified
after tremendous experimental efforts.)

Symmetry implies degeneracy

Eventually, it was realized that degeneracy has a natural explanation. In quantum mechan-
ics, transformations are realized as unitary operators T . Suppose a set of transformations
leave H invariant, so that

T †HT =H (5)

Then, as explained in chapter I.1, these transformations form a group G: if the transfor-
mations T and T ′ each leave H invariant, then the transformation T . T ′, which consists
of the transformation T ′ followed by the transformation T , clearly leavesH invariant. The

∗As in most instances in this textbook, whether I write an index as a superscript or a subscript has no particular
significance.
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T s form a symmetry group. For example,G could be the rotation group SO(3). Since T is
unitary, T †= T −1, we can write (5) as

HT = TH (6)

Given that T leaves H unchanged, its action on ψa produces an eigenstate of H with
the same energy E. More explicitly, if Hψa = Eψa, then, according to (6),

H(T ψa)=HTψa = THψa = T Eψa = E(T ψa) (7)

Sinceψ ′a = T ψa is an eigenstate ofH with energyE, it has to be a linear combination of the
ψas: ψa→ ψ ′a = (D(T ))abψb. If the transformation T1 is followed by the transformation
T2, so that we have effectively the transformation T2T1, then D(T2T1)=D(T2)D(T1).

The crucial fact about quantum mechanics is of course that, unlike classical mechanics,
it is linear, and linear superpositions of states are also acceptable states. Consider the
linear vector space spanned by the d degenerate eigenstates, that is, the set of all linear
combinations of the ψas, namely

∑
a caψ

a for ca a bunch of numbers. On this space, the
Hamiltonian H is just a d-by-d identity matrix multiplied by E.

From degeneracy to group representations

Given this entire setup, you can now see that the d degenerate eigenstates ψa furnish a
d-dimensional irreducible representation of the group G.

If we know, or could guess, whatG is, this also determines what the possible values of d
are, since group theory fixes the possible irreducible representations of G. This turns out
to be of great importance in the development of quantum physics—especially of particle
physics.

Conversely, given experimental information on the degeneracy, we can turn the logic
around and try to determine what G might be. In particular, G has to have at least one
d-dimensional irreducible representation.

Thus, in quantum physics

G�⇒ degeneracy and G⇐� degeneracy

d = degrees of degeneracy= dimension of irreducible representation

The word “degenerate” has a rather negative connotation in everyday usage, but in the
history of quantum physics it is regarded very favorably, as the condition can shed some
light on the underlying symmetry group.

For example, among the subnuclear particles discovered in the 1950s were eight baryons
(“heavy particles,” that is, heavy compared to the electron; these include the proton and
the neutron) approximately equal in mass. Particle physicists raced each other to find a
group with an 8-dimensional irreducible representation (more in chapter V.2).
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Connection to Schur’s lemma: What group theory can and cannot tell you

The reader can now see that the derivation of Schur’s lemma in chapter II.2 parallels
exactly the discussion here.5 The H that commutes with all the d-by-d matrices D(g) in
an irreducible representation of a group G corresponds to the Hamiltonian here. Schur
tells us that in the d-dimensional subspace, the Hamiltonian H is simply equal to some
constant times the identity, which is precisely what we mean when we say that d energy
levels are degenerate.

Dr. Feeling wanders by. “In hindsight, it’s almost obvious. If a bunch of states get
transformed into one another by some symmetry group, which by definition leaves the
Hamiltonian unchanged, you would think that these states all have the same energy. In a
sense, the Hamiltonian cannot tell these states apart.”

Indeed, Schur’s lemma is even more powerful if a collection of states form a reducible
representation of the symmetry group. In that case, in some basis, the representation
matrices are block diagonal:

D(g)=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0

0 D(r)(g) 0 0

0 0 D(s)(g) 0

0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
for all g ∈G (8)

Then we know that the Hamiltonian has the form (as discussed in chapter II.2)

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0

0 E(r)I 0 0

0 0 E(s)I 0

0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(9)

In many cases, this enables us to diagonalize the Hamiltonian with almost no work. We
know that the energy levels break up into a collection of degenerate states (d(r) states with
energy E(r), d(s) states with energy E(s), and so on), with group theory telling us what the
numbers d(r) and d(s) are.

But of course group theory cannot tell you what the E(r)s are.
Think of it this way. Change the Hamiltonian without changing the symmetry group.

For example, take the Schrödinger equation with a central force potential V (r). Imagine
changing V (r) smoothly. The energy levels would move up and down, but as long as V
remains a function of r , rather than of x, y, and z separately, then the degeneracy in the
energy spectrum due to rotational symmetry cannot change.
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Parity

After this very brief set up, our first example is almost laughably simple, involving a
laughably simple group. Consider a particle moving in a potential in one dimension and
suppose V (x)= V (−x). Then the Hamiltonian H =− 1

2m
d2

dx2 + V (x) is left invariant by
the symmetry group Z2, consisting of the identity and the reflection r : x→−x. Given an
eigenfunctionψ(x), the reflection acting on it gives∗ rψ(x)=ψ(−x), which, according to
the discussion above, has the same energy as ψ(x).

Group theory tells us that Z2 has only two irreducible representations, in one of which
r = 1, and in the other r =−1 (more precisely, r is represented by 1 and by −1 in the
two representations, respectively). In one case, ψ(x)= ψ(−x), and in the other, ψ(x)=
−ψ(−x). In conclusion, if V (x)= V (−x), then the solutions of the Schrödinger equation
may be chosen to be either even or odd, something you probably knew from day one of your
exposure to quantum mechanics. Here we have a classic example of using a sledgehammer
to crack open a peanut.

Bloch’s theorem and Brillouin zone

Our next application, significantly less trivial, is of fundamental importance to solid state
physics. Again, a particle moves in a potential V (x) in one dimension, but now suppose
V (x + a)= V (x) is periodic but otherwise unspecified. The symmetry group consists of
the elements {. . . , T −1, I , T , T 2, . . .}, where T denotes translation by the lattice spacing
a: x→ T x = x + a.

Since the group is abelian, it can only have 1-dimensional irreducible representations.
Henceψ ′(x)≡ T ψ(x)= ζψ(x), so that T is represented by a complex number ζ . But since
wave functions are normalized,

∫
dx|ψ ′(x)|2= ∫ dx|ψ(x)|2, we have |ζ | = 1. Thus, we can

write ζ = eika with k real (and with dimension of an inverse length). Since ei(ka+2π)= eika,
we may restrict k to the range

−π
a
≤ k ≤ π

a
(10)

This range is the simplest example of a Brillouin zone.†

For a 1-dimensional lattice consisting of N sites, we impose periodic boundary condi-
tions and thus require T N = I . The symmetry group is just the familiar cyclic group ZN .
The condition eiNka = 1 thus implies that k = (2π/Na)j with j an integer. For N macro-
scopically large, the separation �k between neighboring values of j , of order 2π/Na, is
infinitesimal, and so we might as well treat k as a continuous variable ranging from6 −π

a

to π
a

.

∗ The pedant would insist on distinguishing between the transformation acting on x and the transformation
acting on ψ(x), introducing more notation, such as r and Tr , and perhaps also inventing some fancy words to
scare children.

† Needless to say, this hardly does justice to the subject, but this is not a text on solid state physics for sure.
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It is convenient and conventional to write

ψ(x)= eikxu(x) (11)

with u(x + a)= u(x). This statement is known as Bloch’s theorem. (Of course, any ψ(x)
can be written in the form (11); the real content is the condition u(x + a)= u(x).)

Note that this is a general statement completely independent of the detailed form of
V (x). Given a specific V (x), the procedure would be to plug (11) into the Schrödinger
equation and solve for u(x) for the allowed energy eigenvalues, which of course would
depend on k and thus can be written as En(k). As k ranges over its allowed range, En(k)
would vary, sweeping out various energy bands labeled by the index n.

While both of these applications of group theory to quantum mechanics are important,
they both involve abelian groups with their relatively simple structure. The most celebrated
application of group theory during the early years of quantum mechanics, as is well known,
is to atomic spectroscopy and involves the nonabelian rotation group SO(3), but before
discussing this, we will have to wait until we work out its irreducible representations in
chapters IV.2 and IV.3.

Appendix: Ray or projective representation

One peculiar feature of quantum mechanics is that the wave functions ψ and eiαψ , with eiα an arbitrary
phase factor, describe exactly the same state. In other words, since the Schrödinger equation (1) is linear,
the wave function can be determined only up to a phase factor. Thus, the group representation condition
D(T2T1)=D(T2)D(T1) we derived earlier, when we follow a transformation T1 by another transformation T2,
should be generalized to D(T2T1)= eiα(T2,T1)D(T2)D(T1), with α(T2, T1) depending on T1 and T2 as indicated.7

This generalized type of group representation is sometimes called a ray or projective representation. This freedom
to include a phase factor has spawned a subject known as cocycles8 in group representation theory.

Exercises

1 Let ψa be a set of degenerate wave functions that transform under a symmetry group like ψa→ ψ ′a =
(D(T ))abψb. Show that D(T2T1)=D(T2)D(T1).

Notes

1. When I was an undergraduate, Eugene Wigner was the éminence grise of the physics department in
Princeton, the Nobel laureate who had witnessed the birth of quantum mechanics and all that. According to
a limerick I learned from the chairman’s wife,

There is a clever fellow named Eugene,
Who invented a wonderful sex machine,
Concave or convex,
It fits either sex,
And besides, is very easy to clean.

2. E. P. Wigner, Comm. Pure Appl. Math. 13 (1960), p. 1.
3. On the thirtieth anniversary of Wigner’s essay, a volume of essays was published. See A. Zee, “The Un-

reasonable Effectiveness of Symmetry in Fundamental Physics,” ed. R. S. Mickens, Mathematics and Science,
World Scientific, 1990.
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4. This statement, now regarded as a vulgarization of profound mathematics by physicists, was of course once
a most profound insight in theoretical physics. When Werner Heisenberg showed Pascual Jordan what he
had done during his vacation, Jordan allegedly exclaimed, “Hey dude, these are matrices!” This is the version
told to me by a postdoc. In more orthodox accounts, Max Born is usually credited as telling Heisenberg about
matrices.

5. We even had the foresight to use the same letter, hee hee.
6. See also interlude VII.i2.
7. For a careful discussion, see S. Weinberg, The Quantum Theory of Fields, vol. 1, pp. 50–53.
8. For the reader wishing to learn more, see L. D. Faddeev, Phys. Lett. 145B (1984), p. 81. A considerable

literature exists; the paper I am most familiar with is Y-S. Wu and A. Zee, Phys. Lett. 152B (1985), p. 98.



III.2 Group Theory and Harmonic Motion: Zero Modes

Group theory plays a more important role in quantum mechanics
than in classical mechanics

Many beginning students of physics do not realize that, arguably, quantum mechanics
is mathematically simpler than classical mechanics: quantum mechanics is linear, while
classical mechanics is nonlinear.

Take F =ma for a single particle:md
2�x
dt2
=−�∇V (�x). Let �x1(t) and �x2(t) be two solutions.

There is no sense that the linear combination �x(t)= a1�x1(t)+ a2�x2(t) for two numbers a1, 2

is also a solution: in the central force problem, for example, you can’t add two elliptical
orbits together to get another orbit. In contrast, if ψ1(t) and ψ2(t) are solutions of the
Schrödinger equation i� ∂

∂t
ψ = Hψ , then ψ(t) = a1ψ1(t) + a2ψ2(t) is also a solution.

Thus, in some sense, classical mechanics is significantly more difficult∗ than quantum
mechanics.

The linear superposition principle is why group theory plays a much more important
role in quantum mechanics than in classical mechanics, as was explained in chapter III.1.
Wave functions furnish a representation of the symmetry transformations that leave H
invariant.

Harmonic systems of springs and masses

The exception in classical mechanics is when the force �∇V (�x) is linear in �x, namely,
the important case of harmonic oscillation in classical mechanics. Consider the proto-
typical case† of N particles of equal mass tied together by ideal springs and moving in

∗ Of course, classical mechanics is easier to grasp, because it is closer to our everyday experiences. Further-
more, we can also say that nobody understands quantum mechanics, precisely because it is so remote from our
everyday experiences and logic.

† Often used as a model for studying molecular vibrations.
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D-dimensional space. The deviation of the particles from their equilibrium positions pro-
vides the relevant coordinates. Denote the coordinates of the ath particle (a = 1, . . . , N ) by
xi
a

(i = 1, 2, . . . ,D). Absorb the common mass into the spring constant and write Newton’s
law in the form∗

d2xi
a

dt2
=−

N∑
b=1

D∑
j=1

Hia , jbx
j

b (1)

(We are again temporarily suspending the repeated summation convention.) This system
of equations is entirely linear, and thus linear combinations of solutions are also solutions.

Indeed, assemble the coordinates xi
a

into a DN -dimensional vector xA, A= 1, 2, . . . ,
DN . Set† xA(t)= xA sin(ωt + φ), thus obtaining the eigenvalue equation (reverting to the
repeated index summation convention)

HABxB = ω2xA (2)

As is well known, (2) has the same mathematical form as the eigenvalue problem in
quantum mechanics. In fact, as is also well known, harmonic motion (as typified by (2))
of all types, including sound waves, served as the inspiration for quantum mechanics and
in particular for Schrödinger’s equation.

The real symmetric matrixH will have in generalDN eigenvalues ω2
α

and eigenvectors
xA
α

with α = 1, 2, . . . , DN . The vector xA
α

for a given α describes the αth eigenmode or
harmonic mode with eigenfrequency squared ω2

α
.

All this will become clear with a couple of examples.

The power of group theory

Even for relatively simple cases, the DN -by-DN matrix HAB can be quite a mess (see
the appendix in chapter III.3) to write down and an affront to the eyes. But if the system
of springs and masses, or the “molecule,” exhibits a symmetry, then H will be invariant
under a group of transformations. The awesome power of group theory then manifests
itself. Using the character table and a touch of physical intuition, we can often figure out
what the harmonic modes are without even writing down H . In favorable cases, we can
even learn a lot about the eigenfrequencies.

Let us sketch the approach to be followed here, which amounts to an application of
Schur’s lemma and its consequences. The action of the symmetry transformation on the
masses gives aDN -dimensional representationD(g) of the symmetry groupG. Since we
know how the coordinates xi

a
change under the transformation g, in principleD(g) is easily

written down, although in practice some tedious work would be involved. Fortunately, as
we learned, the characters of the representation often suffice. Once we know the characters,

∗ In particular, for a single particle moving in one dimension, we have the familiar d2x
dt2
=−Hx.

† Hereφ is an irrelevant phase shift. Or better, set xA(t)= xAeiωt if you are familiar with the complex formalism
for oscillatory phenomena.
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we know how D(g) falls apart into the irreducible representations of G, as pictured in
(II.2.7), which I reproduce here for your convenience:

D(g)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0

0 D(r)(g) 0 0 0

0 0
. . . 0 0

0 0 0 D(s)(g) 0

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for all g ∈G (3)

Recall also that the number of times nr the irreducible representation r appears is deter-
mined by∑

c

ncχ
∗(c)χ(c)=

∑
c

nc

∑
r , s

nrnsχ
∗(r)(c)χ(s)(c)=N(G)

∑
r , s

nrnsδ
rs =N(G)

∑
r

(nr)
2 (4)

and∑
c

ncχ
∗(r)(c)χ(c)=

∑
c

nc

∑
s

nsχ
∗(r)(c)χ(s)(c)=N(G)nr (5)

Schur’s lemma then tells us that in the basis in which (3) is written, H has the form

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0

0 ω2
(r)
Idr 0 0 0

0 0
. . . 0 0

0 0 0 ω2
(s)
Ids 0

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(6)

with Id the d-by-d identity matrix.
Group theory cannot tell us what the eigenfrequencies ω(r) are—that clearly has to do

with the details of the system and what is sometimes called dynamics in physics—but it
does tell us how many modes have the eigenfrequencyω(r). That is given by the dimension
dr of the irreducible representation r . This is completely analogous to the situation in
quantum mechanics: group theory can determine the pattern of degenerate levels in the
energy spectrum, but it cannot tell us what the energies of the levels are.

Zero mode

After all this formalism, some examples, as was already promised, would be most welcome.
One issue in pedagogy concerns the simplicity of the examples to be given (as I already
said in chapter II.3). If the example is too simple, then it could provoke yawns, and worse,
obscure or negate the power of the formalism just developed. But if the example is too
complicated, it could hide the trees as well as the forest. In any case, we will start with an
almost ridiculously simple example, that of two (equal) masses connected by a spring and
moving in 1-dimensional space. See figure 1.
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Figure 1

We can write down Newton’s equations of motion by inspection: d
2x1
dt2
=−(x1− x2) and

d2x2
dt2
=−(x2 − x1), which we can of course solve immediately. But that’s not the point;

instead, we would like to see how the group theoretic formalism works.
From the equations of motion we can read off 1

H =
(

1 −1

−1 1

)
(7)

(Throughout this chapter, I will absorb all irrelevant constants.)
The symmetry group here is S2, consisting of the identity I and the element (12)

exchanging particles 1 and 2. The character table is trivially constructed; we barely have to
use any of the powerful theorems∗ in chapters II.2 and II.3. But do construct the table for
practice before reading on.

Here it is.

(8)

S2 nc c 1 1̄

1 I 1 1

Z2 1 (12) 1 −1

The group has two elements, separating into two classes each with one element, and two
irreducible representations, called the 1 and the 1̄, also known as even and odd in this
context.

The DN = 2 . 1= 2 representation furnished by the two masses is simply given by

D(I)=
(

1 0
0 1

)
and D((12))=

(
0 1
1 0

)
(that is, in the same basis as used in (7)).

In the basis in which theD(g) are diagonal, consisting of two 1-by-1 blocks, that is, the

basis in which D((12))=
(

1 0
0 −1

)
, Schur’s lemma forces H to have the diagonal form in

(6), namely,† H =
(

0 0
0 2

)
.

We see that there exists a mode with ω= 0, known as a zero mode.2 To understand what
it means, go back to when we solve the time dependence by setting xA(t)= xA sin(ωt + φ).
Zero frequency ω = 0 actually does not mean that xA(t) does not depend on time. Since
Newton’s equation, unlike the Schrödinger equation, involves the second derivative in
time, xA(t) can actually be a linear function of time for ω = 0. Indeed, we now recognize
this zero mode as the center of mass motion of the whole system, moving at some constant
velocity. The eigenfrequency is zero precisely because the two masses are moving with the
same velocity: the spring is not stretched at all.

∗ For example, 12 + 12 = 2.
† The form of H is easily determined by noting that in (7), tr H = 2 and det H = 0.



172 | III. Group Theory in a Quantum World

Figure 2

Of course, we do not need fancy schmancy group theory to tell us all this; we could have
read off the zero eigenvalue merely by looking atH in (7). Indeed, this follows immediately
from det H = 0. The corresponding eigenvector is xA = (1, 1), which again says that the
two masses cruise along together.

As has been repeatedly emphasized, group theory alone cannot tell us what the nonzero
eigenfrequency is. However, linear algebra tells us that sinceH is real symmetric, the other
eigenvector must be orthogonal to the eigenvector (1, 1) we already have, and hence can
only be xA = (1, −1). Letting H act on this, we determine by inspection that ω2= 2. This
is known as a breathing mode for obvious reasons: the two masses are moving in opposite
directions, and the whole system expands and contracts as in breathing.

We could have gotten all this by using (4) and (5). Without writing down theDN = 2 . 1=
2 representation furnished by the two masses, we know that the characters are χ(I)= 2
(as always, this is just the dimension of the representation) and χ((12))= 0 (since the
exchange matrix D((12)) has zero diagonal elements by definition). From (4) and (5), we
deduce easily that n1= 1 and n1̄= 1.

Well, talk about cracking a peanut with a sledgehammer!

The triangular “molecule”

Our next example involves the triangular molecule shown in figure 2, with motion re-
stricted to the 2-dimensional plane, that is, a molecule consisting of three identical hockey
pucks connected by identical springs and gliding on frictionless ice. The problem is con-
siderably less trivial. In fact, even writing down the matrix H is quite a chore,3 but as I
said, the whole point is that group theory allows us to avoid doing that.

The invariance group is S3, whose character table was constructed in chapter II.3:

(9)

S3 nc 1 1̄ 2

1 I 1 1 2

Z3 2 (123), (132) 1 1 −1

Z2 3 (12), (23), (31) 1 −1 0

The group consists of six elements divided into three equivalence classes. There are only
three irreducible representations, known as 1, 1̄, and 2, according to their dimensions.
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The triangular molecule provides us with aDN = 3 . 2= 6-dimensional representation

whose characters we could write down almost immediately as χ(c)=
(

6
0
2

)
. For the benefit

of some readers, remember how this comes about. The 6 is just the dimension of the rep-
resentation; χ((123))= 0, since every mass or “atom” is moved under the transformation,
so that all diagonal elements in the representation matrix vanish; and finally χ((12))= 2,
since the x and y coordinates of atom 3 are untouched.

Plugging in (4), we obtain 1 . 62 + 2 . 02 + 3 . 22 = 6
∑
r n

2
r
, and so

∑
r n

2
r
= 8. The

possible solutions are (i) 12+ 12+ 12+ 12+ 12+ 12+ 12+ 12= 8, (ii) 12+ 12+ 12+ 12+
22= 8, and (iii) 22+ 22= 8.

But let’s not forget the zero modes. We know of two: translating the whole system in the
x direction and in the y direction. This furnishes a 2-dimensional representation under
the invariance group, and so we know the irreducible representation 2 occurs at least once,
which means that solution (i) is ruled out. (It seems very unlikely anyway, for the given
representation to break into eight 1-dimensional pieces.)

As we remarked in chapter II.3, the constraints from group theory are so tightly
interlocking that we can afford to forget all sorts of things, such as the physical argu-
ment about translation, since we are going to plug in (5) anyway. Write it in the form
nr =

∑
c ncχ

∗(r)(c)χ(c)/N(G). We obtain

n1= (1 . 1 . 6+ 2 . 1 . 0+ 3 . 1 . 2)/6= 2

n1̄= (1 . 1 . 6+ 2 . 1 . 0+ 3 . (−1) . 2)/6= 0

n2= (1 . 2 . 6+ 2 . (−1) . 0+ 3 . 0 . 2)/6= 2 (10)

Solution (iii), 22+ 22= 8, is the right one: n1= 2, n1̄= 0, and n2= 2.
In this example, (6) is realized in the form (remember thatDN = 2 . 3= 6, and so H is

a 6-by-6 matrix)

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2
(1) 0 0 0 0 0

0 ω′2
(1) 0 0 0 0

0 0 ω2
(2) 0 0 0

0 0 0 ω2
(2) 0 0

0 0 0 0 ω′2
(2) 0

0 0 0 0 0 ω′2
(2)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

With a combination of physical intuition and mathematical insight, we can readily figure
out these harmonic modes. We already know about the two translational zero modes, as
shown in figure 3a. There is also a rotational zero mode, as shown in figure 3b.

Confusio mumbles, “Shouldn’t there be two, one clockwise, and one anticlockwise?”
No, Newton’s equation involves the second derivative in time and thus is time-reversal

invariant. The anticlockwise motion is just the clockwise motion time reversed. Another
way of saying this is to notice that (2) determines ω2, not ω. Also, Confusio can’t be right,
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(a) (b)

(c) (d)

Figure 3

because if he were, then we would also count four, not two, translation zero modes, for
translation in the ±x and ±y directions.

That takes care of one of the two 1-dimensional representations. Physically, we recognize
the breathing mode, being invariant under S3, furnishes a 1-dimensional representation.
See figure 3c.

How about the other 2-dimensional representation? Linear algebra tells us that the
eigenvectors of a real symmetric matrix are orthogonal to one another. Since we already
know four of the six eigenvectors (two translations, one rotation, and one breather), it is
easy to determine the 2-dimensional subspace. These two modes are shown in figure 3d.

If you want to determine the actual frequencies, then you have to find the eigenvalues of
aDN -by-DN matrix. ForDN large, numerical methods may be the last resort.4 However,
group theory can still be of help. In the example discussed here, we know that in (11),
three frequencies vanish, and thus we have to deal with only a 3-by-3 matrix instead of
a 6-by-6 matrix. Furthermore, since two of the three eigenvalues are known to be equal
by group theory, we know that the equation for the eigenvalues must have the form
(λ− a)(λ− b)2= 0.

Exercises

1 Let us make the “ridiculously simple” example of two masses connected by a spring and moving in one
dimension a bit less simple by having two unequal masses. Without writing down any equations, do you
think that there is a zero mode?

2 Use the Great Orthogonality theorem (II.2.2) to derive the projection operators into the desired modes.
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Notes

1. It is also instructive to obtain this using the formalism given in the appendix to chapter III.3: for D = 1, all
vectors are just numbers, in particular, X̂0

12 = 1 and V = 1
2x

2
12 = 1

2 (x1− x2)
2 = 1

2
∑
a ,b xaH

abxb.
2. This has turned out to be an important concept in quantum field theory and in condensed matter physics.
3. It is straightforward (but tedious) to write down H , using the formalism in the appendix to chapter III.3.

The relevant matrix is given explicitly in A. Nussbaum, Am. J. Phys. 36 (1968), p. 529, and solved in D. E.
O’Connor, Am. J. Phys. 39 (1971), p. 847.

4. As Nussbaum did (see previous endnote).



III.3 Symmetry in the Laws of Physics:
Lagrangian and Hamiltonian

Physics is where the action is

We talked about the invariance of physical laws as a motivation for group theory back
in chapter I.1. At the level of the equation of motion, what we meant is clear: the left and
right hand sides have to transform in the same way under the symmetry transformation. In
particular, in the case of rotational invariance, force and acceleration both have to transform
as a vector for �F =m�a to make sense. Otherwise, Newton’s force law would depend on
how we orient the Cartesian coordinates. More generally, in the equations of motion of
physics, every term has to transform in the same way; the equation is said to be covariant.

Here we go over alternative formulations in which the manifestation of symmetry
is made even simpler and more transparent. We begin with a lightning review1 of the
Lagrangian, and later of the Hamiltonian, for those readers unfamiliar or rusty with these
two concepts from classical mechanics. The Lagrangian will be needed in chapter IV.9
and in some chapters in parts V and VII, while the Hamiltonian has already been used in
chapter III.1.

For a particle moving in one dimension in a potential, Newton with hisma = F tells us
that

m
d2q

dt2
=−V ′(q) (1)

with q the position of the particle. Lagrange2 and others discovered later that this could be
formulated as an action principle, with the action defined by the integral

S(q)≡
∫
dtL

(
dq

dt
, q
)
=
∫
dt

{
1
2
m

(
dq

dt

)2

− V (q)
}

(2)

In the simplest example of a particle moving in one dimension, the Lagrangian is given
by its kinetic energy minus its potential energy

L= 1
2
m

(
dq

dt

)2

− V (q) (3)
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What does the action principle say?
The action S(q) is a functional3 of the path q(t). With each path, we assign a real number,

namely, the action S(q) evaluated for that particular path q(t). We are then instructed
to vary S(q) subject to the condition that the initial and final positions q(ti) = qi and
q(tf )= qf are to be held fixed.

The particular path q(t) that extremizes the action S(q) satisfies Newton’s law. Often,
the more profound a truth is in theoretical physics, the simpler the demonstration is. Here,
too, the demonstration is almost laughably simple. We vary the action:

δS(q)=
∫
dtδL

(
dq

dt
, q
)
=
∫
dt

(
δL

δ
dq
dt

δ
dq

dt
+ δL
δq
δq

)
(4)

Using δ dq
dt
= d(q+δq)

dt
− dq

dt
= dδq

dt
, integrate the first term in (4) by parts to obtain

δS =
∫
dt

(
d

dt

(
δL

δ
dq
dt

)
− δL
δq

)
δq(t) (5)

The boundary terms vanish, because the initial and final positions are held fixed. The action
is extremized when δS vanishes, which implies, since δq(t) is arbitrary, the Euler-Lagrange
equation

d

dt

(
δL

δ
dq
dt

)
− δL
δq
= 0 (6)

To be precise and pedantic, I stress that the notation means the following. We pretend
that L(a , b) is an ordinary function of two variables a and b. By δL

δ
dq

dt

we mean ∂L(a ,b)
∂a

with

a subsequently set equal to dq
dt

and b to q(t). Similarly, by δL
δq

we mean ∂L(a ,b)
∂b

with a

subsequently set equal to dq
dt

and b to q(t).

Switching from Leibniz’s notation to Newton’s notation ḟ (x)= df
dx

, we can write the
Euler-Lagrange equation (5) in the elegantly4 compact form

˙δL
δq̇
= δL
δq

(7)

This equation, suitably generalized to quantum fields, underlies all known dynamics in
the universe (we will come back to this eventually, in parts VII and VIII).

Applied to the Lagrangian (3), we obtain (1): δL

δ
dq

dt

=mdq
dt

and δL
δq
=−V ′(q), and thus (6)

states that d
dt
(m

dq
dt
)+ V ′(q)= 0, namely, ma = F .

Note that the minus sign in the definition of the Lagrangian is absolutely necessary. For
the harmonic oscillator, V (q)= 1

2kq
2, and the equation of motion (6) reads mq̈ =−kq,

which is immediately solved by∗ q ∝ e−iωt with ω =√k/m.

∗ It is understood, as is standard, that the real part is to be taken.
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Local versus global

Newton’s equation of motion is described as “local” in time: it tells us what is going to
happen in the next instant. In contrast, the action principle is “global”: one integrates
over various possible trajectories and chooses the best one.5 While the two formulations
are mathematically entirely equivalent, the action principle offers numerous advantages6

over the equation of motion approach. Perhaps the most important is that the action leads
directly to an understanding of quantum mechanics via the so-called Dirac-Feynman path
integral, but that is another story for another time.

Historically, the action principle was inspired by Fermat’s least time principle for light,
which, by the way, goes all the way back to Heron of Alexandria (circa 65 A.D.). The
least time principle has a strongly teleological flavor—that light, and particularly daylight,
somehow knows how to save time—a flavor totally distasteful to the postrational palate.
In contrast, during Fermat’s time,7 there was lots of quasitheological talk about Divine
Providence and Harmonious Nature, so no one questioned that light would be guided
to follow the most prudent path. After the success of the least time principle for light,
physicists naturally wanted to find a similar principle for material particles.

Richard Feynman recalled that when he first learned of the action principle, he was
blown away. Indeed, the action principle underlies some of Feynman’s deepest contribu-
tions to theoretical physics, as was alluded to above.

The laws of physics and symmetry

At the start of this chapter, I mentioned that a law of physics enjoys a symmetry if the
different terms in the equation of motion transform in the same way. In the least action
formulation, the presence of a symmetry can be stated even more simply: the action S
has to be invariant under the symmetry transformation; that is, S does not change. In
other words, S must transform like a singlet. Put yet another way, S belongs to the trivial
representation of the symmetry group. Again, the reason is clear: otherwise, the action S
associated with each path would depend on how we orient the Cartesian coordinates.

All these statements about the action apply, in most∗ cases, to the Lagrangian as well:
L has to be invariant under the symmetry transformation. The simplest example is that
of a particle moving in a spherically symmetric potential. The Lagrangian is easy to
write down, since we know that out of a vector �q there is only one invariant we can
form, namely, the scalar product �q . �q. Thus, L must have the form (compare with (3))

L= 1
2m(

d �q
dt

. d �q
dt
)− V (|�q|), where |�q| = (�q . �q) 1

2 denotes the length of the vector �q. The
rotation group is almost too familiar to be of much pedagogical value in this context.

∗ This caveat covers those cases in which δL does not vanish but is a total time derivative, so that with fixed
initial and final conditions, δS still vanishes.
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In general, the relevant symmetry group might be much less familiar than the rotation
group. For example, we could have four equal masses connected by six identical springs
to form a tetrahedron. The symmetry group would then be our old friend A4 from part II.

The Hamiltonian

After Lagrange invented the Lagrangian, Hamilton invented the Hamiltonian.∗

Given a Lagrangian L(q̇ , q), define the momentum by p = δL
δq̇

and the Hamiltonian by

H(p , q)= pq̇ − L(q̇ , q) (8)

where it is understood that q̇ on the right hand side is to be eliminated in favor of p.
Let us illustrate this procedure by a simple example. Given the Lagrangian L(q̇ , q)=

1
2mq̇

2 − V (q) in (3), we have p = mq̇, which is precisely what we normally mean by
momentum. The Hamiltonian is then given by

H(p , q)= pq̇ − L(q̇ , q)= pq̇ − 1
2
mq̇2+ V (q)= p2

2m
+ V (q) (9)

where in the last step we wrote q̇ = p/m. You should recognize the final expression as the

total energy, namely, the sum of the kinetic energy p2

2m and the potential energy V (q). The
Hamiltonian represents the total energy of the system.

Given a Hamiltonian H(p , q), Hamilton postulated the equations8

q̇ = ∂H
∂p

, ṗ =−∂H
∂q

(10)

For the Hamiltonian in (9), these equations read q̇ = p
m

and ṗ =− ∂V
∂q

. Plugging the first
equation into the second, we obtainmq̈ =−V ′(q), thus recovering the correct equation of
motion.

The role of formalism in theoretical physics

Practical minded theoretical physicists would question the utility of introducing the La-
grangian and the Hamiltonian. These alternative formulations merely rewrite Newton’s
equation of motion, they might snort. Indeed, the theoretical physics literature is full of
papers that many practitioners dismiss as mere formalism. Most of them do deserve to be
consigned to the dustbins of history. But in a few cases, in particular the Lagrangian and
the Hamiltonian (otherwise we would hardly be talking about them here), the formalism
turns out to be of central importance and points the way toward further developments.
In chapter IV.9, we will see that from the Lagrangian, it is but a short skip and hop to
quantum field theory.

∗ There is of course a lot more to the Hamiltonian than given here, but this is all we need.
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As for the Hamiltonian, it is well known that quantum mechanics was born when
Heisenberg promoted q and p, and hence H , to operators. (Indeed, we already invoked
this fact in chapter III.1.) We will discuss this further in chapter IV.2.

Take home message: Invariance easier than covariance

Given a Lagrangian, we have to vary it to obtain the equation of motion. For normal
everyday use, we might as well stick with the equation of motion. But when symmetry
comes to the fore and assumes the leading role, it is significantly easier to render the
Lagrangian invariant than to render the equation of motion covariant. For the familiar
rotation group, the advantage is minimal; however, when we come to more involved
symmetries, finding the correct Lagrangian is usually much easier than finding the correct
equation of motion. Indeed, as an example,9 when Einstein searched for his theory of
gravity, he opted for the equation of motion. He could have saved himself a considerable
amount of travail if he had determined the relevant Lagrangian instead.

Symmetry and conservation

No free lunch in physics! What I mean to say is that conservation laws abound in physics:
energy is conserved, momentum is conserved, angular momentum is conserved, the
number of quarks in the universe is conserved, the list goes on and on. Emmy Noether,
arguably the deepest woman physicist who ever lived, had the profound insight that
each conservation law is associated with a continuous symmetry of the Lagrangian. For
example, angular momentum conservation corresponds to invariance of the action under
the rotation group SO(3).

Once again, group theory reigns supreme. Indeed, each conserved quantity corresponds
to a generator of the Lie algebra. I cannot go into further details here,10 but mention the
Noether relation between conservation and symmetry for future reference.

Appendix: Harmonic motion

Let us consider N equal masses tied together by (ideal, of course) springs and moving in D-dimensional space.
As in chapter III.2, denote the small deviation of the ath particle (a = 1, . . . , N ) from its equilibrium position
by xi

a
(i = 1, 2, . . . , D). Then to leading order in x, the Lagrangian has the form

L=
N∑
a=1

D∑
i=1

1
2
m

(
dxi
a

dt

)2

−
N∑

a ,b=1

D∑
i , j=1

xi
a
H ia , jbx

j

b (11)

Since x measures the deviation from equilibrium, in the potential energy the terms linear in x must vanish,
leaving us with terms quadratic in x. (Terms that do not depend on x do not enter into the Euler-Lagrange
equation.)

Assemble the coordinates xi
a

into a DN -dimensional vector xA, A = 1, 2, . . . , DN . Then xA furnishes a
representation of the symmetry groupG, whatever it might be. Under a symmetry transformation, xA→WABxB
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for some set of matrices W . For the Lagrangian to be invariant, the real symmetric matrix H must satisfy
WTHW =H .

It may be instructive to work out the matrix H explicitly. Consider the Lagrangian L = 1
2m
∑
a(
d �Xa
dt
)2 −∑

a<b V (
�Xa − �Xb) for N particles of equal mass. Denote the equilibrium positions by �X0

a
, and write �Xa(t)=

�X0
a
+ �xa(t). Introduce the self-evident notation �Xab ≡ �Xa − �Xb, �X0

ab
≡ �X0

a
− �X0

b
, and �xab ≡ �xa − �xb. Next, expand∑

a<b V (
�Xa − �Xb) to quadratic order in the small deviations �xab. The linear terms sum up to 0 by definition.

To first order in x, we have | �X| = | �X0 + �x| =
√
( �X0)2 + 2 �X0 . �x + �x2 � | �X0| + X̂0 . �x, where X̂0 ≡ �X0/| �X0| is

the unit vector in the direction of �X0.
Take V ( �Xab) to have the form f (| �Xab| − l), for example, with l the unstretched length of the spring, say. For

f (| �X| − l)= 1
2k(| �X| − l)2 with l = | �X0|, we obtain, in the harmonic approximation,

L= 1
2
m
∑
a

(
d �xa
dt

)2

−
∑
a<b

1
2
k(X̂0

ab
. �xab)2 (12)

To obtain the equation of motion, we plug L into (6); but it is even simpler than that. We merely have to note
that the potential energy term in L is quadratic in the collection of xs, and so the δL

δq
term in (6) is linear in the

xs. We obtain (III.2.1) in general.
The explicit expression for H can be a bit of a mess, as we could see from (12). For example, for the toy

tetrahedral “molecule” alluded to earlier, we are going to have factors like
√

3 all over the place. But, as was
explained in chapter III.2, the power of group theory is such that for many purposes, a detailed knowledge of H
(which, as given by a toy model, may be unreliable anyway for a real molecule) may not be necessary.

Notes

1. Detailed discussions can be found in all textbooks on classical mechanics. A particularly congenial treatment
is given in G Nut, chapter II.3.

2. Starting when he was 18, Joseph Louis, the Comte de Lagrange (1736–1813) (who, by the way, was born
Giuseppe Lodovico Lagrangia before the term “Italian” existed), worked on the problem of the tautochrone,
which nowadays we would describe as the problem of finding the extremum of functionals. A year or so
later, he sent a letter to Leonhard Euler (1707–1783), the leading mathematician of the time, to say that he
had solved the isoperimetrical problem: for curves of a given perimeter, find the one that would maximize
the area enclosed. Euler had been struggling with the same problem, but he generously gave the teenager
full credit. Later, he recommended that Lagrange should succeed him as the director of mathematics at the
Prussian Academy of Sciences.

3. A functional is a function of functions; in this case S is a function of q(t). You give S some q(t), and it outputs
a number.

4. At Princeton University there is a church-like gothic building with stained glass windows, each of which is
inlaid with a fundamental equation of physics. One of the equations is (7).

5. Naturally, the action principle suggests a metaphor for life.
6. See G Nut, p. 141.
7. Pierre Fermat (1601 or 1607/08?–1665). The heavy academic controversy over Fermat’s birth year stems from

his father marrying twice and naming two sons from two different wives both Pierre. See K. Barner, NTM 9
(4) (2001), p. 209.

8. Hamilton’s equations are said to have a symplectic structure. Package q and p into a 2-dimensional vector

Z =
(
q
p

)
. Then dZi

dt
= εij ∂H∂Zj , where the totally antisymmetric symbol is defined by ε12 =+1=−ε21. We

will study the symplectic group in chapter IV.8, defined in terms of an antisymmetric symbol J , which
generalizes ε.

9. See G Nut, chapter VI.1.
10. See, for example, G Nut, chapter II.4. The proof is actually very simple.





Part IV Tensor, Covering, and Manifold

No need to be tense about tensors at all. Thanks to index democracy, tensors furnish a clever
device for generating ever larger representations. The SO(N) groups, which generalize the
ordinary rotation group, are used to illustrate this claim.

Another clever trick: introduce raising and lowering operators in the SO(3) algebra. You
can then figure out the allowed representations by climbing up and down a ladder and
requiring it to end at both ends. Creation and annihilation operators represent another
clever trick. You learn how to multiply two representations together and decompose the
product.

The method of tensors is extended to SU(N), with the important consequence that the
indices now have to live on two floors. From SU(N)we specialize to SU(2) and learn about
its many peculiarities. In particular, it double covers SO(3). You will meet the mysterious
spinor that turns out to be crucial for modern physics. The behavior of electron spin under
time reversal leads to a two-fold degeneracy.

You will learn to integrate over continuous groups, some of which have interesting
topologies. The familar sphere appears not as a group manifold, but as a coset manifold.

The symplectic groups and their algebras are studied, with some interesting iso-
morphisms with more familiar algebras.

You will learn that quantum field theory hardly deserves its frightening reputation
among students; it is but a short hop from Lagrangian mechanics.

Finally, in four interludes, we sample some interesting topics, such as crystal field
splitting and special functions such as the one belonging to Bessel.





IV.1 Tensors and Representations of the
Rotation Groups SO(N)

Representing the rotation groups

By now, you know how to represent a finite group. How about representing the continuous
groups, such as SO(N), the rotation group in N -dimensional Euclidean space?

We defined SO(N), back in chapter I.3, as the group of allN -by-N matricesR satisfying

RTR = I (1)

and

det R = 1 (2)

We might as well do things more generally inN -dimensional space; it costs us practically
nothing except for allowing the relevant matrix indices to run all the way up to N instead
of 3. But to help those readers seeing this for the first time focus, I will often specialize to
N = 3. Henceforth, I will jump back and forth between N and 3 without further ado. We
will see later that SO(3) has some special features not shared by SO(N).

So, we already know from (1) and (2) the N -dimensional defining or fundamental rep-
resentation (as well as the trivial 1-dimensional representation, of course). The elements
of the SO(N) are represented, by definition, by the N -by-N matrices transforming the
N unit basis vectors �e1, �e2, . . . , �eN into one another. More precisely, the N -dimensional
irreducible representation is furnished by a vector. Let me stress again that a vector is
defined∗ by how it transforms under a rotation:

V i→ V ′i = RijV j (3)

with i , j = 1, 2, . . . , N .

∗ In chapter II.1, we referred to a column of numbers in a character table as a vector. In the present context,
as in chapter I.3, we revert to a more restrictive definition of a vector, as it appears in physics.
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Several questions and some flying guesses

Several questions naturally suggest themselves (as in chapter II.1). How many irreducible
representations does the rotation group have? How are they to be characterized? What are
their dimensions?

If you are encountering this material for the first time, the answers may be far from
self-evident. Indeed, if I were to tell you that the rotation group for good old 3-dimensional
Euclidean space has a 5-dimensional irreducible representation, it may very well come
as a surprise to you, as it did to me. (Here I am of course not addressing either those
readers previously exposed to the rotation group or those born with devastatingly per-
spicacious mathematical insight.) What are these five beasts living in 3-dimensional
space?

Our understanding of the representation theory of finite groups offers some suggestive
answers to the questions posed above. As indicated in chapter II.1, the theorems we proved
for finite groups depend crucially on the rearrangement identity and on the meaningful-
ness of the sum over group elements. Our intuition suggests that, with some suitable
modifications, they should continue to hold.

Indeed, as proud physicists, let’s take a flying guess at the representations of SO(2).
Consider the finite group ZN , which we may think of as generated by the rotation through
angle 2π/N . In chapter II.1, we learned that it has N 1-dimensional irreducible represen-
tations, labeled by an integer k = 0, . . . , N − 1. The group element ei2πj/N is represented
byD(k)(ei2πj/N)= ei2πkj/N . Well, asN→∞, the finite groupZN should turn into the con-
tinuous group SO(2). So, SO(2) should have an infinite number of irreducible representa-
tions corresponding to k = 0, . . . ,∞, in which a rotation through angle θ is represented
by eikθ .

Ha! The fly-by-night guess works: D(k)(θ)D(k)(θ ′)= eikθeikθ ′ = eik(θ+θ ′) =D(k)(θ + θ ′)
and D(k)(2π)= 1. (For more on this point, see later in this chapter.) What do you expect?
We are self-confessed sloppy physicists in flagrant disregard for mathematical decorum,
and we take limits whenever we like.

What about SO(3), a larger group containing SO(2) as a subgroup? Anybody with the
absolute minimum amount of mathematical sense can see that the irreducible represen-
tations of a group cannot necessarily be “lifted” into the irreducible representations of a
larger group containing that group as a subgroup. But still, let’s make another flying guess:
SO(3) also has an infinite number of irreducible representations labeled by an integer. That
also turns out to be true.

Constructing the irreducible representations of SO(N)

Both physicists and mathematicians, for reasons mysterious to the unsuspecting guy or
gal in the street, would like to construct larger or higher-dimensional irreducible represen-
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tations.∗ Back in chapter II.1, in an attempt to construct larger representations of SO(3),
we, with laughable naivet́e, simply stacked smaller representations together. The resulting
representation is, by definition, reducible. No good. To obtain larger irreducible represen-
tations, we have to do something slightly more sophisticated: we have to generalize the
concept of a vector by considering objects carrying more indices.

Imagine a collection of mathematical entities T ij carrying two indices, with i , j =
1, 2, . . . , N in N -dimensional space. If the T ijs transform under rotations according to

T ij → T ′ij = RikRjlT kl (4)

then we say that T transforms like a tensor, and hence is a tensor.1 (Here we are using the
Einstein summation convention introduced in the review of linear algebra: The right hand
side actually means

∑N
k=1
∑N
l=1R

ikRjlT kl, that is, a double sum ofN2 terms.) Indeed, we
see that we are just generalizing the transformation law of a vector.

Fear of tensors

Allow me to digress. In my experience teaching, invariably, a couple of students are
confused by the notion of tensors. The very word “tensor” apparently makes them tense.
Compounded and intertwined with their fear of tensors, the unfortunates mentioned
above are also unaccountably afraid of indices. Dear reader, if you are not one of these
unfortunates, so much the better for you! You can zip through this chapter. But to allay
the nameless fear of the tensorphobe, I will go slow and be specific.

Think of the tensor T ij as a collection of N2 mathematical entities that transform
into linear combinations of one another. Let us list T ij explicitly for N = 3. There
are 32 = 9 of them: T 11, T 12, T 13, T 21, T 22, T 23, T 31, T 32, and T 33. That’s it, nine ob-
jects that transform into linear combinations of one another. For example, (4) says that
T ′21 = R2kR1lT kl = R21R11T 11 + R21R12T 12 + R21R13T 13 + R22R11T 21 + R22R12T 22 +
R22R13T 23+ R23R11T 31+ R23R12T 32+ R23R13T 33. This shows explicitly, as if there were
any doubt to begin with, that T ′21 is given by a particular linear combination of the nine
objects. That’s all: the tensor T ij consists of nine objects that transform into linear com-
binations of themselves under rotations.

We could generalize further and define† 3-indexed tensors, 4-indexed tensors, and so
forth by transformation laws, such asWijn→W ′ijn = RikRjlRnmWklm. Here we focus on
2-indexed tensors, and if we say “tensor” without any qualifier we often, but not always,
mean a 2-indexed tensor. (With this definition, we might say that a vector is a 1-indexed
tensor and a scalar is a 0-indexed tensor, but this usage is not common.) A scalar transforms

∗Historically, group theory did not develop in the glib way suggested here, of course. Tensors came up naturally
in physics and played an important role. Both physicists and mathematicians in the eighteenth and nineteenth
centuries tried to solve complicated problems involving rotation, problems with technological importance, such
as the precession of the gyroscope.

† Our friend the jargon guy tells us that the number of indices carried by a tensor is known as its rank.
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as a tensor with no index at all, namely, S→ S′ = S; in other words, a scalar does not
transform. The scalar furnishes the 1-dimensional trivial representation.

Representation theory

Mentally arrange∗ the nine objects T ij in a column

⎛⎝ T 11

T 12...
T 33

⎞⎠. The linear transformation on

the nine objects can then be represented by a 9-by-9 matrix D(R) acting on this column.†

For every rotation, specified by a 3-by-3 matrix R, we can thus associate a 9-by-9 matrix
D(R) transforming the nine objects T ij linearly among themselves. It is fairly clear that
D(R) gives a 9-dimensional representation of SO(3), but for the benefit of the abecedarian,
let us verify this explicitly. Transform by the rotation R1 followed by the rotation R2. Using
(4) twice, we obtain

T ij → T ′ ij = Rik1 Rjl1 T
kl

→ T ′′ ij = Rik2 Rjl2 T
′ kl = Rik2 Rkm1 R

jl

2 R
ln
1 T

mn = (R2R1)
im(R2R1)

jnT mn (5)

Thus, indeed,D(R2)D(R2)=D(R2R1). You see that the key is that each of the two indices
on T ij transforms independently, that is, in parallel without interfering with each other.
They live in the same household but do not talk to each other.

Another way to think of this (but one that is potentially confusing to some students) is
that (4) mandates that a tensor T ij transforms as if it were equal‡ to the product of two
vectors V iWj , but in general, it isn’t.2 (Indeed, if T ij were actually equal to V iWj , then
T 11/T 21= T 12/T 22 = . . .= T 1N/T 2N = V 1/V 2, and the N2 components of the tensor
would not be all independent.)

The tensor T furnishes a 9-dimensional representation of the rotation group SO(3).

Reducible or irreducible?

But is this 9-dimensional representation reducible or not? Of these nine entities T ij that
transform into one another, is there a subset among them that only transform into one
another? A secret in-club, as it were.

A moment’s thought reveals that there is indeed an in-club. Consider Aij ≡ T ij − T ji.
Under a rotation,

∗ The order of the nine objects does not matter. Changing the order merely corresponds to a similarity
transformation of D(R), as indicated in chapter II.1.

† Here we are going painfully slowly because of common confusion on this point. In a standard abuse of
terminology, some authors refer to this column as a nine-component “vector.” In this chapter, as I’ve already
said, the word “vector” is reserved for something that transforms like a vector: V ′i = RijV j . It is not true that
any old collection of stuff arranged in a column transforms like a vector. See exercise I.3.1.

‡ Compare V iWj → V ′iW ′j = RikV kRjlW l = RikRjlV kWl with (4).
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Aij → A′ij ≡ T ′ij − T ′ji = RikRjlT kl − RjkRilT kl
= RikRjlT kl − RjlRikT lk = RikRjl(T kl − T lk)= RikRjlAkl (6)

I have again gone painfully slowly here, but it is obvious, isn’t it? We just verified in (6)
that Aij transforms like a tensor and is thus a tensor. Furthermore, this tensor changes
sign on interchange of its two indices (Aij =−Aji) and so is said to be antisymmetric. The
transformation law (4) treats the two indices democratically, without favoring one over the
other, as was pointed out already, and thus preserves the antisymmetric character of a
tensor: if Aij =−Aji, then A′ij =−A′ji also. Again, the key is that each of the two indices
on T ij transforms independently.

How many objects are here? Let us count. The index i in Aij can take on N values;
for each of these values, the index j can take on only N − 1 values (since the N diagonal
elements Aii =−Aii = 0 for i = 1, 2, . . . , N , repeated index summation suspended mo-
mentarily here); but to avoid double counting (since Aij =−Aji), we should divide by 2.
Hence, the number of independent components inA is equal to 1

2N(N − 1). For example,
for N = 3 we have the three objects A12, A23, and A31. The attentive reader will recall that
we did the same counting in chapter I.3.

Clearly, the same goes for the symmetric combination Sij ≡ T ij + T ji. You can verify
as a trivial exercise that Sij → S′ij = RikRjlSkl. A tensor Sij that does not change sign
on interchange of its two indices (Sij = Sji) is said to be symmetric. In addition to the
componentsSij with i �= j , S also hasN diagonal components, namely, S11, S22, . . . , SNN .
Thus, the number of independent components in S is equal to 1

2N(N − 1)+N = 1
2N(N +

1). This is a long-winded way of saying that the symmetric tensor S has more components
than the antisymmetric tensorA, but I have encountered confusion here among beginning
students also.

For N = 3, the number of components in A and S are 1
2

. 3 . 2= 3 and 1
2

. 3 . 4 = 6,
respectively. (ForN = 4, the number of components inA and S are 6 and 10, respectively.)
Thus, in a suitable basis, the 9-by-9 matrix referred to above actually breaks up into a 3-by-3
block and a 6-by-6 block. The 9-dimensional representation is reducible.

But we are not done yet. The 6-dimensional representation is also reducible. To see this,
note that

Sii→ S′ii = RikRilSkl = (RT )kiRilSkl = (R−1)kiRilSkl = δklSkl = Skk (7)

In the third equality, we used theO in SO(N). (Here we are using repeated index summa-
tion: the indices i and k are both summed over.) In other words, the linear combination
S11+ S22 + . . .+ SNN , the trace of S, transforms into itself; that is, it does not trans-
form at all. It is a loner forming an in-club of one. The 6-by-6 matrix describing the linear
transformation of the six objects Sij breaks up into a 1-by-1 block and a 5-by-5 block.

Again, for the sake of the beginning student, let us work out explicitly the five objects
that furnish the representation 5 of SO(3). First define a traceless symmetric tensor S̃ for
SO(N) by

S̃ij = Sij − δij (Skk/N) (8)
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(The repeated index k is summed over.) Explicitly, S̃ii = Sii − N(Skk/N) = 0, and S̃ is
traceless. Specialize to N = 3. Now we have only five objects, namely, S̃11, S̃22, S̃12, S̃13, and
S̃23. We do not count S̃33 separately, since it is equal to −(S̃11+ S̃22).

Under an SO(3) rotation, these five objects transform into linear combinations of one
another, as just explained. Let us be specific: the object S̃13, for example, transforms
into S̃′13=R1kR3lS̃kl =R11R31S̃11+R11R32S̃12+R11R33S̃13+R12R31S̃21+R12R32S̃22+
R12R33S̃23 + R13R31S̃31+ R13R32S̃32 + R13R33S̃33 = (R11R31− R13R33)S̃11+ (R11R32 +
R12R31)S̃12 + (R11R33 + R13R31)S̃13 + (R12R32 − R13R33)S̃22 + (R12R33 + R13R32)S̃23,
where in the last equality we used S̃ij = S̃j i and S̃33=−(S̃11+ S̃22). Indeed, S̃13 trans-
forms into a linear combination of S̃11, S̃22, S̃12, S̃13, and S̃23.

To summarize, if instead of the basis consisting of the nine entities T ij , we use the
basis consisting of the three entities Aij , the single entity Skk (remember repeated index
summation!), and the five entities S̃ij , the 9-by-9 matrix D(R) breaks up into a 3-by-
3 matrix, a 1-by-1 matrix, and a 5-by-5 matrix “stacked on top of one another.” This is
represented schematically as

S−1D(R)S =

⎛⎜⎜⎜⎝
(3-by-3 block) 0 0

0 (1-by-1 block) 0

0 0 (5-by-5 block)

⎞⎟⎟⎟⎠ (9)

Note that once we choose the new basis, this decomposition holds true for all rotations.
In other words, there exists a similarity transformation S that block diagonalizesD(R) for
all R.

We say that in SO(3), 9= 5⊕ 3⊕ 1. More generally, the N2-dimensional representa-
tion furnished by a general 2-indexed tensor decomposes into a 1

2N(N − 1)-dimensional
representation, a ( 1

2N(N + 1)− 1)-dimensional representation, and a 1-dimensional rep-
resentation. For example, in SO(4), 16= 9⊕ 6⊕ 1; in SO(5), 25= 14⊕ 10⊕ 1.

You might have noticed that in this entire discussion we never had to write out R
explicitly in terms of the three rotation angles and how the five objects S̃11, . . . , S̃23

transform into one another in terms of these angles. It is only the counting that matters.
You might regard that as the difference between mathematics and arithmetic.3

An advanced tidbit

Since I am going so slowly in this chapter, I am worried about boring the more ad-
vanced readers. Here is a tidbit for them. With some “minor” modifications, both the
6-dimensional and the 10-dimensional representations of SO(4) play a glorious role in
theoretical physics. Can you guess what they are? A collection of six objects, and a collec-
tion of ten objects.

I offer you a hint. Had Maxwell and Einstein known some group theory, the development
of theoretical physics might have been accelerated.4
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Invariant symbols

At this point, let us formalize what we just did. The discussion, to be given for general N ,
will end up underlining why N = 3 is special.

First, go back to (7) and write it as S′ii = δijS′ij = (δijRikRjl)Skl = δklSkl = Skk. Thus,
the crucial property we need to show that the trace does not transform (in other words,
that it furnishes the 1-dimensional trivial representation) is embedded in the third equality
here, namely

δijRikRjl = δkl (10)

This is just (1), and so, we have used the O in SO(N).
What about the S in SO(N), namely, the requirement that det R = 1?
Recall from the review of linear algebra that the determinant can be written in terms

of the antisymmetric symbol εijk...n. In N -dimensional space, the antisymmetric symbol
carries N indices and is defined by its two properties:

ε
...l...m... =−ε...m...l... and ε12...N = 1 (11)

In other words, the antisymmetric symbol ε flips sign on the interchange of any pair
of indices. It follows that ε vanishes when two indices are equal. (Note that the second
property listed is just normalization.) Since each index can take on only values 1, 2, . . . , N ,
the antisymmetric symbol forN -dimensional space must carryN indices, as already noted.
For example, for N = 2, ε12=−ε21= 1, with all other components vanishing. For N = 3,
ε123= ε231= ε312=−ε213=−ε132=−ε321= 1, with all other components vanishing.

The determinant is defined, for any matrix R, by

εijk
...nRipRjqRkr . . . Rns = εpqr ...s det R (12)

See the review of linear algebra. (Verify this for N = 2 and 3.) For R a rotation, det R = 1,
and hence

εijk
...nRipRjqRkr . . . Rns = εpqr ...s (13)

Colloquially speaking, when a bunch of rotation matrices encounter the antisymmetric
symbol, they poof into thin air.

Inspecting (10) and (13) (namely, the O and the S in SO(N), respectively), we see that
δij and εijk...n can be thought of as invariant symbols: when acted on by rotation matrices
in the manner shown, they turn into themselves. (We refer to δij and εijk...n as symbols
rather than tensors,5 because they are merely a collection of 0s and 1s.)

We mention in passing that there are various identities involving these symbols; see
various exercises in this chapter. One trivial but important identity is that if Uij is a
symmetric tensor and V ij an antisymmetric tensor, then UijV ij = 0. To see this, note
that UijV ij = −UjiV ji = −UijV ij = 0, since something equal to its own negative has
to vanish. Note that the second equality follows from relabeling the dummy summation
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indices. In particular, when the antisymmetric symbol is contracted with any symmetric
tensor, the result vanishes. For example, εijk...nUij = 0.

Dual tensors

In light of this discussion, given an antisymmetric tensor Aij , we can define another
antisymmetric tensorBk...n= εijk...nAij carryingN − 2 indices. Because of (11), the tensor
Bk

...n manifestly flips sign on exchange of any pair of indices. Let us verify that it is in fact
a tensor. Under a rotation, Bk...n→ εijk

...nRipRjqApq . But multiplying (13) by a bunch
of RT s carrying appropriate indices, we have εijk...nRipRjq = εpqr ...sRkr . . . Rns. (Derive
this!) Thus,

Bk
...n→ εijk

...nRipRjqApq = εpqr ...sRkr . . . RnsApq = Rkr . . . RnsBr ...s (14)

precisely how a tensor carrying N − 2 indices should transform. The tensors A and B are
said to be dual to each other.

In particular, forN = 3,Bk = εijkAij carries 3− 2= 1 index and transforms like a vector.
Thus, in the preceding discussion, when we discovered that the 9-dimensional reducible
representation decomposes into 5⊕ 3⊕ 1, the 3 is not a new irreducible representation,
but just the good old vector or defining representation. (The 1 is of course just the trivial
representation.) The one new irreducible representation that we have discovered is the 5.
This result is far from trivial. A priori, if you have never heard of any of this, you might be
quite surprised, as I said earlier, that 3-dimensional rotations could transform 5 objects∗

exclusively into linear combinations of themselves.
ForN = 4, a 2-indexed antisymmetric tensor is dual to another 2-indexed antisymmetric

tensor, since 4− 2= 2. This “peculiar” fact has also played an important role in theoretical
physics. Here is a tidbit for the more advanced reader, related to the tidbit given earlier:
the electric and magnetic fields are dual to each other. We will come back to this later.

Constructing larger irreducible representations of SO(N)

We are now able to construct a large class† of irreducible representations of SO(N),
known (not surprisingly) as the tensor representations, each furnished by a tensor T ij ...m,
transforming by definition according to T ij ...n→ T ′ij ...n = RikRjl . . .RnmT kl...m. As was
explained earlier, since the transformation treats each index on T democratically, T ′ will
have whatever symmetry properties T has. For example, suppose T is symmetric in its first
three indices, antisymmetric in its next four indices, symmetric in its next two indices, and
so on; then T ′ will be the same.

∗ In classical mechanics, they appear, for example, in the inertial moment tensor
∫
d3xρ(x)(xixj − 1

3δ
ijx2).

† We will come back to spinor representation in chapter VII.1.
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Some people spend some fractions of their lives classifying and studying all possible
such patterns, but in the spirit of the Feynman “shut up and calculate” school of physics,∗

we will restrain ourselves from doing so. The language of Young tableaux was invented to
keep track of these patterns. Fortunately, Nature is kind to us, and mostly we will have to
deal only with smallish groups, such as SO(3) and SO(4). Even in particle physics, where
largish groups like SO(10) and SO(18) occasionally pop up, we only have to consider
tensors with no more than a few indices. My professor in graduate school told me not
to bother learning Young tableaux, and I am giving you the same advice here. If you do
run across a tensor that is neither totally symmetric nor totally antisymmetric, such as the
example given above, you can usually deal with it on a case-by-case basis. It is rare that you
will need a full-blown treatment using Young tableaux. In a book this size, I have to omit
some topics, and Young tableaux is one of those that I choose to omit.

Contraction of indices

When we set two indices on a tensor equal and sum, as in (7), we say that we contract
the two indices. To see how this works in general, take a general tensor transforming like
T ij

...np→ T ′ij ...np = RikRjl . . . RnmRpqT kl...mq . Take any two indices, say j and n, and
contract them. Then

T ij
...jp→ T ′ij ...jp = RikRjl . . . RjmRpqT kl...mq = Rik . . . RpqT kl...lq (15)

since RjlRjm = δlm. In other words, T ij ...jp transforms like a tensor T i ...p with two fewer
indices; the contracted indices j and n have disappeared, knocking each other off, so to
speak. You see that (7) is just a special case of this: Sii transforms just as if it has no index.

Confusio says, “Yes, I get it. Even though the letter j appears in T ij ...jp, this actually
stands for T i1...1p + T i2...2p + . . .+ T iN ...Np.”

Why SO(3) is special

As we saw just now, 3 is special because 3− 2= 1: a pair of antisymmetric indices can
always be traded for a single index. For SO(3), we claim that we need do business only
with totally symmetric traceless tensors carrying j indices, with j an arbitrary positive
integer, that is, a tensor Si1i2...ij that remains unchanged on the interchange of any pair of
indices and that vanishes when any two indices are contracted.

The claim will be proved inductively in j . We have already seen that the claims hold for
j = 2: the antisymmetric 2-indexed tensor is equivalent to a 1-indexed tensor.

Let us now move on to a 3-indexed tensor T ijk and ask what new irreducible represen-
tation it contains. As before, we could symmetrize and antisymmetrize in the first two

∗ Not to mention the theorem that life is short.
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indices and decompose the tensor into the symmetric combination T {ij}k ≡ (T ijk + T jik)
and the antisymmetric combination T [ij ]k ≡ (T ijk − T jik). (The standard notation {ij} and
[ij ] indicates that the tensor is symmetric or antisymmetric, respectively, in the bracketed
indices.)

We don’t care about the antisymmetric combination T [ij ]k, because we know that secretly
it is just a 2-indexed tensor Blk ≡ εij lT [ij ]k, and we have already disposed of all∗ 2-indexed
tensors. Our attack is inductive, as I said.

As for the symmetric combination T {ij}k, we can now proceed to make it symmetric in all
three indices by brute force. (Go ahead, do it before reading on.) Explicitly, write 3T {ij}k =
(T {ij}k + T {jk}i + T {ki}j )+ (T {ij}k − T {jk}i)+ (T {ij}k − T {ki}j ). Verify that the expression
in the first parenthesis is completely symmetric in all three indices; indeed, it is just the
sum over the 6= 3! permutations of the three indices carried by T ijk. The expressions in
the other two round parentheses are antisymmetric in ki and kj , respectively; we can thus
multiply them by εkil and εkjl, respectively, turning them into 2-indexed tensors, which
we drop down the inductive ladder.

Thus, the only thing new is a 3-indexed tensor Sijk totally symmetric in all three of its
indices. Furthermore, as in our preceding discussion, we can subtract out its trace, so
that the resulting tensor† S̃ijk is traceless; that is, so that δij S̃ijk = 0. (Note that, due to the
complete permutation symmetry in the indices, it does not matter which pair of indices the
Kronecker delta is contracted with.) Thus, the new object is a totally symmetric traceless
3-indexed tensor S̃ijk. (We drop the tilde without further ceremony.)

The claim is thus proved.

Dimension of the irreducible representations of SO(3)

Let us count the number of independent components contained in Si1i2...ij , which gives
the dimension of the irreducible representation furnished by Si1i2...ij and labeled by the
integer j .

We will do this in three baby steps. First, suppose that the indices can take on only
two values, 1 and 2. Then the independent components are S22...2, S22...21, S22...211,
. . . , S11...1. Since the number of 1s can go from 0 to j , we count j + 1 possibilities here.
Second, allow the indices to take on the value 3: then the possibilities are S33...3xx ...x (that
is, among the indices are k xs, where x stands for either 1 or 2, with k ranging from 0 to j ,
and j − k 3s). Thus, the total number is determined by using Gauss’s summation formula:

j∑
k=0

(k + 1)= 1
2
j (j + 1)+ (j + 1)= 1

2
(j + 1)(j + 2) (16)

(As an interim check, we have 1
2

. 2 . 3= 3 for j = 1, and 1
2

. 3 . 4 = 6 for j = 2.)

∗ “All” in the sense of as far as their transformation properties are concerned.
† Explicitly, S̃ijk = Sijk − 1

N+2 (δ
ijShhk + δikShhj + δjkShhi).
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But we are not done yet: we have to impose the traceless condition: δi1i2Si1i2...ij = 0. The
left hand side here is a totally symmetric tensor carrying (j − 2) indices, which according to
(16), has 1

2(j − 2+ 1)(j − 2+ 2)= 1
2(j − 1)j components. Therefore, setting these to zero

amounts to imposing 1
2j (j − 1) conditions. So, finally, the dimension of the irreducible

representation j is

d = 1
2
(j + 1)(j + 2)− 1

2
j (j − 1)= 1

2
(j2+ 3j + 2− j2+ j)= 2j + 1 (17)

As a check, note that, for j = 0, 1, 2, 3, . . . , d = 1, 3, 5, 7, . . . , with the first three
numbers confirming our earlier discussion. We see that the dimension d goes up only
linearly with j . In contrast, an unrestricted tensor carrying j indices, with each index
allowed to take on three values, will have 3j components.

The formula d = 2j + 1 is famous in the history of quantum mechanics and atomic
physics. In fact, it had already appeared in classical physics in connection with spherical
harmonics, to be discussed in chapter IV.2.

The tensors of SO(2)

From N = 3 let us descend to N = 2. Note that the antisymmetric symbol εij now carries
only two indices. Suppose a tensor T ...i ...j ... carrying m indices is antisymmetric in
the pair of indices i and j . We can contract it with εij to obtain a tensor εijT ...i ...j ...

carrying m − 2 indices. Consequently, in our inductive construction, at each step we
can immediately proceed to considering only totally symmetric tensors Si1i2...ij . In the
preceding paragraph, we already determined that there are j + 1 of these. But we have
not yet imposed the traceless condition δi1i2Si1i2...ij = 0. Arguing as before, we see that the
left hand side of this condition is a symmetric tensor with j − 2 indices, and hence these
amount to j − 2+ 1 conditions. Hence the dimensions of the irreducible representations
are (j + 1)− (j − 2+ 1)= 2. All of them are 2-dimensional!

Indeed, a moment’s thought reveals what the representation matrices are:

D(j)(θ)=
(

cos jθ sin jθ

− sin jθ cos jθ

)
(18)

In particular, j = 1 corresponds to the defining or fundamental representation. You might
want to work this out (for j = 2, say) as an exercise, or wait until you’ve read the next
section.

Polar decomposition

Now Confusio yells indignantly, “What’s going on? You said at the beginning of this chap-
ter that the irreducible representations of SO(2) are 1-dimensional, like the irreducible
representations of ZN . But here the irreducible representations are 2-dimensional!”

Excellent! That Confusio is getting more attentive by the day.
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So, what is going on? Well, the representation given in (18) is in fact reducible. Consider
the unitary transformation

U†D(j)(θ)U = 1√
2

(
1 1

i −i

)† ( cos jθ sin jθ

− sin jθ cos jθ

)
1√
2

(
1 1

i −i

)

= 1
2

(
1 −i
1 i

) (
eijθ e−ijθ

ieijθ −ie−ijθ
)

=
(
eijθ 0

0 e−ijθ

)
(19)

We have shown explicitly that the 2-dimensional representation D(j)(θ) reduces to two
1-dimensional representations eijθ and e−ijθ .

We recognize the two columns
(

1
i

)
and

(
1
−i
)

in the unitary matrix U as eigenvectors

of D(j)(θ) with eigenvalue equal to eijθ and e−ijθ , respectively. This corresponds to going
from Cartesian coordinates (x , y) to complex coordinates (z, z∗) = (x + iy , x − iy). In
physics, for example in the study of electromagnetic waves, this corresponds to going
from transverse to circular polarizations, by writing �Ex ± i �Ey, and so on.

It is also instructive to see how this works explicitly with the Cartesian tensors we
have been using. Consider j = 2, with S11=−S22, S12 = S21. The polar decomposition
corresponds to writing S++ = S1+i2, 1+i2, S−− = S1−i2, 1−i2. (What happened to S+−?)

In fact, this conversation confirms the isomorphism between SO(2) and U(1), noted
way back in chapter I.1. The 1-to-1 map is just R(θ)↔ eiθ .

Rotations in higher-dimensional space

The preceding discussion underlines an important fact. Among the rotation groups
SO(N), the two casesN = 3 andN = 2 that are most familiar to physicists are in fact rather
special. Crucially, their antisymmetric symbols carry three and two indices, respectively.

To see what goes “wrong” when we go to higher N , consider a tensor T hijkl that is
symmetric in the three indices hij and antisymmetric in the two indices kl. For N =
3, contracting with εklm reduces the number of indices from five to four, a possibility
we exploited. We need consider only totally symmetric tensors. In contrast, for N = 4,
contracting with the antisymmetric symbol gives εklmnT hijkl, a tensor with the same
number of indices, namely, five. Thus, for N > 3, we would have to confront, in general,
tensors with complicated symmetry patterns on interchanges of indices.

A comment to forestall any potential confusion. The word “symmetry” is necessarily
overused in group theory. We saw in the review of linear algebra that symmetry of geo-
metrical figures or of physical laws is associated with a group. In discussing tensors, we
often talk about whether a tensor is symmetric or antisymmetric under interchange of its
indices. The group involved is some permutation group, which has little or nothing to do
with the group that the tensor is furnishing a representation of.
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Self-dual and antiself-dual

The rotation group SO(2n) in even-dimensional space enjoys an additional feature, that
of self-dual and antiself-dual tensors. Consider the antisymmetric tensor with n indices
Ai1i2

...in with 2n(2n − 1) . . . (n + 1)/n!= (2n)!/(n!)2 components. From our discussion,
you would think that it furnishes an irreducible representation. What could possibly
reduce it?

Construct the tensor Bi1i2...in ≡ 1
n!ε

i1i2...inin+1in+2...i2nAin+1in+2...i2n dual to A. Then A is
dual to B, that is, Ain+1in+2...i2n = 1

n!ε
i1i2...inin+1in+2...i2nBi1i2...in.

It follows that the two tensors T i1i2
...in± ≡ (Ai1i2...in ± Bi1i2...in) are self-dual and antiself-

dual, respectively. Schematically, εT± ∼ ε(A ± B) ∼ εA ± εB ∼ B ± A ∼ ±(A ± B) ∼
±T±. Thus, T+ ∼ εT+ is dual to itself, while T− ∼ −εT− is dual to minus itself.

Clearly, under anSO(2n) transformation, T+ transforms into a linear combination ofT+,
while T− transforms into a linear combination of T−. The two tensors correspond to two
irreducible representations with dimension (2n)!/(2(n!)2), not (2n)!/(n!)2. For example,
for SO(6), the dimension of the self-dual and antiself-dual representation is equal to
6 . 5 . 4/(2 . 3 . 2)= 20/2= 10.

Restriction to a subgroup

Consider an irreducible representation of some group G. If we restrict ourselves to a
subgroup H ⊂G, that irreducible representation will in general break up into several
irreducible representations ofH . This makes sense, since we have fewer transformations
to take the components of that representation into one another. This is best explained
by some examples. Let G= SO(4), with the defining or vector representation consisting
of the components of the 4-vector V i, i = 1, 2, 3, 4. Consider the subgroup H = SO(3)
consisting of those elements of SO(4) that leave V 4 alone. In other words, the subgroup
SO(3) rotates only (V 1, V 2, V 3) into one another. The four objects V i split into two sets:
(V 1, V 2, V 3) and V 4. We write this as 4→ 3⊕ 1: the 4-dimensional vector representation
of SO(4) breaks into a 3-dimensional representation and a 1-dimensional representation
of SO(3).

In chapter VII.2 we will discuss in detail the Lorentz group, which at this point I simply
say is, roughly speaking, just SO(4) suitably modified. The subgroup SO(3) is the good
old rotation group. Then the statement 4→ 3⊕ 1 simply states that spacetime breaks up
into space plus time in nonrelativistic physics.

How does the 6-dimensional irreducible representation of SO(4) furnished by the
antisymmetric tensor Aij break up? We simply enumerate: A14, A24, A34 and A12, A23,
A31. In other words, 6→ 3⊕ 3. As we shall see in chapter VII.2, this corresponds to the
electromagnetic field breaking into the electric and the magnetic fields.

How about the 1
2

. 4 . 5− 1= 9-dimensional irreducible representation of SO(4) fur-
nished by the symmetric traceless tensor Sij? Again, we simply list the nine objects. How
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do they break up? Evidently, it is useful to introduce the indices a , b= 1, 2, 3. First, we have
S44, which furnishes the 1-dimensional representation of SO(3). Next, Sa4, a = 1, 2, 3,
which furnishes the 3-dimensional representation of SO(3). Finally, we form the sym-
metric traceless tensor S̃ab = Sab − 1

3δ
abScc (with c summed over 1, 2, 3; see (8)), which

furnishes the 5-dimensional representation of SO(3). Note that the trace Scc we are taking
out here is equal to −S44, which has already been counted. Thus, 9→ 5⊕ 3⊕ 1.

The adjoint representation and the Jacobi identity

As promised, we now discuss in more detail the adjoint representation briefly mentioned
in chapter I.3. Perhaps the best way to motivate the adjoint is to go back to the treatment
of SO(3) given there. We commute the three matrices

Jx =−i

⎛⎜⎜⎝
0 0 0

0 0 1

0 −1 0

⎞⎟⎟⎠ , Jy =−i

⎛⎜⎜⎝
0 0 −1

0 0 0

1 0 0

⎞⎟⎟⎠ , Jz =−i

⎛⎜⎜⎝
0 1 0

−1 0 0

0 0 0

⎞⎟⎟⎠ (20)

representing the Lie algebra of SO(3) and obtain the commutation relation

[Ja , Jb]= iεabcJc (21)

with a , b, c = x , y , z.
In physics, objects carrying three indices, such as the totally antisymmetric symbol

εabc, are notoriously awkward to handle. In contrast, objects carrying two indices can be
regarded as matrices that can be naturally multiplied together. But now let us make a
seemingly naive observation. Let us fix a, by setting a = x, for example. Then6 ε1bc carries
two indices bc, and we can think of it as a matrix, with its entries in the bth row and cth
column given by εabc.

But the sharp-eyed reader will recognize that this is precisely the first matrix listed in
(20). Indeed, the three matrices Ja are precisely equal to (Ja)bc = −iεabc. (Here (Ja)bc
denotes the entry in the bth row and cth column of the matrix Ja.)

Is this an amazing coincidence or what? The three matrices representing the generators
in the defining representation are given by the structure constants. Is this a general result?

The answer is more complicated than a simple yes or no.
First, no, it can’t be general. A moment’s thought reminds us that for SO(N), the defin-

ing or fundamental representation is N -dimensional, while the indices on the structure
constants f abc range over N(N − 1)/2 values. It is only for N = 3 that N =N(N − 1)/2.

But then, yes, in fact the structure constants do in general furnish a representation, the
adjoint representation.

To understand this, we have to appeal to the Jacobi identity,7 which states that quite
generally, for three matrices or operators A, B , and C,

[[A, B], C]+ [[B , C], A]+ [[C , A], B]= 0 (22)

You can prove the Jacobi identity8 by simply writing out all the terms in (22).
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You learned in chapter I.3 that Lie algebras are defined by the commutation relations

[T a , T b]= if abcT c (23)

with the indices a , b, c, . . . ranging over n values, where n denotes the number of gener-
ators of the algebra. Now plug this into Jacobi’s identity: [[T a , T b], T c]+ [[T b , T c], T a]+
[[T c , T a], T b]= 0. The first term is equal to if abd [T d , T c]= (if abd)(if dcg)T g. Similarly,
we can write the other two terms as linear combinations of T gs. Setting the coefficient of
T g to 0 then gives the remarkable identity involving the structure constants:

f abdf dcg + f bcdf dag + f cadf dbg = 0 (24)

Now define the matrix T b by specifying its entry in the cth row and dth column as follows:

(T b)cd =−if bcd (25)

I’d like to alert the reader to a possible notational confusion. In (23), T b denotes a
generator, an abstract mathematical entity, if you like, of the Lie algebra; (23) is a statement
about the algebra, independent of any representation we might want to choose. In contrast,
(25) defines the specific matrix representing T b in the adjoint representation.

The claim is that the matrices T b defined in (25) represent the Lie algebra (23). To prove
this, we use (25). Write the first term in (24) as f abdf dcg = if abd(T d)cg, and the second and
third terms as f bcdf dag + f cadf dbg =−(T b)cd(−T a)dg − (−T a)cd(−T b)dg = (T bT a)cg −
(T aT b)cg =−([T a , T b])cg. (Note that we used the antisymmetry of the structure constant
in the first two indices, for example, f dag =−f adg.) Thus, we obtain

([T a , T b])cg = if abd(T d)cg (26)

which is just (23) in the adjoint representation.
We have proved that the structure constants of a Lie algebra furnish a representation of

the algebra, known as the adjoint, whose dimension is given by the number of generators.

The adjoint of SO(N)

We have just proved what we set out to prove for Lie algebras in general, so that’s that. No
more need be said. Still, it is instructive to see how this works out in the specific case of
SO(N). Let’s start fresh and go about it using a route slightly different from that followed
in the previous section.

Earlier in this chapter, we learned that the antisymmetric 2-indexed tensor T ij in SO(N)
furnishes a 1

2N(N − 1)-dimensional irreducible representation.
Recall from chapter I.3 that the number of generators in SO(N) is 1

2N(N − 1), with
the generators represented in the defining N -dimensional representation by the anti-
symmetric matrices

J ij

(mn)
= (δmiδnj − δmjδni) (27)
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(Physicists also define the hermitean matrices J(mn) =−iJ(mn).) As explained in chapter
I.3, the matrix indices i and j are not to be confused with the indicesm and n, which I put
in parenthesis for pedagogical clarity. The indicesm and n indicate which of the 1

2N(N − 1)
matrices we are talking about. In particular, note that J(mn) is anN -by-N matrix, and there
are 1

2N(N − 1) of them.
The poor man might ask, “Is there a connection?” You bet! To see this, first rewrite, for

the sake of further clarity, the label (mn), which takes on 1
2N(N − 1) values, as a, where

the symbol a runs from 1 to 1
2N(N − 1). Then we have 1

2N(N − 1) matrices J ij
a

, each of
which is a 1

2N(N − 1)-by- 1
2N(N − 1)matrix.

Confusio says, “This is why my friends and I get thrown: there are so many 1
2N(N − 1)s

all over the place.”
Indeed. Furthermore, for the most important case for physics, N = 3, both 1

2N(N − 1)
and N are equal to 3!

Here comes the punchline: we can also regard the antisymmetric tensor T ij as anN -by-
N matrix, and hence write it as a linear combination of the Jas, with coefficients denoted
by Aa:

T ij =
1
2N(N−1)∑
a=1

AaJ ij
a
= AaJ ij

a
(28)

We invoked the repeated index summation convention in the second equality. To forestall
confusion, keep in mind the ranges of the indices in AaJ ij

a
: i = 1, . . . , N while a =

1, . . . , 1
2N(N − 1).

In other words, we can trade T ij forAa and vice versa. Check to make sure that we didn’t
lose anybody: indeed, there are 1

2N(N − 1) of each. You may think of T ij and Aa as the
same thing expressed in two different bases: T ij and Aa are linear combinations of each
other.

How do the Aas transform? We go back to (4) and recall T ij → T ′ij = RikRjlT kl =
RikT kl(RT )lj and thus

T → T ′ = RTRT = RTR−1 (29)

(If you confuse the T for transpose with the T for tensor, go back to square one.) Regarded
as an antisymmetric matrix, the antisymmetric tensor T transforms as if by a similarity
transformation in linear algebra. For an infinitesimal rotation, R � I + θaJa, and so
T ′ � (I + θaJa)T (I + θaJa)� T + θa[Ja , T ]. Thus, the variation of T under the rotation
is given by∗ δT = θa[Ja , T ]= θa[Ja , TbJb]= θaTb[Ja , Jb].

In general, a Lie algebra is characterized by the commutation relations between its
generators and structure constants. In this context, [Ja , Jb]= ifabcJc in physicists’ notation,
or after taking out some trivial factors of i, [Ja , Jb]= fabcJc.

∗ Note that here I am treating T as an “abstract” mathematical object and J as a numerical matrix.
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Now we are almost done. Writing δT = δAcJc = θaAb[Ja , Jb]= θaAbfabcJc and equat-
ing coefficients of Jc, we obtain

δAc = fabcθaAb (30)

The 1
2N(N − 1) objects Aa transform according to (30) and are said to furnish the adjoint

representation. See (25).
This conclusion is actually totally familiar in the case of SO(3), for which the structure

constant fabc is just the antisymmetric symbol εabc. Using a vector notation (since for
SO(3) the indices a, b, and c take on three values, we recognize Aa as a vector), we can
write δ �A= �θ ⊗ �A. With no loss of generality, let �θ point along the z-axis, and we obtain
(as always, not hesitating to abuse notation if clarity is not compromised) δAx =−θAy,
δAy = θAx. We are back where we started in chapter I.3. It is perhaps more illuminating if
we revert to the notation Jx, Jy, Jz. The statement here is simply that the three generators
of SO(3) transform like a vector: δ �J = �θ ⊗ �J . Entirely reasonable.

The adjoint representation is clearly of special significance, since it is how the generators
transform, so to speak. It is worth emphasizing again that in general the adjoint is not the
same as the vector or fundamental representation (certainly 1

2N(N − 1) �= N for N �= 3).
We will encounter the adjoint representation for other continuous groups later.

Exercises

1 Show that the symmetric tensor Sij is indeed a tensor.

2 Prove the Jacobi identity.

3 Work out S̃′13 for a rotation around the third axis through angle ϕ.

4 Let T ijk be a totally antisymmetric 3-indexed tensor. Show that T has 1
3!N(N − 1)(N − 2) components.

Identify the one component for N = 3.

5 Consider for SO(3) the tensor T ijk from the preceding exercise. Show that it transforms as a scalar.

6 In physics, the various abstract entities we talked about—the scalar, the vector, the tensor, and so on—will
in general depend on the position �x, and are known as scalar field, vector field, and tensor field, and so on.
An example is the temperature at a given point in space: it is a scalar field T (�x). You are of course familiar
with the electric field �E(�x). We can thus take spatial derivatives of these quantities.

Define �∇ ≡ ( ∂
∂x1 , ∂

∂x2 , . . . , ∂

∂xD
). Show that if φ is a scalar field, then �∇φ transforms like a vector, while

( �∇φ)2 = �∇φ . �∇φ =∑k(
∂φ

∂xk
)2 and ∇2φ transform like a scalar. The Laplacian is defined by ∇2 = �∇ . �∇ =

∂2

∂(x1)2
+ ∂2

∂(x2)2
+ . . .+ ∂2

∂(xD)2
.

7 Given a 3-vector �p = (p1, p2, p3), show that the quantity pipj when averaged over the direction of �p is given
by 1

4π

∫
d� pipj = 1

4π

∫
dθdϕ cos θ pipj = 1

3 �p2δij . (Here θ and ϕ are the angles fixing the direction of �p in
spherical coordinates.) In physics, we often encounter integrals of this type. This is the basis for my remark
after the orthogonality theorem in chapter II.2.
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8 Show that εijk...nRipRjq = εpqr ...sRkr . . . Rns .

9 Convince yourself of (18) for j = 2.

10 For SO(3), using (13), show that εijkAiBj ≡ Ck defines a vector �C = �A⊗ �B, the familiar cross product.

11 Prove the identity

εijkεlnk = δilδjn − δinδjl (31)

Contracting with Aj , Bl, and Cn, obtain an identity you might recognize: �A ⊗ ( �B ⊗ �C) = �B( �A . �C) −
�C( �A . �B).

12 List the dimensions of the five smallest irreducible representations of SO(5), and identify the corresponding
tensors.

13 Find the dimension of the irreducible representation of SO(4) furnished by the symmetric traceless tensor
with h indices.

Notes

1. Long ago, an undergraduate who later became a distinguished condensed matter physicist came to me after
a class on group theory and asked me, “What exactly is a tensor?” I told him that a tensor is something that
transforms like a tensor. When I ran into him many years later, he regaled me with the following story. At
his graduation, his father, perhaps still smarting from the hefty sum he had paid to the prestigious private
university his son attended, asked him what was the most memorable piece of knowledge he acquired during
his four years in college. He replied, “A tensor is something that transforms like a tensor.”

But this should not perplex us. A duck is something that quacks like a duck. Mathematical objects can also
be defined by their behavior.

2. In Newtonian mechanics, tidal forces are described by the quantity Rij ≡ ∂i∂jV (r), which is manifestly a
tensor if V (r) is a scalar. But Rij certainly does not have the form V iWj in general. See, for example, G Nut,
p. 58.

3. Those who struggled with Euler angles might recognize the bitterness behind that remark.
4. I am being a bit facetious here. The antisymmetric tensor Fμν and the symmetric tensor gμν have six and

ten components, respectively, if the indices μ and ν can take on four different values. With some fudging
involving some signs, these correspond to the electromagnetic field and to the metric of curved spacetime.
But I am also being sloppy here: the group relevant for Einstein gravity is actually GL(4, R), not SO(4). I
touch on these tensors in later chapters, but a thorough discussion will be far beyond the scope of this book.

5. Many authors, including the author of G Nut, use the potentially confusing terminology of “invariant
tensors.”

6. As I said in the Preface, I am mixing up x , y , z and 1, 2, 3 on purpose here to show the beginners that these
“names” do not matter.

7. This identity plays a crucial role in Riemannian geometry and Einstein gravity.
8. Remarkably, V. I. Arnold pointed out (in an article titled “Sur L’Éducation Mathématique”—I thank H. Orland

for sending me this article) that the high school geometry theorem stating that the three altitudes of a triangle
intersect at one point follows from Jacobi’s identity. (In case you have forgotten, an altitude is the straight
line going through a vertex and perpendicular to the opposite side.) Various proofs can be found on the web.
I like the one given by Hovik Khudaverdian. By the end of the proof, you would agree with the author that
the whole thing is indeed zabavno.



IV.2 Lie Algebra of SO(3) and Ladder Operators:
Creation and Annihilation

The Lie algebra of SO(3) is prototypical of all Lie algebras, and the method used in this
chapter to deal with this algebra will give us a strong hint on how to deal with more involved
algebras later, in chapters V.3 and VI.3, for example.

You will also learn how to multiply two irreducible representations of SO(3) together,
the so-called Clebsch-Gordan decomposition. Then we go on to discuss Casimir invariants,
Legendre polynomials, and spherical harmonics.

In appendix 1, I introduce the Heisenberg algebra and the important concept of creation
and annihilation operators. In appendix 2, I explain the Jordan-Schwinger construction of
the angular momentum algebra in terms of these operators. In appendix 3, I sketch the
Dirac construction. So, lots of material here!

Representing the Lie algebra of SO(3)

In chapter IV.1, we constructed the irreducible representations of the group SO(3) using
the method of tensors. In this chapter we construct the irreducible representations of the
Lie algebra∗ SO(3). We found the algebra already in chapter I.3, namely,

[Jx , Jy]= iJz , [Jy , Jz]= iJx , [Jz , Jx]= iJy (1)

What does it mean to represent the algebra?
It means that we are to find three matrices Jx, Jy, and Jz such that the commutation

relations in (1) are satisfied. Since we know that rotations are given by exponentials of linear
combinations of the J s, this would lead to matrices representing the rotation group.

We already know by construction the 3-dimensional defining representation of the
algebra; the three 3-by-3 matrices Jx, Jy, and Jz were explicitly displayed in chapter I.3.

∗ Some authors carefully distinguish the algebra from the group by writing so(3) for the algebra. We will
follow the common usage in the physics literature of denoting the group and the algebra both by SO(3) when
no confusion can arise.
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However, we know from chapter IV.1 that there exists, for j a non-negative integer,
a (2j + 1)-dimensional representation of the rotation group. Hence there must exist a
corresponding (2j + 1)-dimensional representation of the algebra: we simply consider
infinitesimal rotations.

We will proceed pretending that we do not know this, so that we will end up confirming
this result.

A word of clarification. Strictly speaking, we should distinguish the matrices represent-
ing the abstract operators Jx, Jy, and Jz from the operators themselves. But it would only
clutter up things if we introduce more notation. Instead, we follow the physicist’s sloppy
practice of using Jx, Jy, and Jz also to denote the matrices representing the abstract oper-
ators Jx, Jy, and Jz.

Climbing up and down on a ladder

Since the three generators Jx, Jy, and Jz do not commute, they cannot be simultaneously
diagonalized, as explained in the review of linear algebra. But we can diagonalize one of
them. Choose Jz, and work in a basis in which Jz is diagonal.

The move that breaks the problem wide open may be familiar to some students of
physics: it is akin to going from the 2-dimensional coordinates x , y to the complex variable∗

z = x + iy, z∗ = x − iy, and from a transversely polarized electromagnetic wave to a
circularly polarized electromagnetic wave. Define J± ≡ Jx ± iJy. Then we can rewrite (1) as

[Jz , J±]=±J±, [J+, J−]= 2Jz (2)

Instead of working with matrices, we use Dirac’s bra and ket notation, also explained in
the review of linear algebra. Write the eigenvector of Jz with eigenvaluem as |m〉; in other
words,

Jz |m〉 =m |m〉 (3)

Since Jz is hermitean, m is a real number. What we are doing is going to a basis in which
Jz is diagonal; according to (2), J± cannot be diagonal in this basis.

Now consider the state J+ |m〉 and act on it with Jz:

JzJ+ |m〉 = (J+Jz + [Jz , J+]) |m〉 = (J+Jz + J+) |m〉 = (mJ+ + J+) |m〉
= (m+ 1)J+ |m〉 (4)

where the second equality follows from (2). (Henceforth, we will be using (2) repeatedly
without bothering to refer to it.)

Thus, J+ |m〉 is an eigenvector (or eigenstate; these terms are used interchangeably) of
Jz with eigenvalue m+ 1. Hence, by the definition of |m〉, the state J+ |m〉must be equal
to the state |m+ 1〉 multiplied by some normalization constant; in other words, we have
J+ |m〉 = cm+1 |m+ 1〉 with the complex number cm+1 to be determined.

∗ Not to be confused with the third coordinate of course!
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J−

Figure 1

Similarly, JzJ− |m〉 = (J−Jz + [Jz , J−]) |m〉 = (J−Jz − J−) |m〉 = (m − 1)J− |m〉, from
which we conclude that J− |m〉 = bm−1 |m− 1〉 with some other unknown normalization
constant.

It is very helpful to think of the states . . . , |m− 1〉 , |m〉 , |m+ 1〉 , . . . as corresponding
to rungs on a ladder. See figure 1. The result J+ |m〉 = cm+1 |m+ 1〉 tells us that we can
think of J+ as a “raising operator” that enables us to climb up one rung on the ladder, going
from |m〉 to |m+ 1〉. Similarly, the result J− |m〉 = bm−1 |m− 1〉 tells us to think of J− as
a “lowering operator” that enables us to climb down one rung on the ladder. Collectively,
J± are referred to as ladder operators.

To relate bm to cm, we invoke the hermiticity of Jx, Jy, and Jz, which implies that
(J+)†= (Jx + iJy)†= Jx − iJy = J−.

Multiplying J+ |m〉 = cm+1 |m+ 1〉 from the left by 〈m+ 1| and normalizing the states
by 〈m|m〉 = 1, we obtain 〈m+ 1| J+ |m〉 = cm+1. Complex conjugating this gives us c∗

m+1=
〈m| (J+)† |m+ 1〉 = 〈m| J− |m+ 1〉 = 〈m| bm |m〉 = bm, that is, bm−1= c∗m, so that we can
write J− |m〉 = c∗m |m− 1〉.

Acting on this with J+ gives J+J− |m〉 = c∗mJ+ |m− 1〉 = |cm|2 |m〉. Similarly, acting with
J− on J+ |m〉 = cm+1 |m+ 1〉 gives J−J+ |m〉 = cm+1J− |m+ 1〉 = |cm+1|2 |m〉.

Requiring the ladder to terminate

Since we know that the representation is finite dimensional, the ladder must terminate,
that is, there must be a top rung. So, call the maximum value of m by j . At this stage, all
we know is that j is a real number. (Note that we have not assumed that m is an integer.)
Thus, there is a state |j〉 such that J+ |j〉 = 0. It corresponds to the top rung of the ladder.

At this point, we have only used the first part of (2). Now we use the second half: 0 =
〈j | J−J+ |j〉 = 〈j | J+J− − 2Jz |j〉 = |cj |2− 2j , thus determining |cj |2= 2j . Furthermore,
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〈m| [J+, J−] |m〉 = 〈m| (J+J− − J−J+) |m〉 = |cm|2 − |cm+1|2 = 〈m| 2Jz |m〉 = 2m. We ob-
tain a recursion relation |cm|2= |cm+1|2+ 2m, which, together with |cj |2= 2j , allows us
to determine the unknown |cm|.

Here we go: |cj−1|2= |cj |2+ 2(j − 1)= 2(2j − 1), then |cj−2|2= |cj−1|2+ 2(j − 2)=
2(3j − 1− 2), then eventually |cj−s|2 = 2((s + 1)j −∑s

i=1 i). Recall the Gauss formula∑s
i=1 i = 1

2s(s + 1), and obtain |cj−s|2= 2((s + 1)j − 1
2s(s + 1))= (s + 1)(2j − s).

We keep climbing down the ladder, increasing s by 1 at each step. When s = 2j , we
see that c−j vanishes. We have reached the bottom of the ladder. More explicitly, we have
J− |−j〉 = c∗−j |−j − 1〉 = 0, according to what we just derived. The minimum value ofm
is −j . Since s counts the number of rungs climbed down, it is necessarily an integer, and
thus the condition s = 2j that the ladder terminates implies that j is either an integer or
a half-integer, depending on whether s is even or odd. If the ladder terminates, then we
have the set of states |−j〉 , |−j + 1〉 , . . . , |j − 1〉 , |j〉, which totals (2j + 1) states. For
example, for j = 2, these states are |−2〉, |−1〉, |0〉, |1〉, and |2〉. Starting from |2〉, we apply
J− four times to reach |−2〉. (We will do this explicitly later in this chapter.) To emphasize
the dependence on j , we sometimes write the kets |m〉 as |j , m〉. Notice that the ladder
is symmetric under |m〉 → |−m〉, a symmetry that can be traced to the invariance of the
algebra in (1) under Jx→ Jx, Jy→−Jy, and Jz→−Jz (namely, a rotation through π
around the x-axis).

In chapter IV.1, we used the method of tensors to show that the representations of the
group SO(3) are (2j + 1)-dimensional with j an integer. So, for j an integer, the method
of tensors and the method of Lie algebra agree. Yeah!

Mysterious appearance of the half integers

But what about the representations of the algebra corresponding to j = a half integer? For
example, for j = 1

2 , we have a 2 . 1
2 + 1= 2-dimensional representation consisting of the

states
∣∣∣− 1

2

〉
and

∣∣∣ 1
2

〉
. We climb down from

∣∣∣ 1
2

〉
to
∣∣∣− 1

2

〉
in one step. Certainly no sight of a

2-dimensional representation in chapter I.3!
The mystery of the j = 1

2 representation will be resolved in chapter IV.5 when we discuss
SU(2), but let’s not be coy about it and keep the reader in suspense. I trust that most readers
have heard that it describes the electron spin.

We did not go looking for the peculiar number 1
2 ; 1

2 came looking for us.

Ladder operators

It should not escape your notice that as a by-product of requiring the ladder to terminate, we
have also determined |cm|2. Indeed, setting s = j −m, we had |cm|2= (j +m)(j + 1−m).
Recalling the definition of cm we obtain

J+ |m〉 = cm+1 |m+ 1〉 =√(j + 1+m)(j −m) |m+ 1〉 (5)
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and

J− |m〉 = c∗m |m− 1〉 =√(j + 1−m)(j +m) |m− 1〉 (6)

As a mild check on the arithmetic, indeed J+ |j〉 = 0 and J− |−j〉 = 0. You might also have
noticed that, quite rightly, the phase of cm is not determined, since it is completely up to
us to choose∗ the relative phase of the kets |m〉 and |m− 1〉. Beware that different authors
choose differently. I simply take cm to be real and positive. Tables of the cms for various
js are available, but it’s easy enough to write them down when needed. Note also that the
square roots in (5) and (6) are related by m↔−m.

I list the two most common cases needed in physics:

j = 1
2

: J+
∣∣∣∣−1

2

〉
=
∣∣∣∣12
〉
, J−

∣∣∣∣12
〉
=
∣∣∣∣−1

2

〉
(7)

j = 1 : J+ |−1〉 = √2 |0〉, J+ |0〉 =
√

2 |1〉
J− |1〉 =

√
2 |0〉, J− |0〉 =

√
2 |−1〉 (8)

Note that the (nonzero) cm for these two cases are particularly easy to remember (that is,
if for some odd reason you want to): they are all 1 in one case, and

√
2 in the other.

Let us also write down the j = 2 case for later use:

j = 2 :

J+ |−2〉 = 2 |−1〉, J+ |−1〉 = √6 |0〉, J+ |0〉 =
√

6 |1〉, J+ |1〉 = 2 |2〉
J− |2〉 = 2 |1〉, J− |1〉 =

√
6 |0〉, J− |0〉 =

√
6 |−1〉, J− |−1〉 = 2 |−2〉 (9)

Multiplying two SO(3) representations together

We will multiply SO(3) representations together using first the tensor approach of chap-
ter IV.1 and then the ladder approach discussed here.

Tensors are practically begging us to multiply them together. Rather than treat the
world’s most general case (which will mostly amount to writing a lot of . . . . . . . . .s), I
think it pedagogically much clearer to treat a specific case.

Suppose we are given two SO(3) tensors: a symmetric traceless tensor Sij and a vector
T k. They furnish the 5-dimensional and the 3-dimensional irreducible representations,
respectively. The product P ijk = SijT k is manifestly a 3-indexed tensor containing 5 . 3=
15 components, but P ijk is certainly not a totally symmetric traceless 3-indexed tensor.
It is symmetric and traceless in the first two indices, but has no particular symmetry on
the interchange of j and k, for example. In chapter IV.1, we learned that the irreducible
representations of SO(3) are furnished by symmetric traceless tensors. So, the game is to
beat P ijk into a linear combination of symmetric traceless tensors.

∗ The freedom of choice here ends up being a minor irritant for theoretical physicists. For example, it will
come back to bite us in (V.1.10), when we attempt to compare results using different formalisms.
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First, construct the symmetric tensor Uijk = SijT k + SjkT i + SkiT j . Its trace is given
by the vector Uk = δijUijk = 2SikT i. (Note that it does not matter which pair of indices
on Uijk to contract when calculating the trace, since Uijk is totally symmetric.) Second,
take out the trace by defining Ũ ijk = Uijk − 1

5(δ
ijUk + δjkUi + δkiUj). (Check that Ũ ijk

is traceless.) There are (2 . 3+ 1)= 7 components in Ũ ijk: it furnishes a 7-dimensional
irreducible representation.

Next we extract the antisymmetric part of the product SijT k by contracting it with the
antisymmetric symbol: V il = SijT kεjkl. (There is of course no point in contracting the
index pair ij with the ε symbol.) The tensor V il is traceless (check this!) and so contains
3 . 3− 1= 8 objects. Extract its symmetric and antisymmetric parts: Wil = V il + V li and
Xil = V il − V li.

The antisymmetric part can be written explicitly as a vector: 1
2X

ilεmil = SijT kεjklεmil =
SijT k(δjmδki − δjiδkm)= SimT i, which we recognize as the vector 1

2U
m. (In the second

equality we used a result from exercise IV.1.11.) This furnishes a 3-dimensional irreducible
representation.

The symmetric part Wil = SijT kεjkl + SljT kεjki is manifestly traceless (just set i = l
and sum). Thus, it has 1

2(3 . 4)− 1= 5 components.
We have thus derived

5⊗ 3= 7⊕ 5⊕ 3 (10)

We did not lose anybody: 5 . 3= 15= 7+ 5+ 3.
It should be clear how to treat the general case. Given two totally symmetric traceless

tensors, Si1...ij and T k1...kj ′, one with j indices, the other with j ′ indices, the product is
then a tensor with j + j ′ indices. We first symmetrize this and take out its trace. We get
the irreducible representation labeled by j + j ′.

Next, contract with εikl, where i is an index on S and k an index on T . We trade two
indices, i and k, for one index l, and hence end up with a tensor with j + j ′ − 1 indices.
We get the irreducible representation labeled by j + j ′ − 1. We repeat this process until
there is nothing left to work with.

With no loss of generality, take j ≥ j ′. We have nothing left when all the indices on
T are gone. We have thus shown that j ⊗ j ′ contains the irreducible representations
(j + j ′)⊕ (j + j ′ − 1)⊕ (j + j ′ − 2)⊕ . . .⊕ (j − j ′ + 1)⊕ (j − j ′). Using the absolute
value, we can drop the condition j ≥ j ′:

j ⊗ j ′ = (j + j ′)⊕ (j + j ′ − 1)⊕ (j + j ′ − 2)⊕ . . .⊕ (|j − j ′| + 1)⊕ |j − j ′| (11)

For example, (10) can be written in the language of (11) as 2⊗ 1= 3⊕ 2⊕ 1.
In chapter IV.3, we will derive this result in another way, but for now, let us count

the number of components and check that we did not lose anybody. We start with
(2j + 1)(2j ′ + 1) components. To count the number of components contained in (11),
we need

∑m
n

1= (m − n + 1) and, using Gauss’s trick,
∑m
n
k = 1

2(m − n + 1)(m + n),
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so that
∑m
n
(2k + 1) = (m − n + 1)

(
(m + n) + 1

)
= (m + 1)2 − n2. Then the number of

components contained in (11) is given by

j+j ′∑
|j−j ′|

(2k + 1)= (j + j ′ + 1)2− (j − j ′)2= (2j + 1)(2j ′ + 1) (12)

Precisely right.
I trust that you recognize that the very way in which we introduced the notion of a

2-indexed tensor in chapter IV.1 represents a special case of (11). We define the tensor
as an object that transforms as if it were composed of the product of two vectors; thus
1⊗ 1= 0⊕ 1⊕ 2. Indeed, that was the content of the section “Reducible or irreducible?”:
we showed that 3⊗ 3= 9= 1⊕ 3⊕ 5.

How do we name irreducible representations?

This is probably as good a place as any to comment on the conventions for naming
irreducible representations. Here you have already seen two for SO(3): we can refer to
the irreducible representation by the number of indices on the tensor furnishing the
representation, as in j , or by its dimension, 2j + 1.

For larger groups, such as SO(N) for N > 3, as was explained earlier, a tensor can have
rather involved symmetry properties under the interchange of its indices. We need to
specify its symmetry properties. For instance, in SO(N), the representation furnished by
a totally antisymmetric tensor with n indices is often denoted by [n] and the representation
furnished by a totally symmetric traceless tensor with n indices by {n}. (Obviously, [1]= {1}.
For SO(3), we explained that [2]= {1} = [1].)

Different conventions are used in different areas of physics and are favored by different
authors. I usually prefer the convention of identifying the irreducible representation by
its dimension. (Usually, there is no risk of confusion, but ambiguities arise occasionally:
distinct representations may happen to have the same∗ dimension.) With this conven-
tion, you can see instantly that nobody has gone missing when you multiply irreducible
representations together, as in (10).

For the group SO(3), with its long standing in physics and its connection with atomic
spectroscopy, the confusion over names is almost worse than in reading Russian novels.
As you know, the trivial representation 0 or 1 is also called “s-wave”! And the list goes on,
1 or 3 is called p, 2 or 5 is called d, 3 or 7 is called f, and so on.†

One glaringly self-evident point is that the letters used in the preceding section, S, T ,
P , U , V , W , and X, are totally irrelevant; they are merely coatracks on which to hang the

∗ Just as a teaser, I throw out the remark that SO(8), famously or infamously, has three distinct irreducible
representations, all with dimension equal to 8. See chapter VII.1.

† For sharp, principal, diffuse, fundamental, and so on, in case you forgot or never learned spectroscopy.
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indices. This is reminiscent of one motivation behind the Dirac bra and ket notation: no
sense in writing the letter ψ all the time.

Casimir invariant

We saw, in chapter IV.1, that the generators of SO(3), Jx, Jy, and Jz, transform like a
vector under rotation: δ �J = �θ ⊗ �J . This implies that rotations do not change J 2 ≡ �J 2 =
J 2
x
+ J 2

y
+ J 2

z
, known as the Casimir invariant for SO(3). Indeed, we have∗ [Ji , �J 2]=

[Ji , JjJj ]= iεijk([Ji , Jj ]Jj + Jj [Ji , Jj ])= iεijk(JkJj + JjJk)= 0. (In general, a Lie algebra
may possess several Casimir invariants; one example will be shown in chapter VII.2.)

In particular, [J±, �J 2]= 0. Thus, �J 2 evaluated on the states in an irreducible represen-
tation j should give the same value. We can readily verify this statement and determine
this value. First, write

J 2= 1
2
(J+J− + J−J+)+ J 2

z
(13)

Then, J 2 |j , m〉 =
(

1
2(J+J− + J−J+) + J 2

z

)
|j , m〉 =

(
1
2(|cm|2 + |cm+1|2) + m2

)
|j , m〉 =

j (j + 1) |j , m〉. As expected, J 2 evaluated on |j , m〉 depends only on j , but not on m.
This result is sometimes written as

J 2= j (j + 1) (14)

where it is understood that the equality holds in the irreducible representation j . (Some
beginners are confused by this equality, partly because of the standard notation of dropping
the arrow on �J 2. Thus, importantly, J 2 is not equal to j2, because �J is not a set of numbers,
but a set of three noncommuting operators; j is of course just an integer or a half integer.)

Legendre polynomials and spherical harmonics

I trust that most readers have encountered Legendre1 polynomials and spherical harmon-
ics in their study of physics. It should not come as a surprise that both are intimately
connected to the rotation group SO(3), since they pop up in problems with spherical sym-
metry. To see the connection, let us go back to the remark in chapter I.3 that the generators
of SO(3) can be written as differential operators rather than as matrices. Here, to conform
to age-old convention, we use Li instead of Ji to denote the generators. In chapter I.3, I
remarked that

Lx = i
(
z
∂

∂y
− y ∂

∂z

)
, Ly = i

(
x
∂

∂z
− z ∂

∂x

)
, Lz = i

(
y
∂

∂x
− x ∂

∂y

)
(15)

satisfy the commutation relations†

∗ The relevant identity is [A, BC]= [A, B]C + B[A, C].
† A point of clarification here. The �Ls defined here are dimensionless and the commutation relations (16)

are just statements about differential calculus. The reader who knows quantum mechanics would recall that
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[Lx , Ly]= iLz , [Ly , Lz]= iLx , [Lz , Lx]= iLy (16)

Behold the power of abstract mathematics: by the discussion in this chapter, we know
immediately that there are functions of x , y , z, or equivalently r , θ , ϕ, that represent the
Lie algebra (16). These functions satisfy

�L2Ym
l
(θ , ϕ)= l(l + 1)Ym

l
(θ , ϕ) (17)

and

LzY
m
l
(θ , ϕ)=mYm

l
(θ , ϕ) (18)

Without further ado, we know that l = 0, 1, 2, . . . is a non-negative integer and that
m=−l , −l + 1, . . . , l − 1, l. (The reason that we can take Yml (θ , ϕ) to be independent
of the radial coordinate r is because �L acting on r gives nothing. To see this, note Lzr2=
i(y ∂

∂x
− x ∂

∂y
)(x2+ y2+ z2)= 2i(yx − xy)= 0.)

The functions Yml are known as spherical harmonics. Note that, while the mathematics
of the Lie algebra implies (17) and (18), if we actually want to know what Yml is, we have
to slog through what we might refer to as “rather tedious arithmetic.” The first step is
to write Lx, Ly, and Lz in spherical coordinates. The easiest is Lz = −i ∂∂ϕ (which you
can see by mentally rotating around the z-axis). This enables us to solve (18) immediately
and to isolate the ϕ dependence of Yml by writing Yml (θ , ϕ)=Nml eimϕPml (cos θ). Here Nml
is a pesky normalization constant,∗ and Pml (cos θ) is known as the associated Legendre
function.

For the record, L± (which are more useful to us than Lx, Ly) are given by L± =
e±iϕ(i cot θ ∂

∂ϕ
± ∂
∂θ
). Using (13), we obtain for the Casimir invariant

�L2= 1
2
(L+L− + L−L+)+ L2

z
=−

(
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

)
(19)

Thus, (17) amounts to the familiar partial differentiation equation satisfied by the spherical
harmonics that follows from Laplace’s equation after separation of variables.

I refrain from going into further details here, which quite likely may be familiar to
you from your study of, say, electrostatics. Instead, I show you a neat connection be-
tween the Legendre polynomials Pl(cos θ) (which are what Pm=0

l (cos θ) are called) and
tensors. Consider the unit vector V i. In spherical coordinates, V 3= cos θ , which is just
the Legendre polynomial P1(cos θ). Indeed, the 3-components of V i written in the circular
basis V 1±i2, V 3 are nothing other than Y±1

1 , Y 0
1 up to normalization factors. Now con-

sider the symmetric traceless tensor T ij = V iV j − 1
3δ
ij �V 2 = V iV j − 1

3δ
ij . Then T 33=

cos2 θ − 1/3, which is just P2(cos θ) (as always, up to normalization factors). Next, the
symmetric traceless 3-indexed tensor T ijk = V iV jV k − 1

5(δ
ijV k + δjkV i + δkiV j). Then

momentum �p is represented by−i� �∇, where the reduced Planck’s constant � is required to make the dimension
come out right. Thus, in quantum mechanics, the angular momentum operator �LQM = �x ⊗ �p =−i��x ⊗ �∇ is
equal to � times the �L defined here.
∗ These constants can be chalked up to various “historical accidents”: the spherical harmonics are normalized

by
∫
d(cos θ)dϕ|Yml (θ , ϕ)|2 = 1, while Pml (cos θ) is normalized in some other fashion.
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T 333 = cos3 θ − 3
5 cos θ , which is just P3(cos θ). Note that the orthogonality condition∫ 1

−1 d cos θPl(cos θ)Pl′(cos θ)∝ δll′ also follows. You see the power of the tensor approach.
Perhaps you also see that the spherical harmonics are just the kets |l , m〉 disguised. In

quantum mechanics, the position of a particle is treated as an operator x̂, with eigenstates
|x〉 determined by x̂ |x〉 = x |x〉. In spherical coordinates, |x〉 would be written as |r , θ , ϕ〉.
Since we are talking about rotations that do not change r , we suppress the radial coordinate
and write |θ , ϕ〉. The spherical harmonics are just Yml (θ , ϕ)= 〈θ , ϕ|l , m〉. (Note that while
our discussion is motivated by quantum mechanics and uses the bra and ket notation, it
actually has nothing to do with quantum mechanics as such; we can perfectly well define
|θ , ϕ〉 in classical mathematics.)

Appendix 1: Heisenberg algebra and creation and annihilation operators

I should mention that other types of algebras, notably the Heisenberg algebra that undergirds quantum mechan-
ics, are also of interest to physicists, even though, since this is a textbook on group theory, I talk mostly about Lie
algebras. Readers who have had some exposure to quantum mechanics know that Heisenberg promoted position
q and momentum p to operators satisfying

[q , p]= i (20)

This algebra can be realized with differential operators: q = x and p = 1
i
d
dx

. Acting with the left hand side of (20)

on an arbitrary function f (x), we obtain [q , p]f (x)=
(
x 1
i
d
dx
− 1

i
d
dx
x
)
f (x)=−i

(
x
df
dx
− d(xf )

dx

)
= if (x), which

agrees with [q , p]= i.
Following Dirac, we invite ourselves to consider the operators

a = 1√
2
(q + ip) and a†= 1√

2
(q − ip) (21)

It follows from (20) that

[a , a†]= 1
2

[q + ip , q − ip]=−i[q , p]= 1 (22)

which we might call the Dirac algebra.
The hermitean operatorN ≡ a†a can be diagonalized, with eigenstate |n〉 and eigenvalue n. For the moment,

n is undetermined but is known to be a real number, sinceN is hermitean. From (22) we obtain (using an identity
mentioned in a footnote in this chapter)

[a , N ]= [a , a†a]= [a , a†]a = a (23)

and so

Na |n〉 = (aN + [N , a]) |n〉 = (n− 1)a |n〉 (24)

Thus, a |n〉 is an eigenstate of N with eigenvalue equal to (n − 1). Write a |n〉 = cn |n− 1〉 with cn some
normalization factor. We hermitean conjugate to obtain 〈n| a†= 〈n− 1| c∗

n
.

Let |n〉 be normalized: 〈n| n〉 = 1 for all n. Squaring a |n〉, we obtain |(a |n〉)|2= (〈n| a†)(a |n〉)= 〈n| a†a |n〉 =
〈n| N |n〉 = n= 〈n− 1| c∗

n
cn |n− 1〉 = c∗

n
cn which implies that cn =

√
n (after absorbing2 a phase factor in the

definition of |n〉).
Thus far, we haven’t yet shown that n is an integer, in spite of the suggestive notation.
If n were an integer, then, by repeatedly invoking the result a |n〉 = √n |n− 1〉, we would have a |n− 1〉 =√
n− 1 |n− 2〉, and so on, and would eventually “climb down” to the state |0〉 such that

a |0〉 = 0 (25)
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In other words, c0 = 0. However, if n were not an integer, the sequence |n〉 would go on indefinitely with n
decreasing by 1 at each step, but as soon as n goes negative, the relation |(a |n〉)|2= 〈n| a†a |n〉 = n derived above
would be contradicted, since the left hand side is manifestly positive.

Therefore, the sequence {n} = {0, 1, 2, . . . ,∞} consists of non-negative integers, and the state |0〉, known as
the vacuum or ground state, must exist.

You can also show (or obtain by hermitean conjugating what we have above) that [N , a†]= a†, and so
Na† |n〉 = (n+ 1)a† |n〉, which then leads to a† |n〉 = √n+ 1 |n+ 1〉.

We can conveniently think of the state |n〉 as containing n quanta or particles; then the relations

a |n〉 = √n |n− 1〉 and a† |n〉 = √n+ 1 |n+ 1〉 (26)

lead to the names creation and annihilation operators for a† and a, respectively. Note that the Dirac algebra (22)
can thus be realized in terms of an infinite-dimensional matrix A representing a with the only nonzero matrix
elementsAn−1,n= 〈n− 1| a |n〉 =√n above the diagonal.∗ It follows that the operatorsp and q in the Heisenberg
algebra (20) can also be realized in terms of infinite-dimensional matrices. Note that in this basis, the number
operator N = a†a is a diagonal matrix with elements equal to 0, 1, 2, . . . .

While creation and annihilation operators are usually discussed in quantum mechanics textbooks in connec-
tion with the harmonic oscillator, note that the algebraic properties discussed here are logically independent of
what the HamiltonianH is. We haven’t even mentionedH , but ifH happens to be simply related to the number
operator N (for example, by H = 1

2 (N + 1)), then the eigenvalues of H are given by 1
2 (n+ 1) and so are equally

spaced. Let us find out what this H corresponds to:

H = 1
2
(N + 1)= 1

2
a†a + 1

2
= 1

2

(
(q − ip)(q + ip)+ 1

)
= 1

2
(p2 + q2)

=− 1
2
d2

dx2
+ 1

2
x2 (27)

This is precisely the Hamiltonian of the harmonic oscillator (with the mass and the spring constant set to 1 in
appropriate units).

I cannot resist remarking here that the additive + 1
2 in H = 1

2a
†a + 1

2 , which implies that H |0〉 = 1
2 , is the

mother of all headaches3 in quantum field theory. The ground state has an irreducible 1
2 unit of energy, as a direct

consequence of Heisenberg’s uncertainty principle.

Appendix 2: The Jordan-Schwinger construction
of the angular momentum algebra

Jordan and Schwinger showed that, remarkably, the angular momentum algebra in (1) can also be realized in
terms of two sets of creation and annihilation operators. Let a and b be mutually commuting operators (that is,
[a , b]= 0, [a†, b]= 0, and so on) satisfying [a , a†]= 1 and [b, b†]= 1. You can then readily show that

[a†a − b†b, a†b]= 2a†b, [a†a − b†b, b†a]=−2b†a , [a†b, b†a]= a†a − b†b (28)

We recognize that this is precisely the angular momentum algebra:

[Jz , J±]=±J± , [J+ , J−]= 2Jz (29)

in (1) if we identify

Jz↔ 1
2
(a†a − b†b), J+ ↔ a†b, J− ↔ b†a (30)

The Jordan-Schwinger construction is readily understood physically if we picture a† creating a spin 1
2 particle

with spin pointing up, and b† creating a spin 1
2 particle with spin pointing down. Then 2Jz counts the number

∗ The rows and columns of this matrix are numbered from 0 to∞.
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of up particles minus the number of down particles. Thus, we recognize that the state |j , m〉 discussed in the
text corresponds to

|j , m〉 = 1√
(j +m)!(j −m)!(a

†)j+m(b†)j−m |0〉 (31)

You will work out the normalization factor in exercise 4. The raising operator J+ ↔ a†b removes a down particle
and puts in an up particle. Similarly J−. We see also that the number of up particles plus the number of down
particles is equal to j .

In this formalism, we can easily recover relations, such as (5):

J+ |j , m〉 = a†b |j , m〉 = 1√
(j +m)!(j −m)!(a

†)j+m+1b(b†)j−m |0〉

= 1√
(j +m)!(j −m)!(a

†)j+m+1[b, (b†)j−m] |0〉

=
√
j +m+ 1(j −m)√
(j +m+ 1)!(j −m)!(a

†)j+m+1(b†)j−m−1 |0〉

=√(j + 1+m)(j −m) |m+ 1〉 (32)

As I keep saying, math works.

Appendix 3: The Dirac construction of the angular momentum algebra

The angular momentum generators can also be written in terms of bras and kets. Given two kets |+〉, |−〉, and
the corresponding bras 〈+|, 〈−|, normalized so that 〈+|+〉 = 1, 〈+|−〉 = 0, and so on, write

Jz = 1
2
(|+〉 〈+| − |−〉 〈−|), J+ = |+〉 〈−| , J− = |−〉 〈+| (33)

Then, for example, J+J− = |+〉 〈−|−〉 〈+| = |+〉 〈+|, and similarly, J−J+ = |−〉 〈−|. Thus,

[J+ , J−]= |+〉 〈+| − |−〉 〈−| = 2Jz (34)

As another example, JzJ+ = 1
2 (|+〉 〈+| − |−〉 〈−|) |+〉 〈−| = 1

2 |+〉 〈−|, and similarly, J+Jz= |+〉 〈−| 1
2 (|+〉 〈+| −

|−〉 〈−|)=− 1
2 |+〉 〈−|. Thus,

[Jz , J+]= |+〉 〈−| = J+ (35)

I think that you can see that, once you get the hang of this game, it offers a very efficient way of calculating stuff.
You might also see, after doing exercise 1, that this amounts to writing the 2-by-2 matrices that represent the

J s in the Dirac bra and ket notation.

Exercises

1 Using (7), (8), and (9), write down the matrices representing Jx , Jy , and Jz in the j = 1
2 , 1, and 2 irreducible

representations and verify the commutation relations (1).

2 Use the tensor approach to work out P4(cos θ).

3 Show that the orthogonality relation between different Legendre polynomials follows from the fact that l ⊗ l′
does not contain 0 if l �= l′ and that

∫
d cos θPl(cos θ)∝ δl , 0 (which follows by definition).

4 Show that |n〉 = 1√
n!
(a†)n |0〉.
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Notes

1. For almost 200 years after his death, Adrien-Marie Legendre (1752–1833) suffered the indignity of having
the portrait said to be his being in fact that of somebody else with the same last name.

2. We are allowed to let |n〉 → eiφn |n〉; as a result of this, cn→ ei(φn−1−φn)cn. We can choose the φns so that cn
becomes real.

3. See chapter X.7 of G Nut.



IV.3 Angular Momentum and Clebsch-Gordan
Decomposition

Quantized angular momentum

Early quantum theorists confronted by the planetary model of the hydrogen atom faced
a serious puzzle. Leaving aside the difficulty of the classical electron radiating electro-
magnetic waves and spiraling into the proton, they didn’t have enough equations. The
balance of power between the centrifugal “force” and the electrostatic force,mv2/r ∼ α/r2,
provided only one equation for the two unknowns v and r . In classical physics, the initial
value of v and r fixes the conserved angular momentum L=mvr , which for a given L,
allows a solution.

In 1913, Niels Bohr boldly broke the impasse by postulating that angular momentum
L is quantized in units of �; Planck’s constant was known to have the dimension of
momentum times distance. With the additional equationmvr = �, Bohr was able to solve
for r , the Bohr radius, and thence the bound state energy.

When we discussed spherical harmonics in chapter IV.2, we introduced a set of
dimensionless generators �LLie of the Lie algebra of SO(3) and remarked in passing that
the quantum mechanical angular momentum operators are given by �L= � �LLie. Thus, the
angular momentum operators satisfy the commutation relations

[Li , Lj ]= i�εijkLk (1)

As �→ 0 at fixed1 �L, angular momentum becomes a classical commuting variable, as we
would expect. Also, �L2 |l , m〉 = �l(l + 1) |l , m〉 andLz |l , m〉 = �m |l , m〉. With the operator
�L fixed, we see that for the right hand sides of these two relations not to vanish, the two
quantum numbers l, m �= 0 have to become large as �→ 0.

It is perhaps worth emphasizing again that although the equation for the spherical
harmonics splits out of Schrödinger’s equation, it has nothing to do with quantum physics
as such.

A note about notation. While the letter J is used to denote angular momentum generi-
cally, by convention L is used to denote orbital angular momentum, and S, spin angular
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momentum. It is understood that, in a group theoretic discussion, they can be used
interchangeably.

By the way, this chapter is definitely written in a “learn-as-you-do” style rather than a
“learn-as-you-read” style; it contains some conceptually rather involved but in reality quite
simple calculations.

Addition of angular momentum

In the prototypical quantum mechanical problem, two particles orbit in a spherically
symmetric potential. Particle unprime could be in the state |l , m〉, and particle prime in
the state

∣∣l′, m′〉. If the particles do not interact, then the eigenstates of the Hamiltonian
could be written using the product states |l , m〉 ⊗ ∣∣l′, m′〉. But the particles do interact with
each other, and the Hamiltonian H then includes an interaction term HI (which we take
to depend only on the distance between the two particles). To leaveH invariant, we would
have to rotate both particles, of course. We want to understand what group theory tells us
about the wave function of the two particles.

But the mathematical problem involved is precisely the one we did in chapter IV.2 when
we multiplied two tensors together. To be specific, suppose particle unprime is in an
angular momentum state with l = 2; in other words, its wave function is given by the
product of a radial wave function that depends only on the radial variable r (and which
does not concern us) and an angular wave function that depends on the angular variables
θ and ϕ, and transforms under rotation just like a symmetric traceless tensor Sij . The five
components of Sij are various functions of θ and ϕ, as described in the preceding chapter;
they correspond to the (2l + 1)= 5 states |l = 2, m〉. Similarly, suppose particle prime is
in an angular momentum state with l′ = 1; its wave function is given by the product of a
radial wave function and an angular wave function that depends on the angular variables
θ and ϕ, and transforms under rotation just like a vector T k. The three components of T k

correspond to the (2l′ + 1)= 3 states
∣∣l′ = 1, m

〉
.

How does the product of the two wave functions, one for particle unprime, one for
particle prime, transform under rotations? We worked this out and gave the answer in
(IV.2.11). For your convenience, I reproduce it with j changed to l:

l ⊗ l′ = (l + l′)⊕ (l + l′ − 1)⊕ (l + l′ − 2)⊕ . . .⊕ (|l − l′| + 1)⊕ |l − l′| (2)

For the specific case described above, 2⊗ 1= 3⊕ 2⊕ 1. The combined angular momen-
tum of the two particles can be 3, 2, or 1. Group theory alone tells us that the 5 . 3= 15
states we started with split into three sets of degenerate states, with degeneracy of 7, 5, and
3, respectively.

Multiplying two ladders together

In the tensor approach, we produce larger irreducible representations by multiplying
tensors together, as described by (2). (Indeed, the attentive reader might have realized
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that we did something entirely similar with finite groups back in chapter II.3, with that
business of “putting balls into a tray.”) In the Lie algebraic approach, we should be able
to produce larger irreducible representations by multiplying kets together. We shall see
presently that that is indeed the case. The following discussion ends up confirming (2).
Since the following discussion is entirely general and does not refer to orbital motion in
the slightest, I will revert back from l to j .

Suppose we are given two irreducible representations of the Lie algebra of SO(3), labeled
by j and j ′. We have two sets of kets: |j , m〉 with m = −j , −j + 1, . . . , j − 1, j , and∣∣j ′, m′〉 with m′ = −j ′, −j ′ + 1, . . . , j ′ − 1, j ′. The 2j + 1 kets |j , m〉, when acted on by
the generators Ji, transform into linear combinations of one another. Similarly, the 2j ′ + 1
kets

∣∣j ′, m′〉, when acted on by the generators Ji, transform into linear combinations of
one another.

Now we write down the product kets |j , m〉 ⊗ ∣∣j ′, m′〉. There are (2j + 1)(2j ′ + 1) such
states. When acted on by the generators Ji, these kets naturally transform into linear com-
binations of one another, thus furnishing a (2j + 1)(2j ′ + 1)-dimensional representation
of SO(3). We expect this representation to be reducible.

The concept of irreducibility transfers naturally from representations of a Lie group to
the representations of a Lie algebra. If the matrices representing the Jis could be block
diagonalized, we say that the representation is reducible.

By now, you should be able to see that this construction in reality is not any different,
conceptually, from multiplying tensors together. The 2j + 1 kets |j , m〉 are in one-to-one
correspondence with the 2j + 1 components of the symmetric traceless j -indexed tensor
T i1

...ij .
When the generators Ji act on the product kets |j , m〉 ⊗ ∣∣j ′, m′〉, they act on |j , m〉 and

then on
∣∣j ′, m′〉. We can verify this more-or-less self-evident fact by rotating the product

kets. Under an infinitesimal rotation around the z-axis, R � I + iθJz, both |j , m〉 and∣∣j ′, m′〉 rotate, of course.∗ Thus,

|j , m〉 ⊗ ∣∣j ′, m′〉 → R |j , m〉 ⊗ R ∣∣j ′, m′〉
� (I + iθJz) |j , m〉 ⊗ (I + iθJz)

∣∣j ′, m′〉
= (I + iθm) |j , m〉 ⊗ (I + iθm′) ∣∣j ′, m′〉
� (1+ iθ(m+m′)) |j , m〉 ⊗ ∣∣j ′, m′〉+O(θ2) (3)

In other words,

Jz(|j , m〉 ⊗ ∣∣j ′, m′〉)= (Jz |j , m〉)⊗ ∣∣j ′, m′〉+ |j , m〉 ⊗ (Jz
∣∣j ′, m′〉)

= (m+m′)(|j , m〉 ⊗ ∣∣j ′, m′〉) (4)

The operator Jz acts in turn on |j , m〉 and
∣∣j ′, m′〉. Thus, |j , m〉 ⊗ ∣∣j ′, m′〉 is an eigenstate

of Jz with eigenvalue m+m′. The eigenvalues of Jz simply add.

∗As described physically in the example given earlier, to leave physics invariant, we have to rotate both particles.
It would hardly make sense to rotate one without touching the other, unless they do not interact at all and hence
do not know about each other’s presence.
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To avoid writing ⊗ constantly, we denote |j , m〉 ⊗ ∣∣j ′, m′〉 by
∣∣j , j ′, m, m′

〉
. We just

learned that
∣∣j , j ′, m, m′

〉
is an eigenstate of Jz with eigenvalue m+m′.

We know that the maximum values m and m′ can attain are j and j ′, respectively, and
thus the maximum eigenvalue Jz can have is j + j ′, attained with the state

∣∣j , j ′, j , j ′
〉
.

Yes, I know, this is getting hard to follow; I will go to some specific examples presently.

The Clebsch-Gordan decomposition

The plan of attack is to apply the lowering operator J− repeatedly on
∣∣j , j ′, j , j ′

〉
. To see

what is going on, I will go through three examples. In example (A), we choose j = 1
2 and

j ′ = 1
2 . Even though we have not yet elucidated the mystery of the j = 1

2 representation,
we know that it does exist as a representation of the Lie algebra. (Somehow it is not a
representation of the rotation group, as will be made clear in chapter IV.5.) In example
(B), we choose j = 1 and j ′ = 1. Finally, in example (C), we choose j = 2 and j ′ = 1, so that
we can check against our result obtained in the preceding section using tensors.

Example (A): j = 1
2 , j ′ = 1

2

There are (2j + 1)(2j ′ + 1)= 2 . 2= 4 states
∣∣∣ 1

2 , 1
2 , m, m′

〉
withm=− 1

2 , 1
2 andm′ = − 1

2 , 1
2 .

Since j and j ′ are fixed in this discussion, we might as well omit them and simply

write
∣∣m, m′

〉
instead of

∣∣j , j ′, m, m′
〉
. Let’s go slow and list the four states

∣∣∣ 1
2 , 1

2

〉
,
∣∣∣ 1

2 , − 1
2

〉
,∣∣∣− 1

2 , 1
2

〉
, and

∣∣∣− 1
2 , − 1

2

〉
.

As explained above, we expect these four states to furnish a reducible representation
and thus to fall apart into a bunch of irreducible representations labeled by J . (We are
running out of letters; this J is just a number and definitely not to be confused with any
of the three Jis.) Let us denote the states in these irreducible representations by |J , M〉
withM =−J , −J + 1, . . . , J .

Of these four states,
∣∣∣ 1

2 , 1
2

〉
has the maximum eigenvalue Jz can have, namely, 1

2 + 1
2 =

+1. Thus, it can belong only to an irreducible representation labeled by J with J ≥ 1. In
fact, it cannot be that J > 1, because then there would have to be states with eigenvalue of
Jz greater than 1. So we have

|1, 1〉 =
∣∣∣∣12 ,

1
2

〉
(5)

which to the uninitiated would appear to be an equation forbidden by basic logic.
But you as an initiated recognize that the symbols on the two sides of this equation

denote different objects: the left hand side denotes |J = 1, M = 1〉, while the right hand

side denotes
∣∣∣m= 1

2 , m′ = 1
2

〉
. These two states are each on the top rung of the ladder,

having the maximum eigenvalue Jz could have, namely,M = 1=m+m′.
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The strategy is to climb down the ladder by applying J− repeatedly. So, act with J− on

|1, 1〉 =
∣∣∣ 1

2 , 1
2

〉
. But we know from chapter IV.2 how J− acts on these states.

Using (IV.2.8), we have J− |1, 1〉 = √2 |1, 0〉, while using (IV.2.7), we have∗ J−
∣∣∣ 1

2 , 1
2

〉
=∣∣∣− 1

2 , 1
2

〉
+
∣∣∣ 1

2 , − 1
2

〉
. Thus,†

|1, 0〉 = 1√
2

(∣∣∣∣−1
2

,
1
2

〉
+
∣∣∣∣12 , −1

2

〉)
(6)

Applying J− again, we obtain
√

2 |1, −1〉 = 1√
2

(
2
∣∣∣− 1

2 , − 1
2

〉 )
and thus |1, −1〉 =

∣∣∣− 1
2 , − 1

2

〉
(which we might have expected by applying symmetry to our starting equation, flipping
the z-axis).

We have now accounted for three of the four states we started with. The only orthogonal

state left is the linear combination 1√
2

( ∣∣∣− 1
2 , 1

2

〉
−
∣∣∣ 1

2 , − 1
2

〉 )
, which has eigenvalue 0 under

Jz; this state, all by its lonesome self, must be |J = 0, M = 0〉. Alternatively, act with J−
on this state and watch it vanish.

Let me summarize our results, giving |J , M〉 in terms of
∣∣m, m′

〉
:

|1, 1〉 =
∣∣∣∣12 ,

1
2

〉
|1, 0〉 = 1√

2

( ∣∣∣∣−1
2

,
1
2

〉
+
∣∣∣∣12 , −1

2

〉 )
; |1, 0〉 = 1√

2

( ∣∣∣∣−1
2

,
1
2

〉
−
∣∣∣∣12 , −1

2

〉 )
|1, −1〉 =

∣∣∣∣−1
2

, −1
2

〉
(7)

We might say that this has the shape of a python that just swallowed its lunch. The two

states withM = 0 are linear combinations of the two states
∣∣∣− 1

2 , 1
2

〉
and

∣∣∣ 1
2 , − 1

2

〉
.

We have just showed that

1
2
⊗ 1

2
= 1⊕ 0 (8)

Just to whet your appetite, I mention that we are going to apply the result here to proton
scattering on proton in chapter V.1.

Example (B): j = 1, j ′ = 1

Now that you have gone through example (A), we can practically race through this example.
Start with 3 . 3= 9 states

∣∣1, 1, m, m′
〉
withm=−1, 0, 1 andm′ = −1, 0, 1. Again, we write∣∣m, m′

〉
instead of

∣∣j , j ′, m, m′
〉
. These nine states furnish a reducible representation which

∗ Keep in mind that
∣∣∣ 1

2 , 1
2

〉
means

∣∣∣ 1
2

〉
⊗
∣∣∣ 1

2

〉
.

† Alternatively, we could also have argued that the two Jz = 0 states,
∣∣∣− 1

2 , 1
2

〉
and

∣∣∣ 1
2 , − 1

2

〉
, must appear with

equal weight due to the principle of democracy; the 1√
2

then follows on normalization. No need to look up (IV.2.7)

and (IV.2.8) after all.
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decomposes into a bunch of irreducible representations labeled by J . In these irreducible
representations, the states are denoted by |J , M〉 withM =−J , −J + 1, . . . , J .

Of these nine states, the one with the highest value of M is |1, 1〉, for which M =
1+ 1= 2. So start with |2, 2〉 = |1, 1〉 and climb down the ladder. Act with J−, using
(IV.2.8) and (IV.2.9). But as remarked in connection with example (A), we don’t even
need to look these up. Remembering that |1, 1〉 means |1〉 ⊗ |1〉, we lower each of the
two kets in turn to |0〉, so that we end up with a linear combination of |1, 0〉 and |0, 1〉.
But by the principle of democracy, these two kets must appear with equal weight, and thus
|2, 1〉 = 1√

2
(|0, 1〉 + |1, 0〉).

Onward! Apply J− again. Advocating democracy is not enough any more, since this only
tells us that we get a state proportional to |−1, 1〉 + c |0, 0〉 + |1, −1〉 with an unknown
constant c. We have to invoke (IV.2.8) to determine c = 2. Thus, |2, 0〉 = 1√

6
(|−1, 1〉 +

2 |0, 0〉 + |1, −1〉).
At this point we could keep going, but there is no need to even apply J− any more.

By reflection symmetry along the z-axis, we have |2, −1〉 = 1√
2
(|0, −1〉 + |−1, 0〉) and

|2, −2〉 = |−1, −1〉.
These account for five out of the nine states. Of the remaining states, the maximum

valueM can have is 1, attained by the states |0, 1〉 and |1, 0〉. But this state |J = 1, M = 1〉
has to be orthogonal to the state |2, 1〉 = 1√

2
(|0, 1〉 + |1, 0〉) we already have. Thus, with

essentially no work, we have found |1, 1〉 = 1√
2
(|0, 1〉 − |1, 0〉).

Again, apply J− on this, and by democracy, we obtain with no work at all |1, 0〉 =
1√
2
(|−1, 1〉 − |1, −1〉), and then |1, −1〉 = 1√

2
(|−1, 0〉 − |0, −1〉).

So now there is only 9− 5− 3= 1 state left. This lone state is determined by the fact
that it is orthogonal to everybody else. Hence, |0, 0〉 = 1√

3
(|−1, 1〉 − |0, 0〉 + |1, −1〉).

Again, if you line up the nine states as in (7), you will see that there are three states in
the middle, and one state at the two ends.

We have just showed that

1⊗ 1= 2⊕ 1⊕ 0 (9)

The attentive reader will recall that we obtained exactly the same result, 3⊗ 3= 5⊕ 3⊕ 1,
multiplying two vectors together back in chapter IV.1. Indeed, that was how the very
concept of tensor was invented in the first place.

Example (C): j = 2, j ′ = 1

Now that you have worked through examples (A) and (B) thoroughly, you are ready to rip
through the multiplication 2⊗ 1. I will let you do it, sketching for you how to proceed. We
now have 5 . 3= 15 states, so things are a bit more involved, but conceptually it is the same
game. Your task is to determine the states |J , M〉 as linear combinations of the 15 states∣∣m, m′

〉
.

Start with |J = 3, M = 3〉 = ∣∣m= 2, m′ = 1
〉

and climb down with the help of J−. Refer
back to (IV.2.8) and (IV.2.9). First, J− |2, 1〉 = 2 |1, 1〉 + √2 |2, 0〉. (Note that we no longer
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have democracy as our guiding light; there is no reason for the two kets |1, 1〉 and |2, 0〉
to come in with equal weight.) Normalizing∗ this linear combination, we determine that
|3, 2〉 = 1√

6
(2 |1, 1〉 +√2 |2, 0〉). Climb down another rung to get† |3, 1〉 = 1√

15
(
√

6 |0, 1〉 +
2
√

2 |1, 0〉 + |2, −1〉). I will let you continue. Climb down rung after rung until you get to
|3, −3〉, referring to (IV.2.8) and (IV.2.9) repeatedly. Then what?

Well, you have accounted for 2 . 3+ 1= 7 states. There are 15− 7= 8 states left. The
maximum value m+m′ can now attain is 2, with the kets |1, 1〉 and |2, 0〉. But the linear
combination 1√

6
(2 |1, 1〉 + √2 |2, 0〉) is already taken, so we are left with the orthogonal

linear combination 1√
6
(
√

2 |1, 1〉 − 2 |2, 0〉). Note that (2 〈1, 1| + √2 〈2, 0|)(√2 |1, 1〉 −
2 |2, 0〉)= 2

√
2(〈1, 1|1, 1〉 − 〈2, 0|2, 0〉)= 0. Act with J− to obtain 2 . 2+ 1= 5 states.

We are left with 15− 7− 5= 3 states. The maximum value m+m′ can now attain is
1, with the kets |2, −1〉, |−1, 2〉, |1, 0〉, and |0, 1〉. You have to find the linear combination
that is orthogonal to the states that have already appeared, and then apply J− to obtain
2 . 1+ 1= 3 states.

Thus, completing this exercise, you would have shown that

2⊗ 1= 3⊕ 2⊕ 1 (10)

After going through these three examples, you see that we have basically proved (2).
The general case of j ⊗ j ′ does not involve anything conceptual not contained in these
examples, but merely involves more verbiage to recount. Start with

∣∣j + j ′, j + j ′〉 =∣∣j , j ′
〉
, and climb down. Then start another ladder with the top rung

∣∣j + j ′ − 1, j + j ′ − 1
〉

given by a linear combination of
∣∣j − 1, j ′

〉
and

∣∣j , j ′ − 1
〉
, and climb down. Repeat until

all (2j + 1)(2j ′ + 1) states are gone. As promised, we have here an alternative derivation
of (IV.2.11).

Clebsch-Gordan decomposition and coefficients

This procedure of working out j ⊗ j ′ is known as the Clebsch-Gordan2 decomposition. The
various coefficients that appear are known as Clebsch-Gordan coefficients (for example,

the numbers 1√
6

and
√

2
3 in |2, 0〉 = 1√

6
(|−1, 1〉 + 2 |0, 0〉 + |1, −1〉)). They are important

in various applications in physics. We will see a few examples in chapter V.1.
Write the decomposition of j ⊗ j ′ in the form

|J , M〉 =
j∑

m=−j

j ′∑
m′=−j ′

∣∣j , j ′, m, m′
〉 〈j , j ′, m, m′|J , M〉 (11)

∗ 〈3, 2|3, 2〉 = 1√
6

(
2 〈1, 1| + √2 〈2, 0|

)
1√
6

(
2 |1, 1〉 + √2 |2, 0〉

)
= 1√

6

(
4〈1, 1|1, 1〉 + 2〈2, 0|2, 0〉

)
= 1.

† At the risk of being repetitive, I point out that the numbers inside the ket on the left hand side refer to J ,M ,
while the numbers inside the kets on the right hand side refer to m, m′.
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In other words, |J , M〉 is a linear combination of
∣∣j , j ′, m, m′

〉
with the Clebsch-Gordan

coefficients given by the numbers 〈j , j ′, m, m′|J , M〉. Since these vanish unless m +
m′ =M , the double sum in (11) reduces to a single sum. Note that the Clebsch-Gordan
decomposition is essentially a statement about completeness:

j∑
m=−j

j ′∑
m′=−j ′

∣∣j , j ′, m, m′
〉 〈
j , j ′, m, m′

∣∣= I (12)

For the case j = 1, j ′ = 1, the results are as follows. (As remarked earlier, since j and j ′

are fixed once and for all, they will be suppressed.)

J = 2:
|2, 2〉 = |1, 1〉
|2, 1〉 = 1√

2
(|0, 1〉 + |1, 0〉)

|2, 0〉 = 1√
6
(|−1, 1〉 + 2 |0, 0〉 + |1, −1〉)

|2, −1〉 = 1√
2
(|0, −1〉 + |−1, 0〉)

|2, −2〉 = |−1, −1〉 (13)

J = 1:

|1, 1〉 = 1√
2
(|0, 1〉 − |1, 0〉)

|1, 0〉 = 1√
2
(|−1, 1〉 − |1, −1〉)

|1, −1〉 = 1√
2
(|−1, 0〉 − |0, −1〉) (14)

J = 0:

|0, 0〉 = 1√
3
(|−1, 1〉 − |0, 0〉 + |1, −1〉) (15)

The Clebsch-Gordan decomposition has so many applications in various areas of physics
that for many researchers, calculating Clebsch-Gordan coefficients (or more likely these
days, looking them up) is almost a way of life. This is because the conceptual framework
behind the decomposition—multiplying two irreducible representations together and
separating the resulting reducible representation into irreducible representations—is so
basic and natural in group theory. For example, in atomic physics, an electron with orbital
angular momentum l will have total angular momentum∗ j equal to either j = l + 1

2 or
j = l − 1

2 (excepting the trivial case l = 0). Work this out as an exercise for possible later
use. The 2(2l + 1) states split into 2(l + 1

2)+ 1 and 2(l − 1
2)+ 1 states.

∗ See the remark early in this chapter regarding the various names for angular momentum; here we are adding
orbital and spin angular momentum to form �J = �L+ �S.
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In a course on quantum mechanics, students learn how to combine angular momen-
tum. Here I mention that a common confusion is whether we are multiplying or adding,
since both terms are thrown about casually. The answer is both: here we have one sec-
tion titled “addition of angular momentum” and another titled “multiplying two ladders
together.” I trust that the detailed analysis given here makes clear what is going on. In
a sense, it corresponds to the concept of Lie group versus the concept of Lie algebra: we
multiply representations together but add generators.

Wigner-Eckart theorem

The early days of atomic spectroscopy saw a massive mess of confusion, to say the least.
Many transition lines with varying intensity were observed, while some expected lines were
missing. In quantum mechanics, the probability amplitude for a transition from some
initial state |i〉 to some final state |f 〉 due to some perturbation, such as the electromagnetic
field, usually ends up being given by an operator O evaluated between the two states, that
is, 〈f |O |i〉.

In atomic spectroscopy, the initial and final states transform like members of some
irreducible representations of the rotation group SO(3), respectively,

∣∣i〉= ∣∣α , j , m
〉

and∣∣f 〉 = ∣∣α′, j ′, m′〉. Here α and α′ denote generically some other quantum numbers not
governed by SO(3), such as the principal quantum number that measures how “high” a
given state is in the energy spectrum.

The operator O also transforms like members of some irreducible representations of
SO(3). We write OJM to indicate that it transforms like the state |JM〉. For example, in the
simplest kind of electromagnetic transition, known as the dipole transition, O is simply
the position operator �x of the electron. In this case, O transforms like a vector, and thus,
as explained in chapter IV.2, J = 1 and M =−1, 0, or 1; in other words, O1M transforms
like the spherical harmonic YM1 .

The Wigner-Eckart theorem tells us what group theory has to say about the matrix
element

〈
α′, j ′, m′ |OJM | α , j , m

〉
. It states3 that

〈
α′, j ′, m′ |OJM | α , j , m

〉 = (〈j ′, m′∣∣ ( ∣∣JM 〉⊗ ∣∣j , m
〉 )) 〈

α′, j ′‖OJ‖α , j
〉

= 〈j ′, m′ | J , j , M , m
〉 〈
α′, j ′‖OJ‖α , j

〉 (16)

The amplitude factors into a product of two quantities, which we can associate with
symmetry and with dynamics. The “thing with the double vertical bars”4 〈α′, j ′‖OJ‖α , j

〉
,

called the reduced matrix element of the operator O, represents dynamics, about which
group theory has nothing to say. Its evaluation requires knowing the Schrödinger wave
functions of the initial and final states and doing an integral. One result of the theorem is
that the quantity

〈
α′, j ′‖OJ‖α , j

〉
depends on α′, α, J , j ′, and j but does not depend on

m′ and m.
The group theoretic heart of the theorem resides in the factor

〈
j ′, m′ | J , j , M , m

〉
,

namely, a Clebsch-Gordan coefficient. This makes such perfect sense as to render the
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theorem almost self-evident, since the quantity OJM |α , j , m〉 and the direct product of
two states |JM〉 ⊗ |j , m〉 = |J , j , M , m〉 transform in exactly the same way. As far as group
theory is concerned, they might as well be the same thing.

But we know that
〈
j ′, m′ | J , j , M , m

〉
vanishes unless j ′ = j + J , j + J − 1, . . . ,

|j − J | + 1, |j − J | and m′ =M +m. Let us write these two conditions more compactly
(see exercise 3) in terms of the change �j = j ′ − j and �m = m′ − m in the atomic
transition. We have

|�j | = |j ′ − j | ≤ J
�m=m′ −m=M ≤ J (17)

In quantum mechanics, the intensity of a transition line in atomic spectroscopy is given
by the absolute square of the probability amplitude

〈
α′, j ′, m′ |OJM | α , j , m

〉
. Thus, group

theory fixes the relative intensity of the various observed lines. Furthermore, the line is
forbidden unless the conditions in (17) are satisfied, which thus explains the famous
selection rules that played such a pivotal (and mysterious) role in the development of
quantum mechanics.

For a given pair of initial and final states (α , j) and (α′, j ′) (and with the type of
transition specified by J fixed), (2j ′ + 1)(2j + 1) transitions are in principle possible, many
of which are forbidden by (17). The relative intensities of the observed transition lines
are thus entirely fixed by group theory, with the double-vertical-bar thing

〈
α′, j ′‖OJ‖α , j

〉
canceling out.

Imagine yourself back in the early 1920s, before quantum mechanics was developed
and before group theory became known to physicists. The puzzle posed by the abundant
data in atomic spectroscopy must have seemed awesome.

Exercises

1 Work out example (C) in detail.

2 Work out the Clebsch-Gordan coefficients in 1⊗ 1
2 = 3

2 ⊕ 1
2 .

3 Derive the selection rules (17).

4 Apply J± to (11) to obtain the following recursion relations for the Clebsch-Gordan coefficients:√
(J + 1±M)(J ∓M)〈m, m′ |J , M ± 1〉
=√(j + 1∓m)(j ±m)〈m∓ 1, m′ |J , M〉
+√(j ′ + 1∓m′)(j ′ ±m′)〈m, m′ ∓ 1 |J , M〉 (18)

5 Show that the total angular momentum states for an electron with orbital angular momentum l �= 0 are
given by

∣∣∣∣j = l + 1
2

, m
〉
=
√
l +m+ 1

2

2l + 1

∣∣∣∣m− 1
2

,
1
2

〉
+
√
l −m+ 1

2

2l + 1

∣∣∣∣m+ 1
2

, − 1
2

〉
(19)
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and∣∣∣∣j = l − 1
2

, m
〉
=−

√
l −m+ 1

2

2l + 1

∣∣∣∣m− 1
2

,
1
2

〉
+
√
l +m+ 1

2

2l + 1

∣∣∣∣m+ 1
2

, − 1
2

〉
(20)

Note that once you obtain
∣∣∣j = l + 1

2 , m
〉
, then with almost no work, you can determine

∣∣∣j = l − 1
2 , m

〉
by

appealing to orthogonality.

6 The Clebsch-Gordan decomposition often allows us to discover new identities. Here is an elementary
example. Given four vectors, �u, �v, �w, and �z, how many scalars can you form out of them? What about
(�u⊗ �v) . ( �w ⊗ �z)?

Notes

1. As always in physics, it is crucial to specify what is being fixed when taking a limit.
2. A piece of trivia: Paul Gordan was Emmy Noether’s thesis advisor.
3. The Wigner-Eckart theorem is stated here for SO(3). For SO(3), the product j ⊗ J contains j ′ only once. For

other groups, the product of the two given representations (namely, the analogs of j and J ) may contain the
analog of j ′ more than once, in which case the Wigner-Eckart theorem involves an additional sum.

4. One of my professors used to speak of this mockingly, mumbling that some people are not satisfied with a
single vertical bar.



IV.4 Tensors and Representations of the
Special Unitary Groups SU(N)

Since this chapter is fairly involved, I first give you an overview or roadmap. Now that we
have worked out the special orthogonal groups SO(N), we simply try to repeat everything
for the special unitary groups SU(N). My pedagogical strategy is to work out the tensors
for SU(N) by following our noses; soon enough, we will stumble into the fact that the
tensors of SU(N), in contrast to the tensors of SO(N), have to carry two kinds of indices,
upper and lower. The important message for the beginning reader is that this fact did not
capriciously and mysteriously fall from the sky, but merely reflects the presence in SU(N),
but not in SO(N), of the basic operation of complex conjugation.

From orthogonal to unitary groups

We worked out the tensors and representations of the special orthogonal groups SO(N)
in chapter IV.1. Here we extend that discussion to the tensors and representations of the
special unitary groups SU(N). Roughly speaking, the extension corresponds to going from
real to complex numbers.

We start with a quick review of the special orthogonal groups SO(N). We learned in
chapter I.3 that SO(N) consists of rotations in N -dimensional space,1 namely, all N -by-N
real matrices O that are orthogonal

OTO = 1 (1)

and have unit determinant

det O = 1 (2)

The condition (1) ensures that the length squared vT v of theN -component vector v, which
transforms according to v→ v′ =Ov, is left unchanged or invariant. As was remarked
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in chapter IV.3, the condition that vT v is left invariant actually implies∗ the apparently
stronger condition that uT v is left invariant for u and v two arbitrary vectors.

Lie showed us how to solve (1) by writing rotations near the identity as O � I + A. To
leading order in A, (1) becomes AT − A= 0. The most general A may then be written as
a linear combination of N(N − 1)/2 antisymmetric matrices.

Quantum physics and complex numbers

Classical physics is done with real numbers. With the advent of quantum mechanics,
complex numbers came into physics in an essential way. Wave functions, for example,
are in general complex.

We wish to generalize the discussion for SO(N) by considering linear transformations
on complex vectors ψ . While v = {vj , j = 1, . . . , N} consists of N real numbers, we
now take ψ = {ψj , j = 1, . . . , N} to consist of N complex numbers. We demand that
the linear transformations ψ→ ψ ′ = Uψ leave

∑N
j=1 ψ

j∗ψj = ψ∗T ψ ≡ ψ†ψ invariant.
(The last step defines hermitean conjugation of a complex vector as complex conjugation
followed by transposition; see the review of linear algebra.) Just as in the case of SO(N),
this implies† that for two arbitrary complex vectors ζ and ψ , under the transformations
ζ →Uζ andψ→Uψ , the quadratic forms‡ ζ †ψ andψ†ζ are left invariant. Since ζ andψ
are arbitrary, this condition, that ζ †U†Uψ = ζ †ψ , leads to the requirement that U†U = I ,
in other words, that U is unitary.

The group U(N)

The group U(N) is defined to consist of all N by N matrices U that are unitary

U†U = I (3)

We can readily show that U(N) is indeed a group. (You may want to try it before reading
on.)

To prove closure, we need to show that, ifU2 andU1 are unitary matrices, then the matrix
U2U1 is also unitary. Simply compute: (U2U1)

†U2U1=U†
1U

†
2U2U1=U†

1U1= I . It is crucial

that hermitean conjugation reverses the order in a product, that is, (U2U1)
†= U†

1U
†
2 , but

this follows from the fact that transposition of a product of matrices reverses the order,§

that is, (U2U1)
T = UT1 UT2 , a fact which also plays a crucial role in proving closure for the

orthogonal groups.

∗ Since vT v is left invariant for arbitrary v, we could replace v by v + λu with λ an arbitrary real number
and conclude that (v + λu)T (v + λu)= vT v + λ(uT v + vT u)+ λ2uT u is left invariant. Since λ is arbitrary, the
coefficient of λ in this expression, namely, uT v + vT u= 2uT v, is left invariant.

† As before, we replace ψ by ψ + λζ , with λ now an arbitrary complex number.
‡ They are of course complex conjugates of each other.
§ Complex conjugation, in contrast, does not touch the order.
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The existence of the identity I and of the inverse U† for each U holds almost by
definition.

SU(N) as a subgroup of U(N)

For orthogonal matrices, on taking the determinant of the condition (1), OTO = 1,
we obtain (det O)2 = 1, which implies the binary possibilities: det O = ±1. Choosing
to impose the condition (2), det O = 1, then allows us to eliminate all those trans-
formations that involve reflections. In contrast, for unitary matrices, on taking the
determinant of the condition (3), U†U = I , we obtain det(U†U) = (det U†)(det U) =
(det U)∗(det U)= | det U |2= 1, which implies a continuum of possibilities: det U = eiα ,
for 0 ≤ α < 2π .

The condition

det U = 1 (4)

eliminates this dangling phase factor eiα.
The two conditions (3) and (4), which are analogous to the two conditions (1) and (2),

define the group SU(N), a natural subgroup of U(N).
An alternative way of saying this is as follows.
Among the groups U(N), we have, in particular, the group U(1) consisting of all

1-by-1 unitary matrices, that is, all complex numbers with absolute value equal to 1. In
other words, U(1) consists of phase factors eiϕ, 0 ≤ ϕ < 2π .

The group U(N) contains two sets of group elements.
The first set consists of unitary matrices of the form eiϕI , where I denotes the N -

by-N identity matrix. These matrices clearly form a subgroup of U(N); they satisfy all
the group axioms. Indeed, the matrix part (namely, I ) is trivial: the different elements
are distinguished by the phase factor eiϕ. This is a wordy way of saying that this sub-
group is in a one-to-one correspondence with the group U(1) and might as well be called
U(1).

The second set of group elements of U(N) consists of N -by-N unitary matrices with
determinant equal to 1, namely, the special unitary matrices forming the subgroup SU(N).
The matrices in this subgroup trivially commute with matrices of the form eiϕI .

At this point, we might as well focus on the group SU(N), defined by (3) and (4). (We
will return to U(N) late in chapter IV.5.)

The story of SU(N) follows more or less the same plot as the story of SO(N), with the
crucial difference that we will be dealing with complex rather than real numbers.

In discussing the orthogonal groups, I started with SO(2) and SO(3), and then pro-
ceeded to SO(N). This order of presentation certainly makes sense, given that we live in
3-dimensional Euclidean space. But in discussing the unitary groups, I reverse my peda-
gogical strategy and start with SU(N), armed as it were with our experience with SO(N).
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From a general discussion of SU(N),2 to be given here, we will then, in subsequent chap-
ters, specialize to SU(2) and SU(3), pointing out the special features that they do not
share with SU(N). After our discussion of the orthogonal groups, that the “lower” unitary
groups enjoy special features not granted to the “higher” unitary groups is hardly surpris-
ing. As in the earlier discussion, this fact has to do with the number of indices the relevant
antisymmetric symbols carry.

The �− and counting with our fingers

Let us now merrily repeat what we did back in chapter IV.1 to construct the tensor represen-
tations of SO(N). (You might want to do a quick review.) Starting with the fundamental
representation∗ ψi→ ψ ′i = Uijψj , we consider tensor ϕi1i2...im carrying m indices and
transforming according to ϕi1i2...im→ ϕ′i1i2...im = Ui1j1Ui2j2 . . . Uimjmϕj1j2...jm. The whole
point of tensors, as you will recall, is that their indices transform independently,† so that
any symmetry of ϕi1i2...im under permutations of its indices is carried over to ϕ′i1i2...im.
(For example, if ϕi1i2...i5 is totally symmetric in the first three indices and antisymmetric
in the last two indices, so too will ϕ′i1i2...i5 be totally symmetric in the first three indices
and antisymmetric in the last two indices.)

Ta dah! We have thus constructed lots of representations of SU(N). Once again, we have
to undergo the ordeal of mastering Young tableaux to study the most general symmetry
patterns that a tensor of SU(N) carryingm indices can exhibit. And once again, fortunately,
for many, perhaps even most, applications (say, in particle physics), we only have to
deal with the simplest possible symmetry patterns, such as totally symmetric or totally
antisymmetric, and with m small. (See chapter IV.1 for the advice I received long ago and
dispense now regarding this point.)

As an example, let us count the dimension of the representation furnished by the 3-
indexed totally symmetric tensor ϕijk of SU(3). Indeed, this counting is part of a Nobel
prize winning piece of work!

Instead of watching the rich man going through his fancy footwork, let’s watch the poor
man simply enumerate:‡ All indices equal to 3: {ϕ333}; two indices equal to 3: {ϕ332, ϕ331};
one index equal to 3: {ϕ322, ϕ321, ϕ311}; and no index equal to 3: {ϕ222, ϕ221, ϕ211, ϕ111}.
We have altogether 1+ 2+ 3+ 4 = 10 objects. Thus, SU(3) has a 10-dimensional
representation.

∗ The repeated index summation convention is enforced here, of course; thus Uijψj =∑j U
ijψj .

† Perhaps a better description is “transform in parallel,” as mentioned in chapter IV.1.
‡ In fact, this is by far the most foolproof way to proceed. (In case the student reading this does not realize

it, the Swedes in their wisdom tend not to give Nobel prizes to people writing down the general formula for the
dimension of tensors with the most general symmetry patterns under permutation of its indices for general N
and m.)



IV.4. Tensors and Representations of the Special Unitary Groups SU(N) | 231

In the early 1960s, nine short-lived baryonic∗ particles with similar properties and
masses close to one another were known experimentally. This suggests, as per the
argument given in chapter III.1, that these nine particles belong to an irreducible rep-
resentation of some symmetry group. By “pure thought” (as shown here) and on guessing
that the symmetric group of the strong interaction is SU(3), Gell-Mann insisted that there
must be ten, not nine, baryonic particles. The dramatic discovery3 of the tenth baryonic
particle, dubbed the�−, confirming Gell-Mann’s group theoretic prediction, was not only
one of the most stirring episodes† in the annals of particle physics, but also ushered in the
widespread study of group theory among particle physicists.4

Actually, we are only pretending to be poor; you and I can readily work out by induction
the general formula for the dimension of {m}, the irreducible representation furnished
by the totally symmetric tensor carrying m indices in SU(N). Exercise! You will realize
that the counting thus far is the same as in chapter IV.1. (Our fingers can’t tell whether
the tensor is for SO(N) or SU(N).)

The trace for SU(N)

You ask, what about taking out the trace?
Good question. In chapter IV.1, we had to subtract out the trace δijϕijk, so that the

irreducible representation of SO(3) is 7 = (10 − 3)-dimensional,‡ not 10-dimensional.
OK, let’s do the same here, but first, let’s check how the trace transforms: δijϕijk→
δij (UifUjgUkhϕfgh)= (δijUifUjg)(Ukhϕfgh).

But oops! What in the spinning world is δijUifUjg = (UT )f iδijUjg = (UTU)fg? It
certainly is not δfg, which is what we need if δijϕijk is to transform the way we want,
namely, as a vector carrying the index k. We are talking about unitary matrices here, and
the combination UTU has no special meaning. So, this particular “trace” does not make
any mathematical sense.

We don’t have to take out the trace, contrary to the discussion in the orthogonal case
(there,OTO does have a special meaning, of course—namely, that it is equal to the identity
matrix). The representation {3} of SU(3) is indeed irreducible, with dimension given by
10. Gell-Mann got it right.

Fine, but this raises a more pressing question: how do we define a trace for SU(N)?
The clue—no surprise for those readers with mathematical sense!—is that it is the combi-
nation U†U , not UTU , that is equal to the identity matrix. We have to complex conjugate

∗ This merely means that they have masses similar to the proton and neutron. For more, see chapter V.2.
† I describe this in slightly more detail in chapter V.2.
‡ Recall that in SO(3), the dimension of the irreducible representation furnished by the totally symmetric

tensor with j indices is given by 2j + 1. In particular, there does not exist an integer j such that 2j + 1 is equal
to 10.
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as well as transpose. (Physically, a quark∗ is to be combined with an antiquark,† not with
another quark!)

Moving downstairs!

Now we come to something that has traditionally confused quite a few beginning students:
the sudden appearance of two types of indices. We could go through some fancy schmancy
talk about covariant and contravariant, vector spaces and dual vector spaces, et cetera—
what Einstein called “more-or-less dispensable erudition”—but we won’t; instead, we
follow Einstein and adopt a low-brow practical approach, sticking to the nitty-gritty.

In the review of linear algebra, I already mentioned the commonly used notation in
which complex vectors carry an upper index, while their complex conjugates carry a
lower index. But in view of the confusion alluded to above, it is worthwhile to go back to
basics.

As noted at the beginning of this chapter, the quadratic invariant is ζ †ψ = ζ ∗T ψ =∑N
j=1 ζ

j∗ψj , not ζ Tψ =∑N
j=1 ζ

jψj . Given that ψi→ Uijψj , we complex conjugate

to obtain ψi∗ → (Uij)∗ψj∗. Next notice that this expression can be written as ψi∗ →
(UT ∗)jiψj∗ = (U†)jiψj∗ = ψj∗(U†)ji; nothing prevents us, in the last step, from inter-
changing the two complex numbers (U†)ji and ψj∗. Indeed, we can now verify explicitly
that ψi∗ζ i→ ψj∗(U†)jiU ikζ k = ψj∗δjkζ k = ψj∗ζ j is invariant; after all, that was how we
got the condition U†U = I in the first place.

At this point, people invented a very clever notation: write

ψi ≡ ψi∗ (5)

A new objectψi appears, but it is literally justψi∗, nothing mysterious about it at all. At the
least, we no longer have to write “∗”. It may not seem to you like all that much of a notational
saving: not having to write “∗”, we now have to write lower indices. But the nice feature
is that the invariant ζ †ψ =∑N

j=1 ζ
j∗ψj can be written as ζ †ψ =∑N

j=1 ζjψ
j = ζjψj

(invoking the repeated index summation convention at the last step). Thus, as this example
shows, when we contract and sum over indices, with this new notation, we should impose
the rule that we are allowed to contract and sum over an upper index with a lower index,
but never an upper index with an upper index, nor a lower index with a lower index. You
will see shortly how this works in general.

To summarize, the defining or fundamental representation of SU(N) consists of N
objects ψj , j = 1, . . . , N , which transform under the action of the group element U
according to

ψi→ ψ ′i = Ui
j
ψj (6)

∗ If you don’t know what this word means, perhaps it is time to read some popular book about particle
physics.

† See chapter V.2 on SU(3).
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Note that the column index on the matrix U has been typeset to the right of the row index,
and lowered to satisfy our convention that the upper index on ψj is to be summed with a
lower index.

Now we define an object written as ψi, which transforms in the same way as ψ∗i . The
transformationψi∗ →ψj∗(U†)ji we had earlier is then translated toψi→ψj(U

†)
j

i. Thus,
the counterpart of (6) is

ψi→ ψ ′
i
= ψj(U†)

j

i (7)

As a check, ζiψi→ ζ ′
i
ψ ′i = ζj(U†)

j

iU
i
kψ

k = ζj(U†U)
j

kψ
k = ζjδjkψk = ζjψj . Things

work out nicely. Note that the Kronecker delta carries one upper and one lower index.
This reinforces the fact (as we shall see shortly in an example) that we are not allowed to
contract an upper index with an upper index, nor a lower index with a lower index.

In summary, upper indices transform with U , lower indices with U†.

Tensors with upper and lower indices

We now realize that the discussion earlier in this chapter about tensors in SU(N) was
incomplete: in this notation, we must allow the tensors to carry lower indices as well as
upper indices; we only had upper indices. In general, we have ϕi1i2

...im
j1j2...jn carrying m upper

indices and n lower indices.∗

Instead of obscuring the fairly obvious with a general discussion, let us show how tensors
work with a specific example. The tensor ϕijk transforms as

ϕ
ij

k → ϕ
′ij
k = UilUjm(U†)n

k
ϕlm
n
= Ui

l
Uj
m
ϕlm
n
(U†)n

k
(8)

As at the end of the last section, upper indices transform with U , lower indices with U†.
In other words, it transforms as if it were equal to the product ψiψjψk; note that I did not
say that ϕijk is equal to ψiψjψk, merely that they transform in the same way.

We now know how to take a trace: set an upper index equal to a lower index and sum
over them. In our example, consider δkjϕ

ij

k ≡ ϕijj . (Note that, as alluded to earlier, the fact
that the Kronecker delta carries one upper and one lower index reminds us to contract and
sum over an upper index with a lower index.) It transforms as

ϕ
ij

j → Ui
l
Uj
m
(U†)n

j
ϕlm
n
= Ui

l
δn
m
ϕlm
n
= Ui

l
ϕlm
m

(9)

where we have used (3). In other words, the ϕijj (the trace of ϕijk ), carrying the index
i = 1, 2, . . . , N , are N objects that transform into linear combinations of one another
in the same way as a vector. Thus, given a tensor, we can always subtract out its trace.

∗ Our friend the jargon guy tells us that the upper indices are known as contravariant and the lower indices
as covariant. The reader who has taken a course on Einstein gravity will know that tensors in general relativity
also carry upper and lower indices.
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Now we see what we did wrong earlier. We erroneously defined a trace by summing over
two upper indices, which is not allowed in this formalism.

To summarize, traceless tensors with upper and lower indices furnish representations
of SU(N). The discussion proceeds in a way that should by now be familiar. The symmetry
properties of a tensor under permutation of its indices are not changed by the group
transformation. In other words, given a tensor ϕi1i2

...im
j1j2...jn we can always require it to have

definite symmetry properties under permutation of its upper indices (the is) and under
permutation of its lower indices (the js). Note that the upper indices and lower indices
are to be permuted separately. It does not make sense to interchange an upper index and
a lower index; they are different beasts, so to speak.

In our specific example, we are allowed to take ϕijk to be either symmetric or anti-
symmetric under the exchange of i and j and to be traceless. (Here, with one single lower
index, we don’t have to worry about the symmetry pattern of the lower indices.) Thus,
the symmetric traceless tensor Sijk = +Sjik furnishes a representation with dimension
1
2N

2(N + 1)−N = 1
2N(N − 1)(N + 2) and the antisymmetric traceless tensorAijk =−Ajik

a representation with dimension 1
2N

2(N − 1)−N = 1
2N(N − 2)(N + 1).

Thus, in summary, the irreducible representations of SU(N) are realized by traceless
tensors with definite symmetry properties under permutation of indices. Convince your-
self that for SU(N), the dimensions of the representations defined by the following tensors
ϕi , ϕij (antisymmetric), ϕij (symmetric), ϕij , and ϕijk (antisymmetric in the upper indices)

are, respectively, N , N(N − 1)/2, N(N + 1)/2, N2− 1, and 1
2N(N − 2)(N + 1).

You are now almost ready for the grand unified theories of the strong, weak, and electro-
magnetic interactions! These are the irreducible representations commonly used in the
popular Georgi-Glashow SU(5) theory, with dimensions 5, 10, 15, 24, and 45, respectively.

As in the SO(N) story, representations of SU(N) have many names. For example, we
can refer to the representation furnished by a tensor with m upper and n lower indices as
(m, n). Alternatively, we can refer to them by their dimensions, with a ∗ to distinguish
representations with mostly lower indices from those with mostly upper indices. For
example, an alias for (1, 0) is N , and for (0, 1) is N∗. Of course, two entirely different
representations could happen to have the same dimension, but this ambiguity does not
usually occur for representations with relatively low dimensions. For example, in the
popular SU(5) grand unified theory, the known quarks and leptons transform like 5 and
10∗. A square bracket is often used to indicate that the indices are antisymmetric, and
a curly bracket that the indices are symmetric. Thus, the 10 of SU(5) is also known as
[2, 0]= [2], where as indicated, the 0 (no lower index) is suppressed. Similarly, 10∗ is also
known as [0, 2]= [2]∗.

Moving indices up and down stairs

The astute reader may have noticed that we have not yet used the condition (4), namely,
the S in SU(N). It can be written as either
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εi1i2...iNU
i1
1U

i2
2

. . . UiNN = 1 (10)

or

εi1i2
...iNU1

i1
U2
i2

. . . UN
iN
= 1 (11)

Recall that this parallels what we did with SO(N) in chapter IV.1, except that here we have
upper and lower indices. Again, we can immediately generalize (10) to

εi1i2...iNU
i1
j1
U
i2
j2

. . . UiNjN = εj1j2...jN (12)

Multiplying this identity by (U†)
jN
pN

and summing over jN , we obtain

εi1i2...iN−1pN
U
i1
j1
U
i2
j2

. . . UiN−1
jN−1
= εj1j2...jN (U†)jN

pN
(13)

Note that the index pN is “exposed” and not summed over. Clearly, by repeating this
process, we can peel off as many Us on the left hand side as we like, and put them back
as U†s on the right hand side. We can play a similar game with (11).

In contrast to SO(N), we now have, not one, but two antisymmetric symbols εi1i2...iN
and εi1i2...iN , which we can use to raise and lower indices as our hearts desire.

To avoid drowning in a sea of indices, let me show how we can raise and lower in-
dices in a specific example rather than in general. Consider the tensor ϕijk in SU(4).

We expect that the tensor ϕkpq ≡ εijpqϕijk will transform as a tensor with three lower
indices. We could trade two upper indices for two lower indices. Let’s check that this
indeed works: ϕkpq ≡ εijpqϕijk → εijpqU

i
lU
j
m
(U†)nkϕ

lm
n
= (U†)s

p
(U†)t

q
((U†)nkεlmstϕ

lm
n
)=

(U†)s
p
(U†)t

q
(U†)nkϕnst , as expected. Here we used a version of (13) to trade two Us for

two U†s. Similarly, you could verify that ϕijlmn ≡ εklmnϕijk transforms like a tensor with
five upper indices. Try a few more examples until you catch on.

To summarize, using the two (not one!) antisymmetric symbols, we can move indices
on SU(N) tensors up and down stairs.

From group to algebra

As before, Lie instructs us to solve (3) by writing U � I + iH , with H some arbitrary
“small” complex matrix. (Taking out a factor of i is merely a convenience, as we will
see presently.) To leading order in the parameter specifying the smallness of H , U†U �
(I − iH †)(I + iH)� I − i(H †−H)= I . Thus, (3) leads toH †=H , in other words, to the
requirement thatH is hermitean. As in the case of SO(N), by multiplying an infinitesimal
transformation repeatedly by itself, we can write in general

U = eiH (14)

The statement is that U is unitary if H is hermitean.
It is worth checking this statement explicitly, although it is already implied by the

preceding discussion. As explained in the review of linear algebra, the exponential of a
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matrix may be defined by a power series: U = eiH =∑∞
k=0(iH)

k/k!. Hermitean conjugat-
ing term by term, we have U†=∑∞

k=0(−iH †)k/k!=∑∞
k=0(−iH)k/k!= e−iH , and thus

U†U = e−iHeiH = I .
Next, to evaluate det U in order to impose the condition (4), we exploit the fact

that H can always be diagonalized and write H =W†W , with  the diagonal matrix
diag(λ1, λ2, . . . , λN) andW a unitary matrix. Then∗

det U = det eiH = det eiW
†W = det(W†eiW)= det(WW†) det ei

= det ei =�N
j=1e

iλj = ei�Nj=1λj = ei tr  = ei trW†W

= ei tr H (15)

(To obtain the third equality, expand the exponential in a power series and use the unitarity
ofW .) Thus, the condition det U = 1 implies†

tr H = 0 (16)

This crucial result breaks the problem apart. It says that all we have to do is to write
down the most general N -by-N traceless hermitean matrix H . To see how this works, it is
easiest to proceed by examples.

For N = 2, the hermiticity condition
(
u w

z v

)†=
(
u∗ z∗
w∗ v∗

)
=
(
u w

z v

)
implies that u and

v are real and w = z∗, while the traceless condition gives v =−u. Thus, in general,

H =
(
u z∗

z −u

)
= 1

2

(
θ3 θ1− iθ2

θ1+ iθ2 −θ3

)
(17)

where θ1, θ2, and θ3 denote three arbitrary real numbers. (The factor of 1
2 is conventional,

due partly to historical reasons. I explain the reason for its inclusion in chapter IV.5.)
It is standard to define the three traceless hermitean matrices, known as Pauli matri-

ces, as

σ1=
(

0 1

1 0

)
, σ2=

(
0 −i
i 0

)
, σ3=

(
1 0

0 −1

)
(18)

The most general 2-by-2 traceless hermitean matrix H can then be written as a linear
combination of the three Pauli matrices: H = 1

2(θ1σ1+ θ2σ2 + θ3σ3) =
∑3
a=1

1
2θaσa. An

element of SU(2) can then be written as U = eiθaσa/2 (with the repeated index summation
convention).

For SU(3), we can go through analogous steps and define the eight 3-by-3 traceless
hermitean matrices, known as Gell-Mann5 matrices,

∗ Note that this is a special case of the formula detM = etr logM derived in the review of linear algebra.
† We can also obtain this from the infinitesimal form U � I + iH , of course. To leading order in H , only the

diagonal elements of H contribute to det U . Verify this.
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λ1=

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ , λ2=

⎛⎜⎜⎝
0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎠ , λ3=

⎛⎜⎜⎝
1 0 0

0 −1 0

0 0 0

⎞⎟⎟⎠ ,

λ4 =

⎛⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ , λ5=

⎛⎜⎜⎝
0 0 −i
0 0 0

i 0 0

⎞⎟⎟⎠ ,

λ6 =

⎛⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ , λ7 =

⎛⎜⎜⎝
0 0 0

0 0 −i
0 i 0

⎞⎟⎟⎠ , λ8 = 1√
3

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎠ (19)

A general 3-by-3 traceless hermitean matrix and an element of SU(3) can then be written,

respectively, as H = θa λa2 and U = eiθa λa2 , where the index a now runs from 1 through
8. Note that the Pauli and Gell-Mann matrices are normalized by tr σaσb = 2δab and
tr λaλb = 2δab, respectively.

To make sure that you understand what is going on, you should write down a linearly
independent set of 4-by-4 traceless hermitean matrices. (I regret to inform you, however,
that physicists no longer have the habit of naming traceless hermitean matrices after
anybody, including you.) How many are there?

Indeed, how many are there for a general N? We simply go through mentally the steps
we went through for SU(2). The N diagonal elements (the analogs of u and v) are real,
and with the traceless condition, there areN − 1 of these. The 1

2N(N − 1) entries (each of
which is specified by two real numbers) below the diagonal (namely, the analogs of z) are
equal to the complex conjugate of the entries above the diagonal (the analogs of w). Thus,
the number of real numbers (namely, the analogs of θa) required to specify a general N -
by-N traceless hermitean matrix is given by (N − 1)+ 2 . 1

2N(N − 1)=N2− 1, which is
of course also the number of linearly independent N -by-N traceless hermitean matrices.

The group SU(N) is thus characterized by N2 − 1 real parameters (the analog of the
θas), namely, 3, 8, 15, 24, 35, . . . for N = 2, 3, 4, 5, 6, . . . , respectively. Compare this
with the group SO(N) characterized by 1

2N(N − 1) real parameters, namely, 1, 3, 6, 10,
15, . . . for N = 2, 3, 4, 5, 6, . . . , respectively.

Notice that SU(2) and SO(3) are characterized by the same number of parameters. File
this fact away in your mind. We will come back to this important observation∗ later.

As I’ve said, my pedagogical plan is to continue discussingSU(N)here, describing those
aspects that hold for generalN . Then we will discuss, in the next two chapters, SU(2) and
SU(3) in turn, focusing on features specific to these two groups.

A trivial but potentially confusing point for some students. We just went through a
long song and dance about the importance of distinguishing upper and lower indices on
tensors. An upper index and a lower index transform quite differently (one might say

∗ Do you observe another potentially interesting numerological equality?
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oppositely) under SU(N) transformations. In contrast, the index a on the Pauli matrices
is just a label, telling us which one of the three Pauli matrices we are talking about. It is
completely arbitrary whether we write σa or σa. Similarly, the index a on the Gell-Mann
matrices λa can be written as a subscript or superscript as we please. Correspondingly, the
“angles” θa , a = 1, . . . , N2− 1, can also be written with a superscript or a subscript. I will
intentionally not stick to a consistent convention to emphasize this point.∗

The structure constants of the Lie algebra

As just explained, any element of SU(N) can be written as U = eiH , with H a linear
combination of (N2 − 1) linearly independent N -by-N hermitean traceless matrices T a

(a = 1, 2, . . . , N2− 1), so that

U = eiθaT a (20)

where θa are real numbers, and the index a is summed over. The T as are known as the
generators of SU(N). The index a, which ranges over (N2− 1) values, is clearly not to be
confused with the index i, which ranges over N values.

The discussion now parallels that in chapter I.3 for the orthogonal groups. As mentioned
in chapter I.1, group elements, in general, do not commute. Lie proposed to capture this
essence of group multiplication by focusing on infinitesimal elements. We are thus led to
consider two simple unitary matrices, U1� I + A and U2� I + B, near the identity. Just
as in chapter I.3, the lack of commutativity is measured by the deviation of the quantity

U−1
2 U1U2� (I − B)(I + A)(I + B)� I + A+ AB − BA

= I + A+ [A, B] (21)

from U1� I + A, namely, the commutator [A, B]. You should notice that this is formally
identical to the manipulations in chapter I.3. Indeed, the only difference is that the
generators of SO(N) were called J , while the generators of SU(N) are called T . So
write A= i∑a θ

aT a and similarly, B = i∑b θ
′bT b with θ and θ ′ small. Hence [A, B]=

i2
∑
ab θ

aθ ′b[T a , T b], and it suffices to calculate the commutators [T a , T b].
Recall from the review of linear algebra that the commutator [H , K ] of two hermitean

matricesH andK is antihermitean and traceless (since ([H , K ])†= [K†, H †]= [K , H ]=
−[H , K ], and tr[H , K ]= tr HK − tr KH = 0).

Since the commutator [T a , T b] is antihermitean and traceless, it can also be written as
a linear combination of the T cs multiplied by i:

[T a , T b]= if abcT c (22)

(with the index c summed over).

∗ Later, in chapter VI.2, when we discuss Lie algebras from a more mathematical point of view, I will introduce
another set of indices, for which it does matter whether the index is up or down.
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For an alternative derivation of (22), argue that since (U2U1)
−1U1U2 is an element of

SU(N), it must be equal to I + iφcT c + . . . for some φc.
The commutation relations (22) define the Lie algebra of SU(N) and, as was mentioned

way back in chapter I.3, the real numbers f abc are known as the structure constants of
the algebra. Note that by construction, f abc =−f bac. We will show generally in chapter
VI.3 that the structure constant is in fact totally antisymmetric; it changes sign under the
interchange of any pair of its three indices.

Given the Pauli matrices (18) and the Gell-Mann matrices (19), you can readily compute
the structure constants f abc for SU(2) and SU(3). Exercise!

While physicists fill their brains with specific matrices, mathematicians use their minds
to imagine abstract entities T a satisfying∗ (22). We started this chapter defining SU(N) as
the group formed by unitary matrices with unit determinant. In other words, we thought
of the group elements as represented in the fundamental representation by N -by-N
matrices. Using tensors, we constructed higher-dimensional representations, in which
the group elements U are represented by higher-dimensional matrices. (For example, for
SU(5), U can be represented by 10-by-10, or 15-by-15, or 24-by-24 matrices, and so on, as
well as by 5-by-5 matrices.) For each of these representations, by considering elements near
the identity, U � I + iθaT a, we have a corresponding representation of T a, for a = 1, . . . ,
N2− 1.

More pedantically and explicitly, consider a d-dimensional representation. The group
element U � I + iθaT a is represented by the d-by-d matrix D(I + iθaT a). Setting θ to
0, we find that D(I) = Id , the d-by-d identity matrix. Hardly a surprise! Subtracting,
or equivalently, differentiating with respect to θa, we obtain† D(T a), the d-by-d matrix
representing T a. For example, in the fundamental representation of SU(2), theD(T a) are
just the 2-by-2 Pauli matrices (with the “funny factor” of one half) 1

2σa.
Thus, for SU(5), we have a set of 24 10-by-10 matrices T a constructed to satisfy (22).

(Or 15-by-15 matrices, or 24-by-24 matrices, and so on.) In particular, in the fundamental
representation, we denote the entry in the ith row and j th column of the matrix T a

by (T a)ij .
At the risk of beating a point to death, note that a and i are entirely different beasts. The

label a, which ranges over a = 1, . . . , N2− 1, tells us which of theN2− 1 matrices we are
talking about, while the indices i and j , which range from 1 to N , are matrix indices.
In light of these remarks, it is occasionally convenient, when working with a specific
representation, to introduce yet another set of indices p , q , r , . . . running from 1 to d =
the dimension of the representation being discussed.

For example, we might write for the representation 15 of SU(5), 24 15-by-15 matrices
(T a)p

q
(thus, a = 1, . . . , 24, p , q = 1, . . . , 15). Note that it is important to specify the group

(of course) as well as the representation. For example, the fundamental representation

∗ In chapter VI.2, we will see how far we can get starting with (22).
† This is, strictly speaking, a physicist’s abuse of notation: D is supposed to be a matrix function of group

elements, not of the generators of the Lie algebra.
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15 of SU(15) would consist of 224 15-by-15 matrices (T a)ij (thus, a = 1, . . . , 224, i , j =
1, . . . , 15). These two sets of 15-by-15 matrices have nothing to do with each other.

In a way, this is neither new nor amazing. For SO(3), for example, we have already
learned that the three generators Jx, Jy, and Jz can be represented by three (2j + 1)-by-
(2j + 1)matrices, for j = 0, 1, 2, . . . .

Henceforth, we will follow the standard usage in the physics literature and will not dis-
tinguish between the generators T a and the matricesD(T a) representing the generators.

Consider a tensor ϕ in an arbitrary d-dimensional irreducible representation. Under a
group transformation infinitesimally close to the identity, it changes by ϕ→ (I + iθaT a)ϕ,
and thus its variation is given by iθaT aϕ, with T a as given in that irreducible represen-
tation, that is, by d-by-d matrices (T a)p

q
, with p , q = 1, . . . , d. Again, we are at risk of

belaboring a point, but some students are invariably confused here. The tensor ϕ, writ-
ten out explicitly as ϕi1i2

...im
j1j2...jn, carries m upper indices and n lower indices, each of which

runs from 1 through N . But because of various symmetry restrictions and of the traceless
condition, these components of the tensor ϕ are not independent, and thus we often find
it convenient to label the components of ϕ as ϕp, with p running from 1 through d, the
dimension of the irreducible representation furnished by ϕ. Then the change under the
transformation may be written as

δϕp = iθa(T a)p
q
ϕq (23)

Note that for N , m, and n equal to some largish numbers, the dimension d can be rather
large.

The adjoint representation of SU(N)

We’ve already talked about the adjoint representation in chapters I.3 and IV.1, but let
us start our discussion of the adjoint representation of SU(N) without reference to our
previous knowledge and take a slightly different tack. We will see, in the end, that the
discussions here and in chapter IV.1 are conceptually entirely the same.

For SU(N), the fundamental (or defining) irreducible representation N and its conju-
gateN∗ (defined by ϕi and ϕi, respectively) are of course of, well, fundamental importance.
There is another irreducible representation of great importance, namely, the representa-
tion defined by the traceless tensor ϕij , known as the adjoint representation, or adjoint for

short. As explained earlier, it has dimension N2− 1.
The poor man would make a flying guess here. In light of the earlier discussion, we are

to find (N2− 1) (N2− 1)-by-(N2− 1)matrices (T a)p
q

withp , q = 1, . . . , N2− 1. The poor
man notices that the indices p , q have the same range as the index a. Guessing that they
are all the same beasts, the poor man looks around for an object carrying three indices a,
b, and c that could be conscripted to serve as (T a)b

c
.

Good guess! The structure constants f abc are practically staring you in the face.
The rich man proceeds more systematically. After all, that was just a wild guess, inspired

though it may be. The rich man notes that, by definition, the adjoint transforms according
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to ϕij → ϕ′ij = Uil(U†)njϕ
l
n
= Uilϕln(U†)nj . We are thus invited to regard ϕij as a matrix

transforming according to

ϕ→ ϕ′ = UϕU† (24)

Note that if ϕ is hermitean and traceless, it stays hermitean and traceless (since ϕ′† =
(UϕU†)†= Uϕ†U†= UϕU†= ϕ′, and tr ϕ′ = tr UϕU†= tr ϕU†U = tr ϕ). Thus, with no
loss of generality, we can take ϕ to be a hermitean traceless matrix. (If ϕ is antihermitean,
we can always multiply it by i .) Another way of saying this is that given a hermitean
traceless matrixX, thenUXU† is also hermitean and traceless ifU is an element ofSU(N).

But if ϕij is regarded as a hermitean traceless matrix, then we can write it as a linear

combination of the complete set of matrices T a, a = 1, 2, . . . , N2− 1:

ϕi
j
=
N2−1∑
a=1

Aa(T a)i
j
= Aa(T a)i

j
(25)

Here the Aa denote (N2− 1) real coefficients. (The last step is simply a reminder that we
use the repeated summation convention unless stated otherwise.) For example, for SU(2),
this just expresses the 2-by-2 hermitean traceless matrix ϕij as a linear combination of the
three Pauli matrices.

We are free to think of the (N2− 1) objects∗ Aa as furnishing the (N2− 1)-dimensional
adjoint representation; after all, theAa are just linear combinations of the (N2− 1) objects
ϕij . (Indeed, all this parallels our discussion for SO(N) in chapter IV.1.)

It is illuminating to work out how Aa transforms. Plugging the infinitesimal transfor-
mation U � 1+ iθaT a into the transformation rule (24), we have

ϕ→ ϕ′ � (1+ iθaT a)ϕ(1+ iθaT a)†� ϕ + iθaT aϕ − ϕiθaT a = ϕ + iθa[T a , ϕ] (26)

In other words, the ath generator acting on the adjoint representation gives [T a , ϕ]. It is
convenient to express (26) as giving the infinitesimal change of ϕ due to an infinitesimal
transformation:

δϕ = iθa[T a , ϕ] (27)

To find out how Aa transforms, simply plug ϕ = AaT a (namely, (25)) into (27) and use
(22):

(δAb)T b = δ(AbT b)= iθa[T a , AcT c]= iθaAc[T a , T c]= iθaAcif acbT b (28)

Equating the coefficient of T b, we obtain δAb =−θaf acbAc. Comparing with the definition
δAb = iθa(T a)b

c
Ac, we obtain

(T a)bc =−if abc (29)

∗ The adjoint representation is of particular importance in particle physics. In Yang-Mills theory, the gauge
bosons, the analogs of the familiar photon, belong to the adjoint representation. There are 8 gauge bosons
for quantum chromodynamics, based on the gauge group SU(3); 4 for the electroweak interaction, based on
SU(2)⊗ U(1); and 24 for the grand unified theory, based on SU(5). See part IX.
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(As emphasized earlier, there is no particular meaning to whether the indices a, b, and c
are written as superscripts or subscripts.) The result here agrees with that in chapter IV.1,
of course.

Multiplying representations together

Given two tensors ϕ and η of SU(N), with m upper and n lower indices and with
m′ upper and n′ lower indices, respectively, we can consider a tensor T with (m +m′)
upper and (n+ n′) lower indices that transforms in the same way as the product ϕη. We
can then reduce T by the various operations described earlier, namely, tracing and contract-
ing with the antisymmetric symbol. The multiplication of two representations is of course
of fundamental importance in physics.6 We will do it in detail for SU(3) in chapter V.2.

U(1) in theoretical physics

I close by mentioning that while the group U(1) is almost trivial, it is of prime importance
in theoretical physics. The group consists of elements eiθ (with 2π > θ ≥ 0) obeying
the multiplication rule, eiθeiθ

′ = ei(θ+θ ′), and hence commuting with one another. The
group theory is about as simple as it can get. But electric charge conservation, one of
the fundamental facts about the universe, corresponds to the invariance∗ of physical laws
under the multiplication of charged fields by some appropriate powers of eiθ(x), with the
angle θ a function of the spacetime coordinates x. Back in chapter III.3, I mentioned the far-
reaching insight of Emmy Noether that conservation laws are associated with symmetries;
charge conservation is one of the most celebrated examples.

Exercises

1 Work out the dimension of {m} for SU(3).

2 Compute the structure constants f abc for SU(2) and SU(3).

3 In chapter II.4, we needed a lemma stating that given a unitary symmetric matrix U , there exists a unitary
symmetric matrixW such thatW 2 = U . Prove this.

Notes

1. Trivial notational changes: N and O instead of D and R. Emerson: “Consistency is the . . . ”
2. While writing this, I came across the following factoid in Wikipedia. “The Nair, also known as Nayar, are a

group of Indian castes, described by anthropologist Kathleen Gough as ‘not a unitary group but a named
category of castes.’”

∗ This statement is explained under the term “gauge invariance” in any textbook on quantum field theory.
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3. The Eightfold Way by M. Gell-Mann and Y. Ne’eman.
4. A few years later, while in graduate school, I was told by one of my professors not to waste any time studying

such things as Bessel functions. Group theory, in the guise of the kind of counting shown here, was going
to be the future. In fact, Bessel functions have a deep connection to group theory. See one of the interludes
to this part.

5. Long ago, I heard Murray Gell-Mann tell the story of how he discovered his matrices, a story which, while fun
to tell, sounded totally apocryphal to me. According to Gell-Mann, he was visiting France when he realized
that he would like to generalize the Pauli matrices. Every morning he would start withλ1, 2, 3, addλ4, commute
them, obtain more 3-by-3 matrices, and try to get the algebra to close. Every day, just when he had gotten
seven matrices in hand, a French colleague would come to take him to lunch. Keep in mind that the word
“lunch” has a different meaning in France than in the rest of the world, especially back in the period we
are talking about. Stumbling back into his office in the late afternoon, Gell-Mann would forget what he had
done—or so he claimed. The process would start all over again the next morning. Gell-Mann’s punchline
was that the Frenchman he lunched with was the world’s greatest authority on Lie algebra. Even accounting
for the fact that everything in physics sounds simple or even trivial in hindsight, I found this story difficult
to swallow, given Gell-Mann’s intellectual power.

6. In quantum field theory, for example, we multiply fields together to construct the Lagrangian. See part VII
of this book, for example.



IV.5 SU(2): Double Covering and the Spinor

From electron spin to internal symmetries

The group SU(2) came into physics with the dramatic discovery of electron spin. Heisen-
berg, reasoning by analogy, then leaped from the notion of electron spin to the notion of
isospin.∗ This epochal insight opens up a vast vista of internal symmetries, without which
none of our modern physical theories could even be conceived. In particular, we would not
have been able to write down the nonabelian gauge theories that contemporary physics is
entirely based on at the fundamental level.

Just as SU(2) has played an honored role in quantum physics, it is also of great impor-
tance in mathematics, due to its many remarkable properties, such as its rather intricate
relationship with SO(3). Historically, it is only after physicists had thoroughly mastered
the mathematics of SU(2) that they were able to move onto SU(3) and beyond.

Every chapter in this book is important, needless to say, but this chapter is particularly
important. I preview some of the highlights to be covered:

1. SU(2) locally isomorphic to SO(3)

2. SU(2) covers SO(3) twice

3. irreducible representations of SU(2)

4. half angles versus full angles

5. the group elements of SU(2)

6. quantum mechanics and double-valued representations

7. SU(2) does not have a downstairs, and its upstairs is all symmetric

8. pseudoreality

9. the precise relation between U(2) and SU(2)

∗ We will explore isospin in chapter V.1.
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I dare to say that more than a vanishing fraction of theoretical physicists have not totally
mastered some of these points, for example, 9.

SU(2) is locally isomorphic to SO(3)

We start with one striking, I would even say astonishing, property of SU(2): it is locally
isomorphic to SO(3). The discussion to follow will make clear what these two words mean.

Any 2-by-2 hermitean traceless matrix X can be written as a linear combination of the
three Pauli matrices, as explained in chapter IV.4. For convenience, I list the Pauli matrices
again:

σ1=
(

0 1

1 0

)
, σ2=

(
0 −i
i 0

)
, σ3=

(
1 0

0 −1

)
(1)

The statement is that we can write X = �x . �σ with three real coefficients, which we can
assemble into an array �x = (x1, x2, x3) and provisionally call a vector. Or, call them the
Cartesian coordinates (x , y , z), if you prefer. (I do.) Explicitly,

X = xσ1+ yσ2+ zσ3=
(

z x − iy
x + iy −z

)
(2)

It is manifestly hermitean and traceless. Conversely, given any hermitean and traceless
2-by-2 matrix, we can write it in the form of (2) with the vector �x = (x , y , z) uniquely
determined.

Calculate the determinant of X: det X =−(x2 + y2 + z2)=−�x2. Perhaps not surpris-
ingly, the determinant of X, being an invariant, is given by the length squared1 of �x. We
now make this remark explicit.

Pick an arbitrary element U of SU(2). In other words, U is unitary with determinant
equal to 1. Consider X′ ≡ U†XU .

I claim that X′ is also hermitean and traceless. The proof is by explicit computation:
(X′)† = (U†XU)† = U†X†U = U†XU = X′, and tr X′ = tr U†XU = tr XUU† = tr X =
0. Since X′ is hermitean and traceless, we can write it as X′ = �x′ . �σ , with three real
coefficients (x′, y′, z′), which we also assemble into a vector �x′ = (x′, y′, z′). The vector
�x′ is linearly related to the vector �x: if we scale �x→ λ�x by multiplying it by a real number
λ, then �x′ → λ�x′.

Thus far, we have used the unitarity of U , but not the fact that it has unit determinant.
In other words, we have used the U , but not the S, of SU(2). You have done enough math
exercises (or read enough detective mysteries) to know that S has to come in somehow
somewhere sometime. Here and now in fact! Compute det X′ = −(�x′)2 = det U†XU =
(det U†)(det X)(det U)= det X =−�x2. Thus, �x′ and �x are not only linearly related to each
other, but they also have the same length.

By definition, this means that the 3-vector �x is rotated into the 3-vector �x′. Since X (and
hence �x) is arbitrary, this defines a rotationR. In other words, we can associate an element
R of SO(3) with any element U of SU(2).
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The map U → R clearly preserves group multiplication: if two elements U1 and U2

of SU(2) are mapped to the rotations R1 and R2, respectively, then the element U1U2 is
mapped to the rotationR1R2. We can readily verify this: (U1U2)

†X(U1U2)=U†
2 (U

†
1XU1)U2

= U†
2X
′U2=X′′, so that the 3-vectors associated with X, X′, and X′′ get rotated in stages,

�x→ �x′ → �x′′, first by R1 and then by R2.

SU(2) covers SO(3) twice

Interestingly, this map f :U → R of SU(2) into SO(3) is actually 2-to-1, since U and
−U are mapped into the same R; f (U) = f (−U). (This is not obvious to you? Well,
(−U)†X(−U)= U†XU . In SU(2), U and −U are manifestly not the same: indeed, U =
−U would imply, on multiplication by U†, I =−I , which is clearly absurd.)

The unitary group SU(2) is said to double cover the orthogonal group SO(3).
Since the map U → R is 2-to-1, the groups SU(2) and SO(3) are not isomorphic, but

only locally isomorphic. In particular, for U near the identity, −U is far from the identity,
and so in a neighborhood around the identity,∗ the two groups are isomorphic.

I alluded to this local isomorphism between SU(2) and SO(3) as astonishing, but in fact,
we have already encountered several hints of this. For example, in chapter IV.4, I asked
you to file away in your mind the apparently coincidental fact that both groups have a 3-
dimensional representation. Now we see that this is not a coincidence: identifying the 3
of SU(2) with the vector of SO(3) in fact defines the local isomorphism.

Properties of the Pauli matrices

To proceed further, it is convenient to pause and list some “arithmetical” properties of
the three Pauli matrices. You should verify the following statements as you read along. By
inspection, we see that each of the Pauli matrices squares to the identity matrix: (σa)2= I ,
for a = 1, 2, 3. Distinct Pauli matrices anticommute with each other: σaσb =−σbσa for
a �= b. The product of any two distinct Pauli matrices gives the third with a coefficient
given by±i; thus, σ1σ2= iσ3, with all other cases given by cyclic permutation and the fact
that Pauli matrices anticommute. These facts are summarized by2 (with the repeated index
c summed)

σaσb = δabI + iεabcσc (3)

Here I denotes the 2-by-2 identity matrix; it will often be omitted if there is no risk of
confusion.

Interchanging a and b, and then adding and subtracting the resulting equation to and
from (3) gives

{σa , σb} = 2δab (4)

∗ In fact, in a neighborhood around any SU(2) element.
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and

[σa , σb]= 2iεabcσc (5)

Note the factors of 2.
In chapter IV.4, we showed that the Lie algebra for SU(N) is given by [T a , T b]= if abcT c.

Dividing (5) by 22, we obtain[
σa

2
,
σb

2

]
= iεabc σc2 (6)

This shows that for the fundamental 2-dimensional representation, the generators T a

are represented by∗ σa2 , a fact often written somewhat sloppily as T a = σa
2 , and that the

structure constant of SU(2) is just the antisymmetric symbol, that is, f abc = εabc.
As remarked in chapter IV.4, whether the indices a , b, . . . are written as subscripts or

superscripts is of no import. Again, I have capriciously moved the indices a , b, . . . up-
and downstairs to stress this point. Also, I had emphasized that the T a may be regarded
as abstract mathematical entities. In a d-dimensional representation, they are realized as
d-by-d matrices. In particular, in the fundamental representation, they are represented
by σa

2 .
Confusio: “So, T 3 is sometimes a 4-by-4 matrix and sometimes a 17-by-17 matrix?”
Exactly! It depends on the phase of the moon.
The Lie algebra of SU(2) is thus given by [T a , T b]= iεabcT c; in other words,

[T 1, T 2]= iT 3, [T 2, T 3]= iT 1, [T 3, T 1]= iT 2 (7)

For comparison, the Lie algebra of SO(3) was given in chapter IV.3 as

[Jx , Jy]= iJz , [Jy , Jz]= iJx , [Jz , Jx]= iJy (8)

We see immediately that, with the identification† T 1↔ Jx , T 2↔ Jy , T 3↔ Jz, the two Lie
algebras are manifestly identical, that is, isomorphic. In fact, who cares which letters‡ we
use to denote the generators of SU(2) and SO(3)? It is the same algebra, period.

Representing the Lie algebra of SU(2)

Given the preceding remark, we can now find the representations of the Lie algebra of
SU(2) without doing a stitch of work. Simply take over what we did in chapter IV.4 for the
Lie algebra of SO(3), replacing the letter J by T if you insist. Define T ± ≡ T 1± iT 2 so that

[T 3, T ±]=±T ±, [T +, T −]= 2T 3 (9)

and proceed.

∗ Not σa! Watch the factors of 2 in this chapter like a hawk.
† I again capriciously use 1, 2, and 3 and x, y, and z to denote the same thing to emphasize a point.
‡ Indeed, different authors use different letters, and in different contexts the same author could use different

letters. We will see in later chapters that L, S, and I are also used in physics.
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We discover soon enough that the representations of SU(2) are∗ (2j + 1)-dimensional,
with j = 0, 1

2 , 1, 3
2 , 2, 5

2 , . . . .
In chapter IV.4, I introduced to you the representations of the algebra of SO(3) corre-

sponding to j = half integer as a disturbing puzzle. But now we see why they pop up. They
are representations of SU(2)! In particular, the 2-dimensional representation with j = 1

2

consists of the states
∣∣∣− 1

2

〉
and

∣∣∣ 1
2

〉
. It is the fundamental or defining representation of the

group SU(2). More on this shortly.

The group elements of SU(2)

Before writing down the group elements of SU(2), we need a useful formula. Given two
3-vectors �u and �v, contract (3) with ua and vb to obtain

(�u . �σ)(�v . �σ)= uavbσaσb = uavb(δabI + iεabcσc)= (�u . �v)I + i(�u⊗ �v) . �σ (10)

The dot and cross products (or the scalar and vector products) familiar from elementary
vector analysis both appear on the right hand side. This result shows the convenience of
thinking of the three Pauli matrices as a vector �σ . Also, it follows thatX2= xaxbσaσb = �x2.

A crucial step in proving, in the preceding section, that the 3-vector �x is rotated into the
3-vector �x′, involves showing that they have the same length. We did this by calculating
the determinant of X and the determinant of X′ ≡ U†XU . We now see that an alternative
method is to note that tr X2= tr X′2. (In fact, the trace is not even necessary, since X2 is
proportional to the identity matrix.)

We already noted in chapter IV.4 that any element of SU(2) can be written as U =
eiϕaσa/2= ei �ϕ.�σ/2 (with the repeated index summation convention). Denote the magnitude
and direction of �ϕ by ϕ and the unit vector ϕ̂, respectively (so that �ϕ = ϕϕ̂). Use ( �ϕ . �σ)2=
�ϕ2= ϕ2. We now expand the exponential series into even and odd powers (compare with
(I.3.12)) and sum to obtain

U = ei �ϕ.�σ/2=
∞∑
n=0

in

n!

( �ϕ . �σ
2

)n

=
{ ∞∑
k=0

(−1)k

(2k)!

(
ϕ

2

)2k}
I + i

{ ∞∑
k=0

(−1)k

(2k + 1)!

(
ϕ

2

)2k+1}
ϕ̂ . �σ

= cos
ϕ

2
I + iϕ̂ . �σ sin

ϕ

2
(11)

We see that this is structurally the same as Euler’s identity eiϕ/2= cos ϕ2 + i sin ϕ
2 , which

can also be derived by splitting the exponential series into even and odd terms.
An easier way to derive (11) is to note that we are free to call the axis of rotation ϕ̂ the

3rd or z-axis. Then ϕ̂ . �σ = σ3, and since σ3 is diagonal, the exponential can be immediately
evaluated by Euler’s identity:

∗ You might also write t instead of j if you like.
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U = eiϕσ3/2=
(
ei
ϕ
2 0

0 e−i
ϕ
2

)
=
(

cos ϕ2 + i sin ϕ
2 0

0 cos ϕ2 − i sin ϕ
2

)

= cos
ϕ

2
I + iσ3 sin

ϕ

2
(12)

For the general case, we simply replace σ3 by ϕ̂ . �σ and obtain (11).
Confusio: “For years, I confused U = cos ϕ2 I + iϕ̂ . �σ sin ϕ

2 andX = �x . �σ (as defined in
(2)) merely because they looked similar.”

Indeed, they are quite different: U is unitary and hence an element of SU(2), but it is
in general not traceless, while, in contrast, X is hermitean and traceless.

Incidentally, back in the review of linear algebra, I said that the polar decomposition was
not particularly attractive. For example, we can write any 2-by-2 complex matrix as M =
(t + �x . �σ)eiθei �ϕ2 �σ = (t + �x . �σ)(cos ϕ2 + i sin ϕ

2 ϕ̂
. �σ)eiθ . A complex matrix is characterized

by 2 . 22= 8 real parameters, namely, t , �x, �ϕ, and θ .

How the half angles become full angles

We had proved earlier that if X′ = �x′ . �σ and X = �x . �σ are related by X′ = U†XU , then
the two vectors �x′ and �x are related by a rotation. By construction, it must work. But still,
now that we know U explicitly, it is instructive to see how it actually works—how all the
wheels and gears fit together, so to speak. In particular, even though we now see how the
half angles in (11) come in (to render the Lie algebras of SU(2) and SO(3) the same), it
does seem strange at first sight that (11) can lead to the usual expression for rotations (as
given in chapter I.3).

So, let us evaluate U†XU by brute force. As just noted, with no loss of generality,
we can take ϕ̂ to point along the third axis. So, use (12). For a = 3, we obtain trivially
U†σ3U = σ3. For a = 1, 2,U†σaU = (cos ϕ2 I − iσ3 sin ϕ

2 )σa(cos ϕ2 I + iσ3 sin ϕ
2 ). To obtain

the coefficient of sin2 ϕ
2 , we encounter σ3σaσ3=−σaσ3σ3=−σa (since σ3 anticommutes

with σ1 and σ2 and squares to the identity). Another line of arithmetic (or algebra, whatever
you want to call it) gives, for a = 1, 2,U†σaU = (cos2 ϕ

2 − sin2 ϕ
2 )σa − i sin ϕ

2 cos ϕ2 [σ3, σa].
From (5), we have [σ3, σ1]= 2iσ2 and [σ3, σ2]=−2iσ1. If you remember your trigonometric
identities (the “double angle formulas”) cos ϕ = cos2 ϕ

2 − sin2 ϕ
2 and sin ϕ = 2 sin ϕ

2 cos ϕ2 ,
you can practically see the answer emerging:

U†σ1U = cos ϕ σ1+ sin ϕ σ2, U†σ2U =− sin ϕ σ1+ cos ϕ σ2 (13)

We are not quite there yet; we still have to plug inX′ =U†(xσ1+ yσ2+ zσ3)U = (cos ϕ x −
sin ϕ y)σ1 + (sin ϕ x + cos ϕ y)σ2 + zσ3. In other words, x′ = cos ϕ x − sin ϕ y , y′ =
sin ϕ x + cos ϕ y , z′ = z, precisely what we should get∗ for a rotation around the z-axis
through angle ϕ.

Hey, math works. The half angle ϕ/2 becomes the full angle ϕ.

∗ Compare this with (I.3.1).
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Confusio: “I have often read the sloppy and potentially confusing statement that the
Pauli matrices transform like a vector.”

Indeed, the statement is sloppy, but sometimes useful as a shorthand for (13). Physically,
we can talk about two different observers recording the same physical quantity (such as
momentum) as �p and as �p′, but there is no such thing as σ ′

a
; we simply have a bunch of

2-by-2 matrices with entries like 0, ±1, and ±i. There exists only one Pauli, so to speak.

Quantum mechanics and the double covering

Now comes a striking fact. From (12) we have U(ϕ)= eiϕσ3/2, which, as we just checked,
leads to a rotation through an angle ϕ around the z-axis. But note that

U(2π)= ei(2π)σ3/2= eiπσ3 =
(
eiπ 0

0 e−iπ

)
=−I (14)

By the time the rotational angle ϕ has gone from 0 to 2π , so that the corresponding rotation
has gone back to the identity, the SU(2) element U has reached only −I . To reach I , the
angle ϕ has to go all the way to 4π :

U(4π)= I (15)

This striking fact, as expressed by (14) and (15), of course just restates what we had
learned earlier, that SU(2) double covers SO(3). By the time we get around SU(2) once,
the corresponding rotation has gone around SO(3) twice. Another way of saying this
is as follows. The 2-dimensional fundamental representation ψi→ Uijψ

j of SU(2) is
strictly speaking not a representation of SO(3). (Some authors call it a double-valued
representation of SO(3).) This discussion once again underlines the fact that the groups
SU(2) and SO(3) are not globally isomorphic, only locally isomorphic; in other words,
only their algebras are isomorphic.

SU(2) does not have a downstairs, and its upstairs is all symmetric

In our discussion of the orthogonal groups, I mentioned that SO(3) has special proper-
ties that are not shared by SO(N), a fact that sometimes confuses beginning students.
Similarly, the two special unitary groups that most students learn first, namely, SU(2)
and SU(3), have special properties that are not shared by SU(N), essentially for the same
reasons as in the orthogonal case.

In chapter IV.4, we learned that traceless tensors T i1i2
...im

j1j2...jn with upper and lower indices
furnish representations of SU(N). Furthermore, these tensors are to have definite sym-
metry properties under permutation of their upper indices (the is) and under permutation
of their lower indices (the js).

For SU(2), because the antisymmetric symbols εij and εij carry two indices, we can in
fact remove all lower indices. To see how this works, it is clearer not to treat the general
case, but to pick a specific example, say, the tensor T ijk

mn
. (Each of the indices can take on two



IV.5. SU(2): Double Covering and the Spinor | 251

values, 1 or 2, of course.) Then, following the discussion in chapter IV.4, we can construct
T pqijk = εpmεqnT ijk

mn
, which transforms like a tensor with five upper indices and no lower

index. Thus, it suffices to consider only tensors without lower indices.
We have used εij but we still have εij up our sleeves. We now claim further that it

suffices to consider only tensors with upper indices all symmetrized. The argument is
inductive (just as in our discussion of the orthogonal groups). Suppose this holds for
tensors with less than four upper indices. Now we look at tensors with four indices.
Suppose T ijkl has no particular symmetry on the interchange of, say, i and k. We simply
write Sijkl = T ijkl + T kjil andAijkl = T ijkl − T kjil. Then εikAijkl is a tensor with two upper
indices, which, by induction, is not something we need to worry about. By construction,
Sijkl is of course symmetric on the interchange of i and k.

Repeating this argument leads to the bottom line that we need consider only tensors
with upper indices and that do not change sign on the interchange of any pair of indices.

Confusio: “Why doesn’t this argument work for SU(3)?”
I will let the reader answer Confusio’s question.
Ironically, it is harder, in some sense, to understand SU(2) than SU(5), say, precisely

because SU(2) is so “simple” and thus has idiosyncratic features.

Dimension of SU(2) irreducible representations

What is the dimension of the representation furnished by T i1i2...im? Just count: T 11...1,
T 11...12, T 11...122, . . . , T 22...2. The number of 2s ranges from 0 to m, and hence this
representation has dimension m+ 1. To make contact with the earlier discussion, simply
writem as 2j . Sincem ranges over the non-negative integers, we have j = 0, 1

2 , 1, 3
2 , 2, . . . .

To summarize, an irreducible representation of SU(2) is characterized by j , which can
take on integral or half-integral values and has dimension 2j + 1. Note that j = 1

2 is the
fundamental representation, while j = 1 is the vector representation. The existence of
the vector representation offers another way of seeing the local isomorphism of SU(2)
and SO(3).

Not complex, only pseudoreal

In chapter IV.4, I went over carefully the reason for having both lower and upper indices.
You learned that we had to introduce ψi as a stand-in, so to speak, for ψi∗. In general, for
SU(N), the representations furnished by ψi and ψi are quite different. But then we just
learned that for SU(2), we don’t need lower indices, and in particular, ψi is not needed.
Indeed, we just learned εijψj transforms in exactly the same way as ψi.

What is going on? Does this mean that for SU(2), the representations furnished by ψi∗

and ψi are the same, which would seem to suggest that complex conjugation “doesn’t do
anything” in some sense? However, we see from (11) that the fundamental representation
is explicitly not real.
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A clue to what is going on may be found in chapter II.3, where we learned about real,
pseudoreal, and complex representations. Recall that if a representationD(g) does not look
real, that is, even if D(g)∗ �=D(g), the representation and its complex conjugate could be
“secretly” related by a similarity transformation: that is, there may exist an S such that

D(g)∗ = SD(g)S−1 (16)

for all g ∈G. The representation is then said to be pseudoreal.
The fundamental representation of SU(2) is pseudoreal.
We now show this by explicitly finding the similarity transformation S. The fundamental

or defining representationD(g) is given by ei �ϕ �σ/2, while its conjugate representationD(g)∗

is given by (ei �ϕ �σ )∗ = e−i �ϕ �σ ∗.
But of the three Pauli matrices (1), σ1 and σ3 are manifestly real, while σ2 is manifestly

imaginary. We could say that σ2 is the “odd man out.” Using the facts that different Pauli
matrices anticommute and that the Pauli matrices square to the identity, we have σ2σ

∗
1 σ2=

σ2σ1σ2 =−σ1σ2σ2 =−σ1. Similarly, σ2σ
∗
3 σ2 =−σ3, and σ2σ

∗
2 σ2 =−σ2σ2σ2 =−σ2. Thus,

we obtain

σ2σ
∗
a
σ2=−σa (17)

and so

σ2(e
i �ϕ �σ )∗σ2= ei �ϕ �σ (18)

Comparing this with (16), we see that we can choose S = S−1= σ2, which is anti-
symmetric, in accordance with the proof in chapter II.3 that S has to be either symmetric
or antisymmetric. Indeed, the fundamental representation of SU(2) is pseudoreal.

We note that (16), together with the condition S†S = I (also proved in chapter II.3)
determines S = eiασ2 only up to a phase factor. It is then convenient to stick in an i and

write S = iσ2=
(

0 −1
1 0

)
.

We suddenly see the connection of this discussion with the tensor approach: the S
written here is precisely the εij that connects ψi to ψi.

The groups U(N) and SU(N)

In the preceding chapter, we mentioned that the group U(N) contains two sets of group
elements. The first set consists of unitary matrices of the form eiϕI , composing the group
U(1). The second set consists of N -by-N unitary matrices with determinant equal to 1,
composing the group SU(N). At this point, almost all physicists would say that U(N) is
equal to the direct product SU(N)⊗ U(1).

But this is incorrect.
Nobody said that the two sets just mentioned have a nontrivial intersection. The

elements of U(1) of the form ei2πk/NI with k = 1, . . . , N − 1 have determinant equal
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to 1 and hence also belong to the group SU(N). These elements form the finite
group ZN .

Recall the definition, given in chapter I.1, of the direct product group H ≡ F ⊗G, con-
sisting of the elements (f , g), with f and g elements of the groups F andG, respectively.
The groupF consists of the elements ofH of the form (f , IG), andG of the elements ofH
of the form (IF , g). The only element belonging to both F andG is the identity element of
H , namely, IH = (IF , IG). (Here we are using the insufferably pedantic language in which
we distinguish between the identity elements IH , IF , and IG of the three groupsH , F , and
G, respectively, and which was alluded to in chapter I.1.)

Since we already included the elements of ZN in U(1), to avoid overcounting, we have
to exclude them from SU(N). Thus, we should actually write

U(N)=
(
SU(N)/ZN

)
⊗ U(1) (19)

In the quotient group SU(N)/ZN , the N elements ei2πk/NU , with U an arbitrary unitary
matrix with unit determinant and with k = 0, 1, . . . , N − 1, are to be identified as one and
the same element. For example, for N = 2, the two matrices U and −U are actually the
same element, but this is precisely the group SU(2)/Z2= SO(3), as discussed earlier in
this chapter.

The center of a group was defined way back in exercise I.1.1 as the set of all elements
that commute with all the other elements of the group. Thus, ZN is actually the center of
SU(N). We will discuss the physical meaning of the center of SU(3) in chapter V.2.

At the level of Lie algebra, there is in fact no distinction between SU(N) and SU(N)/ZN :
the algebra explores only the neighborhood of the identity of the group. Put another way,
to determine the algebra of U(N), write an element as U = eiH � I + iH . Since U is not
required to have unit determinant,H is hermitean but is not required to be traceless. Thus,
the generators of the algebra are theN2− 1 traceless hermitean matrices plus the identity
matrix I .

As mentioned back in chapter I.1, the theory of the strong, weak, and electromagnetic
interactions is based on SU(3)⊗ SU(2)⊗ U(1). But in typical applications, such as those
involving the interaction between gauge bosons, the global properties of the group do not
come in at all; only the Lie algebra enters into the field theory Lagrangian.3 See chapter
III.3 and also part IX.

Henceforth, we will follow the sloppy physicists and not distinguish between U(N)=(
SU(N)/ZN

)
⊗ U(1) and SU(N)⊗ U(1).

Exercises

1 Show that tr X2k = 21−k(tr X2)k, and that tr X2k+1= 0 for k = 0, 1, . . . .

2 Show that the symmetric 2-indexed tensor T ij furnishes the vector representation of SO(3).
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Notes

1. Looking at the older literature, I found an 1882 paper by J. J. Sylvester in which he asked (and answered) the
question of whether there exists a 2-by-2 matrix linear in (x , y , z)whose determinant is equal to x2+ y2+ z2.
He found what we might call the Sylvester-Pauli matrices. Sylvester then went on to ask (and answer) the
question of whether there exists a 3-by-3 matrix linear in (x , y , z)whose determinant is equal to x3+ y3+ z3.
Can you match wits with Sylvester? See The Collected Mathematical Papers of James Joseph Sylvester, vol. III,
Cambridge University Press, 1909.

2. Thus, the Pauli matrices, together with the identity matrix, represent the quarternions. I read that, when
Pauli introduced his matrices in 1927, Jordan had pointed out to him that Cayley had already given a matrix
representation of the quarternions. See R. Anderson and G. C. Joshi, arXiv: 9208222 v2 (1992).

3. See, for example, QFT Nut, chapter IV.5.



IV.6 The Electron Spin and Kramer’s Degeneracy

The mystique of spin 1
2

Niels Bohr solved the hydrogen atom in 1913 by boldly postulating that angular momen-
tum is quantized in integral units of �. Physicists were shocked, shocked, shocked. But
then their minds were really blown in 1925, when George Uhlenbeck and Sam Goudsmit
proposed1 that the electron spins2 with angular momentum 1

2�.
A priori, it would seem that any representation in which a rotation through 2π is rep-

resented by −I would be worthless for physics, but the incredible mystery of quantum
mechanics saved the angular momentum 1

2 representation from oblivion. The wave func-
tion � of a particle can perfectly well change sign upon a 2π rotation, since physical
observables are postulated to be bilinears constructed out of �† and �, such as the spin
vector �† �σ

2� (see below), which manifestly does not change sign.
Now we know that not only the electron, but also quarks and leptons—the fundamental

constituents of matter—all carry spin 1
2 . To many theoretical physicists, spin 1

2 continues
to carry a certain mystique.

As will be explained in chapter VII.4, spin 1
2 particles are described by the strikingly

beautiful Dirac equation.
Several decades later, when Gell-Mann first introduced quarks, many in the theoretical

physics community were skeptical, and some were even hostile. For one thing, the frac-
tional electric charges carried by quarks went against preconceived notions. Dirac was
among the few eminences who liked quarks. When Gell-Mann asked him why, Dirac
replied, “They carry spin 1

2 , don’t they?”

The electron spin

The discovery3 that the electron has spin 1
2 is surely one of the most stirring episodes in

physics. Consider how confused people were in those early days of quantum mechanics,
with the mess of quantum numbers. Then they realized that to explain the spectroscopic
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data, a mysterious additional quantum number had to be introduced. Even after electron
spin was proposed, belief would have to hinge on one’s philosophical stance. An empirical
positivist would demand to know how a spinning particle could carry spin 1

2 and what that
could mean. The mathematical pragmatist would say that a particle whose quantum state
transforms like the 2-dimensional representation of the covering group of rotations carries
spin 1

2 , period.
In a galaxy far far away, quite possibly physicists knew all about the double covering of

rotations and were able to predict the possible occurrence of spin 1
2 . In fact, in our own

civilization, there were people who knew, but they were called mathematicians. Possibly,
a few physicists, such as Hamilton, might also have known. Communication between
mathematicians and physicists, then as now, was blocked by language barriers and any
number of other obstacles.4

The electron wave function

The proposal that the electron has spin 1
2 means that the electron wave function ψ has

two components and that it transforms like ψ→ ei �ϕ.�σ/2ψ . But, as was already noted in
chapter IV.5, for a rotation through 2π around the z-axis,

ψ→ ei(2π)σ3/2ψ =
(
eiπ 0

0 e−iπ

)
ψ =−ψ (1)

But a rotation through 2π is naively no rotation at all, so how can something flip sign?
We have to appeal to the magic of quantum mechanics. The measurable quantities

in quantum mechanics are all bilinear in ψ and its complex conjugate ψ†, such as
the probability density ψ†ψ . Thus, it is physically acceptable for ψ to flip sign under a
rotation through 2π . We now show explicitly that the electron spin does what we expect it
to do.

Spin precession

An electron sitting at rest satisfies the Schrödinger equation (set � = 1 to lessen clutter)

i
∂

∂t
�(t)=H�(t) (2)

Since the electron is not moving,�α(t) does not depend on its position �x but does depend
on an index α indicating that it transforms like the defining representation of SU(2). The
spin angular momentum of the electron is then given by �S =�† �σ

2�. Impose an external
magnetic field �B, so that the Hamiltonian is given by

H = μ �B . �σ
2
= 1

2
μ(B1σ1+ B2σ2+ B3σ3) (3)

with μ a measure of the magnetic moment. The Hamiltonian, effectively a 2-by-2 matrix,
breaks rotation invariance explicitly, since �B picks out a direction. Let �B be time indepen-
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dent for simplicity; then the Schrödinger equation is immediately solved by

�(t)= e−iμ �B . �σ
2 t�(0)= U(t)�(0) (4)

where the unitary time evolution matrix U(t) is precisely the U studied in (IV.5.11) with
�ϕ =−μ �Bt now linear in time.

Indeed, calling the direction of the magnetic field the third axis, we simply lift (IV.5.12)
here, and obtain

�(t)=
(
e−i

μBt
2 0

0 ei
μBt

2

)
�(0)=

(
cos

μBt

2
I − i sin

μBt

2
σ3

)
�(0) (5)

The magnetic field simply multiplies the upper and lower components by a relative phase.
Note once again that, when a spin 1

2 particle is rotated through 2π , after a time t =
2π(μB)−1, its wave function changes sign.

From (IV.5.13), we see that the spin �S precesses, as would be expected for a classical
magnetic moment:

�S1(t)= cosμBt �S1(0)− sin μBt �S2(0)

�S2(t)= sin μBt �S1(0)+ cosμBt �S2(0)

�S3(t)= �S3(0) (6)

After a time t = 2π(μB)−1, the spin �S indeed returns to its original direction.
Since this is a book on group theory rather than quantum mechanics, I will restrain

myself from going into the many interesting phenomena5 involving the electron spin.

Time reversal and antiunitary operator

In a famous paper in 1932, Wigner showed that time reversal is represented by an anti-
unitary operator. Since this subject is potentially confusing, I will go slow and let the
physics, as embodied in the equations, lead us.

Take the Schrödinger equation i ∂
∂t
�(t)=H�(t). For definiteness, think ofH =− 1

2m∇2

+ V (�x), just simple one-particle nonrelativistic quantum mechanics. We suppress the
dependence of � on �x .

Consider the transformation t→ t ′ = −t . We want to find a � ′(t ′) such that

i
∂

∂t ′
� ′(t ′)=H� ′(t ′) (7)

Write � ′(t ′)= T�(t), where T is some operator to be determined (up to some arbitrary
phase factor η). We require � ′ to satisfy (7) if � satisfies (2).

Plugging in, we have i ∂
∂(−t) T �(t) = HT�(t). Multiplying by T −1, we obtain

T −1(−i)T ∂
∂t
�(t) = T −1HT�(t). Since H does not involve time, we want HT = TH ,

that is, T −1HT =H . Then T −1(−i)T ∂
∂t
�(t)=H�(t). If T does what it is supposed to

do, then we are forced to conclude, as Wigner was, that

T −1(−i)T = i (8)
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Speaking colloquially, we can say that in quantum physics, time goes with an i, and so
flipping time means you have to flip i also.

Let T =UK , whereK complex conjugates everything to its right. UsingK2= I , we have
T −1=KU−1, and so (8) holds if U−1iU = i , that is, if U−1 is just an ordinary (unitary)
matrix that does nothing to i . We will determine U as we go along. The presence of K
makes T antiunitary.

We check that this works for a spinless particle in a plane wave state �(t)= ei( �p.�x−Et).
The formalism gives us � ′(t ′) = T�(t) = UK�(t) = U�∗(t) = Ue−i( �p.�x−Et) =
ηe−i( �p.�x−Et); since � has only one component, U is 1-by-1 and hence is just a phase
factor∗ η, which we can choose to be 1. Rewriting, we have (note the argument of � ′!)
� ′(t) = e−i( �p.�x+Et) = ei(− �p.�x−Et). Indeed, � ′ describes a plane wave with wave vector
(− �p) that moves in the opposite direction, as we would expect from time reversal. Note
crucially that� ′(t)∝ e−iEt and thus has positive energy, as it should.6 Note also that acting
on a spinless particle, T 2= UKUK = UU∗K2=+1, as we would expect.

Kramer’s degeneracy

Next consider a spin 1
2 nonrelativistic electron, which we can take to be at rest for sim-

plicity. The spin observable is given by �S = ψ†( 1
2 �σ)ψ , with ψ the 2-component spinor

of the electron. Under the time reversal operator T = UK , �S→ 1
2ψ

†(UK)†�σUKψ =
1
2ψ

†KU†�σUKψ . We wish this to be −�S, a wish that would come true if U = ησ2 with
some phase factor η, since

KU†�σUK = η∗ηKσ2�σσ2K =K

⎛⎜⎜⎝
−σ1

+σ2

−σ3

⎞⎟⎟⎠K =−�σ (9)

Everything fits! The presence of K is crucial. Note that the pseudoreality of the 2-
dimensional spinor (and defining) representation of SU(2) is crucial here.

In contrast to the spin 0 case, in the spin 1
2 case, we need a 2-by-2 matrix U = ησ2 to flip

the spin. The key observation is that, acting on a spin 1
2 particle,

T 2= ησ2Kησ2K = ησ2η
∗σ ∗2KK =−1 (10)

Two successive time reversals do not give the identity! Reversing the flow of time twice
does not get a spin 1

2 particle back to itself.
This is the origin of Kramer’s degeneracy, which states the following. For an electron

moving in an electric field, no matter how complicated the field, each of the energy levels
must be two-fold degenerate.

∗ Phase factor rather than an arbitrary complex number, because we require |� ′|2 = |�|2.
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The proof is very simple.
Since electric fields do not change under time reversal (think of the electric field as

that produced between two charged plates), the Hamiltonian is time reversal invariant
(HT = TH ), and so � and T� have the same energy.

Next, ask whether � and T� represent two distinct states or just one single state.
Suppose they actually represent the same state; this means that T� is proportional to

�. Thus, T� = eiα� , with eiα some phase factor. But then

T 2� = T (T �)= T eiα� = e−iαT � = e−iαeiα� =� (11)

But according to (10), T� is supposed to be equal to−�. We have reached a contradiction,
which implies that � and T� must represent two distinct states! There is a two-fold
degeneracy.

The proof of Kramer’s theorem is a bit more subtle than most theorems in quantum
mechanics, and students7 often find it difficult to reconstruct from scratch. The key point
is that a degeneracy means that two states of the same energy are distinct. To show that,
we assume that the two states in question, � and T�, are proportional to each other and
then reach a contradiction.

Kramer’s degeneracy can be generalized immediately to systems with an odd number
of electrons8 in an electric field. The energy levels must be two-fold degenerate. This fact
is of far-reaching importance in contemporary condensed matter physics.

The time of mysteries and eeriness

It is difficult to convey to contemporary readers how confusing the half-integral electron
spin was at the time; the only way would be to quote9 the distinguished physicists of the
time. For example, C. G. Darwin, who published an early paper on electron spin with Pauli,
wrote, “It is rather disconcerting to find that apparently something has slipped through
the net, so that physical quantities exist which would be . . . artificial and inconvenient to
express as tensors.” Paul Ehrenfest in 1932 wrote of “this eerie report that a mysterious
tribe by the name of spinor family inhabit isotropic [three-dimensional] space and the
Einstein-Minkowski [four-dimensional] world.”

Notes

1. Some six months earlier, Ralph de Laer Kronig, then barely 20, had thought of the same idea, but had the
misfortune of talking about it to Wolfgang Pauli, who ridiculed the idea. In contrast, Paul Ehrenfest gave
Uhlenbeck and Goudsmit the sensible advice that they had no reputation to lose. Many of the objections
were apparently quite iron-clad, such as that the surface of the electron would be moving much faster than
the speed of light, given the estimated size of the electron at that time. There was also the utter confusion
stemming from what Pauli referred to as “classically indescribable two-valuedness.” The lesson for the reader
might be not to worry about expert opinion.

2. Not only is spin 1
2 an established fact by now, but it also forms an important part of modern technology.

3. I recommend Sin-itiro Tomonaga, The Story of Spin, University of Chicago Press, 1997.
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4. H. Hopf, after whom the Hopf map S3→ S2 is named, had an office down the hall from Pauli at the ETH.
The Hopf map is intimately related to Pauli matrices.

5. Read about the entire field of spintronics.
6. Note: no nonsense about negative energy states.
7. I am intentionally kind to professors of physics here.
8. For the generalization to relativistic electrons, see, for example, QFT Nut, p. 104.
9. Both quotes are from p. 130 of Tomonaga’s The Story of Spin, cited earlier.



IV.7 Integration over Continuous Groups, Topology,
Coset Manifold, and SO(4)

In this chapter, we will learn about the following:

1. the character of rotation

2. integration over group manifolds

3. compact versus noncompact groups

4. the topology of SO(3) and of SU(2)

5. the sphere as a coset manifold

6. local isomorphism between SO(4) and SU(2) ⊗ SU(2)

Character orthogonality for compact continuous groups

We derived all those beautiful theorems about character orthogonality back in chapter
II.2. As already remarked there, these theorems should work for continuous groups that
are compact, that is, if we could simply replace the sum over group elements

∑
g in our

discussion of finite groups by an integral
∫
dμ(g), with dμ(g) some kind of integration

measure such that the corresponding integrals are finite. In this chapter, we first work out
the character of our favorite continuous group, SO(3), and then determine dμ(g).

The character of rotation

The character of an irreducible representation of SO(3) is easy to compute. Since all
rotations through angle ψ are equivalent regardless of the rotation axis, we might as well
consider rotations around the z-axis. Take the eigenstate |jm〉 (for m= j , j − 1, . . . , −j )
of J3. Since J3 |jm〉 = m |jm〉, eiψJ3 |jm〉 = eimψ |jm〉. So, the rotation matrix R(ψ) is
diagonal with elements equal to eimψ . Take the trace and use Gauss’s summation formula
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Figure 1

to obtain the character of the irreducible representation j :

χ(j , ψ)=
j∑

m=−j
eimψ = eijψ + ei(j−1)ψ + . . .+ e−ijψ

= e−ijψ(e2ijψ + ei(2j−1)ψ + . . .+ 1)= e−ijψ e
i(2j+1)ψ − 1
eiψ − 1

= sin(j + 1
2 )ψ

sin ψ
2

(1)

The dimension of the representation j is given by χ(j , 0)= 2j + 1. Note that χ(0, ψ)= 1
(as you would expect), χ(1, ψ)= 1+ 2 cosψ , and so on.

But wait, didn’t we also just calculate the characters of the irreducible representations
of SU(2)? Indeed. All we have to do is to allow j in (1) to take on half-integral as well as
integral values. But the Gauss summation formula doesn’t care whether j is integral or
half-integral as well as integral. Thus, the expression we just derived applies to SU(2) as
well. Thus, χ( 1

2 , ψ)= 2 cosψ/2, and so on.
Figure 1 plots χ(j , ψ) for j = 1

2 , 1, 2. You can figure out which is which using χ(j , 0)=
2j + 1.

To try out the various orthogonal theorems, we need to figure out dμ(g) next.

Group manifolds

For continuous groups, the notion of a group manifold is completely natural. We also
have an intuitive sense of the topology of the manifold. The manifold of the simplest
continuous group, SO(2), is clearly a circle. We naturally arrange the group elements,
R(θ) with 0 ≤ θ < 2π and R(2π)= R(0), around a unit circle.
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We are invited to introduce a measure of distance on group manifolds, namely, a metric,
in the language of differential geometry.1 In SO(2), the elements R(θ) and R(θ + dθ) are
infinitesimally close to each other (with, as usual, dθ an infinitesimal), and it makes total
sense to set dμ(g) to be dθ .

In general, for a continuous group G, we have a sense that two elements g1 and g2 are
near each other if g−1

1 g2 is close to the identity. (Of course, if g1= g2, then g−1
1 g2 = I .)

Thus, if we understand the metric structure of the manifold near the origin, we naturally
understand the structure near an arbitrary element g by simply multiplying what we know
by g. This somewhat vague remark will become clearer later in this chapter.

Axis-angle parametrization

Fine, the group manifold of SO(2) is a circle.
The naive guy might guess that the next rotation group in line, SO(3), has the sphere for

its group manifold. But that is clearly wrong, since it is characterized by three parameters,
while the sphere is 2-dimensional. In fact, the group manifold of SO(3) has a rather
unusual topology, as we now discuss.

An easy way to parametrize a rotation is to write R(θ1, θ2, θ3) = ei
∑

k
θkJk, as noted

in chapter I.3. For many purposes, however, it is more convenient to use the axis-angle

parametrization (which is in fact used in everyday life; just try ei
∑

k
θkJk out on your

typical car mechanic): identify the rotation by specifying the axis of rotation �n and the
angle ψ through which we rotate around �n. Since �n is specified∗ by two angles, θ and ϕ, in
spherical coordinates, a general rotation R(�n, ψ) is specified by three angles, θ , ϕ, and ψ ,
in agreement with the other parametrization just mentioned. So, a rotation is characterized
by a vector �ψ ≡ ψ �n whose direction and length determine the axis and angle of rotation,
respectively.

Thus, the group manifold appears to be the 3-dimensional ball†B3. But this is incorrect,
because a rotation by π around �n is the same as a rotation by π around −�n. (Verify this!)
Thus, the group manifold is actually B3 with the antipodal points on its surface identified.
See figure 2, in which the “two points” labeled A are actually a single point. Similarly for
the “two points” labeled B. It has no boundary: a traveler approaching ψ = π would find
himself or herself emerging smoothly at the “other side of the world.” The “other side”
is of course right in front of him or her. This manifold, while easily defined, is hard to
visualize, but that should not perturb us.

In chapter I.2, we already noted that two rotations with different rotation axes but the
same rotation angle ψ are equivalent:‡ R(�n, ψ)∼ R(�n′, ψ). The similarity transformation

∗ Namely, �n= (sin θ cos ϕ , sin θ sin ϕ , cos θ).
† Note that in mathematics, in contrast to everyday life, sphere and ball are totally distinct concepts: S2 and B3

are both subsets of Euclidean 3-space, but with the former characterized by points satisfying x2 + y2 + z2 = 1,
and the latter by x2 + y2 + z2 ≤ 1.

‡ Thus, more explicitly, R(θ ′ , ϕ′ , ψ)∼ R(θ , ϕ , ψ), but R(θ , ϕ , ψ ′)�R(θ , ϕ , ψ).



264 | IV. Tensor, Covering, and Manifold

B

BA

A

π

Figure 2

relating the two is simply the rotation that takes �n′ to �n. For a fixed value of ψ , as �n
varies, the rotations R(�n, ψ) trace out a sphere of radius ψ . Interestingly, the equiv-
alence classes of SO(3) correspond to spheres of different radii. In comparison, the
equivalence classes of SO(2) correspond to different points on the circle. (This is consistent
with my earlier remark that in an abelian group, every element is in its own equivalence
class.)

Note also that in SO(3), the identity corresponds to a sphere of vanishing radius, that
is, the point at the origin. As always, the identity is proudly in a class by itself.

Do exercises 1 and 2 now. We will need the results later in this chapter.

Integration measure

Now that we have the notion of a group manifold, we would naturally like to integrate
various functionsF(g) of the group elements over the groupG. So, we need an integration
measure dμ(g) to formulate such integrals as

∫
G
dμ(g)F (g).

What properties would we like the integration measure to have? Well, our ultimate
goal is to carry over some of the marvelous results obtained about the representations
of finite groups to continuous groups. Recall that the crucial step was to form the matrix
A=∑g D

†(g)XD(g) for some arbitrary matrix X and to observe that D†(g)AD(g)= A.
As already mentioned in chapter II.1, we want to replace

∑
g by

∫
dμ(g). In particular,

for A= ∫ dμ(g)D†(g)XD(g), we would like to have D†(g)AD(g)= A, just as in finite
groups.

The left hand side of this condition is

D†(g)

(∫
dμ(g1)D

†(g1)XD(g1)

)
D(g)=

∫
dμ(g1)D

†(g1g)XD(g1g)

=
∫
dμ(g2g

−1)D†(g2)XD(g2) (2)

In the last step, we simply write g2 = g1g and solve for g1= g2g
−1. We want this to

be equal to A = ∫ dμ(g2)D
†(g2)XD(g2). Our little heart’s desire would be fulfilled if

dμ(g2g
−1) = dμ(g2) for any g and g2. But since g2g

−1 and g2 are just any two group
elements, we might as well write
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dμ(g)= dμ(g′) (3)

which just says that the invariant measure dμ(g) does not depend on where you are in the
group.

Kind of what you might have expected from the beginning, no? In particular, we can
write

dμ(g)= dμ(I) (4)

Dr. Feeling drops by. “Tsk, tsk, so much verbiage, but it’s obvious,” he grumbles. “This
is exactly what anybody would do in everyday life if told to measure the area of a house. You
would pick a standard measuring stick, start at some convenient place, and transport that
stick from room to room, taking care that it is not deformed in any way.” The requirement
(4) simply forbids us from changing measuring sticks as we move from room to room. A
few examples, to be given shortly, will completely clarify these admittedly somewhat vague
statements. But first a couple of remarks.

The integral
∫
G
dμ(g)1, sometimes called the volume of the group V (G), thus offers

a measure of how big the group G is. It is the direct analog of
∑
g∈G 1=N(G) for finite

groups, namely, the number of group elements. Note that (4) does not tell us how dμ(g)
is to be normalized. There is no particularly natural way to normalize V (G), in contrast to
N(G). If you are obsessive compulsive, you could always write dμ(g)/(

∫
G
dμ(g)1) instead

of dμ(g).
Unlike mathematicians, physicists often descend to a specific parametrization of

a group manifold. This is similar to discussing the sphere S2 in the abstract versus
actually calculating something using spherical coordinates θ , ϕ. Let y1, y2, . . . , yD

be a set of coordinates on a D-dimensional manifold. Then we can write dμ(g) =
dy1dy2 . . . dyDρ(y1, y2, . . . , yD), with ρ sometimes called the density. (We are of course
familiar with the infinitesimal area element on a sphere being equal to dθdϕ sin θ , with
ρ(θ , ϕ)= sin θ . For fixed δθ and δϕ, the vaguely rectangular patch with sides δθ and δϕ
covers more area near the equator than it does near the two poles.) In a specific coordinate
system, the invariant measure can get a bit involved, as we will see. It is like the difference
between writing d� and be done with it, versus writing dθdϕ sin θ .

Invariant measures on group manifolds: Some examples

As promised, here are some examples of measures on group manifolds. The baby example
is SO(2) with the group manifold a circle parametrized by θ , as already mentioned. If we
have any sense at all, we would feel that the invariant measure is simply dθ .

Let us derive this more laboriously, like some kind of insufferable pedant. Lay down our
ruler, with one end at θ = 0 and the other end at δθ . Apply (4). SinceR(θ ′)R(θ)=R(θ ′ + θ),
left multiplication by R(θ ′) transports the two ends of the ruler to θ ′ and θ ′ + δθ . So by (4),
the distance between θ ′ and θ ′ + δθ is just δθ , independent of θ ′.
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The restricted Lorentz group SO(1, 1) is perhaps more illuminating, since, unlike
the circle, it has two common parametrizations. Parametrizing Lorentz transformations
with the boost angle ϕ, we have the multiplication law L(ϕ′)L(ϕ) = L(ϕ′ + ϕ). Thus,
going through the same argument we just went through for SO(2), we find that the
invariant measure SO(1, 1) is dϕ. The key, of course, is that the convenient boost angle
parametrization maps multiplication of group elements into addition of their respective
parameters.

Compact versus noncompact

Now we see the huge difference between SO(2) and SO(1, 1). The volume of SO(2)
(namely,

∫ 2π
0 dθ = 2π ) is finite; in contrast, the volume of SO(1, 1) (namely,

∫∞
−∞ dϕ =∞)

is infinite. As hinted at in chapter II.1, this marks the difference between compact and
noncompact groups, a difference with drastic consequences. For example, we saw that
compact groups, just like finite groups, have unitary representations, while noncompact
groups do not.

The restricted Lorentz group illustrates another important point. Just as we can
set up many different coordinates on a curved manifold, we can parametrize a given
group in many different ways. Indeed, in physics, the Lorentz group is parametrized
more physically by the velocity v:

L(v)=
( 1√

1−v2
v√

1−v2

v√
1−v2

1√
1−v2

)
(5)

The readers who have studied some special relativity know that this leads to the addition
of velocities2 as follows: L(u)L(v)= L(v′), with v′ = v+u

1+vu . Readers who do not know this
can simply verify this relation by multiplying the 2-by-2 matrices L(u) and L(v) together.
Physically, if two observers are moving relative to each other with velocity u, then a particle
seen by one observer to move with velocity v would be seen by the other observer to move
with velocity v′.

Now we simply follow our noses and lay down our beloved ruler, with one end at v
and the other end at v + δv. Left multiplication by L(u) transports the two ends of the
ruler to v′ and v′ + δv′. We next compute v′ + δv′ = v+δv+u

1+(v+δv)u = v+u
1+uv + 1−u2

(1+uv)2 δv, so that

δv′ = 1−u2

(1+uv)2 δv.
You may have realized that all we did was to compute the Jacobian of the transformation

from v to v′(v) (suppressing u). Indeed, at the level of a specific parametrization, all that (4)
is saying is that dy1dy2 . . . dyDρ(y1, y2, . . . , yD)= dy′1dy′2 . . . dy′Dρ(y′1, y′2, . . . , y′D)
= dy1dy2 . . . dyDJ ( ∂y

′
∂y
)ρ(y′1, y′2, . . . , y′D), whereJ ( ∂y

′
∂y
)denotes the Jacobian going from

y to y′, so that

ρ
(
y1, y2, . . . , yD

)
= J

(
∂y′

∂y

)
ρ
(
y′1, y′2, . . . , y′D

)
(6)
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Let us return to our simple example in which there is only one parameter, the velocity.
This relation then reads ρ(v)dv = ρ(v′)dv′ = ρ(v′) 1−u2

(1+uv)2dv, that is,

ρ(v)= 1− u2

(1+ uv)2ρ
(
v + u
1+ uv

)
(7)

Setting v = 0, we solve this instantly to give ρ(u)= 1
1−u2ρ(0). (Alternatively, set u=−v

to obtain the same (of course) solution.) As remarked earlier, the measure is determined
only up to an overall constant, and so we might as well set ρ(0)= 1.

The volume of the group is given by
∫ 1
−1

dv

1−v2 =∞. Of course, whether or not a group
is compact does not depend on the parametrization.

Indeed, if we already know about the boost angle parametrization, then we could
go from one parametrization to another by a simple change of variable: from the
relation v = tanh ϕ, we have dv = dϕ

cosh2 ϕ
and cosh2

ϕ = 1
1−v2 , and thus, as expected,

dϕ = cosh2
ϕdv = dv

1−v2 .

The measure of the SO(3) group manifold

Mathematicians would leave (4) alone, but physicists, with their insistence on calculating
and with their penchant for descending to some specific set of coordinates, would want to
work out the measure of the SO(3) group manifold explicitly. So, keep in mind that, when
in the rest of the section what some readers would call “math” gets to be quite involved,
the mathematicians would say that the physicists are merely making work for themselves.

Write3 dμ(g)= dθdϕ sin θdψf (ψ)≡ d�dψf (ψ). (We have invoked rotational invari-
ance to say that f (ψ) cannot depend on θ or ϕ.)

Our task is to determine f (ψ). Were the group manifold a Euclidean 3-space, we would
have f (ψ)∝ ψ2, since ψ plays the role of the radial variable. (Here we are just showing
off our childhood knowledge that the volume measure in 3-space is r2dr sin θdθdϕ.)

Dr. Feeling saunters by, mumbling, “In a sufficiently small neighborhood near the
identity, to lowest order we don’t feel the curvature.”4 The manifold is nearly Euclidean,
and so f (ψ)∝ ψ2 should hold for small ψ . However, this can’t possibly hold for finite ψ ,
since the manifold is manifestly not Euclidean. We also sense that f (ψ) can’t be something
nontrigonometric like ψ2.

Onward to determine f (ψ)! We are going to do it three ways, the hard way first, then
an easy way in the next section, and eventually, an even easier way.

Write an infinitesimal rotation as R(δ , ε , σ)= I +
(

0 −δ σ

δ 0 −ε
−σ ε 0

)
≡ I + A. In a small

neighborhood around the identity, δ, ε, and σ can serve as Cartesian coordinates, with
the volume measure given by dδdεdσ . So much for the right hand side of (4), which we
reproduce here for your convenience: dμ(g)= dμ(I).

To obtain the left hand side, we now transport this typical infinitesimal rotation to the
neighborhood around R(�n, ψ) by multiplying R(δ , ε , σ) from the left (or the right, if you
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like) by R(�n, ψ). Since what we are after depends only on ψ , we can pick �n to be pointing
along the z-axis to make life easier.

So let’s calculateR(�n, ψ ′)= R(�ez , ψ)R(δ , ε , σ). WithR(�ez , ψ)=
(

cosψ − sin ψ 0
sin ψ cosψ 0

0 0 1

)
, we

have R(�n, ψ ′)� R(�ez , ψ)(I + A)= R(�ez , ψ)+ R(�ez , ψ)A.
Evaluating R(�ez , ψ)A is easy, but determining �n and ψ ′ requires some huffing and

puffing. Fortunately, you, that is, you, have done exercise 2. Invoking what you got, we
obtain n1= (sin ψ ε+ (1+ cosψ)σ)/(2 sin ψ), n2= (− sin ψ σ + (1+ cosψ)ε)(2 sin ψ),
and n3= 1. Happily, there is no need to normalize �n, since that would introduce terms of
O(ε2) (where we regard δ , ε , σ collectively as of order O(ε)), while we are working only
up to O(ε).

Now that we have determined the rotation axis, we have to determine the rotation
angle. Without doing any calculations, we intuit that ψ ′ = ψ + δ +O(ε2), since in the
infinitesimal rotation R(δ , ε , σ), the rotation angle around the z-axis is δ. Of course, to be
absolutely sure, we can also use the result of exercise 1, which you have also done. Tracing
R(�ez , ψ)R(δ , ε , σ), we obtain 1+ 2 cosψ ′ = 1+ 2 cosψ − 2(sin ψ)δ, which verifies our
intuition.

Call the local Cartesian coordinates near ψ ′ by (x1, x2, x3). Then putting everything
together, we have (x1, x2, x3) = ψ ′(n1, n2, n3) = (ψ(sin ψ ε + (1+ cos ψ)σ)/(2 sin ψ),

ψ(− sin ψ σ + (1+ cosψ)ε)(2 sin ψ), ψ + δ)+O(ε2). The Jacobian J = det( ∂(x
1,x2,x3)

∂(ε ,σ , δ) )

for the transformation from the Cartesian coordinates (ε, σ , δ) near the identity to
the Cartesian coordinates (x1, x2, x3) near ψ ′ is particularly easy to evaluate, since δ
appears only in x3 and hence the determinant is that of a 2-by-2 matrix. We obtain
4J = 2ψ2(1+ cosψ)/ sin ψ2= 2ψ2/(1− cosψ)=ψ2/ sin2(ψ/2). Dropping an irrelevant
overall constant, we find dεdσdδ = dx1dx2dx3/J = ψ2dψ(sin θdθdϕ) sin2(ψ/2)/ψ2 =
d�dψ sin2(ψ/2). We watch with satisfaction that the “nontrigonometric” factor ψ2 can-
cels out. We obtain, up to an arbitrary normalization, f (ψ)= sin2(ψ/2). Note also that,
by construction, f (ψ)∝ ψ2 for small ψ .

The usual solid angle element d� drops out when we integrate over a class function
F(g), that is, a function that depends only on the class the group element belongs to,
which, as we have learned, is labeled by ψ . Thus, integrals of class functions over the
SO(3) group manifold are given by∫

SO(3)
dμ(g)F (g)=

∫ π

0
dψ

(
sin2 ψ

2

)
F(ψ) (8)

Character orthogonality

So finally we are in a position to verify character orthogonality. Recall that we have com-

puted the character for the irreducible representation j to be χ(j , ψ)= sin(j+ 1
2 )ψ

sin ψ
2

. Thus,
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∫
SO(3)

dμ(g)χ(k , ψ)∗χ(j , ψ)=
∫ π

0
dψ sin2

(
ψ

2

)
sin(k + 1

2 )ψ sin(j + 1
2 )ψ

sin2 ψ
2

=
∫ π

0
dψ sin

(
k + 1

2

)
ψ sin

(
j + 1

2

)
ψ

= 1
2

∫ π

0
dψ(cos(j − k)ψ − cos(j + k + 1)ψ)

= π
2
δjk (9)

The density sin2(
ψ
2 ) cancels out rather neatly. Indeed, for j �= k, the characters of the

irreducible representations j and k are orthogonal to each other. This calculation also
indicates that the normalization factor is 2/π if we want to normalize the volume of SO(3)
to 1.

We can also turn this calculation around and use orthogonality to determine the integra-
tion measure, that is, by demanding that

∫ π
0 dψf (ψ)χ(k , ψ)∗χ(j , ψ)∝ δjk to determine

f (ψ). This is the promised “easy” way.

Fourier series

At this point, you might have suddenly realized that the Fourier series, perhaps one of the
most useful tools in physics and mathematics, is based on character orthogonality for the
group U(1).

The element eiθ (with 0 ≤ θ < 2π ) is represented in the irreducible representation j
(with −∞< j <∞) by the complex number eijθ , which is thus also the character. The
invariant measure is just dθ , and thus character orthogonality implies∫ 2π

0
dθ(eikθ)∗eijθ = 2πδjk (10)

A sophisticated way of understanding the Fourier series indeed!

Clebsch-Gordan decomposition

Character orthogonality also affords us a rather nifty way of obtaining the Clebsch-Gordan
series for SO(3). Start with the observation (noted in chapter II.1 and used in chapter II.3)
that the character of the tensor product of two irreducible representations j and k is the
product of the characters of j and k. The method is then to writeχ(k)χ(j) as a sum

∑
l χ(l).

(To lessen clutter, we temporarily suppress theψ dependence. The character depends onψ ,
of course. Remember? Character is a function of class, and classes are labeled by ψ here.)
The characters are given in (1), but for the present purpose, it turns out to be less conve-
nient to use the final form involving the sine function. Instead, we define ζ = eiψ and write

χ(j)= (ζ j + ζ j−1+ . . .+ ζ−j )= ζ−j (ζ 2j+1− 1)/(ζ − 1)= (ζ j+1− ζ−j )/(ζ − 1) (11)
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Then (assume j ≥ k for ease of reading and with no loss of generality),

χ(k)χ(j)=
(
ζ k + ζ k−1+ . . .+ ζ−k

)
(ζ j+1− ζ−j )/(ζ − 1)

=
(
ζ j+k+1+ ζ j+k + . . .+ ζ j−k+1− ζ j−k − . . .− ζ−j−k+1− ζ−j−k

)
/(ζ − 1)

= χ(j + k)+ χ(j + k − 1)+ . . .+ χ(j − k) (12)

Note that in the first equality in (12), we use two different forms for χ , and in the third
equality the terms in the parenthesis pair off “head and tail.”

Thus, we obtain the result, well known to us since chapter IV.2, that

k ⊗ j = (j + k)⊕ (j + k − 1)⊕ . . .⊕ (j − k) (13)

Note that this holds for both SO(3) and SU(2).

Topology of group manifolds

A basic notion in topology is the homotopy of closed curves. I give an extremely brief
introduction to the essential concepts for the benefit of the reader totally unfamiliar with
the notion of homotopy. Two closed curves in a manifold are said to be homotopic to each
other if they can be continuously deformed into each other. In Euclidean space, any two
closed curves are homotopic, and in fact, each can be continuously deformed to a point.
Similarly, on the sphere, any two closed curves can be continuously deformed into each
other and to a point.

The (first) homotopy group π1(M) of a manifold M is defined as follows. Pick a point
P on the manifold, and consider closed curves starting at P and ending at P . An element
g of the homotopy group corresponds to all the curves that are homotopic to one another.
The product g1 . g2 is naturally defined by the set of closed curves that start at P , follow
a curve in g2, and return to P , and then continue on following a curve in g1, ending
finally at P . See figure 3. I leave it to you to figure out how the identity and the inverse are
defined.

You are right of course. The identity corresponds to all the curves that can be shrunk to
the point P . The inverse of g corresponds to the curves in g traversed in the opposite

P

Figure 3
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direction. For our purposes here, the emphasis would not be on the group aspect of
π1(M). Rather, the important point to note is that if two manifolds have different homotopy
groups, they are manifestly not topologically equivalent.

Consider, for example,5 the Euclidean plane with a hole (say, the unit disk centered at
the origin) cut out of it. Its homotopy group π1 is then given by Z. A closed curve starting
and ending at a point P could wind around the hole j times, with j an integer.

While this exceedingly brief discussion barely touches the subject of homotopy, it
suffices for our purposes.6

The group manifold of SO(3)

Let us then return to SO(3) with its peculiar group manifold as discussed earlier. A closed
curve starting and ending at the identity element (which we will call the originO) without
getting to ψ =±π can clearly be shrunk to a point. See figure 4a. In contrast, a curve that
proceeds from O to a point A with ψ = π , emerges at the antipodal point Ā, and then
returns to O (figure 4b) cannot be shrunk. If we deform the curve and move A to A′ in a
futile attempt to bringA and Ā together, Ā will move to Ā′ as shown in the figure. Call the
element of π1(SO(3)) corresponding to this class of curves g.

Next, consider the class of curves described by g . g. A typical member of this class
would be a curve that proceeds from O to the point A, emerges at the antipodal point
Ā, returns to O, proceeds to the point B with ψ = π , emerges at the antipodal point
B̄, and finally returns to O. See figure 5a. Remarkably, these curves could be shrunk
to a point. Simply bring A and B̄ together (so that Ā and B also come together). When
A and B̄ are on top of each other (so that Ā and B also come together on top of each
other), the curve could be “tucked in” away from ψ = π , and then brought back to O. See
figure 5b,c.

Thus, π1(SO(3))= Z2.
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The group manifold of SU(2)

The group manifold of SO(3) has an interestingly nontrivial topology. What about the
group manifold of SU(2)?

An arbitrary element U = ei �ϕ �σ/2 of SU(2) is parametrized by three real parameters
�ϕ, as we learned in chapter IV.5, and so the desired group manifold is 3-dimensional.
Actually, we could already read off from (IV.5.11) what the group manifold is, at least with
the benefit of hindsight. But for a clearer presentation, let us introduce a closely related
parametrization of SU(2).

Consider the matrix U = t + i �x . �σ parametrized by four real numbers∗ (t , x , y , z). The
condition for U to be unitary is U†U = (t − i �x . �σ)(t + i �x . �σ)= t2+ �x2= 1 (where I have
used a special case of (IV.5.10)). By direct computation, we find that the determinant
of U is equal to t2 + �x2, and the condition det U = 1 leads to the same condition as
before. Thus, for U to be an element of SU(2), the four real numbers (t , x , y , z) must
satisfy

t2+ �x2= t2+ x2+ y2+ z2= 1 (14)

If we think of (t , x , y , z) as coordinates of a point in a 4-dimensional Euclidean space, then
(14) just says that the distance squared of that point from the origin is equal to 1. Hence
the set of points (t , x , y , z) that satisfy (14) is just the 3-dimensional unit sphere S3 living
in a 4-dimensional Euclidean space.

The parametrization used here is just the parametrization in (IV.5.11), U = cos ϕ2 I +
iϕ̂ . �σ sin ϕ

2 , in another guise. The group manifold can be characterized byϕ and ϕ̂, namely,
the length and direction of �ϕ fixed by three real numbers. The correspondence is just
t = cos ϕ2 , �x = sin ϕ

2 ϕ̂.

∗ Evidently, this is much favored by relativistic physicists. See chapter VII.2.
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Topology distinguishes SU(2) from SO(3)

It is perhaps gratifying that SU(2) turns out to have such a nice group manifold. This
also shows that SU(2) and SO(3) cannot possibly be isomorphic: their group manifolds
have rather different topologies. In particular, any closed curve on S3 can be shrunk to a
point, so that π1(SU(2))=∅, while we just saw that there are closed curves on the group
manifold of SO(3) that cannot be shrunk. This topological consideration confirms what
we already know, that SU(2) is locally isomorphic to SO(3), but since SU(2) double covers
SO(3), they cannot possibly be globally isomorphic.

The group manifold SU(2) and its integration measure

We now determine the integration measure of SU(2); the group manifold is the sphere S3,
and we know spheres well. There are many ways7 to determine the integration measure
on S3. Here we follow a particularly elementary approach.

Every school child knows that a line of constant latitude traces out a circle, with radius
sin θ that approaches 0 as we approach the north pole. With the usual spherical coordinates,
we thus determine the measure on S2 to be d� = dθ(dϕ sin θ), where we recognize
(dϕ sin θ) as the infinitesimal line element on a circle S1 of radius sin θ .

Similarly, the surface of constant latitude on S3 traces out a sphere, with radius sin ζ
(in other words, set t = cos ζ , so that x2+ y2+ z2= sin2 ζ ). We simply generalize the S2

story and write down the measure on S3 as dζ(d� sin2 ζ )= dζdθdϕ sin θ sin2 ζ . Again,
we recognize d� sin2 ζ = dθdϕ sin θ sin2 ζ as the infinitesimal area element on a sphere
with radius sin ζ .

To make contact with the notation used here, recall from chapter IV.5 that, in the
parametrization used here, U = cos ζ + i sin ζσz actually describes a rotation through
angle ψ = 2ζ around the z-axis. Double covering, remember? Dropping d�, we obtain
for the integral of a class function

∫ π
0 dζ sin2 ζF (ψ)= ∫ π0 dψ sin2 ψ

2 F(ψ), in complete
agreement with what we obtained earlier in (8). We have invoked the fact that the measure
is a local concept and so should be the same for SO(3) and SU(2). As promised, this is the
easiest way yet.

How does the sphere appear in group theory?

We learned here that the group manifold of SO(2) is the circle S1, of SO(3) is some weird
topological space, and ofSU(2) is the 3-sphereS3. Where does the ordinary everyday sphere
S2 appear?

The sphere is in fact not a group manifold but an example of a coset manifold.
I introduced the notion of cosets for finite groups back in chapter I.2. First, a quick

review. Given a group G with a subgroup H , let us identify two elements g1 and g2 of G
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if there exists an element h of H such that g1= g2h. Use the notation g1∼ g2 if g1 and g2

are identified. If there does not exist an h such that g1= g2h, then g1 �∼ g2. This procedure
thus divides the elements ofG into distinct cosets labeled by g1H . The collection of cosets
is denoted by G/H .

Going from finite groups to continuous groups, we have the additional notion that two
elements, g1 and g2, may be infinitesimally close to each other. In that case, we say that the
cosets g1H and g2H are infinitesimally close to each other. With this notion of distance,
the collection of cosets becomes a coset manifold.

Let G = SO(3) and H = SO(2). For definiteness, let H consist of rotations around
the z-axis, and �ez denote the unit vector pointing along the z-axis. Then g1∼ g2 implies
g1�ez = g2h�ez = g2�ez; in other words, g1 and g2 are identical in the sense that they take �ez
into the same unit vector. Colloquially speaking, the rotation h ∈ SO(2) did nothing nohow.
Somewhat more academically speaking, the rotations g1 and g2 map the north pole into
the same point. Thus, each coset corresponds to a point on the unit sphere, and different
cosets correspond to different points. The ordinary sphere is in fact S2= SO(3)/SO(2).

By the way, this discussion is consistent with the remark in chapter I.2 that SO(2) is not
an invariant subgroup of SO(3).

SO(4) is locally isomorphic to SU(2) ⊗ SU(2)

We just learned that the elements of SU(2) are in one-to-one correspondence with the unit
vectors in Euclidean 4-space, each defining a point on the 3-dimensional sphere S3. So,
consider an SU(2) elementW = t + i �x . �σ parametrized by four real numbers (t , x , y , z)
with t2+ �x2= t2+ x2+ y2+ z2= 1. (Note that, in contrast to X = �x . �σ in chapter IV.5,
W is neither traceless nor hermitean.)

Observe that, for U and V two arbitrary elements of SU(2), the matrix W ′ = U†WV is
also an element of SU(2), for the simple reason that SU(2) is a group!

Since W ′ is an element of SU(2), it can be written in the form W ′ = (t ′ + i �x′ . �σ), with
t ′2+ �x′2= 1. Thus, (t , x , y , z) and (t ′, x′, y′, z′) are both unit vectors. The transformation
W →W ′ turns one unit vector into another unit vector. Hence, U and V determine a
4-dimensional rotation, namely, an element of SO(4).

The pair of SU(2) elements (U , V ) defines the group SU(2) ⊗ SU(2) (it might seem
self-evident to you, but do verify the group axioms; for example, (U1, V1)(U2, V2) =
(U1U2, V1V2)). We conclude that SO(4) is locally isomorphic8 to SU(2) ⊗ SU(2). (Re-
call that we had already obtained this result by looking at the Lie algebras way back in
chapter I.3.)

We say locally, because the pair of SU(2) elements (U , V ) and the pair (−U , −V )
correspond to the same SO(4) rotation, since U†WV = (−U)†W(−V ). Thus, SO(4) is
covered by SU(2) ⊗ SU(2).

Quite likely, this discussion may have confused our friend Confusio. Admittedly, it
sounds eerily similar to the demonstration in chapter IV.5 that SU(2) covers SO(3). But the
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astute reader should have noticed the differences rather than the similarities. As already
mentioned, the matrix X is hermitean and traceless, while W is neither. Here, not one
SU(2) element U , but two elements U and V , are involved.

But, indeed, the two discussions are related in one respect. Consider the subgroup of
SU(2) ⊗ SU(2) defined by the elements (V , V ). (Verify that the subgroup is an SU(2),
known as the diagonal subgroup of SU(2) ⊗ SU(2).) In the transformation W →W ′ =
V †WV = V †(t + i �x . �σ)V = (t + i �x . V †�σV ) = (t ′ + i �x′ . �σ), evidently t ′ = t . Only �x is
changed and �x′. Thus, the diagonal SU(2) subgroup maps into the SO(3) subgroup of
SO(4). Note that the calculation of �x′ is the same as in chapter IV.5.

Another SU(2) subgroup consists of the elements (V †, V ). Verify that this does change
t . What does this subgroup correspond to in SO(4)?

Running a reality check on SO(3) and SU(2)

In chapter II.3, we derived a reality checker. Evaluate η(r)≡ 1
N(G)

∑
g∈G χ(r)(g2). If η(r)= 1,

the irreducible representation is real; if=−1, the irreducible representation is pseudoreal;
and if 0, the irreducible representation is complex. We expect that the reality checker
would also work for compact groups if we replace the sum 1

N(G)

∑
g∈G(. . .) by the integral∫

G
dμ(g)(. . .) (with the integration measure normalized, so that

∫
G
dμ(g) 1= 1).

Let us feed the compact groups SO(3) and SU(2) into the reality checker. It would be
fun to watch the reality checker churning out the right answer, which in fact we already
know. The irreducible representations of SO(3) are real, while half of the irreducible
representations of SU(2) are pseudoreal, with the other half real.

So, evaluate (watch the angles and half angles like a hawk!)∫ π

0
dμ(g)χ(j , 2ψ)= 2

π

∫ π

0
dψ sin2

(
ψ

2

)
sin((2j + 1)ψ)

sin ψ

=− 1
2π

∫ π

0
dψ(eiψ − 2+ e−iψ)

{
eij2ψ + ei(j−1)2ψ + . . .+ e−ij2ψ

}
(15)

(We made sure to use the normalized measure here.)
This is an interesting integral, whose value depends on whether j is integral or half

integral, as it better, if the machine is going to work. For j integral, the curly bracket
contains a term equal to 1 but no term equal to either eiψ or e−iψ , and thus the integral
evaluates to +1. For j half integral, the curly bracket contains eiψ + e−iψ , but does not
contain a term equal to 1, and thus the integral evaluates to −1. Math triumphs once
again!

Exercises

1 Given a rotation matrix R, determine the rotation angle ψ .

2 Given a rotation matrix R, determine the rotation axis �n.
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3 What does the SU(2) subgroup of SO(4), consisting of the elements (V †, V ), correspond to? Verify that
these transformations do change t .

4 Run the reality checker on U(1).

Notes

1. For an easy introduction, see, for example, chapters I.5–7 in G Nut.
2. See any textbook on special relativity. For example, chapter III.2 in G Nut.
3. If we were really pedantic, we would write dμ(R).
4. Some readers would know that this remark plays the central role in differential geometry and in Einstein

gravity. See, for example, chapters I.6 and V.2 in G Nut.
5. This example underlies the Aharonov-Bohm effect. See QFT Nut, p. 251.
6. There is of course a vast literature on homotopy, with books and papers. My favorite paper is D. Ravenel and

A. Zee, Comm. Math. Phys. (1985), p. 239.
7. For instance, if you know the metric on S3, you could simply evaluate the determinant of the metric. See, for

example, p. 75 of G Nut.
8. For an application of this isomorphism to particle physics, see the celebrated paper by M. Gell-Mann and M.

Levy, Nuovo Cimento 16 (1960), p. 45.



IV.8 Symplectic Groups and Their Algebras

I give a brief introduction to symplectic groups and their algebras, for the sake of pre-
tending to a modicum of completeness.1 We encounter the symplectic algebras again in
part VI.

Symplectic groups: Sp(2n, R) and Sp(2n, C)

Orthogonal matrices are defined as real matrices R that satisfy RTR = RT IR = I , where
with insufferable pedantry, I’ve inserted the identity matrix between RT and R.

Now, consider the 2n-by-2n “canonical” antisymmetric matrix

J =
⎛⎝ 0 I

−I 0

⎞⎠ (1)

with I the n-by-n identity matrix. Define symplectic2 matrices R as those 2n-by-2n real
matrices satisfying

RT JR = J (2)

The symplectic matrices form a group, known as Sp(2n, R). Check that all the group
axioms are satisfied.

A potentially confusing point for some students is merely due to the use of the letter R
in (2): physicists are used to associatingR with rotation. (Here, the letterR stands for real,
not rotation.) The matrix R is manifestly not orthogonal.

Recall that in our discussion (back in chapter I.3) of the orthogonal matrices satisfying
RTR = I , taking the determinant of this defining relation gives det R = ±1. We then
impose the condition det R = 1 to exclude reflections.

Here, in contrast, it turns out that (2) already implies that det R = 1, not just det R =±1.
We do not have to impose det R = 1as a separate condition. To get a feel for how this comes
about, note that while the diagonal reflection matrix r ≡ diag(−1,+1, . . . ,+1) satisfies the
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orthogonality condition rT I r = I , it most certainly does not satisfy the skew-orthogonality
or symplectic condition (2): rT J r �= J . A simple proof that (2) implies det R = 1 will be
given in appendix 1. Meanwhile, you can check this explicitly for a few simple cases. For

example, for n= 1, plugging R =
(
p q

r s

)
into (2), you find that3 det R = ps − qr = 1.

The symplecticity condition (2) imposes (since its left hand side is antisymmetric)
2n(2n− 1)/2 constraints on the (2n)2 real parameters inR. (For n= 1, one condition on the
four real parameters p, q, r , and s.) Thus Sp(2n, R) is characterized by 4n2− n(2n− 1)=
n(2n+ 1) parameters, namely 3 for n= 1, 10 for n= 2, 21 for n= 3, and so on.

So much for real symplectic matrices. Let us move on to complex symplectic matrices,
namely, 2n-by-2n complex matrices C that satisfy

CT JC = J (3)

Clearly, they form a group, known as Sp(2n, C).
The same counting goes through; the condition (3) now imposes 2n(2n− 1)/2 complex

constraints on the (2n)2 complex parameters in C. Hence Sp(2n, C) is characterized by
4n2− n(2n− 1)= n(2n+ 1) complex parameters, that is, 2n(2n+ 1) real parameters, twice
as many as Sp(2n, R).

I already mentioned in an endnote in chapter III.3 that classical mechanics, as mani-
fested in Hamilton’s equations, enjoys a symplectic structure. For a problem with n coor-
dinates qi (i = 1, . . . , n), package qi and the conjugate momenta pi into a 2n-dimensional

vector Z =
(
q

p

)
with the index a on Za running from 1 to 2n. Then dZa

dt
= Jab ∂H∂Zb . Several

applications of symplectic matrices to physics flow from this observation.4

USp(2n)

Consider the set of 2n-by-2n unitary matrices satisfying

UT JU = J (4)

Verify that these matrices form a group, known as∗ USp(2n).
Confusio asks: “It’s UT in (4), not U†? You sure?”
Yes, indeed it is UT , not U†, another point that has often confused students. While the

letter R in (2) does not denote an orthogonal matrix, the letter U in (4), in contrast, does
denote a unitary matrix. In other words, in addition to (4), we also impose U†= U−1. Or,
to put it more mathematically,

USp(2n)= U(2n) ∩ Sp(2n, C) (5)

Confusio was justified to double check; we are not used to seeing the transpose of a
unitary matrix.

∗Unfortunately, the notation is not unified. Some authors call this group Sp(2n) (and some even call it Sp(n)),
thus causing considerable confusion.



IV.8. Symplectic Groups and Their Algebras | 279

Note that matrices of the form eiϕI2n, with I2n the 2n-by-2n identity matrix, manifestly do
not satisfy (4). Thus, USp(2n) is a subgroup of SU(2n), not of ∗ U(2n)= SU(2n)⊗ U(1).

To count the number of real parameters in USp(2n), it is perhaps slightly clearer
to go to the Lie algebra by writing U � I + iH with H hermitean. Then (4) becomes
HT J + JH = 0, which implies

HT = JHJ (6)

since J 2=−I . You should figure out how many conditions this imposes on the (2n)2 real
parameters in H .

Perhaps the poor man’s way is the most foolproof. Plug the general 2n-by-2n hermitean

matrix H =
⎛⎝ P W†

W Q

⎞⎠ with P and Q hermitean and W complex into (6). Obtain Q=

−PT andW =WT . Thus,Q is entirely determined by the hermitean P , which contains n2

real parameters. Nothing says that P is traceless, but, since tr P =− tr Q, H is traceless
(which, by the way, we already know, sinceUSp(2n) is a subgroup of SU(2n), not ofU(2n),
as noted earlier). Meanwhile, a symmetric complex matrixW has n+ n(n− 1)/2 complex
parameters, that is, n2+ n real parameters. So, altogether H has 2n2+ n= n(2n+ 1) real
parameters.

The group USp(2n) is characterized by n(2n + 1) real parameters (the same as
Sp(2n, R)), which, as noted earlier, is equal to 3 for n = 1, 10 for n = 2, 21 for n = 3,
and so on. It is generated by the 2n-by-2n hermitean matrix of the form

H =
⎛⎝ P W ∗

W −PT

⎞⎠ (7)

with P hermitean andW symmetric complex.
Since there are not that many continuous groups with a relatively small number of

generators, we might suspect that, with three generators, USp(2)� SU(2)� SO(3), and
with ten generators, USp(4)� SO(5). It turns out that both suspicions are correct.

The first local isomorphism is easy to confirm. The general SU(2) group element
U = ei �θ .�σ (with σ1, σ2, and σ3 the three Pauli matrices) in fact satisfies (6). The second
suspected local isomorphism won’t be confirmed until chapter VI.5. See also appendix 2
to this chapter.

Let us also remark how the peculiar condition (4) can arise in physics. For example, in

quantum field theory, we might consider a 2n-component field† � =
(
χ

ξ

)
, composed of

two n-component fields χ and ξ . Then�T J� = χT ξ − ξT χ is invariant under the unitary
transformation �→ U� if UT JU = J .

∗ For simplicity, here we do not write the more correct form U(2n)= (SU(2n)/Z2n)⊗ U(1) that is explained
in chapter IV.5.

† We will discuss Majorana fields in chapter VII.5.
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Symplectic algebras

It is convenient to use the direct product notation introduced in the review of linear algebra.
ThenJ = I ⊗ iσ2 (with I then-by-n identity matrix). Consider the set of 2n-by-2nhermitean
traceless matrices

iA⊗ I , S1⊗ σ1, S2⊗ σ2, S3⊗ σ3 (8)

Here I denotes the 2-by-2 identity matrix; A an arbitrary real n-by-n antisymmetric matrix;
and S1, S2, and S3 three arbitrary real n-by-n symmetric matrices. For example,

S1⊗ σ1=
⎛⎝ 0 S1

S1 0

⎞⎠
The claim is that these matrices generate the Lie algebra of USp(2n).
A straightforward way to verify this claim is to show that the H obtained earlier can be

written as a linear combination of these four sets of matrices. Check this!
Better yet, we could start fresh, and verify that these four sets of matrices form a Lie

algebra under commutation and that they each satisfy (6), namely, JHJ =HT .
First, count to make sure that we have the right number of generators. A real n-by-n

antisymmetric matrix has 1
2n(n− 1) real parameters, and a real n-by-n symmetric matrix

has 1
2n(n+ 1) real parameters. In other words, there are 1

2n(n− 1) linearly independent
As, 1

2n(n + 1) linearly independent S1s, and so on. The total number of generators is
1
2n(n− 1)+ 3

2n(n+ 1)= n(2n+ 1), which is just right.
Second, let us show that (8) closes. To begin with, note that

[iA⊗ I , Sa ⊗ σa]= i[A, Sa]⊗ σa = iS′a ⊗ σa (9)

since the commutator of an antisymmetric matrix and a symmetric matrix is a symmetric
matrix. Next, note that

[S ⊗ σ1, S′ ⊗ σ1]= [S , S′]⊗ I = i(−iA)⊗ I (10)

(we suppress irrelevant subscripts), since the commutator of two symmetric matrices is
an antisymmetric matrix. Then note that

[S1⊗ σ1, S2⊗ σ2]= iS1S2⊗ σ3− (−1)iS2S1⊗ σ3= i{S1, S2} ⊗ σ3= iS3⊗ σ3 (11)

since the anticommutator of two symmetric matrices is a symmetric matrix. I will let you
go through the rest.

Finally, we have to verify JHJ =HT :

(I ⊗ iσ2)(A⊗ I )(I ⊗ iσ2)= (AT ⊗ I ) (12)
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and

(I ⊗ iσ2)(Sa ⊗ σa)(I ⊗ iσ2)= (Sa ⊗ σTa ), a = 1, 2, 3 (13)

Indeed, the generators in (8) form the symplectic algebra of USp(2n).
Note that an arbitrary linear combination of the generators I ⊗ iA and σ3⊗ S have the

matrix form⎛⎝ S + iA 0

0 −(S − iA)

⎞⎠ (14)

Since S + iA is an arbitrary hermitean matrix, these are precisely the generators ofU(n)�
SU(n)⊗ U(1) in the reducible n⊕ n∗ representation. We have identified∗ the U(n) sub-
algebra of the USp(2n) algebra. It corresponds toW = 0 in (7). The matrix (for S = I and
A= 0)

� ≡
⎛⎝ I 0

0 −I

⎞⎠ (15)

generates the U(1).

Appendix 1: The characteristic polynomial of a symplectic
matrix is palindromic

We prove here that a 2n-by-2n matrix R satisfying the symplectic condition RT JR = J has determinant equal
to +1.

First, note that the characteristic polynomial satisfies

P(z)≡ det(R − zI)= z2n det(z−1R − I )= z2n det R det(z−1− R−1)

= z2n det R det(z−1+ JRT J )= z2n(det J )2 det R det(RT − z−1)

= z2n det R det(RT − z−1)

= (det R)z2nP (1/z) (16)

The third equality follows on multiplying (2) by J from the left and by R−1 from the right: R−1=−JRT J .
Hence, if P(λ)= 0, then P(1/λ)= 0 also. The eigenvalues ofR come in pairs {λi , 1/λi}, and hence det R = 1.

More involved proofs may be found elsewhere.5

Amusingly, it follows that the characteristic polynomial of R, namely P(z) = det(R − zI) = a2nz
2n +

a2n−1z
2n−1+ . . .+ a1z + a0 (with a2n = 1 of course) is palindromic6 in the sense that aj = a2n−j (so that the

“sentence” a2na2n−1 . . . a1a0 is a palindrome).† Using det R = 1, we see that (16) states that

P(z)= z2nP (1/z)= a2n + a2n−1z+ . . .+ a1z
2n−1+ a0z

2n (17)

The assertion has been proved. (That a0 = a2n = 1 is of course the same as det R = 1.)

∗ Note: U(n), not U(2n).
† A palindrome is a sentence that reads the same forward and backward. Two classic examples are “Madam,

I’m Adam” and “Sex at noon taxes.”
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Appendix 2: Isomorphs of the symplectic algebras

Physicists tend to be quite sloppy and often callUSp(2n) simply Sp(2n), at the risk of confounding Sp(2n, R) and
Sp(2n, C). Here I make a few remarks about a couple of the smaller symplectic algebras. As already mentioned
in the text, Sp(2)� SU(2) with three generators, and Sp(4)� SO(5) with ten generators.

Referring to (7), we see that for n = 1, P is a real number and W is a complex number, and thus H =(
p c−id

c+id −p

)
, which is just cσ1+ dσ2 + pσ3, which indeed generates SU(2).

The Sp(4) algebra has the 10 generates given by the matrices in (8) for n= 2:

τ2⊗ I , (I , τ1, τ3)i ⊗ σi , i = 1, 2, 3 (18)

We denote by I the 2-by-2 identity matrix, and by (I , τ1, τ3)i an arbitrary linear combination of I , τ1, and τ3 (with
the subscript i indicating that the linear combination varies according to different values of i). An easy check by
counting: 1+ 3 . 3= 10. It is manifestly a subgroup of SU(4)which is generated by 42− 1= 15 4-by-4 hermitean
traceless matrices. In chapter VII.1, we will show that SU(4)� SO(6), with the defining vector representation 6
of SO(6) corresponding to the antisymmetric 2-indexed tensor Aab , a , b = 1, 2, 3, 4 of SU(4) (with dimension
6= 4 . 3/2). Under an element U of SU(4), we have7 Aab→AcdUcaUdb = (UTAU)ab. Referring back to (4), we
conclude that under Sp(4), one component of the 6 of SO(6) is left invariant. Thus, Sp(4) is locally isomorphic
to SO(5).

Exercises

1 Show that matrices satisfying (2) form a group.

2 Show that the H in (7) can indeed be written in terms of the matrices in (8).

Notes

1. Here is a story about Howard Georgi, one of the founders of grand unified theory, which we discuss in part
IX. In the first edition of his well-known book about Lie algebras, he dismissed the symplectic algebras with
some statement along the line that the symplectic algebras had never been relevant to particle physics. Some
decades later, a seminar speaker at Harvard (where Georgi was, and still is, a professor) talked about some
string theory stuff involving a symplectic algebra. In the last slide, he included a quote from Georgi’s book
knocking the symplectic algebras, with the intention of mocking Georgi. Howard instantly responded, “To
the contrary, your work has resoundingly confirmed my statement!” A physicist who witnessed the exchange
laughingly told me that this was filed under “asking for it.”

2. Some authors use the rather unattractive terms “skew-orthogonal” and “pseudoorthogonal.” I am rather
adverse in general to jargon terms with the prefix “pseudo,” but less so than to those with the prefix “super,”
“hyper,” “duper,” and “superduper.”

3. Thus showing that Sp(2, R)� SL(2, R).
4. See R. Littlejohn, Phys. Rept. 138 (1986), pp. 193–291, and the references therein. See also D. Holm, T.

Schmah, and C. Stoica, Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions, Oxford
University Press. Symplectic integrators are important in such areas as molecular dynamics and celestial
mechanics.

5. Other proofs, which I don’t find particularly illuminating, may be found in M. Hamermesh, Group Theory
and Its Applications to Physical Problems, and Z.-Q. Ma, Group Theory for Physicists.

6. I am grateful to Joshua Feinberg for telling me about this and for many helpful discussions.
7. That the notation and convention used here is somewhat different from what we used before is of no

importance.



IV.9 From the Lagrangian to Quantum
Field Theory: It Is but a Skip and a Hop

Field theory: The bare bones minimum

Here I attempt the nearly impossible, to convey the essence of quantum field theory in a
few pages. All we need here, and for later use,∗ is merely the rudiments of field theory. I
will try to convey the bare bones minimum in the simplest possible terms. Readers at both
ends of the spectrum, those who already know field theory and those who are struggling
with quantum mechanics, could readily skip this discussion. On the other hand, readers
in the middle could, and should, read this impressionistically. It is of course understood
that the discussion here is only a caricature of a serious discussion.

To read the rest of this book, it suffices to have a vague impression of the material
presented here. For the convenience of some readers, I provide an executive summary at
the end of this chapter.

One step at a time. First, we need to review classical mechanics, but we did that already
in chapter III.3. Next, onward to quantum mechanics! As described back in chapter IV.2,
Heisenberg promoted q and p to operators satisfying

[q , p]= i (1)

Dirac then introduced creation and annhilation operators, respectively, a†= 1√
2
(q − ip)

and a = 1√
2
(q + ip), which according to (1) satisfy [a , a†]= 1

2 [q + ip , q − ip]=−i[q , p]=
1. For the harmonic oscillator, the HamiltonianH = 1

2ωa
†a is proportional to the number

operator. In Heisenberg’s formulation of quantum mechanics, an operator O evolves
in time according to dO

dt
= i[H , O]. In particular, the position operator has the time

dependence

q(t)= 1√
2
(ae−iωt + a†eiωt) (2)

Note that q(0)= q.

∗ In chapters V.4, VII.3, and VII.4, for example.
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At this breakneck pace, we are already almost at the door of quantum field theory. I
assume that the reader is familiar with the concept of a field, the electric field �E(t , �x), for
example. For our purposes, we can define a field as a dynamical variable that also depends
on the spatial coordinates �x.

From discrete to continuous labels

The progression from particle to field1 may be thought of as a two-step process:

q(t)→ qa(t)→ ϕ(t , �x) (3)

First, we replace the single particle by N particles labeled by a = 1, 2, . . . , N . Second,
we promote the discrete label a to the continuous label �x (and move it to live inside the
parenthesis). By the way, the switch from q to ϕ for the dynamical variable is merely a bow
to tradition.

The important point is to understand that the spatial coordinate �x is a mere label, not
a dynamical variable. Thus, the notation �E(t , �x) tells us that it is the time dependence
of the electric field at �x we are focusing on: for each �x, �E(t , �x) is the dynamical variable,
not2 �x.

In the many-particle case, the Lagrangian would contain terms linking the different
particles, such as ∼− 1

2k(qa − qb)2, due to springs connecting them, for example. After
the discrete variable a got promoted to the continuous variable �x, these terms take on the
form3 ∼ (ϕ(�x + �ε)− ϕ(�x))2∼ εi( ∂ϕ

∂xi
)2; at an intermediate step, we might think of space

as a lattice with a microscopic lattice spacing ε, which in the end we will take to zero,
rendering space continuous.

In the intermediate stage, the Lagrangian is given as a sum L=∑a(
. . .). In the con-

tinuum limit, the sum over a becomes an integral over �x. The Lagrangian ends up being
given by an integral over space L= ∫ d3xL, with L known as the Lagrangian density. If
you have followed the “poetry” in the preceding paragraphs, you could perhaps see that
the Lagrangian density assumes the form

L= 1
2

(
∂ϕ

∂t

)2

− c
2

2

3∑
i=1

(
∂ϕ

∂xi

)2

− V (ϕ) (4)

The first term is just the usual kinetic energy. A certain amount of cleaning up has already
been performed. For example, a constant multiplying 1

2(
∂ϕ
∂t
)2 can be absorbed into the

definition of ϕ. The lattice spacing ε has been similarly absorbed. Here c is needed for
the dimension to come out right; hence it has the dimension of length over time, that is,
that of a speed. In a relativistic theory, c is the speed of light. Units are usually chosen
(with length measured in lightseconds rather than in terms of some English king’s foot,
for example) so that c = 1. In other words, we can absorb c by scaling �x.

It is common practice to abuse language somewhat and to refer to L as the Lagrangian,
dropping the word density. Note that the action S = ∫ dtL= ∫ dtd3xL= ∫ d4xL may be
written as an integral of the Lagrangian (density) L over 4-dimensional spacetime.
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In a word, field theory is what you get if you’ve got an oscillator at each point �x in space.4

The field ϕ(t , �x) describes the amplitude of the oscillation at time t of the oscillator located
at �x. The term (

∂ϕ

∂xi
)2 links the oscillators at neighboring points in space.

Packaging the time and space coordinates into spacetime coordinates xμ = (t , xi) with
x0 = t and introducing the compact notation ∂μ ≡ ∂

∂xμ
= ( ∂

∂t
, ∂

∂xi
), we can write the La-

grangian density in (4) as

L= 1
2
(∂μϕ)

2− V (ϕ) (5)

Here we are anticipating the discussion of relativistic physics in chapter VII.2, devoted to
the Lorentz group. (Not to strain the reader even further, I would say that the simplest tactic
here would be to regard5 (∂μϕ)

2 as shorthand for the combination
(
∂ϕ
∂t

)2 −∑3
i=1

(
∂ϕ

∂xi

)2
in (4).)

Recall the Euler-Lagrange equation

d

dt

(
δL

δ
dq
dt

)
= δL
δq

(6)

from chapter III.3. When we jump from mechanics to field theory, q(t) is replaced by
ϕ(t , �x). Thus, I presume that you would not be surprised to learn that the Euler-Lagrange
equation is naturally extended to include space derivatives as well as a time derivative, thus
replacing the left hand side of (6) by ∂μ

(
δL
δ∂μϕ

)≡ ∂
∂t

(
δL
δ
∂ϕ
∂t

)+ ∂

∂xi

(
δL
δ
∂ϕ

∂xi

)
. For a field theory, we

have the Euler-Lagrange equation

∂μ

(
δL
δ∂μϕ

)
= δL
δϕ

(7)

with the corresponding equation of motion(
∂2

∂t2
− ∂2

∂ �x2

)
ϕ + V ′(ϕ)= 0 (8)

In the simplest case V (ϕ)= 1
2m

2ϕ2 (which we might think of as the harmonic approxi-

mation), then the equation of motion becomes
(
∂2

∂t2
− ∂2

∂ �x2 +m2)ϕ = 0, which is solved by

ϕ(t , �x)∝ e−i(ωkt−�k.�x), with ω2
k
= �k2+m2.

To quantize this field theory, we “merely” have to follow Heisenberg’s prescription.
The momentum conjugate to ϕ(t , �x) is π(t , �x)≡ δL

δ
∂ϕ
∂t

= ∂ϕ
∂t

. (This is almost an immediate

generalization of p(t)=mdq
dt

.) The end result, not surprisingly, is that the field can again
be expanded, generalizing (2), in terms of creation and annihilation operators:

ϕ(t , �x)=
∫

d3k√
(2π)32ωk

(
a(�k)e−i(ωkt−�k.�x) + a(�k)†ei(ωkt−�k.�x)

)
(9)

The assumption that ϕ is real, or more precisely, hermitean (ϕ†= ϕ), fixes the second term
in (9) in terms of the first.

A big difference is that the creation and annihilation operators, respectively, a(�k)† and
a(�k), are now functions of �k. Evidently, the dependence of ϕ on �x gets translated into
a dependence of a† and a on �k. Physically, a(�k)† acting on the vacuum state |0〉 creates a
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state containing a particle of momentum �k and energyωk =+
√�k2+m2. (Note that we have

set � = 1 throughout; the momentum and energy are actually ��k and �ωk, respectively.)
Incidentally, the normalization factor

√
(2π)32ωk in (9) is chosen so that this state is

normalized conventionally.6

Fields and symmetry groups

Since this is a textbook on group theory rather than quantum field theory, we are less
interested in the dynamics of fields, about which volumes could be, and have been, written,
but more in how symmetries are incorporated into field theory. We have already talked
about rotational invariance (in chapter III.3) and relativistic invariance (in this chapter).
In chapter IV.5, we mentioned that Heisenberg, by introducing isospin, opened up a vast
vista of internal symmetries, so that physicists have many more symmetries to play with
beyond these spacetime symmetries. The exploration of these internal symmetries turned
out to be a central theme in subatomic physics.∗ Here we discuss the group theoretic
framework in general and come to specific examples in later chapters.

A symmetry groupG is postulated, deduced from experimental observation or theoret-
ical considerations, with various fields furnishing various representations R1, R2, . . . of
G (and of the Lorentz group of special relativity). The task at hand is then to construct the
Lagrangian (density). By definition, that G is a symmetry means that the Lagrangian is
invariant under the transformations of G.

Thus, the mathematical problem is to simply construct, out of the Rs, an object L that
does not change under G.

Let us hasten from this rather airy yak yak yak to a specific example. Suppose that
G= SU(N) (as discussed in chapter IV.4) and that our theory contains two fields,7 ϕij
(transforming as a symmetric tensor with two lower indices) and ηk (belonging to the
defining representation). Then ϕijηiηj is an invariant term we can include in L, describing
the interaction of a particle of the ϕ type with two particles of the η type. Physically, we can
see that the Lagrangian, after we expand the fields ϕ and η into creation and annihilation
operators, contains a term that would annihilate a ϕ particle and create two η particles.
This describes the decay of a ϕ particle into two η particles.

We now elaborate on these remarks.

Lagrangians with internal symmetries

The simplest example is a U(1) invariant theory containing a field ϕ belonging to the
defining representation: under the group element eiθ , ϕ→ eiθϕ. Since ϕ†→ e−iθϕ†,
the hermiticity condition ϕ = ϕ† cannot be maintained. Necessarily, ϕ �= ϕ†, and ϕ is a
nonhermitean field, commonly referred to as a complex field.

∗ We discuss these developments in parts V and VIII.
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An immediate consequence is that we have to write

ϕ(t , �x)=
∫

d3k√
(2π)32ωk

(
a(�k)e−i(ωkt−�k.�x) + b(�k)†ei(ωkt−�k.�x)

)
(10)

Thatϕ† �= ϕ compels us to introduce two sets of creation and annihilation operators, (a , a†)

and (b, b†). In contrast to (9), the second term here is not related to the first term.
You should verify that the two creation operators, a† and b†, transform oppositely under

the U(1). If we say that the state a†(�k) |0〉 describes a particle of momentum �k, then the
state b†(�k) |0〉 describes an antiparticle8 of momentum �k.

Electromagnetism in fact exhibits a U(1) symmetry, as explained in any quantum field
theory textbook. The two states just described carry equal but opposite electric charges.

Since U(1) is isomorphic to SO(2), a theory of a complex field can also be written in
terms of two real fields, just like a complex number can be written in terms of two real
numbers z= x + iy. Simply set

ϕ = 1√
2
(ϕ1+ iϕ2) (11)

Each of the two real fields, ϕ1 and ϕ2, can be expanded as in (9), thus confirming the need
for two sets of creation and annihilation operators, (a1, a†

1) and (a2, a†
2).

The important factor of 1√
2

in (11) can be understood as follows. Call the states a†
1 |0〉 and

a
†
2 |0〉 created by ϕ1 and ϕ2, respectively, |1〉 and |2〉. Let these states be normalized9 such

that 〈1|1〉 = 1 and 〈2|2〉 = 1. If ϕ as defined in (11) is expanded as in (10), then the creation
operator a† in ϕ creates the state |s〉 = 1√

2
(|1〉 + |2〉). The factor 1√

2
here comes from the 1√

2

in (11). The state |s〉 is then normalized correctly: 〈s|s〉 = 1
2(〈1|1〉 + 〈2|2〉)= 1

2(1+ 1)= 1.
From this discussion it is but a short leap to field theories symmetric10 under some group

G. The various fields appearing in the Lagrangian L transform under various irreducible
representations of G, and they are to be combined in such a way that L is invariant. In
other words, L transforms as a singlet under G.

All the known internal symmetry groups in physics are compact. Thus, the irreducible
representations that the known fields belong to are unitary. In other words, under the group
element g, the field ϕ transforms like ϕ→D(g)ϕ, withD(g)†=D(g)−1. This means that
the mass term m2ϕ†ϕ, and the “kinetic” terms ∂ϕ†

∂t
∂ϕ
∂t

and ∂ϕ†

∂xi
∂ϕ

∂xi
, are always allowed.11

Given the symmetry group G and the collection of irreducible representations realized
as fields in the theory, the construction of the invariant Lagrangian is thus a group theoretic
problem. We multiply the various irreducible representations together to form a singlet.
Concrete examples will soon be given in chapters V.1 and V.4.

An executive summary

Given the lightning speed with which I introduced quantum field theory, it would be good
to provide an executive summary here:

1. The coordinates q(t) in mechanics are promoted to a collection of fields ϕ(t , �x).
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2. Under an internal symmetry group G, the fields ϕ(t , �x) belong to various irreducible

representations and transform accordingly.

3. The Lagrangian density L, constructed out of the fields ϕ(t , �x), must be invariant underG.

This requirement poses a group theoretic problem.

Notes

1. See QFT Nut, p. 18.
2. This is why I used q instead of x for the position of the particle in the discussion above; this represents a

classic source of confusion for students of quantum field theory. See QFT Nut, p. 19.
3. QFT Nut, p. 17.
4. I heard from Kerson Huang that T. D. Lee told him excitedly that Yang and Mills have invented a field theory

with a spinning top at each point �x in space.

5. More precisely, we could define ∂μ ≡ ( ∂
∂t

, − ∂

∂xi
) so that (∂μϕ)2 = ∂μϕ∂μϕ = ( ∂ϕ∂t )2 −

∑3
i=1(

∂ϕ

∂xi
)2. I would

advise against worrying too much about signs at this stage.
6. These somewhat annoying but necessary normalization factors are explained in every quantum field theory

textbook. See, for example, QFT Nut, p. 63.
7. We assume implicitly that these fields transform like a scalar under the Lorentz group. See part VII for more

details.
8. For further discussion, see QFT Nut, p. 65.
9. For the sake of simplicity, we gloss over some irrelevant details, such as the fact that the states |1〉 and |2〉

depend on momentum �k and that different states with different �k are orthogonal. Again, see any book on
quantum field theory.

10. For more details, see, for example, QFT Nut, chapter I.10.
11. In chapters VII.2–VII.5 we encounter some interesting exceptions to this discussion.
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IV.i1 Multiplying Irreducible Representations of
Finite Groups: Return to the Tetrahedral Group

Descent from the rotation group to the tetrahedral group

Now that we know how to multiply irreducible representations together and to Clebsch-
Gordan decompose, we can go back and do these things for finite groups.

It is particularly easy if the finite group is naturally a subgroup of a continuous group,
about which we know a lot. A good example is given by the tetrahedral group T =A4, dis-
cussed in chapter II.2. We learned there that T , a subgroup of SO(3), has four irreducible
representations, 1, 1′, 1′′, and 3. Let us now work out 3⊗ 3 in T .

In SO(3), 3⊗ 3= 1⊕ 3⊕ 5. But 5 does not exist in T . Restricting SO(3) to T , we expect
the 5 to decompose either as 5→ 3⊕ 1⊕ 1 or as 5→ 3⊕ 1′ ⊕ 1′′. Note that since 5 is real,
if its decomposition contains a complex representation, such as 1′, it must also contain the
conjugate of that representation.

It is instructive to work out the decomposition explicitly. Given two vectors �u and �v of
SO(3), the 3 is of course given by the vector cross product �u× �v, while the 5, the symmetric
traceless tensor, consists of the three symmetric combinations u2v3+ u3v2, u3v1+ u1v3,
and u1v2 + u2v1, together with the two diagonal traceless combinations 2u1v1− u2v2 −
u3v3 and u2v2− u3v3.

The last two guys are clearly the “odd men out.” Referring back to the discussion of
A4 = T in chapter II.3, recall that theZ3 subgroup ofA4 is generated by cyclic permutation
on the irreducible representation 3: for example, u1→ u2→ u3→ u1 (or in the reverse
order). Under these cyclic permutations, u2v3 + u3v2 transforms into his two friends,
thus generating the 3 in the product 3⊗ 3, while the two odd guys transform into linear
combinations of each other, for example, u2v2− u3v3→ u3v3− u1v1. This also means that
we cannot have 5→ 3⊕ 1⊕ 1. Thus, we have established that 5→ 3⊕ 1′ ⊕ 1′′.

Therefore, in T = A4,

3⊗ 3= 1⊕ 3⊕ 3⊕ 1′ ⊕ 1′′ = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3 (1)

The second equality merely reflects our desire to write things more “symmetrically.”
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To see how the two odd guys correspond to 1′ ⊕ 1′′, recall that in our construction of

the character table for A4 in (II.3.15) the cube root of unity ω ≡ ei2π/3=− 1
2 +

√
3

2 i, the
number naturally associated with Z3, plays a prominent role. Some useful identities are

1+ ω + ω2= 0, ω2= ω∗ (2)

so that⎛⎜⎜⎝
1

ω

ω2

⎞⎟⎟⎠+
⎛⎜⎜⎝

1

ω2

ω

⎞⎟⎟⎠=
⎛⎜⎜⎝

2

−1

−1

⎞⎟⎟⎠ (3)

and⎛⎜⎜⎝
1

ω

ω2

⎞⎟⎟⎠−
⎛⎜⎜⎝

1

ω2

ω

⎞⎟⎟⎠=√3i

⎛⎜⎜⎝
0

1

−1

⎞⎟⎟⎠ (4)

Thus, the 1′ and 1′′ can be taken to be

1′ ∼ q ′ = u1v1+ ωu2v2+ ω2u3v3 (5)

and

1′′ ∼ q ′′ = u1v1+ ω2u2v2+ ωu3v3 (6)

The combinations 2u1v1− u2v2 − u3v3 and u2v2 − u3v3 contained in the 5 of SO(3)
correspond to q ′ + q ′′ and q ′ − q ′′.

It is perhaps worth emphasizing that while 1′ and 1′′ furnish 1-dimensional represen-
tations of A4, they are not invariant under A4. For example, under the cyclic permutation
c, q ′ → ωq ′ and q ′′ → ω2q ′′. Evidently, 1′ ⊗ 1′′ = 1, 1′ ⊗ 1′ = 1′′, and 1′′ ⊗ 1′′ = 1′, and also
(1′)∗ = 1′′.

Note that the two 3s on the right hand side of 3⊗ 3= 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3 may be taken to
be (u2v3, u3v1, u1v2) and (u3v2, u1v3, u2v1). Recall from exercise I.3.1 that neither of these
transforms as a vector under SO(3). Under the rotations restricted to belong to T , however,
they do transformation properly, like a 3.

Decomposition of the product using characters

We can also derive the decomposition of 3⊗ 3 by using the character table of A4 given
in (II.3.15). As explained in chapter II.1, the characters of the product representation
3⊗ 3 are given by the square of the characters of the irreducible representation 3, namely,⎛⎝ 32

(−1)2

02

02

⎞⎠= ( 9
1
0
0

)
. We now use two results, derived in (II.2.8) and (II.2.9), which I repro-

duce here for your convenience, telling us about the number of times nr the irreducible
representation r appears in a given representation:
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∑
c

ncχ
∗(c)χ(c)=N(G)

∑
r

n2
r

(7)

and∑
c

ncχ
∗(r)(c)χ(c)=N(G)nr (8)

Applied here, (7) gives 1 . 92 + 3 . 12 + 0 + 0 = 81+ 3= 84 = 12 . 7 and thus
∑
r n

2
r
= 7.

The two solutions are 12+ 12+ 12+ 12+ 12+ 12+ 12= 7 and 12+ 12+ 12+ 22= 7. The
former seems highly unlikely, and so we will root for the latter.

To determine nr , we simply plug into (8). Orthogonality of the product representation
with 1 gives 1 . 1 . 9+ 3 . 1 . 1+ 0+ 0= 12 . 1, and thus 3⊗ 3 contains 1 once. Similarly, 1′

and 1′′ each occur once. Finally, orthogonality of the product representation with 3 gives
1 . 3 . 9+ 3 . (−1) . 1+ 0+ 0= 27− 3= 24 = 12 . 2. Thus, 3⊗ 3 contains 3 twice.

We obtain 3⊗ 3→ 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3, in agreement with our earlier discussion. Indeed,⎛⎜⎜⎜⎜⎜⎝
9

1

0

0

⎞⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

1

1

ω

ω∗

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

1

1

ω∗

ω

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

3

−1

0

0

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

3

−1

0

0

⎞⎟⎟⎟⎟⎟⎠ (9)

Note that this method is of more direct applicability. In most cases, we may not know
a continuous group that contains the given finite group, or, if we know the continuous
group, we may not be familiar with its Clebsch-Gordan decomposition rules.
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IV.i2 Crystal Field Splitting

An impurity atom in a lattice

In 1929, Hans Bethe explained the phenomenon of crystal field splitting,1 merely a few
years after the birth of quantum mechanics. An atom typically has many degenerate energy
levels due to rotation symmetry, as explained in chapter III.1. For instance, those states
with angular momentum j have a degeneracy of (2j + 1), as determined in chapter IV.3.
But when this atom is introduced (“doped”) as an impurity into a crystal lattice, it suddenly
finds itself in a less symmetric environment. The degenerate levels then split, in a pattern
determined by group theory and discovered by Bethe.

But now that you have mastered some group theory, this situation should be familiar to
you: when a group G is restricted to a subgroup H , an irreducible representation of G in
general falls apart into a bunch of irreducible representations ofH . HereG=SO(3), andH
is whatever symmetry group the lattice respects, typically cubic symmetry. We have already
discussed this group theoretic phenomenon several times. Indeed, in interlude IV.i1, we
saw precisely an example of this: when SO(3) is restricted to the tetrahedral group T , the
5-dimensional irreducible representation of SO(3) decomposes as 5→ 3⊕ 1′ ⊕ 1′′.

Evidently, crystal field splitting is of tremendous importance in solid state physics and
in material science. But since this is a textbook on group theory rather than on solid state
physics, we opt to discuss a much simplified toy model for the sake of pedagogical clarity.
To achieve a realistic description,2 we would have to take into account all sorts of effects
and discuss a multitude of finite groups characteristic of various lattice structures,3 a task
that lies far outside the scope of this book.

In fact, since we have already discussed the tetrahedral group T in detail, in chapter
II.3 and in interlude IV.i1, we will treat a somewhat artificial example of an idealized atom
placed into a tetrahedral cage. Imagine ions placed on the vertices of the tetrahedron, so
that the atom is acted on by an electric field that respects tetrahedral symmetry. The beauty
of group theory is precisely that we do not have to descend to a nitty-gritty calculation of the
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electric field, as long as it respects tetrahedral symmetry. In fact, this example highlights
the group theoretic techniques you need to tackle more realistic problems.

Using characters to find how irreducible representations break up

Actually, you already have all the tools needed to work out crystal field splitting. Knowing
the characters of SO(3) (from chapter IV.7) and the character table of T = A4 (from
(II.3.15)), we can practically read off the desired splitting patterns. Again, the key results
are (II.2.8) and (II.2.9), which we already used in interlude IV.i1; they determine the
number of times nr that the irreducible representation r appears in a given representation.
Before reading on, you might try to determine how the 7-dimensional j = 3 irreducible
representation of SO(3) decomposes.

Given a (2j + 1)-dimensional irreducible representation of SO(3), we need to work out
its character for each of the four equivalence classes of T = A4 (see chapter II.3). The

character χ(j , ψ)=∑j

m=−j e
imψ = sin(j+ 1

2 )ψ

sin ψ
2

is a function of j and of ψ . As in chapter

II.3, we identify the equivalence class by one of its members.
The identity class is the easiest: ψ = 0, and hence its character is equal to χ(j , 0)=

(2j + 1), as always just the dimension of the irreducible representation.
The class containing (12)(34) involves a rotation through π , as shown in chapter II.3,

and so has character χ(j , π)= sin(j+ 1
2 )π

sin π
2
= (−)j .

The other two classes, containing (123) and (132), involve a rotation through 2π/3. To
determine their characters, it is easiest to go back to the sum defining χ(j , 2π/3) and
recognize the iterative relation χ(j , 2π/3)= χ(j − 1, 2π/3)+ ωj + ω∗j , where ω≡ ei2π/3
is the cube root of unity introduced earlier in various chapters. Sinceωj + ω∗j = 2, −1, −1,
for j = 0, 1, 2 mod 3, respectively, we obtain χ(j , 2π/3)= 0, −1, 1, 0, −1, 1, . . . for j =
1, 2, 3, 4, 5, 6, . . . .

To see what is going on, perhaps it is clearest to simply extend the character table for
T =A4, including, to the right of the second vertical line (marking the limit of the character
table proper), one column each for the reducible representation j = 2, 3, . . . .

(1)

A4 nc 1 1′ 1′′ 3 5 7 9 11 13 15

1 I 1 1 1 3 5 7 9 11 13 15

Z2 3 (12)(34) 1 1 1 −1 1 −1 1 −1 1 −1

Z3 4 (123) 1 ω ω∗ 0 −1 1 0 −1 1 0

Z3 4 (132) 1 ω∗ ω 0 −1 1 0 −1 1 0

I presume that you already worked out how the 7-dimensional j = 3 of SO(3) de-
composes. We simply plug in (II.2.9):

1 . 1 . 7+ 3 . 1 . (−1)+ 4(1 . 1+ 1 . 1)= 12�⇒ n1= 1

1 . 1 . 7+ 3 . 1 . (−1)+ 4(ω . 1+ ω∗ . 1)= 0�⇒ n1′ = n1′′ = 0

1 . 3 . 7+ 3 . (−1) . (−1)+ 4(0 . 1+ 0 . 1)= 24 �⇒ n3= 2 (2)



294 | IV. Tensor, Covering, and Manifold

Thus, we find 7→ 3⊕ 3⊕ 1. A somewhat redundant check is provided by (II.2.9):

1 . 72+ 3 . (−1)2+ 4(12+ 12)= 60�⇒
∑
r

n2
r
= 5 (3)

which has the solution 22+ 12= 5.
Indeed, as noted in the preceding interlude, we could also have decomposed the

characters:⎛⎜⎜⎜⎜⎜⎝
7

−1

1

1

⎞⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎝

3

−1

0

0

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

3

−1

0

0

⎞⎟⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎜⎝

1

1

1

1

⎞⎟⎟⎟⎟⎟⎠ (4)

As was explained in chapter II.3, we could also obtain this decomposition by regarding the
character table of T = A4 as a 4-by-4 matrix C and inverting it. The decomposition is then
determined by C−1, subject to our knowledge that 1′ and 1′′ are to occur with equal weight.

The decomposition of j = 4 was already implied in interlude IV.i1. We obtain 9→ 3⊕
3⊕ 1⊕ 1′ ⊕ 1′′. By the way, the 1′ and 1′′ should still be degenerate, since they are complex
conjugates of each other. Just to check, 92+ 3= 84= 7(12), and 22+ 12+ 12+ 12= 7. You
might want to amuse yourself by doing some other cases.

Symmetry breaking

The significance of this discussion extends far beyond crystal field splitting in solid state
physics. The notion of a symmetry group breaking to a subgroup plays a crucial role in
many areas of physics. In part V, we explore how the irreducible representations of Gell-
Mann’s SU(3) decompose when the symmetry breaks to Heisenberg’s SU(2).

Exercises

1 Work out the decomposition of j = 5.

2 Work out the decomposition of j = 6.

Notes

1. H. Bethe, Ann. Physik (Leipzig) 3 (1929), p. 133.
2. For a much more realistic treatment than that given here, see M. Hamermesh, Group Theory and Its

Application to Physical Problems, pp. 337 ff.
3. See M. Tinkham, Group Theory and Quantum Mechanics.
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IV.i3 Group Theory and Special Functions

You are probably not surprised to discover that group theory and the special functions you
have encountered in physics are intimately connected. We have already seen that spherical
harmonics, and by specialization the Legendre polynomials, are connected to SO(3). Here
I briefly discuss the Euclidean group E(2) and its connection to Bessel functions.1 The
treatment here is exceedingly brief, because entire books, which can get into frightening
details, have been written on the subject.2 I merely want to give you some flavor of how
this connection comes about in one particularly simple case.

The group E(2) is also worth studying as a baby example of the Poincaré group we will
encounter in chapter VII.2.

The Euclidean group E(2)

After years of walking around, we are quite familiar withE(2), the invariance group of the
Euclidean plane. Rotation and translation of 2-dimensional vectors

�x→ �x′ = R�x + �a (1)

clearly form a group. Following one transformation by another gives �x→ R2(R1�x + �a1)+
�a2=R2R1�x +R2�a1+ �a2. Denote the group elements by g(R , �a) characterized by three real
parameters, the angle θ implicit in R and the vector �a. The composition law is then

g(R2, �a2)g(R1, �a1)= g(R2R1, R2�a1+ �a2) (2)

To avoid clutter, I will abuse notation slightly and do what physicists usually do, confound-
ing group elements and the operators that represent them.

Let us call the pure translation T (�a)= g(I , �a) and pure rotation R = g(R , �0) (abuse of
notation!). Then

g(R , �a)= T (�a)R (3)
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An element of E(2) can be written as a rotation followed by a translation. Note that the
order is important: in fact RT (�a)= g(R , R�a) �= T (�a)R = g(R , �a).

The elements T (�a) form a subgroup, and so do the elements R. In fact, the translations
form, not only a subgroup, but an invariant subgroup, since

g(R , �b)−1g(I , �a)g(R , �b)= R−1T (−�b)T (�a)T (�b)R = R−1T (�a)R = g(R−1, 0)g(R , �a)
= g(I , R−1�a) (4)

Note that �b drops out.

The Lie algebra of the plane

Following Lie, we expand around the identity R � I − iθJ and T (�a)� I − i�a . �P , and
obtain the Lie algebra

[J , Pi]= iεijPj , i = 1, 2, and [P1, P2]= 0 (5)

Then R = e−iθJ and T (�a)= e−i�a. �P .
Define P± = P1± iP2. Then [J , P±]=±P±. Note that P 2≡ P 2

1 + P 2
2 = P−P+ = P+P−

commutes with both J and P±. Thus, P 2 and J form a maximal commuting subset of
operators, and we can diagonalize both of them. Denote the eigenstates by |pm〉:

P 2 |pm〉 = p2 |pm〉 , and J |pm〉 =m |pm〉 (6)

Here p2 ≥ 0, since

〈pm| P 2 |pm〉 = p2= 〈pm| P †
+P+ |pm〉 = 〈pm| P †

−P− |pm〉 (7)

where we have implicitly normalized 〈pm|pm〉 = 1.

Infinite-dimensional representations of the Euclidean algebra

The case p = 0 is trivial, since |0m〉 does not respond to �P . Translations are inert, so to
speak, and we simply recover a representation of SO(2). So take p > 0. Acting with J on
P± |pm〉 and using [J , P±]=±P±, we see that P± |pm〉 is equal to p |p , m± 1〉 up to an
undetermined phase factor we choose to be∓i (so as to agree with the standard definition
of the Bessel function that will pop up shortly).

Thus, the Lie algebra is represented by〈
pm′

∣∣ J |pm〉 =mδm′m, and
〈
pm′

∣∣ P± |pm〉 = ∓ipδm′ ,m±1 (8)

The representation is labeled by the real number p > 0 and is infinite dimensional, since
m= 0, ±1, ±2, . . . ranges over the infinite number of integers.
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Infinite-dimensional representations of the Euclidean group

Now that we have represented the Lie algebra, it is a mere matter of exponentiation
to represent the Lie group E(2). The element g(R , �a) is represented by the (infinite-
dimensional) matrix

D(p)(θ , �a)m′m ≡
〈
pm′

∣∣ g(R , �a) |pm〉 = 〈pm′∣∣ T (�a)R |pm〉 = 〈pm′∣∣ T (�a)e−iθJ |pm〉
= 〈pm′∣∣ T (�a) |pm〉 e−imθ (9)

with θ the angle implicit in R. We can always rotate �a from a “standard” vector (a , 0)
pointing along the x-axis; thus

〈
pm′

∣∣ T (�a) |pm〉 = ei(m−m′)ϕ 〈pm′∣∣ g(I , �a = (a , 0)) |pm〉 =
ei(m−m′)ϕ

〈
pm′

∣∣ e−iaP1 |pm〉, where a and ϕ denote the length and angle, respectively, of
�a in polar coordinates. Thus, the real juice in D(p)(θ , �a)m′m is contained in the factor〈
pm′

∣∣ e−iaP1 |pm〉.
The claim is that〈
pm′

∣∣ e−iaP1 |pm〉 = Jm−m′(pa) (10)

where Jn denotes the nth Bessel function (of the first kind). Students of physics typically
first encounter Bessel functions in problems involving cylindrical symmetry.3 Let the axis
of the cylinder be the z-axis. After the z dependence is factored out, what remains is the
symmetry of the 2-dimensional plane perpendicular to the z-axis, described by E(2). So it
is no surprise that Bessel functions, whether you love ’em or hate ’em, pop up here.

Since the proof of (10) is straightforward and not particularly illuminating, I simply
sketch it here. Write e−iaP1 in (10) as e−ia(P++P−)/2= e−iaP+/2e−iaP−/2, since P+ and P−
commute. Expand the two exponentials separately, so that we have two infinite series,
summing over n+ and n−. We encounter matrix elements of the form

〈
pm′

∣∣ Pn++ Pn−− |pm〉.
Since, according to (8), when acting on |pm〉, P+ raises and P− lowers the “quantum num-
ber”m, respectively, these matrix elements vanish unless n+ − n− =m′ −m. Thus, the two
infinite series collapse into a single infinite series, which we recognize, by consulting a
handbook, as the series that defines the Bessel function.

Induced representation

There is an alternative approach to representing E(2) known as the method of induced
representation. In essence, we choose a different maximal set of commuting operators,
namely, P1 and P2 (instead of the J and P 2 chosen above), which we diagonalize simulta-
neously. Denote the eigenstates by

∣∣ �p〉= |p , ϕ〉 (where to write the second form we have
gone to polar coordinates) such that Pi

∣∣ �p〉= pi ∣∣ �p〉, i = 1, 2. These states are by construc-
tion eigenstates under translations

T (�a) ∣∣ �p〉= e−i�a. �P ∣∣ �p〉= e−i�a. �p ∣∣ �p〉 (11)

but not under rotations. Evidently, R(θ) |p , ϕ〉 = |p , ϕ + θ〉.
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As indicated in (10), we are interested in the matrix element
〈
pm′

∣∣ e−i�a. �P |pm〉 of the
translation operator.

But in the
∣∣ �p〉= |p , ϕ〉 basis, the matrix element of the translation operator, according

to (11), is just a simple phase factor e−iap cos ϕ(�a , �p), with ϕ(�a , �p) the angle between �a and
�p. So what we need is the transformation from |pm〉 to |p , ϕ〉, but Fourier taught us how
to do that. Up to a normalization factor cm,

|pm〉 = cm
∫ 2π

0

dϕ

2π
eimϕ |p , ϕ〉 (12)

The matrix element
〈
pm′

∣∣ e−iaP1 |pm〉 in (10) thus ends up being given by an integral over
an angle. The integral turns out to be, as you would expect, the integral representation of
the Bessel function, namely, Jn(z)=

∫ 2π
0

dϕ
2π e

i(nϕ−z sin ϕ).
It will probably not surprise you that a study of E(3), the invariance group of 3-

dimensional Euclidean space, would lead us to the dreaded spherical Bessel functions.
I trust that this brief discussion gives you the essence of how special functions are

connected to group theory.

Exercises

1 Show that the 3-by-3 matricesD(R , �a)=
(
R �a
0 1

)
, with R the corresponding 2-by-2 SO(2)matrix, furnish

a 3-dimensional representation ofE(2). Note that the representation, while finite dimensional, is manifestly
not unitary.

2 Determine cm in (12).

Notes

1. We follow the treatment of W.-K. Tung, Group Theory in Physics, chapter 9.
2. For example, J. D. Talman, Special Functions, Benjamin, 1968.
3. For example, an electromagnetic wave in a cylindrical wave guide. See any textbook on electromagnetism.
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IV.i4 Covering the Tetrahedron

The double tetrahedral group T ′

Now that we know that SU(2) double covers SO(3), we naturally wonder whether the
tetrahedral group T = A4 can also be covered. Recall from chapter IV.5 that two elements
U and−U map into the same rotationR. Thus, to cover T , we simply write down all those
elements of SU(2) that map into the rotations corresponding to the elements of T .

We know from chapter II.3 that the 12 elements of T fall into four equivalence classes:
I , {r1, r2, r3}, {c, r1cr1, r2cr2, r3cr3}, and {a , r1ar1, r2ar2, r3ar3}. These are to be understood
in the present context as 2-by-2 matrices belonging to SU(2). Given that U and −U map
into the same rotation R, we double the number of elements to 24:

I , r1, r2, r3, c, r1cr1, r2cr2, r3cr3, a , r1ar1, r2ar2, r3ar3,

− I , −r1, −r2, −r3, −c, −r1cr1, −r2cr2, −r3cr3, −a , −r1ar1, −r2ar2, −r3ar3 (1)

The multiplication of these 24 SU(2)matrices defines T ′.

Equivalence classes and irreducible representations

Quick, how many equivalence classes does T ′ have?
It would be easy to say eight equal to four times two, but that would be wrong.1

Flip back to chapter II.3 and look at the 3-by-3 diagonal matrices representing r1, r2, and
r3; manifestly r−1

1 r3r1= r3, for example. We also learned that the ris correspond to rotations
through angleπ around three orthogonal axes (namely, the lines joining the median points
of two nonadjoining edges of the tetrahedron, in geometric language). From chapter IV.5,
we know that a rotation around �ϕ through angle ϕ = |�ϕ| can be described by the SU(2)
elementU = ei �ϕ.�σ/2= cos ϕ2 I + iϕ̂ . �σ sin ϕ

2 . Thus, a rotation through angle π around the
third axis corresponds to iσ3. Now, lo and behold,

r−1
1 r3r1= (−iσ1)(iσ3)(iσ1)=−iσ3=−r3 (2)
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This shows that r3 and −r3 belong to the same equivalence class. In other words, the six
elements {r1, r2, r3, −r1, −r2, −r3} form a single equivalence class.

The covering group T ′ has only seven, not eight, equivalence classes, and hence only
seven, not eight, irreducible representations. The requirement

∑
r d

2
r
= N(G) is then

satisfied by 12 + 12 + 12 + 32 + 22 + 22 + 22 = 24. The irreducible representations of T ′

are labeled by 1, 1′, 1′′, 3, 2, 2′, and 2′′. You can now work out the character table:

(3)

T ′ nc 1 1′ 1′′ 3 2 2′ 2′′

1 I 1 1 1 3 2 2 2

Z2 1 −I 1 1 1 3 −2 −2 −2

Z4 6 r , −r 1 1 1 −1 0 0 0

Z6 4 c 1 ω ω∗ 0 1 ω ω∗

Z6 4 a 1 ω∗ ω 0 1 ω∗ ω

Z6 4 −c 1 ω ω∗ 0 −1 −ω −ω∗
Z6 4 −a 1 ω∗ ω 0 −1 −ω∗ −ω

The group T ′ may be relevant to neutrino physics.2

Exercises

1 Determine, in the irreducible representation 2, the character of the class that the cyclic permutation c
belongs to.

2 Write down explicitly the 2-by-2 matrix representing c in 2.

3 Work out how the irreducible representations 2, 3, 4, 5, 6, and 7 of SU(2) decompose on restriction to T ′.

Notes

1. Indeed, a student whom I asked to construct the character table for T ′ found the task to be impossible. He
had quickly assumed the number of equivalence classes to be eight.

2. M. C. Chen and K. T. Mahanthappa, arXiv: 0904.1721v2 [hep-ph], and references therein. For earlier work,
see W. M. Feirbairn, T. Fulton, and W. H. Klink, JMP 5 (1964), p. 1038; K. M. Case, R. Karplus, and C. N.
Yang, Phys. Rev. 101 (1956), p. 874. The material here is condensed from Y. Bentov and A. Zee, Int. J. Mod.
Phys. A 28 (2013), 1350157.



Part V Group Theory in the Microscopic World

Understanding the groups SU(2) and SU(3) was crucial in our exploration of elementary
particles. In particular, the irreducible representations of SU(3) led to the notion of quarks.
Furthermore, in working out the SU(3) algebra, we acquire the skill set we need to deal
with Lie algebras in general.

Group theory was needed to work out the implications of SU(2) and SU(3) for experi-
ments.





V.1 Isospin and the Discovery of a Vast Internal Space

A small number in the subnuclear world

In 1932, James Chadwick discovered one of the most important small numbers in the
history of physics, the mass difference between the proton and the neutron in units of the
neutron mass:

(Mn −Mp)/Mn � (939.6− 938.3)/939.6� 0.00138 (1)

Almost immediately,1 in the same year, Werner Heisenberg (and others2) proposed
that the strong interaction is invariant under a symmetry group, which transforms the
proton and the neutron into linear combinations of each other. Since the proton is charged
while the neutron is not, the electromagnetic interaction was thought to be responsible
for the small mass difference. It was postulated that in a world with electromagnetism
turned off, the proton p and neutron n would have equal mass,3 and they would furnish

the spinor representation N ≡
(
p

n

)
of a symmetry group SU(2) that leaves the strong

interaction invariant. Since the electromagnetic interaction is much weaker than the strong
interaction, we expect that neglecting electromagnetic effects would give a reasonably
approximate description of the real world.

I have often been struck by Nature’s kindness toward physicists; it is almost as if we
were offered a step-by-step instruction manual. Theoretical physicists did not even have
to learn more group theory: they already knew about SU(2) and half-integral spin. Hence
the name isospin∗ for this symmetry. The invariance under the strong interaction is the
first example of an approximate symmetry4 in physics, in contrast to rotation invariance,
which, as far as we know, is an exact symmetry.

∗ Replacing the antiquated term “isotopic spin,” and even more so, “isobaric spin.”
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Prior to isospin, the symmetries of physics (translation invariance, rotation invariance,
Lorentz invariance, and so on) were confined to the spacetime we live and love in. Heisen-
berg’s enormous insight∗ led to the discovery of a vast internal space, the ongoing explo-
ration of which has been a central theme of fundamental physics for close to a hundred
years now, as was already alluded to in chapter IV.9.

The pions and the electric charge

The charged pions, π+ and π−, were discovered in 1947 after much experimental con-
fusion.5 Yukawa, with remarkable insight, had postulated in 1935 that the exchange of a
then-unknown meson† could generate the strong interaction, much like the exchange of
the photon generates the electromagnetic interaction. Another example of Nature’s kind-
ness to theoretical physicists! Or, you might say that Nature knows only so many readily
solvable problems, sort of like a professor making up an exam.

The power of the symmetry argument is that, since the π+ and π− interact with the
nucleons, they are immediately required to also transform under isospin. Much as charged
particles could emit and absorb photons, nucleons could emit and absorb pions via the
following fundamental processes: p→ n+ π+, n→ p + π−, and so on.

The initial states in these two processes shown have isospin I = 1
2 . Denote the unknown

isospin of the pions by Iπ . Then, according to the group theoretic result in chapter IV.3,
the final states have isospin 1

2 ⊗ Iπ = (Iπ + 1
2)⊕ |Iπ − 1

2 |. For isospin to be a symmetry
of the strong interaction, this must contain the I = 1

2 representation of the initial state;
hence Iπ can only be either 0 or 1. But Iπ = 0 cannot accommodate both π+ and π−, and
so we conclude that Iπ = 1, a 3-dimensional irreducible representation.

Isospin thus predicts that π+ and π− must have an electrically neutral partner, the
π0. The predicted neutral pion was soon discovered6 in 1950. Another triumph (small by
today’s standards perhaps, but nevertheless a triumph) for group theory.

How does the electric charge operatorQ fit into the Lie algebra of SU(2)?
Isospin is supposed to be exact in an ideal world without electromagnetism. It is

important to realize that, even in that world, it is meaningful and legitimate to ask how
the electric-charge operatorQ transforms under isospin. The following simple observation
provides the answer.

Observe that the difference in charge of the proton and of the neutron is given by
�Q=Qp −Qn = 1− 0= 1

2 − (− 1
2)= I3,p − I3,n =�I3, from which we deduce‡

Q= I3+ 1
2
Y (2)

∗ For a more accurate historical account, see Fearful, pp. 333–334. In particular, Heisenberg’s original proposal
did not involve SU(2) at all. What I present here is known as textbook pseudohistory. See also the endnote about
the Matthew principle.

† For the story of how the π meson was so named, based on a multilingual pun involving Chinese and Greek,
see Fearful, pp. 168–169 and 335.

‡ This is a version of the Gell-Mann Nishijima formula.
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where Y , known as hypercharge, is an operator lying outside SU(2). Evidently, Y = 1 for
nucleons and Y = 0 for pions.7 Note that the formula Q= I3 for the pions indicates that
the missing I3= 0 partner of the π± indeed hasQ= 0.

Scattering cross sections and isospin

The predictions of isospin have been verified by an almost countless number of measure-
ments. A particularly elegant, and simple, prediction8 concerns deuteron production in
nucleon-nucleon collision, involving the two processes

(A) p + p→ d + π+

and

(B) p + n→ d + π0

The deuteron, as you may know, is a bound state of the proton and the neutron.
We can now put our vast knowledge of group theory to good use. The first step is to

establish the isospin of the deuteron. Since 1
2 ⊗ 1

2 = 1⊕ 0, the deuteron, as a p-n bound
state, has isospin equal to either 1 or 0. But if the deuteron’s isospin is 1, then it would
be a member of a triplet (since 2 . 1+ 1= 3) with nearly equal mass. Applying the isospin
raising and lowering operators, we see that the other two members are a p-p bound state
and an n-n bound state. Since neither of these were seen,∗ we deduce that the deuteron
has isospin 0.

Thus, the final state in both process (A) and process (B), containing a deuteron and a
pion, has isospin 0⊗ 1= 1.

On the other hand, as far as isospin is concerned, the initial state is, in process (A), given

by
∣∣∣I = 1

2 , I3= 1
2

〉
⊗
∣∣∣I = 1

2 , I3= 1
2

〉
=
∣∣∣ 1

2 , 1
2 ; 1

2 , 1
2

〉
=
∣∣∣ 1

2 , 1
2

〉
(to use the notation of chapter

IV.3), and in process (B), it is given by
∣∣∣ 1

2 , − 1
2

〉
.

But we know about Clebsch-Gordan decomposition! We had obtained in chapter IV.3
that

|1, 1〉 =
∣∣∣∣12 ,

1
2

〉
|1, 0〉 = 1√

2

( ∣∣∣∣−1
2

,
1
2

〉
+
∣∣∣∣12 , −1

2

〉 )
|0, 0〉 = 1√

2

( ∣∣∣∣−1
2

,
1
2

〉
−
∣∣∣∣12 , −1

2

〉 )
(3)

The initial proton-proton state in process (A), |p , p〉 =
∣∣∣ 1

2 , 1
2

〉
= |1, 1〉, is an I = 1state. In

contrast, to obtain the initial proton-neutron state in process (B), |p , n〉 =
∣∣∣ 1

2 , − 1
2

〉
, we have

∗ Without isospin, we would have been hard put to use the absence of the p-p bound state to predict the
absence of the n-n bound state. We might have argued that two protons repel electrically, but then it would be
puzzling that two neutrons do not bind, given that a proton and a neutron do bind.
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to invert (3) using high school algebra. We obtain |p , n〉 =
∣∣∣ 1

2 , − 1
2

〉
= 1√

2
(|1, 0〉 − |0, 0〉),

a mixture of an I = 1 state and an I = 0 state. But since the final state is I = 1, the I = 0
component of the initial state cannot contribute because of isospin conservation. Thus,
compared to the amplitude for p + p→ d + π+, the amplitude for p + n→ d + π0 is
down by a factor 1√

2
.

More formally, we can introduce a transition operator T , which takes the initial state to
the final state. Then

〈
dπ+

∣∣ T |pp〉 = 〈1, 1| T |1, 1〉, while

〈
dπ0

∣∣∣ T ∣∣∣pn〉= 〈1, 0| T
(

1√
2
(|1, 0〉 − |0, 0〉)

)
= 1√

2
〈1, 0| T |1, 0〉 (4)

Since in quantum mechanics, the cross section is determined by the absolute square of
the amplitude, we obtain

σ(p + p→ d + π+)
σ (p + n→ d + π0)

= 2 (5)

The point is that although almost nothing was known about the strong interaction when
the prediction was made, isospin allows us to fix the ratio of two cross sections, regardless
of how complicated the actual details of the dynamics might be. Knowing that isospin is
an approximate symmetry, we might expect this to hold to an accuracy of a few percent.
When the experiments were done (in 1951 and 1953), sure enough, the ratio of the two
measured cross sections comes out to be about 2 within the error bars.

I have marveled elsewhere9 about the almost magical power of theoretical physics.
Picture the heroic efforts involved in building the necessary accelerator, all the wires, the
vacuum pumps, and what not; and designing and setting up the detectors. In the end, the
hardworking experimentalists measured the two cross sections, and bam! They confirmed
that Nature knew about group theory.

It is worth emphasizing that had Heisenberg merely postulated a Z2 symmetry under
whichp↔ n, we would not get the prediction above. That the strong interaction is invariant
under an SU(2) is by now an established fact, and all known strongly interacting particles,
known as hadrons, have been classified into SU(2) irreducible representations. To give just
one example, the π+ + p→ π+ + p scattering cross section shows an enormous bump10

when the center of mass energy reaches about 1238 MeV. This resonance phenomenon is
interpreted as the formation of π+p into a short-lived particle known as N∗++ with mass
� 1238 MeV, which then quickly decays back into π+ + p.

Since the initial and final states contain a pion and nucleon, and since 1⊗ 1
2 = 3

2 ⊕ 1
2 ,

the total isospin is either I = 3
2 or I = 1

2 . But in the initial and final states, we have
I3= 1+ 1

2 = 3
2 , and hence I can only be I = 3

2 , not I = 1
2 . We conclude that the particle

N∗++ has isospin I = 3
2 , and is thus a member of a quadruplet (since 2 . 3

2 + 1= 4). Sure
enough, three other particles, N∗+, N∗0, and N∗− (with the indicated charges and with
masses approximately equal to that of N∗++), were eventually found.

A particularly clean prediction is that at resonance, the ratio of the total cross section for
π+ + p and the total cross section for π− + p should be equal to 3. You should be able to
work this out.
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Nucleon nucleon scattering and Feynman diagrams

Historically, measuring and understanding the coupling strength of the three pions to the
proton and to the neutron was of great importance in elucidating the strong interaction.
Group theoretically, this simply corresponds to picking out the 1

2 on the right hand side of
the multiplication 1⊗ 1

2 = 1
2 ⊕ 3

2 : we want “pion times nucleon = nucleon,” so to speak.
Thus, the coupling strengths are proportional to a bunch of Clebsch-Gordan coefficients.

In fact, you already worked out the relevant coefficients in exercise IV.3.5. Group theory
does not care whether you are combining the spin angular momentum S = 1

2 of an electron
with orbital angular momentum L= 1 or coupling the isospin I = 1

2 of the nucleon with
the isospin I = 1 of the pion. Simply plug in the result of the exercise.

∣∣∣∣12 , m
〉
=−

√
3
2 −m

3

∣∣∣∣m− 1
2

,
1
2

〉
+
√

3
2 +m

3

∣∣∣∣m+ 1
2

, −1
2

〉
(6)

to obtain∣∣∣∣12 ,
1
2

〉
=−

√
1
3

∣∣∣∣0,
1
2

〉
+
√

2
3

∣∣∣∣1, −1
2

〉
∣∣∣∣12 , −1

2

〉
=−

√
2
3

∣∣∣∣−1,
1
2

〉
+
√

1
3

∣∣∣∣0, −1
2

〉
(7)

Now change the names to protect the innocent and write (7) as

|p〉 ∼ −
√

1
3

∣∣∣π0, p
〉
+
√

2
3

∣∣π+, n
〉

|n〉 ∼ −
√

2
3

∣∣π−, p
〉+√1

3

∣∣∣π0, n
〉

(8)

Of course, this does not mean that the proton and neutron are simply equal to whatever
appear on the right hand sides of (8); even Confusio would not think that. The strong
interaction is far too strong and complicated for that. Rather, under isospin, the state
|p〉 transforms like a linear combination of

∣∣π0, p
〉

and
∣∣π+, n

〉
. Group theory fixes the

coefficients, and tells us, for example, that the amplitude of |p〉 to be in the quantum state∣∣π+, n
〉

is larger than the amplitude of |p〉 to be in the quantum state
∣∣π0, p

〉
by a factor

(−√2).
This implies that the relative strength of the various couplings of a pion to a nucleon

can be read off from (8):

gp ,π0p = g , gp ,π+n =−
√

2g , gn,π−p =
√

2g , gn,π0n =−g (9)

Here g is a coupling strength characteristic of the strong interaction, which we are not
able to calculate from first principles to this very day. We have chosen the sign of g for
later convenience. The notation is such that gp ,π+n, for example, is proportional to the
probability amplitude of the process π+ + n→ p, in which a neutron n absorbs a π+

to become a proton p. By a basic tenet of quantum field theory, this is the same as the
amplitude for p→ π+ + n, in which p becomes n by emitting a π+. (Furthermore, this
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Figure 1

is the same as the amplitude for n→ π− + p and for π− + p→ n. In other words, we
could remove a particle from one side of a process and put it back on the other side as
an antiparticle, for example, turning p→ π+ + n into π− + p→ n. See any textbook on
quantum field theory.)

The relative signs and factors of
√

2 sure look strange in (9), but in fact are entirely
physical. There are three nucleon-nucleon scattering processes that experimentalists can
measure, at least in principle, namely,p+ p→ p+ p, n+ n→ n+ n, andp+ n→ p+ n.
According to Yukawa, the scattering is caused by the exchange of a pion between the two
nucleons, as shown in the little diagrams (surely you’ve heard of Feynman diagrams!)
in Figure 1. For our purposes here, you could think of the diagrams as showing what’s
happening in spacetime, with the time axis running upward.

For example, in the diagram in (c2), the proton becomes a neutron by emitting a π+,
which is then absorbed by the neutron it is scattering with, turning it into a proton.
In other words, we have p + n→ n + π+ + n→ n + p. According to the discussion
above, the emission and the absorption are both characterized by the coupling strength
gp ,π+n =−

√
2g. The various relevant coupling strengths are shown in these Feynman

diagrams.
Now comes the fun. Let us write the relative strength of the quantum amplitude for each

of these scattering processes. For p + p→ p + p, we have (−g)2= g2. For n+ n→ n+ n,
we have g2. So far so good: proton-proton scattering and neutron-neutron scattering are
the same, as we would expect in an isospin-invariant world. Next, for p + n→ p + n, we
have from the π0 exchange in (c1) g(−g)=−g2. Oops, this is not equal to g2. But let’s
not forget the contribution due to exchange of the charged pion shown in (c2): this gives
(
√

2g)(
√

2g)= 2g2. And so we have−g2+ 2g2= g2. Indeed, the three scattering processes
come out to be the same. Once again, math works.
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Pion nucleon coupling and the tensor approach

It is instructive also to use tensors and spinors to work out the relative strengths of the
pion nucleon couplings.

Heisenberg started this story by proposing that the nucleons N =
(
p

n

)
transform like

the 2-dimensional I = 1
2 defining representation Ni of SU(2), written here as a column

spinor. It transforms asNi→UijN
j . Recall that the hermitean conjugate ofNi is denoted

by∗ Ni, which can be written as a row spinor† N̄ = ( p̄ n̄ ). It transforms as N̄i→
N̄j(U

†)
j

i, so that NiNi is invariant. As explained in detail in chapter IV.4, upper indices
transform with U , lower indices with U†.

We also learned in chapter IV.4 that the I = 1 vector representation of SU(2), which
happens to be also the adjoint representation, can be written as a traceless tensor φij ,
which can also be viewed as a 2-by-2 hermitean matrix. (This is an example of what I
alluded to before; the simpler groups are often more confusing to beginners!) In other
words, we can package the three pions π as a traceless 2-by-2 hermitean matrix:

φ = �π . �τ = π1τ1+ π2τ2+ π3τ3=
(

π3 π1− iπ2

π1+ iπ2 −π3

)
=
(

π0
√

2π+
√

2π− −π0

)
(10)

Note that we may pass freely between the Cartesian basis (π1, π2, π3) and the circular
basis (π+, π0, π−). The appearance of

√
2 here was explained for (IV.9.11). The pion fields

transform according to

φi
j
→ φ′i

j
= Ui

l
φl
n
(U†)n

j
(11)

As far as group theory is concerned, the representations that the pions and the nucleons
belong to under isospin determine their interaction with one another; the interaction term
in the Lagrangian can only be, precisely as we learned in chapter IV.4,

L= . . .+ fNiφijNj (12)

with f some unknown coupling constant.‡ The important point is that we do not have to
know the details of the strong interaction: group theory rules!

Let us then write out the isospin invariant Niφ
i
jN

j , using (10), as

Niφ
i
j
Nj = ( p̄ n̄ ) �π . �τ

(
p

n

)
= (p̄π0p − n̄π0n)+√2(p̄π+n+ n̄π−p) (13)

∗ Indeed, I mentioned this as far back as the review of linear algebra, and in more detail in chapter IV.4.
† The hermitean conjugate is written as a bar here for reasons that do not concern the reader, and which will

be explained in chapter VII.3.
‡ Which we cannot calculate analytically from first principles to this very day.
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It is gratifying to see that the relative strength of
√

2 of the coupling of the charged pions
to the neutral pion emerges here also, in agreement∗ with (9).

What we have done here is known as the effective field theory approach.11 You, the astute
reader, will realize that the essential point is that group theory does not care whether the
objects being transformed are states or fields or whatever.

Appendix: The Fermi-Yang model and Wigner’s SU(4)

In the now-obsolete Fermi-Yang model, pions are regarded as bound states of a nucleon and an antinucleon.
Regardless of whether this is a useful way to understand the existence of the pions, the group theoretic classi-
fication should be valid to the extent that isospin is a fairly good symmetry of the strong interaction. Since the
two nucleons furnish the 1

2 defining representation of SU(2), and similarly the two antinucleons, the nucleon-
antinucleon bound states should transform as 1

2 ⊗ 1
2 = 1⊕ 0. Thus, in addition to the pions, which correspond

to the isospin 1 triplet, there might also be an isospin 0 singlet. This particle is commonly called the σ .
In nuclear physics, the interaction between nucleons is, to leading approximation, spin independent. This

led Wigner to propose that the isospin symmetry and spin symmetry of nuclear forces, that is, the group SU(2)
⊗ SU(2), be extended to SU(4)⊃ SU(2) ⊗ SU(2). Thus, the four states, consisting of the proton and of the
neutron, with spin up and down, furnish the defining representation 4 of SU(4). Explicitly, we write 4→ (2, 2),
indicating that on restricting SU(4) to SU(2) ⊗ SU(2), the 4 transforms like a doublet under each of the two
SU(2)s. The four corresponding antinucleon states evidently furnish the conjugate representation 4̄.

Now put what you have learned in chapter IV.4 to good use. Consider the 16 bound states of a nucleon and
an antinucleon. Under SU(4), they transform like 4 ⊗ 4̄ = 15⊕ 1. To identify these purported cousins of the
pions and the σ , we resort to our usual tactics and decompose the representations of SU(4) into the irreducible
representations of SU(2)⊗ SU(2):

4⊗ 4̄→ (2, 2)⊗ (2, 2)= (3⊕ 1, 3⊕ 1)

= (3, 3)⊕ (3, 1)⊕ (1, 3)⊕ (1, 1) (14)

The (3, 1) and the (1, 1) states have spin 0 and correspond to the pions and the σ . The other 9+ 1= 10 states
describe spin 1 particles, the so-called vector mesons, with an isospin triplet (3, 3) named the ρ and an isospin
singlet (1,3) named the ω.

Note the power of group theory! We do not have to understand the detailed strongly interacting dynamics
that produces mesons (and indeed, arguably, we do not fully understand the relevant physics to this day). As
long as Wigner’s proposal makes sense, then regardless, a simple group theoretic calculation yields concrete
predictions. In the glory days of particle physics, experimentalists would rush out and, lo and behold, would find
these particles, such as the ρ±, 0 and the ω.

Exercises

1 The 3H nucleus (a pnn bound state) and the 3He nucleus (a ppn bound state) are known to form an isospin
1
2 doublet. Use isospin to predict the ratio of the cross sections for p + d→3H+ π+ and p + d→3He+ π0.

2 Using the Clebsch-Gordan coefficients you found in exercise IV.3.5, work out the theoretical prediction that
σ(π++p)
σ(π−+p) = 3 at center-of-mass energy � 1238 MeV. Hint: The total scattering cross section π− + p should

include both the processes π− + p→ π− + p and π− + p→ π0 + n.

∗ Some readers may have noticed that the relative sign between gp ,π+n and gn,π−p is missing here. This has
to do with the choice of phase factors mentioned in chapter IV.2.
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Notes

1. Everything happened so much faster in those days. Chadwick’s Nobel Prize came a mere three years later.
2. The Matthew principle, coined by the sociologist R. K. Merton, operates in full force in theoretical physics.

For a few examples, see G Nut, pp. 169, 376.
3. The actual story is slightly more complicated. See A. Zee, Phys. Rept., 3C (127) (1972). We now understand

that even without electromagnetism, the proton and neutron would not have equal mass, because the up
quark and down quark have different masses. Historically, however, Heisenberg was motivated by the near
equality ofMp andMn.

4. I should have said an approximate internal symmetry; Galilean invariance is an example of an approximate
spacetime symmetry, for phenomena slow compared to the speed of light. But that was in hindsight; before
special relativity, Galilean invariance was thought to be exact.

5. In particular, the pion was confounded with the muon.
6. The reason the π0 was discovered after π± is that it has a fast decay mode π0→ γ + γ into two photons,

which were much more difficult to detect than charged particles at that time.
7. For a long time, it was not understood why there was a shift between Q and I3. See any particle physics

textbook for the eventual resolution. See also chapter V.2.
8. C. N. Yang, unpublished. See R. H. Hildebrand, Phys. Rev. 89 (1953) p. 1090.
9. QFT Nut, p. 139.

10. S. Gasiorowicz, Elementary Particle Physics, p. 293.
11. Pioneered in the 1960s by Murray Gell-Mann and Maurice Lévy, Feza Gürsey, and many others.



V.2 The Eightfold Way of SU(3)

While most of our colleagues were put off by the unfamiliar
math, [Sidney Coleman and I] became traveling disciples of the
Eightfold Way.

—S. L. Glashow1

SU(3) in particle physics

Laugh out loud; the math2 that put off the leading particle theorists in the early 1960s was
just the group SU(3), something that students these days are expected to breeze through
lickety split. Indeed, you the reader have already breezed through SU(N) in chapter IV.4.

While the fame and glory of the group SU(2) permeate quantum physics (and parts of
classical physics as well), the groupSU(3) essentially appears only∗ in particle physics.3 But
what fame and glory it enjoys there! It appears twice, originally as the internal symmetry
group that led to the discovery of quarks, and then, later, as the gauge group of quantum
chromodynamics.

We will work out the representations of SU(3) by following two lines of attack: first,
in this chapter, by using tensors, and second, in chapter V.3, by generalizing the ladder
approach used for SU(2).

We now need two floors

Moving from the house of SU(2) to the house of SU(3), we find ourselves now living on
two floors.

For SU(2) tensors, recall that we can remove all lower indices using εij . In particular,
ψi is equivalent to ψi. This no longer holds for SU(3). The reason is that, for SU(3), in
contrast to SU(2), the antisymmetric symbols εijk and εijk carry three indices. Thus, the
irreducible representations furnished byψi andψi are not equivalent to each other: if we try
the same trick that worked for us for SU(2) and contract ψi with εijk, the resulting tensor

∗ See the appendix, however.
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ψjk ≡ εijkψi transforms like a tensor with two upper indices, not just one. As explained
in chapter IV.1, the contracted index i has disappeared.

The irreducible representations furnished byψi andψi are commonly denoted by 3 and
3∗. They are not equivalent. (Physically, as we will see, the quark corresponds to 3, while
the antiquark corresponds to 3∗.) Thus, for SU(3), in contrast to SU(2), we have to include
tensors with both upper and lower indices.

However, in contrast to SU(N) for N > 3, SU(3) does have an important simplifying
feature: it suffices to consider only traceless tensors ϕi1i2

...im
j1j2...jn with all upper indices sym-

metrized and all lower indices symmetrized. We prove this claim presently. Thus, the
representations of SU(3) are uniquely labeled by two integers (m, n), where m and n de-
note the number of upper and lower indices, respectively.

Recall that for SO(N), it suffices to consider only tensors∗ with all upper indices sym-
metrized. To show this, we used an iterative approach. Essentially, the same approach
works here. The only catch is that with two integers (m, n) instead of one, we have to move
on a 2-dimensional lattice, so to speak. We iterate in p ≡m+ n; thus, starting at the lattice
point (m, n)= (0, 0), we move on to (1, 0) and (0, 1); then on to (2, 0), (1, 1), and (0, 2);
and so on and so forth, increasing p by 1 at each step.

To save verbiage, I assume from the outset that the reader, when presented with a tensor
symmetric in its upper indices and symmetric in its lower indices, knows how to render it
traceless by subtracting out its trace. For example, given T ijkl , define4 T̃

ij

kl ≡ T ijkl − 1
5(δ

i
kT
j

l +
δ
j

kT
i
l + δil T jk + δjl T ik )+ 1

20 (δ
i
kT
j

l + δjk δil + δil δjk )T , where T jl ≡ T ijil and T ≡ T jj .
We now prove our claim that, for SU(3), it suffices to consider only traceless tensors

with all upper indices symmetrized and all lower indices symmetrized.
The claim holds trivially for the tensors characterized by (0, 0), (1, 0), and (0, 1).
Now onward top= 2. First up is the tensorϕij with two upper indices. As in chapter IV.1,

we break it up into the symmetric combination ϕ{ij} ≡ (ϕij + ϕji) and the antisymmetric
combination ϕ[ij ]≡ (ϕij − ϕji) (using the notation {ij} and [ij ] introduced earlier). We
can get rid of the antisymmetric combination by writing ϕk ≡ εijkϕ[ij ]; in other words,
the antisymmetric tensor with two upper indices transforms just like a tensor with one
lower index, namely, (0, 1), which we have dealt with already. The remaining symmetric
tensor ϕ{ij}, now called (2, 0), satisfies our claim. Similarly, we can take care of (0, 2) by
using εijk.

Note that, while we have to deal with both upper and lower indices, we also have two ε
symbols, which we can use to trade two upper antisymmetric indices for one lower index,
and two lower antisymmetric indices for one upper index, respectively.

Finally, we come to the tensor with one upper index and one lower index. If it is not
traceless, we simply subtract out its trace and obtain (1, 1). We are done with p = 2.

Moving from p = 2 to p = 3, we first encounter the tensor ϕijk. The analysis is the
same as that we gave for SO(3) in chapter IV.1. We break it up into the symmetric
combination ϕ{ij}k ≡ (ϕijk + ϕjik) and the antisymmetric combination ϕ[ij ]k ≡ (ϕijk −

∗ Recall also that for SO(N), tensors do not have lower indices.
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ϕjik). Once again, we don’t care about the antisymmetric combination ϕ[ij ]k, because it
transforms just like a tensor ϕkl ≡ εij lϕ[ij ]k with one upper index and one lower index,
namely, (1, 1), which we have already disposed of. As for the symmetric combination ϕ{ij}k,
add and subtract its cyclic permutations and write, as in chapter IV.1, 3ϕ{ij}k = (ϕ{ij}k +
ϕ{jk}i + ϕ{ki}j )+ (ϕ{ij}k − ϕ{jk}i)+ (ϕ{ij}k − ϕ{ki}j ). Note that the expression in the first
set of parentheses is completely symmetric in all three indices, while the expressions in
the other two sets of parentheses are antisymmetric in ki and kj , respectively. We can
thus multiply the latter two expressions by εkil and εkjl, respectively, and turn them into
2-indexed tensors, which we have already taken care of.

Speaking colloquially, 123 is 123, and we don’t much care if it is the 123 of SO(3) or
of SU(3).

You can carry the ball from here on. For instance, you will next encounter ϕijk . Its
two upper indices can be symmetrized and antisymmetrized. The antisymmetric piece
contains (0, 2) and (1, 0).

So, the crucial observation, as noted above, is that we can always trade two antisymmetric
indices for one index on a different floor, thus reducing p =m+ n by 1.

The dimensions of SU(3) tensors

Let us now compute the dimension of the SU(3) tensor ϕi1i2
...im

j1j2...jn labeled by (m, n). Once
again, you should quickly review what we did for SO(3). At the risk of repetition, note that
our fingers don’t care whether we are talking about SO(3) or SU(3): we have “merely” a
counting problem here. The number of distinct configurations ofm indices symmetrized,
according to a result in chapter IV.1, is∗ 1

2(m+ 1)(m+ 2). So at this stage, our tensor has
1
4 (m+ 1)(m+ 2)(n+ 1)(n+ 2) components.

You remember, of course, that we have yet to impose the traceless condition δji ϕ
ii2...im
jj2...jn =

0, and here comes the crucial difference between SO(3) and SU(3): an upper index and a
lower index are contracted, rather than two upper indices. The left hand side of this condi-
tion transforms like a tensor labeled by (m− 1, n− 1); in other words, 1

4m(m+ 1)n(n+ 1)

linear combinations of the tensorϕi1i2
...im

j1j2...jn are to be set to 0. We conclude that the dimension
of the irreducible representation (m, n) of SU(3) is equal to

D(m, n)= 1
4
(m+ 1)(m+ 2)(n+ 1)(n+ 2)− 1

4
m(m+ 1)n(n+ 1)

= 1
2
(m+ 1)(n+ 1)(m+ n+ 2) (1)

Keep in mind that the tensor furnishing (m, n) is symmetric in its m upper indices and
in its n lower indices.

∗ Our notation has changed from j to m; I am trusting that you are not a divine.
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Let us list the dimension of a few low-lying irreducible representations:

(1, 0) 1
2

. 2 . 1 . 3= 3

(1, 1) 1
2

. 2 . 3 . 4 = 8

(2, 0) 1
2

. 3 . 1 . 4 = 6

(3, 0) 1
2

. 4 . 1 . 5= 10

(2, 1) 1
2

. 3 . 2 . 5= 15

(2, 2) 1
2

. 3 . 3 . 6= 27

The numbers 3, 8, and 10 all have celebrity status in particle physics, and 27 is involved
in an interesting Feynman story (see chapter V.4). We have already mentioned 10 in
connection with Gell-Mann’s stunning prediction of the hitherto unknown �− back in
chapter IV.4.

Multiplication of SU(3) irreducible representations

You’re almost an old hand by now at multiplying irreducible representations together using
the tensor approach. In fact, the most important cases for physics are the simplest.

Consider, for example, 3⊗ 3∗. The product of ψi and χj , namely ψiχj , transforms like
the tensor T ij . We render it traceless by subtracting out its trace, which transforms like the
trivial representation. We write this important result using two different notations:

(1, 0)⊗ (0, 1)= (1, 1)⊕ (0, 0) (2)

and

3⊗ 3∗ = 8⊕ 1 (3)

To write the second form, we used (1). We need hardly mention that nobody is missing
(3 . 3= 9= 8+ 1).

The next easiest example is

(1, 0)⊗ (1, 0)= (2, 0)⊕ (0, 1) (4)

which, according to (1), corresponds to

3⊗ 3= 6⊕ 3∗ (5)

(Now 3 . 3= 9= 6+ 3.)
How about 3⊗ 6, that is, (1, 0)⊗ (2, 0)? Try to figure it out before reading on.
Write out the tensors ψi and ϕjk (with ϕjk = ϕkj ) explicitly. The product T ijk = ψiϕjk

is a tensor with three indices upstairs, symmetric in jk but not totally symmetric. So
symmetrize in ij ; extract the antisymmetric part by contracting with the antisymmetric
symbol: εmijψiϕjk ≡ ζ km. Show that ζ k

m
is traceless, that is, ζ kk = 0, and thus it corresponds to
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(1, 1)= 8. We remove these eight components from T ijk. What is left is a totally symmetric
tensor Sijk with three indices, namely, (3, 0)= 10.

We thus obtain

(1, 0)⊗ (2, 0)= (3, 0)⊕ (1, 1) (6)

and

3⊗ 6= 10⊕ 8 (7)

Putting (5), (3), and (7) together, we have

3⊗ 3⊗ 3= (6⊕ 3∗)⊗ 3= (6⊗ 3)⊕ (3∗ ⊗ 3)= 10⊕ 8⊕ 8⊕ 1 (8)

(33= 27= 10 + 8+ 8+ 1.) As we shall see, this is a highly celebrated result in particle
physics.

Our next example, which played an important role historically, is more involved, but it
will give us a hint on how to do the general case: 8⊗ 8= ?

Let us go slow and be as explicit as possible. Multiply ψij and χkl together to form

T̃ ikj l = ψijχkl . Take out the two traces P kj = ψijχki andQil = ψijχjl . Render these two tensors

traceless by taking out the trace P jj =Qii. Thus far, we have gotten 8⊕ 8⊕ 1 on the right
hand side of 8⊗ 8= ?. (The reader should note that, as remarked in an earlier chapter, the
letters T̃ , ψ , χ , P , and Q are just coatracks on which to hang indices; we are “wasting”
letters, so to speak, in the service of pedagogy, even though they come for free.) Next,
subtract out all these traces from T̃ ikj l and call the resulting traceless tensor T ikjl .

Antisymmetrize in the upper indices i and k:Aikjl = T [ik]
j l . You might think that we would

have to symmetrize and antisymmetrize in the lower indices j and l next. But thanks to
an identity involving the ε symbols, it turns out that, without further massaging, Aikjl is
already symmetric in its two lower indices j and l.

To prove this, we first define Bmjl ≡ εikmAikjl. The claim is that Bmjl is symmetric

in j and l. We verify the claim by showing that Bmjlεjln = εikmεjlnAikjl = 0, since by

construction Aikjl is traceless. (You will show this in exercise 2.) Furthermore, Bmjlεmjp =
0 for a similar reason. Thus, Bmjl is totally symmetric and furnishes the irreducible
representation (0, 3)= 10∗.

Going through similar steps with T ik[j l] gives us the irreducible representation (3, 0)= 10.

After taking out T [ik]
j l and T ik[j l] from T ikjl , what is left is then symmetric in its upper indices

and in its lower indices, and hence furnishes the irreducible representation (2, 2), which
from (1) we learn is the 27.

Thus, we obtain

(1, 1)⊗ (1, 1)= (2, 2)⊕ (3, 0)⊕ (0, 3)⊕ (1, 1)⊕ (1, 1)⊕ (0, 0) (9)

and

8⊗ 8= 27⊕ 10⊕ 10∗ ⊕ 8⊕ 8⊕ 1 (10)

Again, we accounted for everybody,5 of course: 8 . 8= 64 = 27+ 10+ 10+ 8+ 8+ 1.
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Multiplication rule for SU(3)

How do we multiply (m, n) and (m′, n′)?
After all the examples I went through, I am joking only slightly if I say that the most

difficult part of obtaining the general multiplication rule for SU(3) is to invent a suitable
notation for the beasts we encounter on our way to the answer. If the following gets hard
to follow, simply refer back to the (1, 1)⊗ (1, 1) example we just did.

The product of (m, n) and (m′, n′) is a tensor withm+m′ upper indices and n+ n′ lower
indices.

Let us denote by (m, n;m′, n′) the traceless tensor withm+m′ upper indices, symmetric
in the firstm indices and symmetric in the secondm′ indices, and with n+ n′ lower indices,
symmetric in the first n indices and symmetric in the second n′ indices. In other words,
(m, n;m′, n′) denotes what remains of the product of (m, n) and (m′, n′) after all traces
have been taken out.

Note that (m, n;m′, n′), since it is defined to be traceless, is certainly not (m, n)⊗ (m′, n′),
which has no reason to be traceless. Let us record the process of taking out traces:

(m, n)⊗ (m′, n′)= (m, n;m′, n′)
⊕ (m− 1, n;m′, n′ − 1)⊕ (m, n− 1;m′ − 1, n′)
⊕ (m− 1, n− 1;m′ − 1, n′ − 1)⊕ (m− 2, n;m′, n′ − 2)

⊕ (m− 2, n− 1;m′ − 1, n′ − 2)

⊕ . . . || (11)

Note that (11) is merely saying that we first obtain (m− 1, n;m′, n′ − 1) from (m, n)⊗
(m′, n′) by contracting an upper index from the first m upper indices with a lower index
from the second n′ lower indices, and then removing all traces. Since (m, n) is already
traceless, there is no point in contracting an upper index from the first m upper indices
with a lower index from the first n lower indices. And since (m, n) and (m′, n′) are both
respectively symmetric in their upper indices and in their lower indices, it does not matter
which upper index and which lower index we choose to contract. By the way, all this is
harder to say than to understand.

Next, we obtain (m, n− 1;m′ − 1, n′) by contracting an upper index from the second
m′ upper indices with a lower index from the first n′ lower indices, and then removing all
traces. We keep repeating this process. The notation . . . || in (11) indicates that the process
stops when we run out of indices to contract.

After doing all this, we end up with a bunch of reducible representations furnished by
objects (m− p , n− q;m′ − q , n′ − p). Note the word “reducible.” As in our 8⊗ 8 example,
we next take an index from the (m− p)upper indices and an index from the (m′ − q)upper
indices, and antisymmetrize. The claim, as in the explicit example, is that the result is
already symmetric in the lower indices. Similarly, we can exchange the words “upper” and
“lower” in the preceding paragraph.6 It is important to emphasize that (m, n;m′, n′) (and
(m− p , n− q;m′ − q , n′ − p) in particular) is neither symmetric in all its upper indices
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nor symmetric in all its lower indices, and hence is certainly not (m+m′, n+ n′). Thus,
(m, n;m′, n′) furnishes a reducible representation, not an irreducible one.

Let us illustrate this procedure with our 8⊗ 8 example:

(1, 1)⊗ (1, 1)= (1, 1; 1, 1)⊕ (0, 1; 1, 0)⊕ (1, 0; 0, 1)⊕ (0, 0; 0, 0) (12)

followed by

(1, 1; 1, 1)= (2, 2)⊕ (3, 0)⊕ (0, 3)

(0, 1; 1, 0)= (1, 1)

(1, 0; 0, 1)= (1, 1)

(0, 0; 0, 0)= (0, 0) (13)

Putting (12) and (13) together, we recover (9).

From the  to the Eightfold Way

At this point, for pedagogical clarity, it would be best to interject some particle physics,
which I recount in as abridged and cartoonish a form as possible. The  baryon7 was
discovered in 1950 by a team of Australians.8 Its mass, � 1115 MeV, is not far from the
mass of the proton and the neutron, � 939 MeV, and its other properties (for instance, it
also has9 spin 1

2) are also similar to that of the proton p and the neutron n. This naturally
led S. Sakata in 1956 to generalize Heisenberg’s SU(2) to SU(3), proposing that p, n, and
 furnish the fundamental or defining representation of SU(3).

But Nature was unkind to Sakata. Soon, other baryons (collectively known as hyperons,
but never mind) were discovered: �+, �0, and �−, with masses around 1190 MeV, and
 − and  0, with masses around 1320 MeV. They form an isospin triplet and an isospin
doublet, respectively. Also, fourKmesons, denoted byK+,K0 and K̄0,K−, with properties
similar to the three pions, were discovered.10 One troubling feature was that their masses,
around 495 MeV, were quite different from the pion masses, around 138 MeV.

That there were seven pseudoscalar spin 0 mesons (pseudoscalar because they were odd
under parity, that is, under spatial reflection) plus the fact that some eminent theorists
presented a series of arguments that the  and �0 had opposite parities and hence could
not belong together, sent a number of theorists on a search11 for a symmetry group with
a 7-dimensional irreducible representation.

But eventually another pseudoscalar spin 0 meson, the η with mass around 550 MeV,
was discovered. Furthermore, better measurements established that the  and �0 do in
fact have the same parity, namely, the parity of the proton and the neutron.

Gell-Mann,12 and independently Ne’eman, then proposed that the eight spin 0 mesons13

and the eight spin 1
2 baryons furnish the 8-dimensional adjoint representation of SU(3),

namely (1, 1) in the tensor notation.
As explained in chapter IV.4, Gell-Mann then made the striking prediction that the nine

known baryon resonances (recall theN∗++ from that chapter) belong to a 10-dimensional
irreducible representation (namely, (3, 0)) of SU(3). The missing particle, named the
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�−, was soon found. Taking his inspiration from Buddhism,14 Gell-Mann referred to his
scheme as the Eightfold Way in honor of the 8-dimensional adjoint representation.

If SU(2) was regarded as an approximate symmetry, then SU(3) is a badly broken
symmetry. We would expect the predictions to hold to an accuracy of at most∼20–30%, as
measured by, say, the fractional mass difference15 between the  s and the nucleons. We
will discuss in chapter V.4 what group theory has to say about baryon and meson masses.

Quarks and triality

You might have noticed that the irreducible representations (m, n) actually observed
experimentally, namely, the octet 8= (1, 1) and the decuplet 10 = (3, 0), have m− n=
0 mod 3. It was soon understood that the irreducible representations of SU(3) may be
classified according to their triality, which we define to be equal to (m− n)mod 3.

Recall that, way back in exercise 1 in chapter I.1, we defined the center of a group as
the set of all elements that commute with all the other elements. Also, we have already
discussed the center of SU(N). Still, it is worthwhile to discuss here the physical meaning
of the center of SU(3).

What is the center of SU(3)? Consider the set of all unitary 3-by-3 matrices with unit
determinant. To commute with all these matrices, a matrix has to be proportional to the
identity matrix and to have unit determinant. Thus, the proportionality constant has to be
a multiple of e2πi/3. The center of SU(3) is the group Z3, consisting of the three elements
I , z, and z2, where

z≡

⎛⎜⎜⎝
e2πi/3 0 0

0 e2πi/3 0

0 0 e2πi/3

⎞⎟⎟⎠= e2πi/3

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 1

⎞⎟⎟⎠ (14)

(I wrote this out in two different forms for emphasis.) Acting on the fundamental repre-
sentation 3, this “triality matrix” zmultiplies the representation by the phase e2πi/3. Acting
on the 3∗, zmultiplies it by the phase e−2πi/3. More generally, acting on the tensor (m, n),
z multiplies it by e2πi/3 for each upper index and by e−2πi/3 for each lower index, that is,
by e2πi(m−n)/3. This explains the origin of triality.

Historically, the mysterious fact that the experimentally observed irreducible represen-
tations are precisely those with triality 0 provided another important clue to the underlying
theory of the strong interaction.

Indeed, at this point, you might well ask,∗ “Where is the fundamental representation
3?” Gell-Mann soon worked out the properties of the particles furnishing the 3 and named
them quarks,† specifically the up quark u, the down quark d, and the strange quark s. The
conjugate representation 3∗ is then furnished by the antiquarks, ū, d̄, and s̄.

∗ The story goes that Gell-Mann was asked precisely this question during a lunch at Columbia University.
† G. Zweig, at that time Gell-Mann’s graduate student, independently proposed the notion of quarks, but

unfortunately he named them aces, a name that fortunately did not catch on.
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Figure 1 With the Wizard of Quarks

Group theory tells us, very nicely, how the observed strongly interacting particles are
built up from quarks and antiquarks. More specifically, each upper index in the tensor
furnishing a given irreducible representation corresponds to a quark and each lower index
to an antiquark. For example, 3⊗ 3∗ contains the 8 according to (3), and the observed octet
of pseudoscalar mesons are now known to be bound states of a quark and an antiquark:
ūu, d̄u, ūs, and so on. And 3⊗ 3⊗ 3 also contains the 8 according to (8), and so the protons
and neutrons and their cousins are bound states of 3 quarks, uud , udd , uus, and so on.
Interestingly, since 3⊗ 3⊗ 3 also contains the 10 according to (8), the celebrated �− is
also a 3-quark bound state, namely, sss.

You see that triality is just the number of quarks minus the number of antiquarks mod 3.
Experimentalists have searched for quarks in vain. It is now believed that quarks,

and more generally, particles with nonzero triality, are confined; that is, they cannot be
produced experimentally. A major challenge for the theory of the strong interaction is to
prove confinement.16

You shall know the whole by its parts: The analog of crystal field splitting

You learned way back in chapter II.1 that an irreducible representation r of a groupGwill,
in general (when we restrict ourselves to a subgroup H of G), break up into a bunch of
irreducible representations of H . As explained there, this makes total sense, because H
has fewer transformations thanG does. Fewer transformations are available to transform
the members of the irreducible representation r into linear combinations of one another,
and so these guys can segregate themselves into different cliques.

In everyday life, you might discover how something is put together by taking it apart.
Historically, one way that particle physicists became acquainted with SU(3) was to ask
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how the irreducible representations of SU(3) break up upon restriction of SU(3) to SU(2).
By the late 1950s, particle physicists were well acquainted with Heisenberg’s isospin and
hence with the group SU(2).

Mathematically, the problem of breaking up the irreducible representations of SU(3) is
almost trivial, at least in hindsight, using the method of tensors: we simply divide the index
set i = {1, 2, 3} into two sets {1, 2} and {3}. Introduce indices a , b, . . . that are allowed to
range over {1, 2}.

Given a tensor, replace the index i by either a or 3. This is more easily explained
with the aid of a few examples than with a bunch of words. Consider the fundamental
representation 3 of SU(2). We separate ψi , i = 1, 2, 3 into ψa , a = 1, 2, and ψ3. The
SU(2) subgroup of SU(3) acts on the index a but leaves the index 3 alone. This is a long-
winded way of stating the obvious: upon restriction17 of SU(3) to SU(2), the irreducible
representation 3 of SU(3) decomposes as

3→ 2⊕ 1 (15)

Physically, SU(3) transforms the three quarks, u, d, and s, into linear combinations of
one another, while its subgroup SU(2), namely, Heisenberg’s isospin, transforms u and
d but leaves s alone. Under isospin, the up and down quarks form a doublet, while the
strange quark is a singlet.

We can convey more information by going to SU(2)⊗ U(1), the maximal subgroup
of SU(3). Here U(1) denotes the group consisting of the SU(3) elements eiθY with the
hypercharge matrix

Y = 1
3

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎠ (16)

Note that Y is hermitean and traceless, so that eiθY is unitary and has unit determinant and
hence belongs toSU(3). In other words, the up and down quarks have hypercharge 1

3, while
the strange quark has hypercharge− 2

3 . Thus, upon restriction of SU(3) to SU(2)⊗ U(1),
we have, instead of (15), the more informative 3→ (2, 1)⊕ (1, −2). Here, in (2, 1), for
example, the first number indicates the dimension of the isospin representation, while the
second number is 3Y . (I put in the 3 to avoid writing 1

3 constantly.) The compact notation
I3Y , with the hypercharge (multiplied by 3) written as a subscript to the isospin, is often
more convenient. For example, we write the decomposition just given as

3→ 21⊕ 1−2 (17)

The decomposition of the fundamental or defining representation specifies how the
subgroup H is embedded in G. Since all representations may be built up as products
of the fundamental representation, once we know how the fundamental representation
decomposes, we know how all representations decompose.

Conjugating (17), we have 3∗ → 2−1+ 12. Notice that it is not necessary to write 2∗

(and certainly not necessary to write 1∗). Given these two basic facts, we can then work out
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how a higher-dimensional irreducible representation of SU(3) decomposes by multiplying
representations together.

For example, the multiplication law 3⊗ 3∗ = 8 ⊕ 1 in SU(3) becomes in SU(2)
(using (15))

3⊗ 3∗ = 8⊕ 1
→ (2⊕ 1)⊗ (2⊕ 1)

= (2⊗ 2)⊕ (2⊗ 1)⊕ (1⊗ 2)⊕ (1⊗ 1)

= 3⊕ 1⊕ 2⊕ 2⊕ 1 (18)

Thus, we learn that

8→ 3⊕ 1⊕ 2⊕ 2 (19)

Group theory tells us that the octet of mesons should consist of an isospin triplet
(the π+, π0, π−), two isospin doublets (K+, K0 and K̄0, K−), and an isospin singlet (the
η), exactly as was observed experimentally. Similarly, the octet of baryons consists of an
isospin triplet (the�+, �0, �−), two isospin doublets (our beloved proton and neutron, and
 −,  0), and an isospin singlet (the  that we started our discussion with). Note that the
decomposition (19) is a property of the irreducible representation 8, regardless of whether
we thought of it as being contained in 3⊗ 3∗ or in 3⊗ 3⊗ 3.

We can readily include hypercharge. Using (17) and its conjugate 3∗ → 2−1⊕ 12, and
noting that hypercharges simply add (since the group is simply U(1)), we obtain a more
informative version of (19):

8→ 30 ⊕ 10 ⊕ 23⊕ 2−3 (20)

(This follows because the first two terms, for example, come from 21⊗ 2−1.) Recall that the
subscript is actually 3Y . Thus, in the octet 8, the isospin triplet has Y = 0; the two isospin
doublets Y =±1, respectively; and the isosinglet Y = 0.

Alternatively, we can simply inspect the tensors involved. For example, the adjoint 8
decomposes like (on splitting the indices i and j into a, b, and 3, as explained earlier)

ϕi
j
= {ϕ̄a

b
, ϕa3 , ϕ3

a
, ϕ3

3} (21)

where the bar on ϕ̄ab reminds us that it is traceless. This corresponds precisely to (19).
In chapter IX.2, we will decompose various representations of SU(5). Everything we do

there will simply be somewhat more elaborate versions of what we have done here.
Dear reader, you might realize that what is being done here is the analog of crystal field

splitting (interlude IV.i2) for particle physics.

The electric charge

Theorists may think of isospin and hypercharge, but experimentalists identify particles
by their electric charges. Back in chapter V.1, we saw that the proton has I3 = 1

2 but
electric charge Q = 1, while the π+ has both I3 and Q equal to 1. In the early 1950s,
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physicists proposed the empirical formula Q= I3+ Y
2 , but they were deeply puzzled by

this “dislocation” between Q and I3, and there was certainly no understanding of this
mysterious hypercharge.

But within SU(3) and the Eightfold Way, this formula suddenly makes sense: the photon
couples to a particular linear combination of two SU(3) generators, but group theory tells
us how I3 and Y

2 are correlated. For instance, (20) says that the isodoublet (consisting of
the proton and neutron) has Y = 1 and hence chargeQ= ( 1

2 + 1
2 , − 1

2 + 1
2)= (1, 0), while

the isotriplet (the pions) has Y = 0 and hence chargeQ= (1, 0, −1).
But this understanding also led to widespread skepticism of the notion of quarks.

According to (17), that is, 3→ 21⊕ 1−2, the up quark must have electric charge

Q= 1
2
+ 1

2
. 1

3
= 2

3
(22)

This was quite a shock to physicists used to seeing integral electric charges! The down
quark has charge − 1

3. (One way of seeing this instantly is to note Qup −Qdown = 1.) The
strange quark has charge Q= 0+ 1

2
. 1

3
. (−2)=− 1

3. The early searches for quarks often
involved looking for these peculiar fractional charges.

We will return to the applications of SU(3) to particle physics18 in chapter V.4, but not
before attending to the Lie algebra of SU(3) in the next chapter.

Appendix: Harmonic oscillator in 3-dimensional space and SU(3)

I do not want to give the impression that SU(3) is relevant only to particle physics. Indeed, symmetry groups
often pop up rather unexpectedly. A simple example is given by the 3-dimensional harmonic oscillator described
by the Hamiltonian

H = �p
2

2m
+ 1

2
kr2 =

3∑
i=1

(
p2
i

2m
+ 1

2
kx2
i

)
=

3∑
i=1

(
a

†
i ai +

1
2

)
�ω (23)

which evidently is the sum of three independent 1-dimensional harmonic oscillators. Note that we have intro-
duced three sets of creation and annihilation operators as per appendix 1 in chapter IV.2. The energy levels are
thus given by

En =
(
n+ 3

2

)
�ω =

(
n1+ n2 + n3+ 3

2

)
�ω (24)

Note that En depends only on the sum (n1+ n2 + n3), but not on n1, n2, or n3 separately.
The spectrum thus exhibits a high degree of degeneracy above and beyond what is mandated by the rotational

group SO(3). Indeed, we see that the Hamiltonian actually enjoys a higher symmetry, namely, SU(3), under

which ai→ U
j

i aj , a
†
i → (U

j

i )
∗a†
j . The eigenstates with energy En are given by n creation operators acting on the

ground state, a†
i1
a

†
i2

. . . a†
in
|0〉, which then manifestly transforms like an SU(3) tensor with n lower indices (or

upper indices, depending on your convention). (Note that we can afford to be sloppy here, since we merely want
to count the number of degenerate states.)

We now simply look up the dimension of this tensor as given in (1), namely,

Dn = 1
2
(n+ 1)(n+ 2) (25)

Let us check the simple case of D3= 10. Indeed, we have the states (3, 0, 0), (0, 3, 0), (0, 0, 3), (2, 1, 0), (2, 0, 1),
(1, 2, 0), (0, 2, 1), (1, 0, 2), (0, 1, 2), and (1, 1, 1) in a self-evident notation.
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Exercises

1 We talked about possible ambiguities when we refer to irreducible representations by their dimensions back
in chapter IV.4. Find an SU(3) irreducible representation with the same dimension as (4, 0).

2 Complete the proof that Aikjl is symmetric in j and l.

3 Check D4 and D5.

4 Show that the symmetry group of the 3-dimensional harmonic oscillator is actually U(3)= SU(3)⊗ U(1).
What does the U(1) describe?

Notes

1. Phys. Today, May 2008, p. 69. Glashow received the Nobel Prize in 1979 for work based to a large extent on
group theory.

2. The ghost of the Gruppenpest, which I mentioned in chapter I.1, haunted the physics community for a
surprisingly long time. For example, the well-known solid state physicist John Slater (1900–1976) wrote in his
autobiography: “As soon as my paper became known, it was obvious that a great many other physicists were
as ‘disgusted’ as I had been with the group theoretical approach to the problem. . . . there were remarks made
such as ‘Slater has slain the Gruppenpest.’ I believe that no other work I have done was so universally popular.”
I was astonished that the book was published in 1975! This was long after numerous resounding successes of
group theory, and a year or so after the standard SU(3)⊗ SU(2)⊗U(1) theory of the strong, electromagnetic,
and weak interactions was established. I would hope that the sentiment Slater was expressing referred to the
1930s, not the 1970s. (See J. C. Slater, Solid State and Molecular Theory, J. Wiley 1975.)

3. There are of course rumblings in other areas, such as the Elliott model in nuclear physics.
4. Recall that we did similar manipulations when discussing Legendre polynomials in chapter IV.2.
5. “Not One Less,” http://www.imdb.com/title/tt0209189/?ref_=nv_sr_1.
6. S. Coleman, Aspects of Symmetry, pp. 13ff. Cambridge University Press, 1985. He was my PhD advisor, and

so quite naturally my treatment follows his closely.
7. Incidentally, the name refers to the tracks made by the proton and the negatively charged pion in the decay
→ p + π−.

8. V. D. Hopper and S. Biswas of the University of Melbourne.
9. This is easy for me to say now, but in fact a method to determine the spin of the was proposed by T. D. Lee

and C. N. Yang only in 1958 (Phys. Rev. 109 (1958), p. 1755). A modern textbook explanation of the method
takes more than four pages; see S. Gasiorowicz, Elementary Particle Physics, pp. 214–217. The early history
of particle physics was full of inspired guesses and leaps of faith.

10. Again, we gloss over an enormous amount of confusion; it took heroic efforts, both experimental and
theoretical, to establish that the K0 and K̄0 were in fact distinct particles.

11. The search led to the exceptional group G2. Fortunately, Nature is kind to us; the correct group SU(3) is
orders of magnitude simpler to learn.

12. See G. Johnson, Strange Beauty, 1999.
13. It should be noted that while Sakata had put the baryons in the 3, he did assign the mesons correctly to the 8.
14. See http://en.wikipedia.org/wiki/Noble_Eightfold_Path.
15. The large fractional mass difference between the K mesons and the pions was particularly troubling, and

led some theorists to reject SU(3). We now understand why the pions have an exceptionally small mass
compared to other strongly interacting particles, but that is another story for another time.

16. While some plausible arguments have been advanced, there is as yet no definitive proof.
17. More precisely, this specifies how SU(2) is to be embedded into SU(3). We can specify that on restriction of

SU(3) to SU(2), 3→ 3. Strictly speaking, this corresponds to specifying how SO(3) is to be embedded into
SU(3).

18. I might also mention that SU(3) is also manifest in the Elliott model in nuclear physics. See, for example,
A. Arima, J. Phys. G: Nucl. Part. Phys. 25 (1999), p. 581.

http://www.imdb.com/title/tt0209189/?ref_=nv_sr_1
http://en.wikipedia.org/wiki/Noble_Eightfold_Path


V.3 The Lie Algebra of SU(3) and Its Root Vectors

The way the Lie algebra of SU(3) works out is not only important for its own sake, but it
also indicates to us how to analyze a general Lie algebra, as we will see in part VI.

The eight Gell-Mann matrices

To start with, we can readily write down the eight traceless hermitean matrices that
represent the algebra of SU(3), as already explained in chapter IV.4. They generalize the
Pauli matrices and are known as Gell-Mann matrices in particle physics:

λ1=

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ , λ2=

⎛⎜⎜⎝
0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎠

λ4 =

⎛⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ , λ5=

⎛⎜⎜⎝
0 0 −i
0 0 0

i 0 0

⎞⎟⎟⎠

λ6 =

⎛⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ , λ7 =

⎛⎜⎜⎝
0 0 0

0 0 −i
0 i 0

⎞⎟⎟⎠

λ3=

⎛⎜⎜⎝
1 0 0

0 −1 0

0 0 0

⎞⎟⎟⎠ , λ8 = 1√
3

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎠ (1)

These matrices are normalized by tr λaλb = 2δab. It would not have escaped your notice
that the three Gell-Mann matrices λ1, λ2, and λ3 correspond to the three Pauli matrices σ1,
σ2, and σ3, respectively, with a third row and column of 0s added. This evidently specifies
how the SU(2) algebra is embedded in the SU(3) algebra, as noted earlier.
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You would also have noticed that I have separated the eight matrices into four groups
as follows:

(a) λ3 and λ8 are the two diagonal guys;
(b) λ1 and λ2, together with λ3, form an SU(2) subalgebra;
(c) λ4 and λ5 are basically the same as λ1 and λ2, except that they live in the “1-3 sector,”

while λ1 and λ2 live in the “1-2 sector”;
(d) λ6 and λ7 are also basically the same as λ1 and λ2, except that they live in the “2-3

sector”.
Next, note that

[λ4, λ5]=

⎡⎢⎢⎣
⎛⎜⎜⎝

0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0 0 −i
0 0 0

i 0 0

⎞⎟⎟⎠
⎤⎥⎥⎦= 2i

⎛⎜⎜⎝
1 0 0

0 0 0

0 0 −1

⎞⎟⎟⎠≡ 2iλ[4, 5]= i(λ3+
√

3λ8) (2)

You understand that the matrix I named λ[4, 5] is the analog of λ3 living in the 1-3 sector,
and together with λ4 and λ5, it generates an SU(2) subalgebra.

Similarly, λ6 and λ7, together with a matrix we might call λ[6, 7] (which you should guess
and then work out), the analog of λ3 living in the 2-3 sector, generate an SU(2) subalgebra.

Thus, not surprisingly, SU(3) contains three overlapping SU(2) subalgebras. They
overlap because there are only two traceless hermitean matrices in the SU(3) algebra,
namely, λ3 and λ8. (Of course, the three SU(2) subalgebras have to overlap, since otherwise
SU(3)would be SU(2)⊗ SU(2)⊗ SU(2), which it sure isn’t.1) Three SU(2)s have to share
two J3s, so to speak.

In the defining or fundamental representation, the generators are represented by2

T a = 1
2λa.

As explained in chapter I.3, the generators of any Lie algebra satisfy

[T a , T b]= if abcT c (3)

with some structure constants f abc characteristic of the algebra. Since (3) holds for any
representation of the algebra, we can work out the f abcs for SU(3) by explicitly commuting
the Gell-Mann matrices with one another. The result is:

f 123= 1

f 147 =−f 156 = f 246 = f 257 = f 345=−f 367 = 1
2

f 458 = f 678 =
√

3
2

(4)

I have already worked out f 453 and f 458 in (2) for you. You should check the rest, or at
least a few of them. Recall that f abc is totally antisymmetric, a fact that we will prove in
chapter VI.3. Thus, f 453= f 345, which you should also check explicitly.
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It is important to realize that while we determined f abc using the matrices in the fun-
damental representation, Lie’s relation (3) holds for the generators in any representation.∗

There is, of course, absolutely no point in memorizing these structure constants; you
will see that, even when we actually calculate using SU(3) in chapter V.4, we will not
need the explicit values given here. It is, however, essential that you understand what the
structure constants embody about the algebra.

From ladders to jungle gyms

For what to do next, we seek inspiration from the ladder approach used for SU(2) and try
to generalize it to SU(3). Recall that, of the three generators Jx, Jy, and Jz of SU(2), we
diagonalized Jz and defined J± ≡ Jx ± iJy. This enabled us to write the SU(2) algebra as

[Jz , J±]=±J±, [J+, J−]= 2Jz (5)

Using Dirac’s bra and ket notation and thinking of the matrixJz as an operator, we wrote the
eigenvector of Jz with eigenvaluem as |m〉: Jz |m〉 =m |m〉. Manipulating (5), we deduced
that J+ |m〉 = cm+1 |m+ 1〉 and J− |m〉 = c∗m |m− 1〉, with cm a normalization constant that
we determined by a clever use of the algebra (following Dirac!). We thus visualized the
states . . . , |m− 1〉, |m〉, |m+ 1〉, . . . as rungs on a ladder, and thought of J+ and J− as a
raising operator and a lowering operator, respectively, that enable us to climb up and down
the ladder. The next step was to show that the ladder terminates, and that the maximum
and minimum values of m are given by ±j , with j an integer for SO(3), and an integer
or half-integer for SU(2).

It is crucial for you to be thoroughly familiar with what we did for SU(2), as we will be
simply generalizing the reasoning involved in that case to SU(3).

From the explicit forms of λ3 and λ8 in (1), we see that the generators T 3 and T 8

commute: [T 3, T 8]= 0, and thus we can simultaneously diagonalize them. At this point,
there is a trivial complication: history. We now renameT 3 as the third component of isospin

I3, and the T 8 as hypercharge Y up to the normalization factor
√

3
2 . In a given irreducible

representation, the states are characterized by the eigenvalue of I3 and the eigenvalue of
Y . In other words, we use the eigenstates of I3 and Y to represent the algebra SU(3),
namely, the kets

∣∣i3, y
〉

such that I3
∣∣i3, y

〉= i3 ∣∣i3, y
〉

and Y
∣∣i3, y

〉= y ∣∣i3, y
〉
. The states∣∣i3, y

〉
generalize the states |m〉 for SU(2).

The states in an irreducible representation of SU(3) are then labeled by two numbers
and hence may be arranged in a 2-dimensional lattice rather than on a ladder.

The number of generators that can be simultaneously diagonalized is known as the rank
of the Lie algebra. The rank of SU(2) is 1: we can only diagonalize J3. The rank of SU(3),
in contrast, is 2. The states in an irreducible representation of a Lie algebra of rank† l are

∗ As mentioned in chapter I.3, we adopt the standard physicist’s practice of confounding the generators and
the matrices representing the generators.

† Physicists mostly denote rank by r , while mathematicians use l. We defer to mathematicians here, so as to
make contact with the discussion in part VI.
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labeled by l numbers and hence may be arranged in an l-dimensional lattice. We will refer
to the 2-dimensional lattice for SU(3) as a jungle gym.

What about the other 6= 8− 2 generators besides I3 and Y ? We use SU(2) as a guide
and follow our noses, so to speak. Define

I± = T1± iT2

U± = T6 ± iT7

V± = T4 ± iT5

I3= T3

Y = 2√
3
T8 (6)

Generalizing isospin, particle physicists refer to the SU(2) subalgebra generated by I±,
U±, and V± as I spin, U spin, and V spin, respectively.∗

Then, generalizing (5), we rewrite the commutation relations (3) as

[I3, I±]=±I±, [I3, U±]=∓1
2
U±, [I3, V±]=±1

2
V± (7)

[Y , I±]= 0, [Y , U±]=±U±, [Y , V±]=±V± (8)

and

[I+, I−]= 2I3 (9)

[U+, U−]= 3
2
Y − I3=

√
3T8 − T3≡ 2U3 (10)

[V+, V−]= 3
2
Y + I3=

√
3T8 + T3≡ 2V3 (11)

[I+, V−]=−U− (12)

[I+, U+]= V+, (13)

[U+, V−]= T−, (14)

[I+, V+]= 0, (15)

[I+, U−]= 0, (16)

[U+, V+]= 0 (17)

Other commutation relations can be obtained from the ones listed here by hermitean
conjugation, for example, ([I+, V+])† gives [I−, V−].

Clearly, with eight generators instead of three, we have many more commutation
relations in SU(3) than in SU(2), but we will soon make sense of them. In the meantime,
you might want to focus on the three commutation relations [I+, I−]= 2I3, [U+, U−]= 2U3,
and [V+, V−]= 2V3, with U3 and V3 defined above. These commutation relations, as
remarked earlier, show that SU(3)may be pictured as three overlapping SU(2)s, with I±,
U±, and V± the raising and lowering operators for the three SU(2) algebras, respectively.

∗ I don’t know who first chose the terminology I , U , V , but as students, I and my friends were taught this
stuff singing a variant of the American song “I scream, you scream, we all scream for ice cream!”
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Climbing around on a jungle gym

The ladder for SU(2) generalizes to a kind of 2-dimensional jungle gym for SU(3) (and in
general, an l-dimensional jungle gym). Instead of each state or ket corresponding to a rung
on a ladder, each ket

∣∣i3, y
〉
now corresponds to a node or point on a jungle gym or lattice,

laid down on a plane with one axis labeled by i3 and the other by y. The six generators,
I±, U±, and V±, play the role of the raising and lowering operators J±. Instead of taking
us from one rung of the ladder to another, they now take us from one node on the jungle
gym to another.

Since the commutation relations between I3, I± are exactly the same as those between
J3, J±, we have I±

∣∣i3, y
〉∝ ∣∣i3± 1, y

〉
, exactly as in (IV.2.5) and (IV.2.6): I± increases and

decreases i3 by one unit, leaving y untouched. (This time we won’t bother to write down
and determine the proportionality constants, the analogs of the cms. I leave it to you to
work it out.)

Next, what doesU± do to
∣∣i3, y

〉
? Find out by acting with I3 and Y onU±

∣∣i3, y
〉
and using

(7) and (8). We obtain

I3U±
∣∣i3, y

〉 = (U±I3∓ 1
2
U±
) ∣∣i3, y

〉= U±(I3∓ 1
2

) ∣∣i3, y
〉

=
(
i3∓ 1

2

)
U±
∣∣i3, y

〉
(18)

and

YU±
∣∣i3, y

〉 = (U±Y ± U±) ∣∣i3, y
〉= U±(Y ± 1)

∣∣i3, y
〉

= (y ± 1)U±
∣∣i3, y

〉
(19)

We conclude that U±
∣∣i3, y

〉∝ ∣∣∣i3∓ 1
2 , y ± 1

〉
. (In this discussion, the ± signs are clearly

correlated.)
Going through the analogous manipulations for V±, you would conclude that V±

∣∣i3, y
〉

∝
∣∣∣i3± 1

2 , y ± 1
〉
.

Root vectors

Thus, the operators I±, U±, and V± move us around this lattice. Each of them can be
characterized by a vector specifying the change in location (�i3, �y). From the calculation
we just did, we see that

I± moves us by (±1, 0)

U± moves us by
(
∓1

2
, ±1

)
V± moves us by

(
±1

2
, ±1

)
(20)
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Figure 1

in the (i3, y) plane. The vectors (±1, 0), (∓ 1
2 , ±1), and (± 1

2 , ±1) associated with I±, U±,
and V±, respectively, are known as root vectors of the Lie algebra, or roots for short.

What can we say about the lengths of the root vectors and the angles between them?
But wait, the question has no meaning unless the two axes are normalized in the

same way.∗ Earlier, we made sure that the Gell-Mann matrices λa were normalized in
the same way; referring to (1), we see that, in the fundamental representation, while the
third component of isospin is given by I3= 1

2λ3, the hypercharge, given by Y = 1√
3
λ8, is

normalized differently for “historical” reasons (namely the Gell-Mann-Nishijima formula
mentioned in chapter V.1).

Physicists typically use I3 andY , bowing to history, but the great art of mathematics could
care less about how physicists fumbled around in the 1950s. Thus, if we hope to discover

any universal truths about root vectors, we better go back to T 3= I3 and T 8 =
√

3
2 Y . In

other words, we need to multiply the second component of the root vectors listed above

by
√

3
2 .

Denote the correctly normalized root vectors using a self-evident notation, and write

�I± = (±1, 0)

�U± =
(
∓1

2
, ±
√

3
2

)
�V± =

(
±1

2
, ±
√

3
2

)
(21)

Remembering your equilateral triangle, you see that, interestingly, the root vectors are of

equal length (length squared= 12+ 02= ( 1
2)

2+ (
√

3
2 )

2= 1), and the angles between them
are all equal to either 60° or 120°. See figure 1, known as a root diagram. Indeed, the 60°
between a neighboring pair of root vectors merely reflects democracy: �I±, �U±, and �V± have
exactly the same status. The root vectors �I± appears to be more special than �U± and �V±
merely because of physics history.

∗Here the notion of a metric creeps into the discussion. Even though the discussion is on a lattice rather than
on a continuous space, we can still talk about lengths and angles. We will return to the metric of a general Lie
algebra later in chapter VI.3.
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In this language, the root vectors of SU(2) live in one dimension. A 1-dimensional vector
is of course just a number.

Working with roots

From the root diagram, we can read off various commutation relations. At least we can see
which ones ought to vanish. For example, [I−, U+]= 0.

To show this, let us first introduce some useful notation to save writing. Write the

ket
∣∣i3, y

〉
as
∣∣∣ �ω〉; that is, define the vector �ω = (i3, y). Then I−U+

∣∣∣ �ω〉 ∝ I− ∣∣∣ �ω + �U+〉 ∝∣∣∣ �ω + �U+ + �I−〉. Similarly, I−U+
∣∣∣ �ω〉∝ I− ∣∣∣ �ω + �U+〉∝ ∣∣∣ �ω + �I− + �U+〉. Thus, [I−, U+]

∣∣∣ �ω〉∝∣∣∣ �ω + �I− + �U+〉.
The proportionality factor could well vanish. If it does not vanish, then the root vector

associated with [I−, U+] would be pointing in the direction corresponding to �I− + �U+. But,
referring to figure 1, we see that there isn’t a root vector in that direction. Thus, [I−, U+]= 0.

With some practice, you can see almost instantly from the root diagram that certain
commutators must vanish.

In contrast, the vector �I+ + �U+ points in the direction of �V+, and sure enough, [I+, U+]∝
V+. We will be using this sort of reasoning extensively in chapter VI.4.

Some “empirical facts”

From this example of SU(3), we observe several “empirical facts.”

All the root vectors have equal length.

The angles between them have “nice” values, that is, not equal to something like 17◦.

The sum of two roots is sometimes equal to another root and sometimes not.

But the sum of a root with itself does not exist; in other words, if �α is a root, then 2�α (for

example, 2 �V+ = (1,
√

3)) is not a root.

OK, I won’t repeat the black sheep–white sheep joke. But dear reader, try to either prove
or disprove these statements for a general Lie algebra. I will come back to them in part VI.

Positive and simple roots

Two notions about roots also naturally suggest themselves. Here we have six roots living in
a 2-dimensional space. We ought not to have to specify all six; specifying two roots ought
to suffice. To begin with, three of the six roots are just given by (−1) times the other three.

To define the notion of positive roots, we first have to agree to some ordering of the
coordinate axes; here we put T 3 before T 8. Then a root is said to be positive if its first
nonzero component is positive. Referring to (21), we see that �I+, �U−, and �V+ are positive.
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Colloquially, the roots that point “mostly east” are defined to be positive. Note that which
roots are positive depends on which axis we favor. If we had favored T 8 over T 3, then �I+,
�U+, and �V+ would be called positive.

Of the three positive roots, �I+, �U−, and �V+, any one of them can be written as a linear
combination of the other two. Hence we can choose any two of the three positive roots
as basic, but one particular choice recommends itself: speaking colloquially, we see that
�I+ is flanked by �U− and �V+, that is, it lies inside the wedge or cone defined by �U− and
�V+. Note that �I+ = �U− + �V+. The following more mathematical definition thus emerges
naturally.

Given a set of positive roots in l-dimensional space, a subset is said to be simple if
any of the positive roots can be written as a linear combination of the simple roots with
non-negative coefficients. Thus, �U− and �V+ are the two simple roots of SU(3).

Thus far, I have carefully distinguished an operator, for exampleU+, from the root vector
�U+ associated with it. Now that you understand these concepts, I will often drop the arrow.

Weight diagrams

For a given irreducible representation R of SU(3), we can plot each state in the representa-

tion as a point in the (i3, i8)= (i3,
√

3
2 y) plane. The collection of points form a lattice known

as the weight diagram for R, the appropriate generalization of the ladder for SU(2). The
number of points in the weight diagram corresponds to the dimension of R. (Recall that
the ladder for the irreducible representation j of SU(2) has 2j + 1 rungs.)

The root vectors take us from one point in the weight diagram to another. They generalize
the raising and lowering J± that take us from one rung of the ladder to another. Since we
are talking about a finite-dimensional representation, a sequence of root vectors acting on
a given state either takes us out of the weight diagram (that is, yields 0) or might eventually
take us back to our starting point.

It is important to note what should be self-evident for most readers: for a given Lie
algebra, there is only one root diagram, but there are many weight diagrams, one for each
irreducible representation.

Let’s see how this works for a few typical representations. Consider 3, the defining
representation, and for convenience, use particle physics labels for the states in the

representation. Theu quark is located at (i3,
√

3
2 y)= ( 1

2 , 1
2
√

3
), the d quark at (− 1

2 , 1
2
√

3
), and

the s quark at (0, − 1√
3
). The weight diagram consists of three points forming an inverted

equilateral triangle. See figure 2.
The roots listed in (21) take us from one point in the weight diagram to another point,

just as J± take us from one rung on the ladder to the next in the SU(2) case. For example,(
0, − 1√

3

)
+ �V+ =

(
0, − 1√

3

)
+
(

1
2

,
√

3
2

)
=
(

1
2

,
1

2
√

3

)
(22)

In other words, �V+ takes the s quark to the u quark.
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Indeed, you can verify that the requirement that the roots in (21) connect three points in

the (i3,
√

3
2 y) plane fixes the positions of the 3 points and the weight diagram. Analogously,

in SU(2), if we require the ladder to terminate, we cannot start at an arbitrary value ofm: it
has to be integral or half-integral. Indeed, since SU(3) contains three overlapping SU(2)
algebras, the argument is basically a direct repeat of the argument we went through for
SU(2): I spin seems privileged compared to U spin and V spin merely because we chose
the horizontal axis in our plot to describe i3.

But U± and V± are in no way second class citizens compared to I±. The attentive
reader might have noticed that I have quietly defined, in (10) and (11), [U+, U−]= 2U3≡
3
2Y − I3=

√
3T8 − T3 and [V+, V−]= 2V3≡ 3

2Y + I3=
√

3T8 + T3. You can immediately
verify, as you would expect, that the d and s quarks form a U spin doublet.

As an exercise, work out the weight diagram of 3∗.
We can do another example. Requiring that the roots connect eight points fixes the

weight diagram for the famous octet into which Gell-Mann placed the nucleons and their

cousins. Alternatively, start with the known position of the proton ( 1
2 ,
√

3
2 ). We already

know that �I− takes the proton to the neutron at (− 1
2 ,
√

3
2 ). Let us act with �U− on the proton:

( 1
2 ,
√

3
2 )+ ( 1

2 , −
√

3
2 )= (1, 0). We get to the �+ hyperon. (See figure 3.)

Suppose we apply �U− again, now on the �+ hyperon. We get 0, just like applying
the generator J− of SU(2) to the bottom rung of the ladder produces 0. (Again, see

figure 3.) On the other hand, applying �V− to�+ gets us to (1, 0)+ (− 1
2 , −

√
3

2 )= ( 1
2 , −

√
3

2 ),
which we recognize as the  0. In this way, we built the 8 of the baryons proposed by
Gell-Mann.

As an exercise, you should now work out the weight diagram of 10 using the root vectors.
See figure 4.



334 | V. Group Theory in the Microscopic World

n p

�+�0

�0�−

�
�−

Figure 3

�*0�*−

Y*−

N *− N*0 N*+ N*++

Y*+
Y*0

�−

Figure 4

Theorems about weight diagrams

Clearly, due to the hexagonal symmetry of the root vectors, the weight diagrams all exhibit
hexagonal symmetry. It is possible to prove various theorems about the shape∗ of the weight
diagrams. For example, the boundary shown schematically in figure 5 is not possible.
Roughly speaking, weight diagrams have to be convex outward. To prove this, label the

∗ Note that for SU(2), this notion does not even arise.
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c b

a I−

Figure 5

states as shown in the figure. (The shaded region in figure 5 indicates the interior of the
weight diagram.)

Along the top of the weight diagram, we keep lowering with I− until we get to the state |a〉
when the I spin ladder terminates: I− |a〉 = 0. As shown, V− |a〉 = β |b〉 and I− |b〉 = γ |c〉,
with β and γ two Clebsch-Gordan coefficients. Applying I− to V− |a〉 = β |b〉 then gives

I−V− |a〉 = βI− |b〉 = βγ |c〉 = ([I−, V−]+ V−I−) |a〉 = [I−, V−] |a〉 = 0 (23)

The last equality follows from (15). Hence either β or γ vanishes, or both vanish, which
shows that the figure as drawn is not allowed. In the 10, for example, the state |b〉 does not
exist; the boundary continues in the U− direction. In contrast, in the 8, |b〉 exists but not
|c〉; at |b〉 the boundary continues also in the U− direction.

Clearly, we can also learn a lot about the weight diagrams of SU(3) from the fact that
the algebra consists of three overlapping SU(2) algebras. For example, slicing the weight
diagram along the U direction, we should see the states lining up neatly into U spin
multiplets. Thus, as we have already seen, in the 8 of baryons, the proton and the �+

form a U spin doublet.
We used isospin to relate processes involving different members of isospin multiplets

in chapter V.1. In exactly the same way, we can use U spin to relate processes involving
the �+ to processes involving the proton. The resulting predictions telling us about the
behavior of the �+ were confirmed by experiments, and as a result we have considerable
confidence in the correctness of SU(3). In the next chapter, we study further what the
group theory of SU(3) can tell us.

Appendix: The d symbols

We mention in passing that sometimes it is useful, for some applications in particle physics, to have the analog
of the relation {σa , σb} = 2δab. The Gell-Mann matrices satisfy∗

{λa , λb} = 4
3
δab + 2dabcλc (24)

∗ Again, at this point in the book, whether the indices a, b, and c are written as superscripts or subscripts has
no significance.
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with the d symbols given by

d118 = d228 = d338 =−d888 = 1√
3

d448 = d558 = d668 = d778 =− 1

2
√

3

d146 = d157 =−d247 = d256 = d344 = d355=−d366 =−d377 = 1
2

. (25)

Check at least a few. Again, it must be emphasized that these anticommutation relations are not part of the
Lie algebra but are merely properties of the Pauli and Gell-Mann matrices. The d symbols, in contrast to the f
symbols, the structure constants, do not pertain to all representations.

Exercise

1 Work out the weight diagram of 10 using the root vectors.

Notes

1. As I’ve mentioned in another book, Murph Goldberger, one of my professors, loved to say, “If my aunt had
balls, she would be my uncle!” when confronted with faulty logic.

2. As said in the Preface, whether the indices a, b, and c are written as superscripts or subscripts here has no
particular significance.
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Throw away the 27!
—Richard Feynman

to George Zweig

To a generation who grew up with superstrings and the multiverse, even quarks and gluons
may sound old hat. But not that long ago, they were totally unknown, and utter confusion
reigned in the subnuclear world of the hadrons. The strong interaction was gradually
unveiled only through decades of assiduous experimental and theoretical work. In this
endeavor, group theory was an indispensable guide.

We now know that SU(3) symmetry, as explained in chapters V.2 and V.3, is due to the
approximate invariance of the strong interaction under a unitary transformation of the up
u, down d , and strange s quarks into one another, approximate because these three quarks
have different masses. But none of that was known around 1960.

Here we discuss one particular success of SU(3) and its breaking, namely, the Gell-
Mann-Okubo mass formula.1 To focus on SU(3) breaking, we assume that Heisenberg’s
SU(2) is not broken. Readers totally unfamiliar with quantum mechanics might wish to
skip this chapter.

SU(3) breaking

In a world with exact SU(3) symmetry, the π , K , and η mesons would all have the same
mass. In the language of chapter III.1, they would be degenerate. But in fact their masses
are quite different. Our world is only roughly SU(3) invariant.

Without a full understanding of the strong interaction, we had (and still have) no way
of calculating these meson masses analytically. Instead, what particle physicists accom-
plished in the 1960s amounted to an impressive mix of science and art, of group theory
and inspired guesses.

For readers not about to specialize in particle physics (which may well be most readers),
the details of meson mass splitting are not important. The important point to grasp is
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that what we are discussing here is conceptually similar to other symmetry breaking
phenomena, such as crystal field splitting discussed in interlude IV.i2. As another example,
for the triangular “molecule” consisting of masses tied together by springs discussed
in chapter III.2, by making one spring slightly different from the other two, we break
the symmetry group, and the shifts in the eigenfrequencies can be studied using the
methods discussed here. As we shall see, Gell-Mann and Okubo, by making a simplifying∗

assumption about the nature of the symmetry-breaking interaction, were able to go further
than just figuring out the pattern of how the 8-dimensional irreducible representation of
SU(3) breaks upon restriction to SU(2).

The meson octet

Let us start with the eight mesons, π+, π0, π−, K+, K0, K−, K̄0, and η, whose acquain-
tance we made in chapter V.2. They were postulated to populate the adjoint representation
8 of SU(3).

Since we are assuming that the SU(2) isospin subgroup is unbroken, π+, π0, and π−

have the same mass. Similarly, K+ and K0 have the same mass, and K− and K̄0 also.
However, since K− is the antiparticle of K+, they have the same mass, and thus also
K0 and K̄0. The data thus consists of three masses, and so if group theory restricts the
dynamics sufficiently to reduce the number of unknown constants to less than three, we
would have a prediction, or strictly, a postdiction.

We will use the tensor and effective field theory approach to discuss meson masses. By
now, you know well that the adjoint is given by a traceless tensor�ij , i , j = 1, 2, 3 and can
thus be written as a traceless 3-by-3 matrix:

�= 1√
2

8∑
a=1

φaλa =

⎛⎜⎜⎝
1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η

⎞⎟⎟⎠ (1)

In the first equality, we merely expand � in terms of the eight Gell-Mann matrices λa (as
given in (V.3.1)). The eight fields φa may be thought of as the Cartesian components of�.
In the second equality, the fields are identified by their street names, thus π0 = φ3, η= φ8,
and so on.

Note that the 2-by-2 submatrix contained in the northwest corner of�, withη removed, is
precisely 1√

2
times the matrix ϕ discussed in chapter V.1 when we discussed Heisenberg’s

SU(2). In particular, the relative factor of
√

2 between π0 and π+ was explained there.
Let us warm up by imagining a world with exact SU(3) symmetry and write down the

effective Lagrangian

L= 1
2

tr
(
(∂μ�)

2−m2
0�

2
)
= 1

2

8∑
a=1

(
(∂μφa)

2−m2
0φ

2
a

)
(2)

∗ Refer to the Feynman story at the end of this chapter.
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Here we used the normalization tr λaλb = 2δab adopted in chapter V.3 so that, for example,
tr �2 = tr( 1√

2

∑8
a=1 φaλa)

2 = 1
2
∑8
a=1

∑8
b=1 φaφb(tr λaλb)=

∑8
a=1 φ

2
a
. In this imaginary

world, the eight mesons would be equally massive, with mass squared =m2
0.

But SU(3) is broken in our world.
We now have to appeal to basic quantum mechanics. Suppose we have found the

eigenstates and eigenvalues of a Hamiltonian H0. Consider another Hamiltonian H =
H0 + αH1. In general, finding the eigenstates and eigenvalues ofH would pose an entirely
different problem. However, if α is known to be small, then to leading order in α, we would
expect the eigenstates and eigenvalues of H to be closely approximated by the eigenstates
and eigenvalues of H0. As some readers may know, this is known as perturbation theory:
αH1 is treated as a small perturbation onH0. One important result of perturbation theory is
that to orderα, the eigenvalue of the eigenstate |s〉 ofH0 is shifted by the amount 〈s|αH1 |s〉.
(To this order, knowing the eigenstate |s〉 of H0 suffices; we do not have to worry about
how |s〉 is shifted by the perturbation.)

Indeed, I have already alluded to this perturbative approach to atomic spectrum in
chapter IV.3 and mentioned the Wigner-Eckart theorem. If we follow this approach, then
we will have to calculate quantities like 〈8, a| H1 |8, b〉, with |8, b〉 the eigenstates in
an SU(3) symmetric world. Even to this day, we are far from being able to calculate
such quantities starting from first principles; instead, we rely on group theory to tell us
something. As already mentioned, rather than deriving the analog of the Wigner-Eckart
theorem for SU(3), we follow the effective Lagrangian approach.

The Gell-Mann-Okubo mass formula for mesons

You might question whether first order perturbation theory is applicable at all: back in
chapter V.2, we learned that SU(3) is badly broken, with the corresponding α at least as
large as∼0.2–0.3. Nevertheless, Gell-Mann (and others at that time) bravely pushed ahead.

To apply group theory, we have to specify how the SU(3) breaking interaction transforms
under SU(3). In L, the mass term is quadratic in �; it transforms like the product of two
�s. But we have already worked out, in chapter V.2, that 8⊗ 8= 27⊕ 10 ⊕ 10∗ ⊕ 8⊕
8⊕ 1. However, we had multiplied two different traceless tensors together. Here we are
multiplying� by itself, and so the antisymmetric part of the product just given drops out.
If you go through the multiplication we did, you would see2 that the symmetric part of
8⊗ 8 is given by

(8⊗ 8)s = 27⊕ 8⊕ 1 (3)

while the antisymmetric part is given by

(8⊗ 8)a = 10⊕ 10∗ ⊕ 8 (4)

One easy check is that the counting works out: 8 . (8 + 1)/2= 36 = 27 + 8 + 1, while
8 . (8− 1)/2= 28= 10+ 10+ 8.
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Therefore, there are two possible SU(3)-breaking terms, one transforming like the 27
and the other like the adjoint 8. (The term transforming like 1 in (3) does not break SU(3),
of course.)

Boldly, Gell-Mann and Okubo (working independently) proposed to throw the 27 out,
as Feynman (later) advised Zweig. Thus, to break SU(3), we add the term∗ tr �2λ8 to the
effective Lagrangian L.

It is straightforward to multiply three 3-by-3 matrices together and then take the trace to
obtain tr �2λ8. But with some forethought, we can minimize our arithmetical exertions.

Observe that λ8 = 1√
3

(
1 0 0
0 1 0
0 0 −2

)
can be written as a linear combination of the 3-by-3

identity matrix and the matrix
(

0 0 0
0 0 0
0 0 1

)
. The contribution of the identity matrix to tr �2λ8

(namely, tr �2) can be absorbed into the m2
0 term in L. Thus, the SU(3)-breaking term in

L is effectively given by

tr �2λ8→ tr ��

⎛⎜⎜⎝
0 0 0

0 0 0

0 0 1

⎞⎟⎟⎠ = tr

⎛⎜⎜⎝
X X X

X X X

K− K̄0 − 2√
6
η

⎞⎟⎟⎠
⎛⎜⎜⎝

0 0 K+

0 0 K0

0 0 − 2√
6
η

⎞⎟⎟⎠
=K−K+ +K0K̄0 + 2

3
η2 (5)

Here X denotes those entries we won’t bother to write down, since we intend to take the
trace after multiplying the two matrices.

The mass of theK and of the η are shifted, but not that of the π . To get the normalization
right, it is easiest to compare with the SU(3) invariant mass term tr �2 = (π0)2 + η2 +
2K−K+ + . . .. Since we know that this term implies that the K meson and the η meson
have equal mass, we have all togetherm2

π
=m2

0,m2
K
=m2

0 + 1
2κ , andm2

η
=m2

0 + 2
3κ , where

κ is an unknown constant.
Happy are we. With three masses and two unknown constants, we obtain one relation,

namely, the Gell-Mann Okubo mass formula for mesons,

4m2
K
= 3m2

η
+m2

π
(6)

You can plug in the measured masses given in chapter V.2 and verify that this mass formula
is satisfied to within the expected accuracy.

Note that if we had included the 27 as well as the 8, we would have an additional unknown
constant and thus lose the mass formula (6). In 1961–1962, the proposal that the SU(3)-
breaking term transforms purely like the 8 was just a guess. As I said earlier, physics at
the cutting edge often involves inspired guesses, and is art as well as science.

This guess is now understood in terms of quantum chromodynamics, in which SU(3)
breaking is entirely due to the strange quark being much more massive than the up and
down quarks. Since these three quarks transform as the defining 3, their mass terms
transform as 3∗ ⊗ 3= 1⊕ 8, as was worked out in chapter V.2.

∗ Note that we do not include tr �2λ3, because we are assuming that isospin is not broken.
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Baryon mass splitting

We next turn to the eight baryons, p , n, �+, �0, �−, 0,  −, and  0, which we met
in chapter V.2 and which form the baryon octet. As in (1), the eight baryon fields3 can be
arranged in a 3-by-3 traceless matrix:

B =

⎛⎜⎜⎝
1√
2
�0 + 1√

6
0 �+ p

�− − 1√
2
�0 + 1√

6
0 n

 −  0 − 2√
6
0

⎞⎟⎟⎠ (7)

Now that we have worked through the derivation of the mass formula for the mesons,
we should be able to breeze through a similar derivation for the baryons. However, there
are some differences.

One difference is that, unlike the mesons, which carry spin 0, the baryons carry spin
1
2 and thus transform under the Lorentz group (which we will study in part VII). Thus,
as already mentioned in chapter V.1, the hermitean conjugate of B transforms differently
from B and is denoted by

B̄ =

⎛⎜⎜⎝
1√
2
�̄0 + 1√

6
̄0 �̄−  ̄−

�̄+ − 1√
2
�̄0 + 1√

6
̄0  ̄0

p̄ n̄ − 2√
6
̄0

⎞⎟⎟⎠ (8)

Consequently, we now have two possible SU(3)-breaking terms that transform as 8
(rather than the single term in the meson case), namely,

tr B̄B

⎛⎜⎜⎝
0 0 0

0 0 0

0 0 1

⎞⎟⎟⎠= tr B̄

⎛⎜⎜⎝
0 0 p

0 0 n

0 0 − 2√
6
0

⎞⎟⎟⎠= (p̄p + n̄n+ 2
3
̄00) (9)

and

tr B̄

⎛⎜⎜⎝
0 0 0

0 0 0

0 0 1

⎞⎟⎟⎠ B = tr

⎛⎜⎜⎝
0 0 − ̄−
0 0  ̄0

0 0 − 2√
6
̄0

⎞⎟⎟⎠ B = ( ̄− − +  ̄0 0 + 2
3
̄00) (10)

We see that (i) the two terms have different effects and (ii) the symmetry breaking does not
affect the�s. Again, we calculate tr B̄B to make sure that things are properly normalized.
To save computational effort, we can set the fields�, n, 0 to zero in light of the preceding
remark and since we are not breaking isospin; then tr B̄B = p̄p + ̄00 +  ̄− − + . . ..

Denoting the unknown coefficients of the two terms in (9) and (10) by κ and ζ , we thus
obtainMN =M0 + κ , M =M0 + 2

3(κ + ζ ), M =M0 + ζ , M� =M0. This time around
there are three unknowns, but we have four masses. So we still get one mass relation,
namely,∗

3M +M� = 2(MN +M ) (11)

∗ Both sides are equal to 4M0 + 2(κ + ζ ).
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The attentive reader will have noticed that I wrote down masses in (11) but masses
squared in (6). You will see in chapter VII.3 that in the field theory Lagrangian for spin 1

2
particles, mass appears, but for spin 0 particles, mass squared appears (as was written in
chapter IV.9 generalizing the harmonic oscillator). Actually, since we are working to linear
order in the symmetry breaking, we have no right to quibble about the quadratic versus
the linear mass formula. Expanding m2

a
= (m0 + δma)2=m2

0 + 2m0δma +O((δma)2), we
could just as well have written (6) as 4mK = 3mη +mπ .

Consequences of SU(3)

The consequences4 of SU(3) were soon worked out in the early 1960s. With the setup
given in this chapter, you can join in the fun retroactively. For instance, in chapter V.1, we
worked out the pion-nucleon couplings. You can now work out the couplings of the meson
octet to the baryon octet. Two terms are allowed by SU(3):

g1 tr B̄B�+ g2 tr B̄�B (12)

In principle, 17 coupling constants (for example, the N̄K� coupling) are measurable. That
they can be expressed in terms of two unknowns5 is an impressive achievement of group
theory.

Our faith in Nature’s simplicity

We close with a story. George Zweig, who discovered quarks independently6 of Gell-Mann,
recalled that he thought that the weak interaction currents of the strongly interacting
particles should also be classified in representations of SU(3), and that both the 8- and
27-dimensional representations were to be used. At the time, a decay process requiring
the presence of the 27 had been seen by an experimentalist of high reputation7 working
with a strong team using a well understood technique.

Zweig went to talk to Feynman, who liked the idea of applying SU(3) to the decay, but
kept saying “Throw away the 27!”

Feynman turned out to be right; the experimentalists were mistaken.
We need to use group theory in physics, but somehow we never have to mess with

anything beyond the simplest irreducible representations. Another example verifying the
principle of Nature’s kindness to theoretical physicists!

Notes

1. M. Gell-Mann, California Institute of Technology Synchrotron Laboratory Report CTSL-20, 1961, and
S. Okubo, Prog. Theor. Phys. 27 (5) (1962), 949–966.

2. An easy way to see this is that the 10 corresponds to a symmetric 3-indexed tensor T ijk, one of whose
components is T 111. To form this out of two adjoints, we try to write �1

i
�1
j
εij1, which vanishes.
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3. Some authors define  − with an extra minus sign. See S. Gasiorowicz, Elementary Particle Physics, p. 281.
4. As another example, since we know how the electromagnetic interaction transforms under SU(3), we can

use the method described here, or equivalently the Wigner-Eckart theorem generalized to SU(3), to relate
the various electromagnetic mass splittings between the baryons in an isospin multiplet. The result is known
as the Coleman-Glashow formula.

5. This is worked out in S. Gasiorowicz, Elementary Particle Physics, p. 281.
6. See G. Zweig’s talk in “Proceedings of the Conference in Honour of Murray Gell-Mann’s 80th Birthday,”

World Scientific.
7. W. H. Barkas at Berkeley; the “Barkas event” was described as exceptionally clean.





Part VI Roots, Weights, and Classification of Lie Algebras

Learning how to analyze the SU(2) and SU(3) algebras provides us with the concepts
and tools needed to deal with Lie algebras in general, an adventure that culminates in the
Killing-Cartan classification. The Dynkin diagrams capture the information contained in
the root diagrams in a simple pictorial fashion. An ingenious mix of elegant mathematics
and powerful logic is on display throughout.





VI.1 The Poor Man Finds His Roots

Classification of Lie algebras

Before launching into a formal mathematical development, I think that it would be peda-
gogical for us to watch over the poor man’s shoulders to see how he would grope his way
around this problem of classifying Lie algebras. The poor man was highly intrigued by the
pattern of the roots of SU(3) and the hexagonal weight diagrams they generated.

The poor man naturally wonders whether this kind of rigid geometrical pattern would
continue to hold for SU(N). He first goes back to SU(2). There we diagonalize the Pauli

matrix σ3=
(

1 0
0 −1

)
, and form∗ the raising matrix 1

2σ1+i2=
(

0 1
0 0

)
. Then the commutator

[ 1
2σ3, 1

2σ1+i2]= 1
2σ1+i2 gives us the 1-dimensional root “vector,” namely, the number 1,

associated with the raising operator J+ = J1+i2. Fine.
The poor man then moves on to SU(3). It has rank 2, which simply means that we can

now diagonalize two matrices, rather than merely one matrix, namely, λ3=
(

1 0 0
0 −1 0
0 0 0

)
and λ8 = 1√

3

(
1 0 0
0 1 0
0 0 −2

)
. The commutators of 1

2λ3 and 1
2λ8 with each of the three raising

matrices, 1
2λ1+i2, 1

2λ4+i5, and 1
2λ6+i7, give a 2-dimensional root vector, as discussed in

detail in chapter V.3. For example, to determine the root vector of 1
2λ6+i7, we calculate its

commutator with 1
2λ3; the result determines the first component of the root vector. Then

we calculate its commutator with 1
2λ8; the result determines the second component of the

root vector. Now is the time to review chapter V.3 if you are a bit shaky about this.

∗ For this heuristic discussion, we are free from historical constraints and will normalize things to keep various
expressions as clean as possible.
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Determining roots

Let us mechanize this process. Since only the 2-by-2 block of the northwest corner of
1
2λ1+i2 =

(
0 1 0
0 0 0
0 0 0

)
is nonzero, and since the corresponding 2-by-2 block of 1

2λ8 is pro-

portional to the identity matrix, clearly [ 1
2λ1+i2, 1

2λ8]= 0. We thus obtain for 1
2λ1+i2 the

2-dimensional root vector (1, 0): it is obtained from the 1-dimensional root vector 1 for
SU(2) by adding a vanishing second component. The root vector stays in the 1-dimensional
subspace, so to speak.

Next, consider 1
2λ4+i5=

(
0 0 1
0 0 0
0 0 0

)
. To calculate its commutators with λ3 and λ8, we

need, effectively, to look at only its 2-by-2 submatrix in the 1-3 sector, namely,
(

0 1
0 0

)
,

and commute it with the corresponding 2-by-2 submatrix in the 1-3 sector of λ3 and λ8,

namely,
(

1 0
0 0

)
and

(
1 0
0 −2

)
.

It turns out that we will be continually commuting 2-by-2 submatrices like these. It is
thus convenient to calculate, once and for all, the commutator (for some unspecified n)[(

1 0

0 −n

)
,

(
0 1

0 0

)]
=
[(

n+ 1 0

0 0

)
,

(
0 1

0 0

)]
= (n+ 1)

(
1 0

0 0

) (
0 1

0 0

)

= (n+ 1)

(
0 1

0 0

)
(1)

In the first equality, we added n times the identity matrix to the first matrix (which we are
free to do, since the identity matrix commutes with everything).

For the commutator of 1
2λ4+i5 with λ3 we apply this formula (1) for n= 0, and with λ8

this formula for n= 2. In other words, we simply write down (n+ 1), keeping in mind the
relative normalization between λ3 and λ8, thus obtaining—zap zap zap—the root vector

1
2

(
(0+ 1),

1√
3
(2+ 1)

)
= 1

2
(1,
√

3) (2)

By symmetry, the root vector associated with 1
2λ6+i7 is 1

2(−1,
√

3).
Thus, we quickly obtain the three root vectors (1, 0), 1

2(1,
√

3), and 1
2(−1,

√
3). (The other

three root vectors are, of course, the negative of these.) Their lengths squared, 1= 1
4 (1+ 3),

are manifestly equal. The scalar products between them, (1, 0) . 1
2(±1,

√
3) = ± 1

2 and
1
2(1,
√

3) . 1
2(−1,

√
3)= 1

4 (−1+ 3)= 1
2 , are also equal up to a sign. The angles between

the root vectors are either 60◦ or 120◦.
Having warmed up, the poor man now presses onward to SU(4) easily. The algebra is

now rank 3, with the additional diagonal matrix λ15= 1√
6

( 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

)
, where the 1√

6
fol-

lows from the normalization tr λ2
15= 2. The raising matrices

( 0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
and

( 0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

)
,

namely, the “descendants” of 1
2λ1+i2 and 1

2λ4+i5, clearly commute with λ15 and so lead to
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root vectors (1, 0, 0) and 1
2(1,
√

3, 0); these are as before except for the addition of a vanish-
ing third component. In other words, they effectively stay in the 2-dimensional root space
of SU(3).

To get out of this subspace, we need to look at the raising matrix

( 0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

)
, which is

new to SU(4). As before, only the 2-by-2 submatrix in the 1-4 sector matters. The relevant
commutators of this raising matrix with λ3, λ8, and λ15 are (reading off from (1))[(

1 0

0 0

)
,

(
0 1

0 0

)]
=
(

0 1

0 0

)
,

[
1√
3

(
1 0

0 0

)
,

(
0 1

0 0

)]
= 1√

3

(
0 1

0 0

)
(3)

and the truly new one[
1√
6

(
1 0

0 −3

)
,

(
0 1

0 0

)]
= 4√

6

(
0 1

0 0

)
= 2

√
2
3

(
0 1

0 0

)
(4)

We thus find the root vector 1
2(1, 1√

3
, 2
√

2
3). As a check, the length squared of this root

vector is 1
4 (1+ 1

3 + 4 . 2
3)= 3+1+8

12 = 1, equal to that of the other root vectors.
The scalar dot product between this root vector and the other root vectors is

1
2(1, 1√

3
, 2
√

2
3)

. (1, 0, 0)= 1
2 and 1

2(1, 1√
3

, 2
√

2
3)

. 1
2(1,
√

3, 0)= 1
2 . So once again the angles

between the roots are either 60◦ or 120◦.
The poor man thinks that he may be on to something! For fun, you could work out∗

SU(5) and see whether the pattern persists.

∗ This happens to be an important group for fundamental physics. See part IX.



VI.2 Roots and Weights for Orthogonal, Unitary,
and Symplectic Algebras

Setting the stage with SU(2) and SU(3)

Our work with the SU(2) and SU(3) algebras paves the way to solving more general Lie
algebras. Indeed, with SU(3) fresh in our minds, it is almost a cinch to work out the root
vectors of SU(N). Already in chapter VI.1, the poor man discovered a definite pattern to
the root diagram of SU(N). In this chapter, we adopt a more systematic approach, with an
eye toward a general classification of Lie algebras.

Let’s start with a quick review of SU(2) and SU(3).
For SU(2), we identify the diagonal matrix σ3, and the states of the fundamental or

defining representation are just labeled by the eigenvalues of 1
2σ3.

For SU(3), there are two diagonal matrices, λ3 and λ8, and so the states of the defining
representation are labeled by two numbers, namely, the eigenvalues of 1

2λ3 and 1
2λ8. The

weights characterizing the states thus consist of two numbers and thus may be thought
of as vectors in a 2-dimensional space.

It is almost not worth repeating that you should not read this chapter (and hardly any
other chapter) passively. Instead, you should work things out, as we move along, drawing
appropriate figures as needed.

Rank and the maximal number of mutually commuting generators

The matrices λ3 and λ8 form a maximal subset of generators∗ that commute with each
other. None of the other six generators commutes with both λ3 and λ8. As already noted
in chapter V.3, the maximal number of mutually commuting generators is known as the
rank of the algebra, often denoted by r in physics and by l in mathematics. To make contact
with the more mathematical discussion in chapter VI.4, we use l here.

∗ We physicists confound generators and the matrices representing the generators, as usual.
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Given a Lie algebra, the first step is thus to identify the maximal set of mutually com-
muting generators and diagonalize them simultaneously. Instead of the absurd physicist’s
practice of inventing a new notation for these l matrices for each algebra they encounter
and naming them after some über-physicists like Pauli and Gell-Mann, we prefer here the
mathematician’s notation∗ of Hi (i = 1, . . . , l) for them.†

Each state in an irreducible representation is then characterized by l numbers, given by
the eigenvalues of theHis. Thus, the weights, and the root vectors that connect them, may
be thought of as vectors in an l-dimensional space.

There is certainly more than one method of determining the root vectors of an algebra.
The method I favor and use in this chapter is to write down, given theHis, the weights of
an “easy” representation, such as the defining representation, and then to find the vectors
that connect the weights (that is, the vectors that take one state in the representation
into another). (For example, for SU(3), the three sides of the equilateral triangle with the
vertices given by the weights define six root vectors, 6= 3 . 2, since the negative of a root
vector is also a root vector.)

Review of SU(3)

Let us review how this method works with SU(3). We have‡

H 1= diag(1, −1, 0)/
√

2

H 2= diag(1, 1, −2)/
√

6 (1)

(As usual, diag(1, −1, 0) denotes a 3-by-3 diagonal matrix with diagonal elements equal to
1,−1, and 0.) The normalization chosen,§ trHiHj = δij , is such thatH 1 andH 2 correspond
to λ3/

√
2 and λ8/

√
2, respectively.

The weights of the three different states in the fundamental or defining representation
live in 2-dimensional space and hence are vectors with two components. We can simply
read off these three vectors from (1), scanning vertically. In other words,||

w1=
(

1,
1√
3

)
/
√

2

w2=
(
− 1,

1√
3

)
/
√

2

w3=
(

0, − 2√
3

)
/
√

2 (2)

∗ This also accords with the notation to be used in chapters VI.4 and VI.5.
† The jargon guy tells us that the algebra consisting of the His is known as a Cartan subalgebra.
‡ Concerning the pesky, but trivial, matter of normalization: since the His commute, their normalization is

more or less arbitrary. We choose whatever normalization is most convenient for the discussion at hand, and
hence normalization may vary from chapter to chapter. Hopefully, nobody is a divine around here.

§ A table of roots for the unitary, orthogonal, and symplectic groups is given later in this chapter. With this
normalization, the roots for SU(N) listed in the table will not have a factor of

√
2.

|| By rights, we should write w vertically, but for typographical reasons (pace the publisher), we write it
horizontally.
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which agree with what we had in chapter V.2: w1, w2, and w3 correspond to the up, down,
and strange quark, respectively, as explained there. The six roots are then

α1= w1− w2=√2(1, 0)

α2= w2− w3= (−1,
√

3)/
√

2

α3= w1− w3= (1,
√

3)/
√

2 (3)

corresponding to
√

2I+,
√

2U+, and
√

2V+, respectively, and their negatives (namely,
α4 = w2 − w1, and so on). I need hardly mention that the labeling of weights and roots
is arbitrary. Note that we are not putting arrows on top of the weight and root vectors. It
should be understood that they are 2-component vectors.

As another check, the length squared of the weight vectors is equal to (w1)2= (w2)2=
(w3)2= 2

3 . In other words, the tips of the three weight vectorsw1,w2, andw3 are equidistant
from the origin, which confirms what we know, namely, that the three states in the
fundamental representation 3 form an equilateral triangle.

Positive and simple roots

Recall from chapter V.2 the notions of positive and negative roots and of simple roots. Order
the His in some definite, but arbitrary, way. Read the components of the root vectors in
this particular order.

For the positive root vectors, the first nonzero values are positive. Here we choose to
favor H 2 over H 1, and thus the roots∗ wm − wn for m< n are defined as positive. Again,
physicist’s versus mathematician’s convention! The choice here conforms to the more
mathematical discussion to be given in chapters VI.3 and VI.4, and unfortunately differs
from the physicist’s convention used in chapter V.2. (Again, let the Lord smite the divines!)
Roughly speaking, the roots pointing mostly north are called positive here, while the roots
pointing mostly east were called positive there.

Next, recall that a simple root is a positive root that cannot be written as a sum of two
positive roots with positive coefficients. Here the two simple roots are then w1− w2 and
w2−w3, namely,

√
2I+ and

√
2U+. (Clearly, sincew1−w3= (w1−w2)+ (w2−w3), it is

not simple.)
The notions of positive and simple roots are hardly profound. Pick your favorite direc-

tion. The roots that point mostly in that direction are called positive, and out of those, the
ones that live on the “outer flanks” are simple.

Onward to the orthogonals: Our friend the square appears

At this point, we could go on and work out the roots of SU(N), but it is pedagogically
clearer to work out the roots of SO(N) first, and perhaps, also preferable, so we could enjoy

∗ Note also that the index i on Hi and the index m on wm have different ranges.
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a change of pace. You might want to challenge yourself and figure it out before reading
on. You will soon discover that the cases N odd or even have to be treated differently.

Since SO(3) � SU(2) is almost trivial for you by now, let’s start with the next less
trivial case of SO(4). Of the 6= 4 . 3/2 generators,∗ J12 and J34 form a maximal subset
of mutually commuting generators: they do their things in different spaces (namely, the
1-2 plane and the 3-4 plane). Diagonalize them simultaneously, and call themH 1 andH 2,
respectively:

H 1= diag(1, −1, 0, 0)

H 2= diag(0, 0, 1, −1) (4)

This means that we are not† working in the Cartesian basis (that is, x1, x2, x3, x4) favored
by physicists, but in the circular or polar basis (x1± ix2, x3± ix4).

Compare and contrast with (1). Trivially, for the orthogonal groups, we normalize by
trHiHj = 2δij . Note also that we do not have pesky factors like

√
3.

The rank of SO(4) is l = 2, so that the weights and roots live in 2-dimensional space.
Following the method outlined earlier, we can, again, read off the four weights of the
defining representation immediately, scanning (4) vertically:

w1= (1, 0)

w2= (−1, 0)

w3= (0, 1)

w4 = (0, −1) (5)

The 4 points defined by wm, m= 1, . . . , 4 form a square (tilted by 45◦ with respect to the
axes defined by H 1 and H 2). After meeting the equilateral triangle, it is rather pleasing to
see our other friend the square emerging. See figure 1a.

∗ Here we use the notation of chapter I.3.
† In the Cartesian basis, H 1 and H 2 would not be diagonal.
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The root vectors connect the weights and so are given by

α1≡ w1− w4 = (1, 1)

α2≡ w1− w3= (1, −1)

α3≡ w4 − w1= (−1, −1)

α4 ≡ w3− w1= (−1, 1) (6)

See figure 1b. (Note that no root takes the weight w1 into w2; this is because rotations
cannot transform x1± ix2 into each other. Similarly for x3± ix4.) The roots also form a
square, but one that is now aligned with the axes.

The 45◦ “misalignment” between the weights and the roots underlies the local isomor-
phism SO(4)� SU(2)⊗ SU(2) discussed in chapter IV.7. Recall that we defined (with
the notation used there) the generators (Ji ±Ki) and found that the two sets of generators
decouple. Interestingly, we arrive at the same result here without∗ evaluating a single com-
mutator! (The statement that the algebra of SO(4) falls apart into two pieces follows from
the fact that α1+ α2= (2, 0) is not a root, and thus the corresponding commutator van-
ishes, as was explained in chapter V.2.) Note of course that we are free to choose H 1±H 2

as our H s and thus rotate the weight and root diagrams both by 45◦.
This example shows clearly once again that it is unnecessary to write down all the roots:

half of the roots are negatives of the other half. Let us choose the positive roots to be α1 and
α2. Denote the Cartesian basis vectors by e1= (1, 0) and e2= (0, 1). Then we can write the
four root vectors as

±e1± e2 (signs uncorrelated) (7)

and the two positive root vectors as

e1± e2 (8)

They are both simple.
Although we can now jump almost immediately to SO(2l), it is instructive to tackle

SO(5) first.

SO(5) and a new feature about roots

Again, try to work out the weights and roots of SO(5) before reading on.
First of all, the maximal subset of mutually commuting generators diagonalized now

consists of

H 1= diag(1, −1, 0, 0, 0)

H 2= diag(0, 0, 1, −1, 0) (9)

We still have only 2 His but they are now 5-by-5 matrices. There is no other generator of
SO(5) that commutes with both H 1 and H 2. Although the algebra of SO(5) manifestly

∗ We only input (4).
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contains the algebra of SO(4) as a subalgebra, they have the same rank l = 2. The weights
and roots of SO(5) still live in 2-dimensional space. Two guys can have the same rank,
although one is bigger than the other.

Again scanning (9) vertically, we can read off the weights of the defining representation
5: besides the weights listed in (5), we have the additional weightsw5= (0, 0) (from (H 1)55

and (H 2)55). The weight diagram is now a square with a dot in its center. See figure 2a.
Thirdly, as a result of the appearance of w5, we have, besides the roots listed in (6), 4

additional root vectors, connecting the weights w1, w2, w3, w4 to w5, given by

α5≡ w1− w5= (1, 0)

α6 ≡ w3− w5= (0, 1)

α7 ≡ w2− w5= (−1, 0)

α8 ≡ w4 − w5= (0, −1) (10)

See figure 2b. The roots form a square, but now with the midpoints of the side included.
We have a bit of freedom in choosing which half of the roots we call positive, as was

mentioned before. For SO(4), we chose α1 and α2. Now, for SO(5), in addition to these
two roots, we also include α5 and α6. The algebra SO(4) has two positive roots; SO(5) has
four positive roots.

Here comes a new feature that we have not encountered before! Four of the eight roots,
α1, α2, α3, and α4, have length

√
2, while the other four, α5, α6, α7, and α8, are shorter,

having length 1. The former are known as the long roots, the latter the short roots.∗

It is worth emphasizing that, while the length of some specific root depends on how we
normalize the His and so is not particularly meaningful, the ratio of the lengths of two
specified roots is, in contrast, an intrinsic property of the algebra.

With the same notation as before, the eight root vectors of SO(5) are given by

±e1± e2 (signs uncorrelated), ±e1, ±e2 (11)

∗ This is the kind of jargon I like, descriptive and to the point.
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Compare with (7). The four positive root vectors are (with a particular but natural choice)

e1± e2, e1, e2 (12)

See if you can figure out the simple roots before reading on. They are

e1− e2, e2 (13)

The other two positive roots, e1= (e1− e2) + e2 and e1+ e2 = (e1− e2) + 2e2, are not
simple: they can be written in terms of e1− e2 and e2 with positive coefficients.

SO(6)

Again, instead of jumping immediately to SO(2l) and SO(2l + 1), it is good pedagogy to
do SO(6), for which another new feature will emerge. The maximal subset of mutually
commuting generators consists of the matrices

H 1= diag(1, −1, 0, 0, 0, 0)

H 2= diag(0, 0, 1, −1, 0, 0)

H 3= diag(0, 0, 0, 0, 1, −1) (14)

Again, we read off the weights for the defining representation by scanning (14) vertically:

w1= (1, 0, 0)

w2= (−1, 0, 0)

w3= (0, 1, 0)

w4 = (0, −1, 0)

w5= (0, 0, 1)

w6 = (0, 0, −1) (15)

The weights live in a 3-dimensional space.
The roots are thus given by

±e1± e2, ±e2± e3, ±e1± e3 (signs uncorrelated) (16)

There are 4 . 3= 12 of them, which together with the 3 H s, give 15= 6 . 5/2 generators,
as expected. We choose the positive roots to be

e1± e2, e2± e3, e1± e3 (17)

The simple roots are

e1− e2, e2− e3, e2+ e3 (18)

To see that these are simple, show that those not listed here are not simple.
A new feature is the peculiar arrangement of signs: both e2± e3 are simple.
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SO(2l) versus SO(2l + 1)

By now, you should see how this process goes in general. For SO(2l) (with l ≥ 2), the
matrices

H 1= diag(1, −1, 0, 0, . . . , 0, 0)

H 2= diag(0, 0, 1, −1, 0, 0, . . . , 0, 0)
...

Hl = diag(0, 0, . . . , 0, 0, 1, −1) (19)

form the maximal subset of mutually commuting generators, from which we read off the
2l weights for the defining representation:

w1= (1, 0, . . . , 0)

w2= (−1, 0, . . . , 0)

w3= (0, 1, 0, . . . , 0)
...

w2l−1= (0, . . . , 0, 1)

w2l = (0, . . . , 0, −1) (20)

The weights wm live in an l-dimensional space.
Let us write the 2l weights more compactly as ±ei in terms of the l unit vectors ei, for

i = 1, . . . , l. The roots are then given by

±ei ± ej (signs uncorrelated) (i < j) (21)

as in (7). As a quick check, there are 4l(l − 1)/2 of these, which together with the l H is,
give 2l(l − 1)+ l = 2l(2l − 1)/2, as expected.

We take the positive roots to be ei ± ej . The simple roots are then (recall the SO(6)
example)

ei−1− ei , el−1+ el (22)

(with the understanding that e0 does not exist and so effectively i = 2, . . . , l).
For SO(2l + 1), the His are now (2l + 1)-by-(2l + 1)matrices; we simply add an extra 0

to the matrices in (19). Everything proceeds just as in the discussion going from SO(4) to
SO(5). In addition to the weights in (20), we have the weight w2l+1= (0, 0, . . . , 0), and
hence the additional roots ±ei, taking this extra weight to the weights in (20).

The roots for SO(2l + 1) are then given by

±ei ± ej (signs uncorrelated) (i < j), ±ei (23)

The 2l additional roots bring the total number of roots up to l(2l − 1)+ 2l = 2l2 + l =
(2l + 1)(2l)/2, as expected.
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We take the positive roots to be ei ± ej and ei. The simple roots are then (recall the SO(6)
example)

ei−1− ei , el (24)

(again, effectively, i = 2, . . . , l).
For the reader’s convenience, a table is provided at the end of this chapter.

The roots of SU(N)

We now return to SU(N). All that is required of us is a tedious but straightforward
generalization of (1). Again, consider the defining representation N . Evidently, there are
l =N − 1 traceless N -by-N matrices (namely, σ3 for N = 2, and λ3 and λ8 for N = 3) that
commute with one another and hence can be simultaneously diagonalized. They are

H 1= diag(1, −1, 0, . . . , 0)/
√

2

H 2= diag(1, 1, −2, 0, . . . , 0)/
√

6
...

Hi = diag(1, 1, 1, 1, . . . , 1︸ ︷︷ ︸
i

, −i , 0, . . . , 0)/
√
i(i + 1)

...

Hl−1= diag(1, 1, 1, 1, . . . , 1, 1, 1, −(l − 1), 0)/
√
(l − 1)l

H l = diag(1, 1, 1, 1, . . . , 1, −l)/√l(l + 1) (25)

If we think of the diagonal elements of Hi as a vector, then it is a vector with N = l + 1
components. There are l such vectors. In particular, aside from the overall normalization
factor 1/

√
i(i + 1), the vectorHi contains i ones in a row, followed by a single (−i), which

in turn is followed by (l + 1− i − 1)= (l − i) zeroes. As before with SU(3), we normalize
by tr HiHj = δij : tr(H i)2= (i + i2)/(i(i + 1))= 1.

The weights of the N = l + 1 different states in the fundamental or defining represen-
tation live in l-dimensional space and hence are vectors with l components. Once again,
we can simply read them off from (25), scanning vertically:

w1=√2(1/2, 1/(2
√

3), . . . , 1/
√

2m(m+ 1), . . . , 1/
√

2l(l + 1))

w2=√2(−1/2, 1/(2
√

3), . . . , 1/
√

2m(m+ 1), . . . , 1/
√

2l(l + 1))

w3=√2(0, −1/
√

3, . . . , 1/
√

2m(m+ 1), . . . , 1/
√

2l(l + 1))
...

wm+1=√2(0, 0, . . . , 0, −m/√2m(m+ 1), 1/
√

2(m+ 1)(m+ 2) . . . , 1/
√

2l(l + 1))
...

wl+1=√2(0, 0, 0, 0, 0 . . . . . . . . . . . . . . . . . . , 0, 0, −l/√2l(l + 1)) (26)

The ith component of wj is given by (H i)jj .
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This may look complicated, but we are merely copying from (25) without even having
to truly engage our brains. If you are at all confused, simply retreat to N = 2 and 3.

The root vectors take us from one state to another, and hence they are given by the
differences between the weights, namely, wm −wn, m, n= 1, . . . , N = l + 1. Thus, there
are N(N − 1) roots. Together with the l = N − 1 His, we have all together N(N − 1)+
(N − 1)= (N + 1)(N − 1)=N2− 1 generators, which is indeed the case.

Since theN(N − 1)/2 positive roots of SU(N) live in an (N − 1)-dimensional space, they
can be written as linear combinations of (N − 1) simple roots. In the present context, there
is no need to list the N(N − 1)/2 positive roots, namely, wm − wn for m< n; it suffices to
list the (N − 1) simple roots wm − wm+1 for m= 1, 2, . . . , N − 1.

From line segment to equilateral triangle to tetrahedron and so on

Pedagogically, instead of the mess in (26), I think that if you work out the SU(4) case, you
will understand the general case completely. So do it!

We now have 3= 4 − 1 mutually commuting matrices:

H 1= diag(1, −1, 0, 0)/
√

2

H 2= diag(1, 1, −2, 0)/
√

6

H 3= diag(1, 1, 1, −3)/(2
√

3) (27)

Again, scanning (27) vertically, we write down

w1= 1√
2

(
1,

1√
3

,
1√
6

)
w2= 1√

2

(
− 1,

1√
3

,
1√
6

)
w3= 1√

2

(
0, − 2√

3
,

1√
6

)

w4 = 1√
2

(
0, 0, −

√
3
2

)
(28)

Note that the first two components of w1, w2, and w3 are exactly the same as in (2). In
other words, the three weight vectors w1, w2, and w3 form an equilateral triangle. It is
the fourth weight vector that takes us into 3-dimensional space, where SU(4), a rank 3
algebra, lives.

You are surely bold enough to guess that the tips of these four weight vectors form the
vertices of a tetrahedron. Indeed, (w1)2= (w2)2= (w3)2= (w4)2= 3

4 . The tips of the four
weight vectors are equidistant from the origin, and your intuition works.

We see that the sequence proceeding from SU(2) up to SU(4) and beyond describes
a line segment, an equilateral triangle, a tetrahedron, and so on. The roots also have an
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Figure 3 The four vertices of a tetrahedron form the weight
diagram of the defining representation of SU(4). The six edges
correspond to the 12= 6 . 2 roots. The rank is 3, as described by
the 3-dimensional space the tetrahedron lives in. So the number
of the generators is given by 12+ 3= 42 − 1= 15.

appealing geometrical interpretation. For example, for SU(3), they map to the three sides
of the equilateral triangle; for SU(4), the six sides of the tetrahedron.

For SU(4), l = 3 and the three simple roots (write them down before reading
on!) are

α1≡ w1− w2=√2(1, 0, 0)

α2≡ w2− w3= (−1,
√

3, 0)/
√

2

α3≡ w3− w4 = (0, −√2, 2)/
√

3 (29)

Verify that (α1)2 = (α2)2 = (α3)2 = 2, α1 . α2 =−1, and α2 . α3=−1. Indeed, we have a
tetrahedron.

In contrast to α1 . α2 and α2 . α3, α1 . α3 vanishes, so that the two roots α1 and α3 are
orthogonal.

How is your geometric intuition? Can you visualize this result? Yes, precisely, if you
label the vertices of the tetrahedron byw1,w2,w3, andw4, then α1 and α3 describe the two
edges that do not share a vertex in common. See figure 3.

Generalizing this discussion, we find that the simple roots of SU(l + 1) satisfy

(αi)2= 2, i = 1, . . . l and αi . αi+1=−1, i = 1, . . . , l − 1 (30)

The simple roots of SU(l + 1) can be written in a more elegant form by going to a
space one dimension higher. Let ei (i = 1, . . . , l + 1) denote unit vectors living in (l + 1)-
dimensional space. Then (ei − ei+1)2 = 1+ 1= 2, and (ei − ei+1) . (ej − ej+1) = −1 if
j = i ± 1 and 0 otherwise. The l simple roots SU(l + 1) are then given by

αi = ei − ei+1, i = 1, . . . l (31)

Note that the simple roots live in the l-dimensional hyperplane perpendicular to the
vector

∑
j e
j .
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Sp(2l)

At this point, we could breeze through the algebra of Sp(2l), generated by (as was discussed
in chapter IV.7) the set of hermitean traceless matrices

iA⊗ I , S1⊗ σ1, S2⊗ σ2, S3⊗ σ3 (32)

Recall that I denotes the 2-by-2 identity matrix; A an arbitrary real l-by-l antisymmetric
matrix; and S1, S2, and S3, three arbitrary real l-by-l symmetric matrices. The His are
practically handed to us on a platter, already diagonalized: namely, for i = 1, 2, . . . , l ,

Hi = ui ⊗ σ3=
⎛⎝ ui 0

0 −ui

⎞⎠ (33)

Here ui denotes the l-by-l diagonal matrix with a single entry equal to 1 in the ith row and
ith column. Verify that these are indeed the correct H s.

For example, for Sp(4),

H 1= diag(1, 0, −1, 0)

H 2= diag(0, 1, 0, −1) (34)

and so

w1= (1, 0)

w2= (0, 1)

w3= (−1, 0)

w4 = (0, −1) (35)

The four points defined by wm, m= 1, . . . , 4 form a square identical to that appearing in
SO(4). Indeed, the weights are given in terms of the unit basis vectors by w1=−w3= e1

and w2=−w4 = e2.
The eight root vectors connect each of the four weights to the others (note the crucial

difference between SO(4) (with 4 . 3/2= 6 generators) and the bigger group Sp(4) (with
1+ 3+ 3+ 3= 10 generators)). The roots are ±ei ± ej , and ±2ei.

As usual, we need only write down the four positive roots, chosen to be

α1≡ w1− w3= (2, 0)= 2e1

α2≡ w1− w4 = (1, 1)= e1+ e2

α3≡ w2− w4 = (0, 2)= 2e2

α4 ≡ w1− w2= (1, −1)= e1− e2 (36)

See figure 4.
But this is identical, except for a 45◦ rotation, to the root digram for SO(5)! See figure

2. We have now demonstrated the local isomorphism Sp(4)� SO(5), first suspected in
chapter IV.7.
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Sp(4)

Figure 4

Confusio: “How could that be? The defining representation of the group Sp(4) is 4-
dimensional, while that of the group SO(5) is 5-dimensional!”

It is OK, Confusio. Recall that the defining representation of the group SU(2) is 2-
dimensional, while that of the group SO(3) is 3-dimensional, yet the two algebras are
isomorphic. The root diagrams are the same up to rotation. There is no requirement that
the weight diagrams of the two algebras be the same.

For Sp(2l), the roots are ±ei ± ej and ±2ei, with i , j = 1, . . . , l. The positive roots are

ei ± ej , i < j , and 2ei (37)

with the simple roots (verify this!)

ei−1− ei , i = 2, . . . , l , and 2el (38)

Let’s count. There are l − 1+ 1= l simple roots, 2l(l − 1)/2+ l = l2 positive roots, and 2l2

roots, plus the l H s to give a total of 2l2+ l = l(2l + 1) generators, in precise agreement
with the result in chapter IV.7.

The roots of the four families

The following table summarizes the four families we have studied.

Number of generators Roots Simple roots

SU(l) l2− 1 ei − ej ei − ei+1

SO(2l + 1) l(2l + 1) ±ei ± ej , ±ei ei−1− ei , el
Sp(2l) l(2l + 1) ±ei ± ej , ±2ei ei−1− ei , 2el

SO(2l) l(2l − 1) ±ei ± ej ei−1− ei , el−1+ el
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The indices i and j run from 1 to l and the es denote l-dimensional unit vectors. Note
that for this statement to hold for all entries in the table, we have to enter the rank l − 1
algebra Al−1= SU(l) instead of SU(l + 1). (Mnemonic: SU(2) is rank 1.)

Appendix: The Chevalley basis

You have surely noticed that, in contrast to the orthogonal and symplectic algebras, theHis, the root vectors, and
the weights of the unitary algebras are chock-full of yucky factors like

√
3 (as in (25)). This is partly because for

historical reasons (charge, hypercharge, isospin, and so forth) physicists want to keep T3 and T8, in the context
of SU(3), orthogonal to each other. We can get rid of the nasty square roots in (25), but only at a price. We no
longer have tr HiHj proportional to δij , but why would mathematicians care?

Indeed, mathematicians prefer to use what is known as the Chevalley basis.1 Pedagogically, the basis is best
explained with the example of SU(3). Instead of the Gell-Mann matrices λ3 and λ8, we use

h1=
⎛⎜⎝ 1 0 0

0 −1 0

0 0 0

⎞⎟⎠ and h2 =
⎛⎜⎝ 0 0 0

0 1 0

0 0 −1

⎞⎟⎠ (39)

Define the raising matrices∗

e1=
⎛⎜⎝ 0 1 0

0 0 0

0 0 0

⎞⎟⎠ and e2 =
⎛⎜⎝ 0 0 0

0 0 1

0 0 0

⎞⎟⎠ (40)

Clearly, h1, e1, and the lowering matrix (e1)T form an SU(2) algebra in the standard form familiar since
chapters IV.4 and IV.5: we have [h1, e1]= 2e1, and so on and so forth. Similarly, h2, e2, and (e2)T form another
SU(2) algebra. The other raising matrix is given by e3≡ [e1, e2]. The eight matrices h1, h2, e1, (e1)T , e2, (e2)T , e3,
and (e3)T generate SU(3).

Look, no more pesky square roots, but now tr h1h2 �= 0. We will have slightly more to say about the Chevalley
basis in chapter VI.4.

Exercises

1 Show that for SO(6), the positive roots e1− e3, e1+ e3, and e1+ e2 are not simple.

2 Verify that for Sp(6), the simple roots are e1− e2, e2 − e3, and 2e3.

Note

1. There are of course also deeper reasons undergirding Chevalley’s work, but we will not go into them in this
book.

∗ Unfortunate but standard notation. These es, being matrices, are obviously not to be confused with the root
vectors.



VI.3 Lie Algebras in General

Only four families of Lie algebras, plus a few exceptional algebras

My purpose here is to give an elementary introduction to the Cartan classification of Lie
algebras. We already know about the SO(N) and SU(N) families of compact Lie groups
and their associated Lie algebras. Offhand, you might think there could exist an infinite
variety of Lie algebras.∗ Remarkably, Cartan† showed that there are only four‡ families
of Lie algebras, plus a few algebras, known as exceptional algebras, that do not belong to
these four families.

How is this remarkable result possible? The root reason lies in our discussion of the roots
of SU(3) in chapter V.3. There we saw that the roots, when appropriately normalized, are
of equal length, and the angles between them can only take on two possibilities. Thus, the
roots of SU(3) form a rigid geometrical pattern. Then our friend the poor man discovered,
in chapter VI.1, that only certain patterns might be allowed by the structure of Lie algebras.
As we shall see, this heuristic motivation turns out to point us in the right direction.

The poor man is clearly on to something: the geometrical patterns of the root vectors
are related for the Lie algebras SU(N). In the rest of this chapter, we shall see that his
hunch is in fact valid. The strategy is to derive constraints on the lengths of and the angles
between the root vectors, and then to deduce the possible Lie algebras.

A general Lie algebra

Consider a general Lie algebra with n generators defined by

[Xa , Xb]= if abcXc (1)

∗ Here we only discuss the algebras of compact Lie groups.
† Our history is admittedly skimpy here. A number of authors, including H. Weyl, B. L. van der Waerden, G.

Racah, E. B. Dynkin, and others, all contributed.
‡ And SO(N) counts as two families. Recall chapter IV.2 showing how SO(2n) and SO(2n+ 1) differ.
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with a = 1, . . . , n. (For example, for SU(3), n= 32− 1= 8.) Here, the index c is summed
over.

Note that f abc in (1) carries two superscripts and one subscript. The difference between
the two kinds of indices will be explained shortly. For now, we insist that when two indices
are set equal and summed over, one has to be an upper index, the other a lower index.

The structure constants f abc =−f bac are antisymmetric in the two upper indices by
definition. Hermiticity of Xa implies that the f abc are real.

At this stage, mathematicians would proceed treating Xa as abstract entities, but as
physicists, to wrap our heads around something concrete, we can simply think of Xa as
matrices in the defining representation, for example, the Pauli matrices or the Gell-Mann
matrices.

The adjoint representation

Plug (1) into the Jacobi identity

[[Xa , Xb], Xc]+ [[Xb , Xc], Xa]+ [[Xc , Xa], Xb]= 0 (2)

to obtain

f abdf
dc
g + f bcdf dag + f cadf dbg = 0 (3)

Define

(T a)bd ≡−if abd (4)

In other words, T a is a matrix labeled by a whose rows and columns are indexed by b and
d, respectively. Now rewrite (3) as

i2(−1)(T a)bd(T
c)dg + i2(−1)2(T c)bd(T

a)dg + if cad(T d)bg = 0 (5)

We exploited the antisymmetry of f and indicated the factors of (−1) needed to write (3)
in this form. (For example, we wrote f dcg in the first term in (3) as −f cdg.)

Recognizing the first term as+(T aT c)bg and the second term as−(T cT a)bg, we see that
(5) says

[T a , T c]= if acdT d (6)

As is already familiar from earlier discussions of SU(2) and SU(3), for example, and also of
SO(N) and SU(N), the matrices T a, constructed out of the structure constants, represent
the entities Xa in the adjoint1 representation.

The Cartan-Killing metric

Define the Cartan-Killing metric:

gab ≡ Tr T aT b =−f acdf bdc (7)
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As physicists, we will, without any apology, immediately restrict ourselves to those Lie
algebras for which gab has an inverse, which we write as gbc with lower indices, such that

gabgbc = δac (8)

Except in our discussions of SU(N) (for which complex conjugation distinguishes upper
and lower indices), whether we write an index as a superscript or a subscript hasn’t made
a difference in this book until now. Indeed, we were often intentionally sloppy to prove a
point, for example, by writing Pauli matrices either as σa or σa. But now it starts to matter!

For the benefit of some readers, I give an exceedingly brief summary of the notion of a
metric in an endnote.2

All we need here is that the real symmetric object gab (and its inverse gab) provides a
natural metric in the present context. We use the metric merely to raise and lower indices
and to take scalar products. Indeed, from (7), the metric in the present context is just a real
symmetric matrix, given once and for all; there simply isn’t even any x for gab to depend on.

One important consequence of the metric is that when we contract and sum over
indices, we can only contract an upper index with a lower index. Note that we have been
scrupulously following this rule in this chapter.

In fact, since gab is manifestly real symmetric, we can, by a similarity transformation,
set it to be equal to δab, so that the space in question is just good old everyday Euclidean flat
space. (Explicitly, by setting T ′a = SabT b, we can diagonalize gab and by scaling the T ′as set
the diagonal elements to be all equal.) Indeed, that is exactly what physicists do implicitly
without any handwringing or talk, for example, by normalizing the Pauli matrices for
SU(2) and the Gell-Mann matrices for SU(3). With the choice gab = δab, they can afford
to be sloppy with upper versus lower indices.

The reason we went through this tedious verbiage is because mathematicians like to
keep things general and because for some purposes some choice of bases3 that makes
gab �= δab can be more convenient. We will keep it general here until further notice.

Symmetry of structure constants

By construction, the structure constants f abc are antisymmetric in ab. Now, it does not
even make sense to ask whether they are also antisymmetric on the exchange of b and c,
since these two indices are different kinds of beasts. We need to raise the index c for it to
be on the same footing as b.

So, let us define structure constants with all upper indices:

f abc ≡ f abdgdc =−f abdf degf cge
= (f bedf dag + f eadf dbg)f cge
= i3 tr(T b(−T a)T c + (−T a)(−T b)T c)
=−i tr(T aT bT c − T bT aT c) (9)

where we have used (3) in the third equality (with c→ e). The final expression shows that
f abc =−f acb and hence is totally antisymmetric.
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This verifies what we know about SU(2) and SU(3); for SU(2), the structure constants
are just the antisymmetric symbol εabc.

Cartan subalgebra

Out of the set of n Xas, find the maximal subset of mutually commuting generators Hi,
i = 1, 2, . . . , l, so that

[Hi , Hj ]= 0, i , j = 1, . . . , l (10)

The important number l is known as the rank. In other words, f ijc = 0 for any c. (For
SU(2), l = 1 withH corresponding to σ 3. For SU(3), l = 2 withH 1 andH 2 corresponding
to λ3 and λ8, respectively.) The commuting algebra generated by the His is known as the
Cartan subalgebra, as was already mentioned in chapter VI.2.

Since theHis mutually commute, they can be simultaneously diagonalized. (For exam-
ple, the Gell-Mann matrices λ3 and λ8 are chosen to be diagonal.)

Call the remaining (n− l) generatorsEs. TheEs will have to carry indices to distinguish
themselves from one another, but we will be intentionally vague at this stage. (For SU(2),
the Es are known as J±, and for SU(3), as I±, U±, and V±.) In the basis in which the His
are diagonal, we can choose the Es to have all zeroes along the diagonal.∗ Thus, we can
choose tr HiE = 0 for all E. (This is clear from the SU(2) and SU(3) examples.)

From the Cartesian basis to the circular basis

We learned earlier in this chapter that the matrices T a, constructed out of the structure
constants, represent the entities Xa in the adjoint representation. Focus on those matri-
ces T i representing the generatorsHi. By definition, they commute with one another, and
hence by a theorem given in the review of linear algebra, these lmatrices can be simultane-
ously diagonalized. Denote the diagonal elements of T i by −βi(a). Here a , b = 1, . . . , n,
while i = 1, . . . , l. These l matrices are thus given by

(T i)ab =−

⎛⎜⎜⎜⎜⎜⎜⎜⎝

βi(1) 0 0 0

0 βi(2) 0 0

0 0
. . . 0

0 0 0 βi(n)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=−βi(a)δab (11)

Indeed, the equality (T i)ab =−βi(a)δab is just a clumsy way of saying that the diagonal
elements of T i are given by βi(a).

∗ Any given E can be written as N +D, where N has zeroes along the diagonal while D is diagonal. But
thenD can be written as a linear combination of theHis and the identity I , which simply splits off from the Lie
algebra as a trivial U(1) piece. Simply subtract D from E to define a new E.
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The quantities βi(a) depend on a (or equivalently, b in view of the δab), of course.∗ The
expression βi(a)δab in (11) does not imply summation over a. Note that the hermiticity of
T i implies that the βi(a) are real numbers.

To see more clearly what is going on, let us go back to SU(2) or SO(3). There is only
one Hi, namely, the generator Jz of rotation around the third axis. So drop the index i. In

the Cartesian basis
(
x1

x2

x3

)
, Jz is represented by

−i

⎛⎜⎜⎝
0 1 0

−1 0 0

0 0 0

⎞⎟⎟⎠=
⎛⎜⎜⎝

0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎠ . (12)

We recognize the second Pauli matrix in the upper left block. This matrix can be diag-

onalized to
(

1 0 0
0 −1 0
0 0 0

)
by going from the Cartesian basis to the circular or polar basis.

Correspondingly, instead of the generators
(
J 1

J 2

J 3

)
, we should use

⎛⎜⎜⎝
J+
J−
J 3

⎞⎟⎟⎠≡
⎛⎜⎜⎝
J 1+ iJ 2

J 1− iJ 2

J 3

⎞⎟⎟⎠ (13)

as explained in chapter IV.2. (While we distinguish between upper and lower indices in
our general discussion, we don’t when we refer to an example; whether we write J 3 or
J3 here is immaterial.) You should realize that, in spite of the unfamiliar notation, we are
going over totally familiar stuff.

We want to go through the analogous procedure for a general Lie algebra and find the
analogs of J±. (To make sure that you follow this discussion, you should work out what
β3(a) and β8(a) are for SU(3).)

A better notation

Staring at (11) for a while, recall that we also know, from (4), that these matrices are
determined by the structure constants (T i)ab =−if iab. Thus, in this basis, if iab = βi(a)δab.
What an ugly expression! But you know full well what it means.

You should remember that in the original set of generators Xa, a = 1, . . . , n, we have
separated out the generators H 1, H 2, . . . , Hr . The remaining (n − l) generators were
called Es earlier. Let us now compute the commutator of Hi with one of these (n− l)
remaining generators. In our chosen basis, we have

[Hi , Xa]= if iabXb = βi(a)δabXb = βi(a)Xa (14)

∗ Since otherwise T i would be proportional to the identity matrix, which we know is not the case.
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Note that no summation over a is implied on the right hand side; this says, quite
remarkably, that in this basis, Hi commuted with Xa yields Xa again, multiplied by some
proportionality constant βi(a). (In the SU(2) example, J 3 commuted with J± yields±J±.)

When the real numbers βi(a) first popped up in (11), we thought of it as the numbers
along the diagonal of each of the l possible T i matrices. Let us now turn our brains around,
and think of

�β(a)≡ (β1(a), β2(a), . . . , βl(a)) (15)

as an l-dimensional vector, known as the root vector∗ (or root for short), for each a.
Thus, we can associate a vector �β(a)with each a. It is convenient to rename the generator

Xa associated with the root �β(a) as E �β , or more simply, Eβ for ease of writing. In other
words, name the generators not in the Cartan subalgebra by their jobs.4 This makes good
sense. What we did for SU(3), inventing names like I , U , and V for different generators,
will clearly become unmanageable when we go to larger algebras.

Roots appear

In this revised notation, (14) now reads

[Hi , Eβ ]= βiEβ (16)

To clarify the notation: before, we specified a generator Xa (a = l + 1, . . . , n) and called
its associated root vector �β(a). Now we prefer to specify a root vector �β and to label the
corresponding generator by Eβ . This is simply a matter of convenience and historical
precedent.

Again, to see what is going on, think of SU(2) or SU(3), for which the correspondents
of the Eβs are J±, or I±, U±, and V±.

Indeed, for SU(2) or SO(3), (16) corresponds to [J 3, J±]=±J±, as has already been
mentioned. Since l = 1, the root vector �β(±)=±1 is 1-dimensional, that is, it is just a
number; E+ is J+ and E− is J−. Note that in this basis β3(+)=+1 and β3(−)=−1 are
real, as anticipated.

Hermitean conjugating (16), we obtain [Hi , E†
β ]=−βiE†

β , where we used the reality of

βi. In other words,

E−β ≡ E†
β (17)

is associated with the root (− �β). (Note that while Xa is hermitean, Eβ is not; it’s just a
question of basis: in SU(2), for example, we have the hermitean Jx and Jy versus the
nonhermitean J±.)

In summary, the original set of generators Xa, a = 1, 2, . . . , n, has now been divided
into 2 sets, Hi, i = 1, 2, . . . , l, and Eβ , one for each of the (n− l) root vectors. (Again, I
remind you that in SU(3), the His are I3 and Y , and the Eβs are I±, U±, and V±.)

∗ As you can tell, we are, slowly but surely, moving toward contact with chapter VI.2.
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A theorem about the rank and the number of generators

We just learned that the negative of a root is also a root. It follows that the number of
roots5 is even, and so (n− l) must be an even integer. (For SU(2), n= 3, l = 1, n− l = 2;
for SU(3), n= 8, l = 2, n− l = 6.)

Interestingly, when the number of generators is odd, the rank has to be odd, and when
the number of generators is even, the rank has to be even.

Let us try out this theorem on the orthogonal algebras: SO(4) has an even number
(4 . 3/2= 6) of generators and has rank 2. Observe that SO(5) still has an even
number (5 . 4/2= 10) of generators and hence its rank must be even, and indeed, it has
rank 2, just like SO(4). More generally, SO(4k) and SO(4k + 1) have 4k . (4k − 1)/2 and
(4k + 1) . 4k/2 generators, respectively, both even numbers. In contrast, SO(4k + 2)
and SO(4k + 3) have (4k + 2) . (4k + 1)/2 and (4k + 2) . (4k + 1)/2 generators, respec-
tively, both odd numbers. In chapter VII.1, we will see further evidence of different
orthogonal algebras behaving quite differently.

Making roots out of roots

Given two roots �α and �β, what is [Eα , Eβ ]? To answer this, we ask another question: what
do [Eα , Eβ ] do to Hi? We know from (16) what Eα and Eβ separately do to Hi.

Exploit the Jacobi identity again, using (16):

[Hi , [Eα , Eβ ]]=−[Eα , [Eβ , Hi]]− [Eβ , [Hi , Eα]]

= [Eα , βiEβ ]− [Eβ , αiEα]

= (�α + �β)i[Eα , Eβ ]. (18)

Thus, [Eα , Eβ ] is associated with the root �α + �β. We can add two root vectors to get another
root vector.

Well, for all we know, [Eα , Eβ ] could vanish, in which case �α + �β is not a root. More
precisely, while you are of course free to add vectors, there does not exist a generator
associated with this vector.

A “trivial” corollary tells us that 2�α is not a root, since [Eα , Eα]= 0. In other words, given
a root �α, if k�α is also a root, then k can only be equal to 0 or ±1.

Suppose that [Eα , Eβ ] does not vanish: �α + �β is a root, and [Eα , Eβ ] is proportional to
Eα+β . Giving a name to the proportionality constant, we write

[Eα , Eβ ]=Nα ,βEα+β (19)

We can cover both possibilities by saying that Nα ,β = 0 if �α + �β is not a root. In other
words, Eα and Eβ commute if �α + �β is not a root. For example, for SU(3), [I+, U+]= V+
while [U+, V+]= 0.
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From (19) we see that the (unknown) normalization factors satisfy Nα ,β = −Nβ ,α.
Hermitean conjugating (19), we obtain, using (17), [E−β , E−α]=N∗

α ,βE−α−β . But by (19),
this is also equal to N−β ,−αE−α−β . Hence

Nα ,β =−N∗−β ,−α =−N−β ,−α (20)

where in the last step we use the fact that the structure constants are real.
We are not done squeezing the juice out of (18). Set �β =−�α. We learn that [Eα , E−α]

commutes with Hi, for all i. Since by definition the set {H 1, . . . , Hl} is the maximal set
of commuting generators, [Eα , E−α] must be a linear combination of the His. Just for
laughs, call the coefficient in the linear combination αi, so that

[Eα , E−α]= αiH i (21)

At this stage, αi (note the lower index) are a bunch of coefficients. Our job is to find out
whether they are related to αi, if at all. (Indeed, αi and αi are related, as the notation
suggests and as we will see presently.)

Space spanned by the His and the scalar product between roots

Multiply (21) by Hj and trace:

αi tr HiHj = tr(EαE−αHj − E−αEαHj)= tr E−α[Hj , Eα]

= αj tr EαE−α (22)

where we used the cyclicity of the trace. Thus far, Eα has not been normalized. We now
normalize Eα so that

tr EαE−α = tr Eα(Eα)
†= 1 (23)

Referring back to (7) we see that

tr HiHj = gij (24)

Hence (22) says that

αig
ij = αj (25)

As mentioned earlier, we can choose tr HiEα = 0, so that the metric is block diagonal. In
the space spanned by theHis (for example, the plane coordinatized by I3 and Y in SU(3)),
the metric is then simply gij , the inverse of gij , defined by gijgjk = δki . Thus, we obtain
αi = gijαj , and our anticipatory notation is justified.

Again, physicists usually take gij to be simply the Euclidean metric δij . For example,
for SU(3), any reasonable physicist would normalize T 3 and T 8 so that tr T 3T 3= tr T 8T 8

and tr T 3T 8 = 0. As mentioned in chapter V.3, except for a possible stretching of the axes,
physicists much prefer spaces to be Euclidean.
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The scalar product between two roots is then defined by

(�α , �β)= gijαiβj = gijαiβj (26)

As you will see in the following, we only need the metric to define these scalar products.

Lie algebra in the Cartan basis

To summarize, in general, a Lie algebra is defined as in (4). First, separate theXs into two
sets, theH s and theEs, known as the Cartan basis.6 The commutators are then as follows:
H with H gives 0; H with E is just E multiplied by a number; E with another E gives
either 0 or another E; however, E with E† (which is also an E) gives a linear combination
of H s.

More precisely, a general Lie algebra is defined by

[Hi , Hj ]= 0, (27)

[Hi , Eα]= αiEα , (28)

[Eα , Eβ ]=Nα ,βEα+β , (29)

[Eα , E−α]= αiH i (30)

We cannot keep on climbing forever

To see what to do next, we look for inspiration in the two examples that we have worked
through: SU(2)� SO(3) and SU(3).

In SU(2), let’s start with [J+, J−]∝ J3. Then we commute repeatedly with J+, obtain-
ing [J+, [J+, J−]]∝ [J+, J3]∝ J+, and finally [J+, [J+, [J+, J−]]]= [J+, J+]= 0. Similarly,
commuting [J+, J−] repeatedly with J− eventually also gives 0. The basic idea is that we
cannot keep on climbing in the same direction, either up or down, forever. The ladder has
a top and a bottom rung.

In SU(3), there is the additional feature of different root vectors pointing in different
directions. For example, consider [U−, V+]∝ I+, and then [U−, [U−, V+]]∝ [[U−, I+]= 0.

We are thus inspired, given a general Lie algebra, to consider the sequence of nested
commutators [Eα , Eα , [Eα , . . . [Eα , Eβ ] . . .]], with two roots �α �= �β.

According to (29), we encounter Eα+β , E2α+β , and so on. Eventually, we must reach 0,
since the algebra has a finite number of generators. Denote by p the maximum number
of Eαs in this chain before it vanishes. In other words, p is determined by requiring that
�β + (p + 1)�α not be a root. See figure 1.

Similarly, we can consider the sequence [E−α , [E−α , [E−α , . . . [E−α , Eβ ], . . .]]], giving
usE−α+β ,E−2α+β , and so on. Denote by q the maximum number ofE−αs. In other words,
q is determined by requiring that �β − (q + 1)�α not be a root.
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Figure 1 The chain of roots �β + k�α must terminate on both ends, since
the algebra has a finite number of generators. As indicated here, the
integers p and q referred to in the text have values p = 3 and q = 2. We
will see later that the figure as drawn is impossible.

The “β chain pointing in the α direction” starts with �β + p�α and ends with �β − q �α, thus
containing all together p + q + 1 roots.

For example, in SU(3), the V+ chain pointing in the U− direction contains two roots,
namely, V+ and V+ + U− = I+. In other words, p = 1 and q = 0.

Jacobi identity implies a recursion relation

Next consider the Jacobi identity

[Ekα+β , [Eα , E−α]]+ [Eα , [E−α , Ekα+β ]]+ [E−α , [Ekα+β , Eα]]= 0. (31)

Using (28), (29), and (30), we find that the first term is equal to

[Ekα+β , αiH
i]=−αi(kαi + βi)Ekα+β (32)

while the second and third terms are equal to

(Nα , (k−1)α+βN−α ,kα+β +N−α , (k+1)α+βNkα+β ,α)Ekα+β (33)

Thus, we obtain

k(�α , �α)+ (�α , �β)=Nkα+β ,αN−α , (k+1)α+β +N−α ,kα+βNα , (k−1)α+β . (34)

Recall from (19) that Nα ,β =−Nβ ,α. The first term in (34) can be written as

−Nα ,kα+βN−α , (k+1)α+β ≡−M(k , �α , �β) (35)

where, to save writing, we have defined the symbolM . Now we see the second term in (34)
is just +M(k − 1, �α , �β). Thus (34) amounts to a recursion relation controlled by the two
scalar products (�α , �α) and (�α , �β):
M(k − 1, �α , �β)=M(k , �α , �β)+ k(�α , �α)+ (�α , �β) (36)
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The initial and final conditions are, as described above,

[Eα , Epα+β ]= 0�⇒Nα ,pα+β = 0�⇒M(p , �α , �β)= 0 (37)

and

[E−α , E−qα+β ]= 0�⇒N−α ,−qα+β = 0�⇒M(−q − 1, �α , �β)= 0 (38)

We are now ready to recurse using (36) and the initial condition (37):

M(p − 1, �α , �β)=M(p , �α , �β)+ p(�α , �α)+ (�α , �β)= cp + d (39)

To save writing, we have defined c ≡ (�α , �α) and d ≡ (�α , �β). Next, from (36), M(p −
2, �α , �β)= c(p+ p− 1)+ d + d ,M(p− 3, �α , �β)= c(p+ p− 1+ p− 2)+ d + d + d, and
so on, giving us

M(p − s , �α , �β)= c
(
sp −

s−1∑
j=1

j

)
+ sd = s

(
c

{
p − 1

2
(s − 1)

}
+ d
)

(40)

Eventually, we should obtain 0. Indeed, the final condition (38) tells us that M(−q −
1, �α , �β)=M(p − (p + q + 1), �α , �β)= 0. Setting s = p + q + 1 in (40) and equating the
resulting expression to∗ 0, we obtain 2d/c = 2(�α , �β)/(�α , �α)= q − p.

We conclude that

2
(�α , �β)
(�α , �α) = q − p ≡ n (41)

with n some integer† that can have either sign, since all we know is that p and q are
non-negative integers.

Next, we can repeat the same argument with the roles of �α and �β interchanged; in other
words, consider the α chain pointing in the β direction that starts with �α + p′ �β and ends
with �α − q ′ �β. We would obtain

2
(�α , �β)
( �β , �β) = q

′ − p′ ≡m (42)

withm some other integer (that can also have either sign and that may or may not be equal
to n). Note that p′ and q ′ are in general not the same as p and q.

Multiplying these two equations, we find that the angle between roots cannot be arbitrary
(as we had suspected from our discussion of SU(3)):

cos2 θαβ = (�α , �β)2
(�α , �α)( �β , �β) =

mn

4
(43)

∗ Recall from our earlier discussion that p + q + 1 is equal to the number of roots contained in the chain; it
is an integer ≥1, since p and q are non-negative integers.

† Not to be confused with the number of generators, clearly. There are only so many letters suitable for integers,
and n is standard in this context.
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Remarkably, this restricts the unknown integersm and n to only a few possibilities: since
cos2 θαβ ≤ 1 we have

mn≤ 4 (44)

On the other hand, dividing (42) by (41), we find that the ratio of the length squared of
the two different roots is required to be a rational number:

(�α , �α)
( �β , �β) =

m

n
(45)

These three restrictions, (43), (44), and (45), allowed Cartan to classify all possible Lie
algebras.

Our friend the poor man was right; the rather rigid geometrical constraints on the
lengths and angles of root vectors restrict root diagrams to only a handful of possible
patterns. In chapter VI.4 we will see how this strategy works in detail.

Challenge yourself: see if you can push forward the analysis before reading the next
chapter. To make it easier for yourself, first try to classify the rank l = 2 algebras; the root
vectors then lie in a plane, making them easy to visualize.

Notes

1. In the more mathematical literature used by physicists, for example, in string theory, the adjoint representa-
tion is defined as a linear map on the vector space spanned by the Lie algebra. For any two elements X and
Y , consider the map Y → adj (X)Y ≡ [X , Y ]. Then prove adj ([X , Y ])= [adj (X), adj (Y )].

2. In differential geometry, given a decent D-dimensional manifold, with coordinates xμ (where μ takes on D
values; think of the sphere for whichD = 2), the distance squared between two infinitesimally nearby points
with coordinates xμ and xμ + dxμ is given by ds2 = gμνdxμdxν , with μ and ν summed over, of course.
Basically, Pythagoras told us that! (For the familiar sphere, ds2 = dθ2 + sin2 θdϕ2, for example.) Riemann
observed that, given the metric gμν , we can obtain the distance between any two points on the manifold by
integrating, and by finding the curve giving the shortest distance between these two points, we can define a
straight line between these points. This enables us to figure out the geometry of the manifold. The metric
gμν(x) will depend on x (again, think of the sphere coordinatized by the usual θ and ϕ), and Riemannian
geometry is concerned with the study of how gμν(x) varies from point to point. But we don’t need any of that
here. The discussion here is necessarily too brief. For further details, see any textbook on general relativity
or Einstein gravity. In particular, for a discussion compatible in spirit and style with this book, see G Nut.
In particular, see pp. 71 and 183 for detailed arguments on why it is necessary to introduce both upper and
lower indices.

3. Such as the Chevalley basis mentioned in the appendix to chapter VI.2.
4. Not so differently from how some people were named in Europe.
5. Strictly speaking, nonvanishing roots.
6. Also known as the Weyl basis.
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Constraints on lengths and angles

We learned in chapter VI.3 that the β chain pointing in the α direction, with its two ends
at �β + p�α and �β − q �α (and thus containing p + q + 1 roots), is constrained by∗

2
(�α , �β)
(�α , �α) = q − p ≡ n (1)

Remarkably, performing a series of clever maneuvers starting with this constraint,
mathematicians were able to deduce an elegant wealth of information about Lie algebras
and to classify them completely.

Note that (1) implies that the α chain pointing in the β direction, with its two ends at
�α + p′ �β and �α − q ′ �β, is similarly constrained by

2
(�α , �β)
( �β , �β) = q

′ − p′ ≡m (2)

Multiplying (1) and (2), we find that the angle between two arbitrary roots is given by

cos2 θαβ = (�α , �β)2
(�α , �α)( �β , �β) =

mn

4
(3)

Thus, the integers m and n are limited by

mn≤ 4 (4)

to only a few possibilities.
Dividing (2) by (1), we see that ραβ ≡ (�α , �α)

( �β , �β) (namely, the ratio of the length squared of

the two different roots) is required to be a rational number:

ραβ ≡ (�α , �α)
( �β , �β) =

m

n
(5)

∗ Our notation is such that we will often, but not always, drop the vector arrow on the roots.
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These restrictions will allow us to classify all possible Lie algebras, as already remarked
in chapter VI.3 and as we shall see in detail in this chapter.

Only four possible angles

Note that (3) implies thatm and n have to be both positive or both negative.∗ Furthermore,
it says that the angle between two different roots �α and �β is restricted to be

cos2 θαβ = (�α , �β)2
(�α , �α)( �β , �β) =

mn

4
= 0,

1
4

,
1
2

,
3
4

, or 1 (6)

Recall that if α is a root, then −α is also a root. Flipping α flips the signs of m and n,
and thus we can choose m and n to be both positive. Furthermore, if the two roots α and
β are not of equal length, we can always call the longer of the two roots α, so that, with no
loss of generality, we can set m≥ n. Thus, we can take

cos θαβ = (�α , �β)√
(�α , �α)( �β , �β)

≥ 0 (7)

and so 0◦ ≤ θαβ ≤ 90◦. (In other words, we can always take the angle between α and β to
be acute, by flipping α if necessary.) The five cases allowed in (6) correspond to

θαβ = 90◦, 60◦, 45◦, 30◦, or 0◦ (8)

The case 0◦ is not allowed, since this would imply �α = �β, which is not the case by
construction. Thus we have only four cases to consider.

The case 90◦ requires special consideration, since (�α , �β)= 0 according to (7). When I
divided (2) by (1) to get (5), you should have raised a red flag! I could have divided 0 by 0,
something we’ve been warned against ever since childhood. Indeed, if (�α , �β)= 0, then (1)
and (2) tell us that m= n= 0, and hence the quantity ραβ defined in (5) is indeterminate.

Let us list the four cases.

Case 1: θαβ = 90◦ implies that (�α , �β)= 0 and ραβ is indeterminate.

Case 2: θαβ = 60◦ implies that ραβ = 1; the roots �α and �β have equal length.

Case 3: θαβ = 45◦ implies that ραβ = 2; one root is longer than the other by a factor of
√

2.

Case 4: θαβ = 30◦ implies that ραβ = 3; one root is longer than the other by a factor of
√

3.

We give the allowed values of various quantities for cases† 2, 3, and 4 in this table:

m n
(�α , �α)
( �β , �β) cos2 θαβ θαβ

1 1 1 1
4 60◦

2 1 2 1
2 45◦

3 1 3 3
4 30◦

∗ Also implied by (5).
† The case m= n= 2 gives cos2 θαβ = 1 and hence θαβ = 0.
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α
!

β
!

β
!0

Figure 1

Weyl reflection

Given two roots �α and �β, define

�β ′ ≡ �β − 2
(�α , �β)
(�α , �α) �α =

�β + (p − q)�α (9)

where we invoked (1). Since the β chain pointing in the α direction starts with �β + p�α and
ends with �β − q �α, and since p ≥ p − q ≥−q, the root �β ′ belongs to this chain. Denoting
the length of �α and �β by |α| and |β|, we have

�β ′ = �β − 2 cos θαβ|β|α̂ (10)

where α̂ ≡ �α/|α| is the unit vector pointing in the direction of �α.
The geometrical meaning of �β ′, known as the Weyl reflection of �β, is shown in figure 1.

Think of the hyperplane perpendicular to �α as a mirror. Then �β ′ is the mirror image of
�β. Thus, starting with two roots, we can readily generate a whole bunch of other roots by
Weyl reflecting repeatedly. For example, in SU(3), starting with �I+ and �V+, we generate
all six roots.

No more than four roots in a chain

Another big help in constructing root diagrams is the realization that, clearly, chains cannot
be arbitrarily long. But we can say more: a chain can contain at most four roots.1

To prove this, suppose that a chain contains at least five roots. By calling the root
in the middle �β, we can always relabel the five roots as �β − 2�α, �β − �α, �β, �β + �α, and
�β + 2�α.

Now consider the β + 2α chain in the β direction. This chain contains only one root,
since neither ( �β + 2�α)− �β = 2�α nor ( �β + 2�α)+ �β = 2( �β + �α) is a root.∗

∗ We are invoking the “trivial” corollary (mentioned in chapter VI.3) that if �α is a root, then 2�α is not.
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But if the β + 2α chain in the β direction contains only one root, this implies ( �β +
2�α , �β) = 0 according to (1). Now repeat the argument with the β − 2α chain in the β
direction to obtain ( �β − 2�α , �β)= 0. Adding, we find ( �β , �β)= 0, which is a contradiction.2

Thus, a chain can contain at most four roots. In the notation used earlier, p + q + 1≤ 4.
In particular, the β chain pointing in the −β direction contains three roots and has the

form �β , �0, − �β, where we are counting �0 as a (null) root. Strictly speaking, �0 represents a
linear combination of His and should not be called a root; nevertheless, the term “zero
root,” or “null root,” is commonly used.

The by-now familiar SU(3) illustrates all this: for example, the V+ chain pointing in the
U− direction contains only two roots, as was noted earlier. Indeed, in SU(3), the longest
chain contains only three roots, with the form �β , �0, − �β.

All possible rank 2 Lie algebras

In a remarkable achievement, Killing and Cartan3 were able to classify all possible Lie
algebra using these observations.

Let us start with rank 1 and rank 2. We know one rank 1 Lie algebra, namely, SU(2)�
SO(3); in fact, the very first one we met. Using the results here, it is easy to prove that this
is the only one. For rank 1, the root vector β is 1-dimensional and hence a number, and
β , 0, −β is the only possible chain.

We are now ready to work out all possible rank 2 Lie algebras by using the table just given.
Simply examine the possible angles one by one. Once we specify the angle between two
roots, their relative lengths are fixed by the table. The root diagrams are easily visualized,
since they can be drawn in the plane. In fact, we have already encountered all but one
of them:

1. θαβ = 90◦: The root diagram is shown in figure 2a. Since [Eα , Eβ ]= 0, we have two inde-

pendent SU(2)s. (We can normalize the roots to have the same length.) We recognize the

algebra of SU(2)⊗ SU(2)� SO(4), with 4 + 2= 6 generators (four root vectors, plus the

two H s from the rank). Indeed, we have already seen this in figure VI.2.1b.

2. θαβ = 60◦: The roots �α and �β have equal length, and by Weyl reflecting, we obtain all the

other roots arranged in a hexagonal pattern. (And of course, if �α is a root, then so is −�α.)

See figure 2b, which we recognize as figure V.3.1. This is the SU(3) beloved by particle

physicists, with its 6+ 2= 8 generators.

3. θαβ = 45◦: Put down the first root∗ �β = (1, 0) and make the second root �α = (1, 1) a factor of√
2 longer. Generate the other roots by Weyl reflecting and by multiplying by (−1). We obtain

the root diagram in figure 2c, showing an algebra with 8+ 2= 10 generators, diamond or

tilted square. Note that 10= 5 . 4/2. This identifies the algebra as SO(5), whose root diagram

∗ Note that to use the table, we have to adhere to the convention that �α is longer than �β.
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(a)

SO(4) = D2

Sp(4) = C2 G2

SU(3) = A2 SO(5) = B2

(b) (c)

(d) (e)

Figure 2

we already saw in figure VI.2.2b. A quick and sloppy way of seeing this is to note that if we

took away the four long roots at (±1, ±1) (signs uncorrelated) we would get SO(4).

4. θαβ = 45◦: Put down the first root �α = (1, 0) as before but now make the second root
�β = 1

2 (1, 1) a factor of
√

2 shorter. Again, generate the other roots by Weyl reflecting and

by multiplying by (−1). We obtain the root diagram in figure 2d (which we recognize

from figure VI.2.4), showing an algebra with 8+ 2= 10 = 5 . 4/2 generators. We obtain

the symplectic algebra Sp(4).

But behold, this diagram is just the root diagram for SO(5) tilted by 45◦. So, we have

discovered the local isomorphism Sp(4)� SO(5).
5. θαβ = 30◦: Put down the first root �β = (1, 0) and make the second root a factor of

√
3 longer,

so that �α =√3(cos 30◦, sin 30◦)= 1
2 (3,
√

3). Weyl reflecting and multiplying by (−1) now

produces a “star of David” root diagram shown in figure 2e. This is perhaps the most

interesting case; it produces a rank 2 algebra we haven’t seen before. The algebra has

12+ 2= 14 generators and is known as the exceptional algebra G2.

Dialects

We will go on to classify all possible Lie algebras, but first, we have to mention an awkward
notational divergence. While physicists and mathematicians use the same language of
logical deduction, they speak different dialects, unfortunately. Mathematicians named the
Lie algebras A, B, C, D, E, F , and G. (How imaginative!) The series A, B, C, and D are
known to physicists as the algebras of the unitary, orthogonal, and symplectic groups. The
translation is as follows:
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Al SU(l + 1)

Bl SO(2l + 1)

Cl Sp(2l)

Dl SO(2l)

Note that rotations in odd and even dimensional spaces are mathematically distinct.
The algebras E6, E7, E8, and F4 (which we will mention in the next chapter), and G2

(which we have already met) are known as exceptional algebras; they don’t belong to infinite
families.

The mathematical notation is superior in one respect: the integer l corresponds to rank.
For example,

SU(3)= A2, SO(4)=D2, SO(5)= B2 (11)

all have the same rank, namely, 2.

Positive and simple roots, and some theorems about roots

At this point, you can readily prove some more theorems4 about roots, which can be of
great help in constructing root diagrams.

Start with an empirical observation: in each of the root diagrams in figure 2, there are
only two different lengths. For example, C2 contains roots of length 1 and of length

√
2

(in some suitable units). So, a “physicist’s theorem” suggests itself, backed by five (or is it
only four?) “experimental” points: A root diagram contains at most two different lengths.

I leave it as an exercise to prove (or disprove) this theorem. It is in fact true. I already
mentioned in chapter VI.2 that the longer root is called the long root, the shorter one the
short root.

Next, I remind you of the notions of positive and simple roots, notions we already
encountered quite naturally when discussing SU(3), which will serve as a canonical
example.

Arrange the H s in some order, H 1, H 2, . . . , Hr , and set up coordinates accordingly.
(For example, we might choose, for SU(3), the first axis to correspond to λ3, the second
to λ8.) The notion of positive roots can then be defined: A root is said to be positive if
the first nonzero component of the root vector is positive. (For example, for SU(3), the

roots ( 1
2 ,
√

3
2 ), (1, 0), and ( 1

2 , −
√

3
2 ), corresponding to V+, I+, and U−, are positive, while

(− 1
2 ,
√

3
2 ), corresponding to U+, is not.)

The notion of positivity depends on how we choose our coordinates. Of the six roots of
SU(3), the three pointing “mostly east” are deemed positive, because we privileged∗ λ3.

∗ Notice also that this definition of positive roots does not accord with the physicist’s historical choice of which
operators (namely, I+, V+, and U+) to call plus or “raising.”
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Next, we want to codify the fact that not all positive roots are linearly independent.
(For example, for SU(3), three positive roots live in 2-dimensional space.) A subset of
the positive roots is known as simple roots, if the following holds. When the other positive
roots are written as linear combinations of the simple roots, all coefficients are positive. (In
the SU(3) example, V+ andU− are simple roots, but not I+, since V+ +U− = I+.) Roughly
speaking, the simple roots “define,” in the root diagram, a privileged sector, somewhat
analogous to the upper right quadrant we encountered when we first studied the Cartesian
geometry of the plane. While we already introduced both of these notions, positive and
simple roots, in chapter V.3, it is worth repeating them to emphasize that they apply to all
Lie algebras.

A rank l algebra has l simple roots, which can be used as the basis vectors for the space
the root vectors live in. Again, take SU(3): the simple roots V+ and U− provide a basis
consonant with the hexagonal symmetry of the root diagram, and in this sense are more
natural than the basis physicists use for historical reasons. The price we pay is of course
that the basis vectors are not orthogonal.

If �α and �β are two simple roots, then �α − �β cannot be a root.∗ (For example, in SU(3),
V+ − U− = (0,

√
3) is not a root.) Prove this theorem before reading on. (The proof is

exceptionally easy!)
Confusio speaks up: “I am not confused for a change. I simply want to mention that

some books state this rather confusedly as ‘If �α and �β are two simple roots, then �α − �β is
0.’ Or that ‘�α − �β is a 0 root.’ ”

We agree that it is confusing. The term “0 root” should properly refer to theHis. Perhaps
these authors mean a void or null root, in the sense of a nonexistent root?

Here is the proof. Suppose �α − �β is a root. With no loss of generality,† let it be a positive
root. Then a positive root can be written as �α − �β, contradicting the assumption that �α and
�β are simple.

The angle between two simple roots has to be obtuse (or right)

Intuitively, since the simple roots enclose all positive roots, we would expect the angles
between the simple roots to be largish. For SU(3), the angle between the roots V+ and U−
is 120◦. This intuitive expectation leads us to the following theorem.

For �α and �β two simple roots, the angle between them can only be 90◦, 120◦, 135◦, or
150◦.

The proof is as follows. Go back to (1). Since we just showed that �β − �α is not a root, it

follows that q = 0 in (1), and thus 2 (�α , �β)
(�α , �α) =−p ≤ 0, which implies that θαβ ≥ 90◦.

Confusio mutters, “But we proved earlier that the angle θαβ between two roots could
only be 90◦, 60◦, 45◦, or 30◦.”

∗ Note that if we were merely given two roots �α and �β, then �α − �β may or may not be a root.
† Since otherwise interchange �α and �β.
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But, Confusio, that was between any two roots �α and �β, and by giving −�α the name �α
if necessary, we chose θαβ to be less than or equal to 90◦. The statement here is about two
simple roots. And if �α is simple, then −�α is certainly not simple (it’s not even positive).

Similarly, since �α − �β is not a root, it follows that q ′ = 0 in (2), and thus, 2 (�α , �β)
( �β , �β) =

−p′ ≤ 0. Thus, (3) still holds, that is, cos2 θαβ = (�α , �β)2
(�α , �α)( �β , �β) =

pp′
4 , which together with the

information that the θαβ ≥ 90◦, proves the theorem.

Exercise

1 Show that a root diagram contains at most two different lengths.

Notes

1. Confusio says, “The physical example of the fourN∗ resonances mentioned in connection with Gell-Mann’s
SU(3) is a living example of a chain with four roots.” No, Confusio, that’s a weight diagram, not a root
diagram!

2. Confusio again. He claims to have a simpler proof. If �β + 2�α is a root, then subtract �β to get 2�α, which we

know is not a root if �α is a root. The fallacy is that [Eβ+2α , E†
β ] may vanish. If Confusio’s proof is valid, he

would have proved that there can be at most three, not four, roots in a chain.
3. When writing this, it occurred to me that since I knew S. S. Chern, I am only separated from a historical

figure like Cartan by two degrees. And now, since you know me so well, dear reader, you are only separated
from Cartan by three degrees!

4. Some readers might have noticed that I have kept our friend the jargon guy at bay; he loves to talk about
simple algebras, semisimple algebras, on and on, instead of the essence of the matter. Whatever. (In fact, he
did define semisimple groups for us back in chapter I.2.) You might want to get the names straight; it’s up
to you. As Dick Feynman said, the name of the bird is not important; it is only important to Murray Gell-
Mann. Imagine that one day you would be so fortunate to feel that you are closing in on the ultimate theory
of the world. Are you going to pause and worry if the Lie algebra you are using is simple or not?



VI.5 Dynkin Diagrams

Lengths of simple roots and the angle between them

For Lie algebras with rank l much larger than 2, the root diagrams are l-dimensional and
hence impractical to draw. The Dynkin diagram was invented as one way to capture the
relevant information pictorially.1

In hindsight at least, it seems clear how one might proceed. First, there is no need to
draw the negative as well as the positive roots. Second, the positive roots can be constructed
as linear combinations of the simple roots. But we deduced in chapter VI.4 that the angle
between two simple roots can only be 90°, 120°, 135°, or 150°. Hence, in the diagram, we
need only specify the angle between the simple roots and their relative lengths.

Draw a small circle for each simple root. Connect the two circles∗ corresponding to two
simple roots by one, two, or three lines if the angle between them is 120°, 135°, or 150°,
respectively. Do not connect the two circles if the angle between them is 90◦.

Recall from chapter VI.4 that for two simple roots α and β,

2
(�α , �β)
(�α , �α) = p , 2

(�α , �β)
( �β , �β) = p

′, (�α , �α)
( �β , �β) =

p′

p
(1)

(Note that the simplicity of the roots implies that the integers q and q ′ in (VI.4.1) and
(VI.4.2) vanish.)

Thus, by construction, the number of lines connecting the two circles corresponding to
two simple roots α and β is given by

NL(α , β)= 4 cos2 θαβ = 4
(�α , �β)2

(�α , �α)( �β , �β) =
(

2
(�α , �β)
(�α , �α)

)(
2
(�α , �β)
( �β , �β)

)
= pp′ (2)

∗ I will drop the adjective “small.”
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SU(
 + 1)
α1 α
−1 α
α2 α3

. . .

Figure 1

SU(2) SU(3)

(a) (b)

Figure 2

It is useful to write this result as2

cos θαβ =−
√
pp′

2
=−1

2
, − 1√

2
, −
√

3
2

(3)

The four families

Recall from chapter VI.2 that the simple roots of the Lie algebras we know and love are
given by

Mathematical notation Simple roots

SU(l + 1) Al ei − ei+1, i = 1, . . . , l

SO(2l + 1) Bl ei−1− ei , el , i = 2, . . . , l

Sp(2l) Cl ei−1− ei , 2el , i = 2, . . . , l

SO(2l) Dl ei−1− ei , el−1+ el , i = 2, . . . , l

Let us see how the Dynkin construction works for SU(l + 1). There are l simple roots,
ei − ei+1, i = 1, . . . , l. (For example, for SU(3), the two simple roots are e1− e2 and e2−
e3.) We have (ei − ei+1)2 = 1+ 1= 2, while (ei − ei+1)(ej − ej+1)= 0 unless j = i ± 1,
in which case it is equal to −1. Thus, the angle θ between two neighboring simple roots
ei−1− ei and ei − ei+1 is given by cos2 θ = (−1)2/(2 . 2)= 1/4, that is, θ = 180◦ − 60◦ =
120◦. In contrast, the angle between non-neighboring simple roots is 90◦. The number of
circles is equal to the rank of the algebra.

Following the rules stated just now, we obtain the Dynkin diagram for SU(l + 1) as
shown in figure 1, consisting of l circles, with neighboring circles joined by a single line.
A mnemonic: the diagram for our beloved SU(2) consists of a single small circle; for SU(3)
it is two circles joined by a line, as shown in figure 2.

Roots of different lengths

Next, consider theSO(2l + 1) family. There are now two types of simple roots, ei−1− ei , i =
2, . . . , l and el, with different lengths. We have to incorporate this information in the
diagram.



386 | VI. Roots, Weights, and Classification of Lie Algebras

SO(2
 + 1)
α1 α
−1 α
α2

. . .

Figure 3

SO(3) SO(5)

(a) (b)

Figure 4

We impose the additional rule∗ that we fill the circle (that is, darken it with ink) of the
short root. Note that it is crucial, as was proved in an exercise in chapter VI.4, that a root
diagram contains at most two different lengths. Mnemonic: short = shaded.

There are l − 1 long roots and one short root. The angle between two neighboring long
roots is equal to 120◦ as in the SU(l + 1) case; the open circles for neighboring long roots
are connected by a single line. In contrast, the angle between the long root el−1− el and the
short root el is given by cos2 θ = (−1)2/(2 . 1)= 1/2. Thus, θ = 135◦, and we join the circles
corresponding to these two roots, one open and one shaded, by two lines. See figure 3.

It is instructive to note two simple cases: SO(5) corresponds to an unfilled circle and a
filled circle joined by two lines, while SO(3) consists of a single circle, which there is no
point in filling, since there is only one root and so the distinction between long and short
roots does not arise. Thus, the algebra SU(2) and SO(3) have the same Dynkin diagram,
confirming the isomorphism between them that we have known about for a long time.
See figure 4.

Rules for constructing Dynkin diagrams

The rules of the game are surprisingly simple:

1. Each diagram consists of l circles, with l the rank of the Lie algebra. The open or white

circles correspond to the long roots, the filled or dark circles to the short roots.

2. Two circles are connected by either zero, one, two, or three lines.

Master these rules, and you could even try to construct the rest of this chapter! Actually,
you also need a couple of theorems that we will prove later, such as no more than three
lines can come out of a circle.

∗ Caution: some authors reverse the black and white convention used here. Indeed, some authors even have
all circles unshaded and superpose an arrow on the lines joining two roots to indicate which of them is shorter,
using some convention, such as the short points toward the long. Other authors write the length of the roots
inside the circle. Different strokes for different folks.
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Sp(2
)
α1 α
−1 α
α2

. . .

Figure 5

Symplectics and a black-white symmetry

For Sp(2l), the simple root 2el is longer than all the other simple roots ei−1− ei , i =
2, . . . , l. The angle between 2el and el−1− el is now given by cos2 θ = (−2)2/(2 . 4)= 1/2.
Once again, θ = 135◦, and we join the circles corresponding to the two roots by two lines.
The angle between neighboring short roots is given by 120◦ (as for SU(l + 1)), and the
corresponding circles are connected by one line.

We thus have the Dynkin diagram for Sp(2l) shown in figure 5. Amusingly, it may be
obtained from the Dynkin diagram for SO(2l + 1) by interchanging black and white.

Instructively, Sp(4) and SO(5) have the same Dynkin diagram, showing that the two
algebras are isomorphic.

Is SO(2l) “better” than SO(2l + 1)?

Finally, we come to SO(2l), perhaps the most interesting case of all. The l simple roots,
ei−1− ei , i = 2, . . . , l and el−1+ el, now have the same length, and so we need not
distinguish between open and filled circles, in contrast to the case for SO(2l + 1).

The angle between neighboring simple roots ei−1− ei and ei − ei+1 is 120◦, so that
the corresponding circles are connected by a single line, while the angle between non-
neighboring simple roots vanishes. (Thus far, this is reminiscent of our discussion of
SU(l + 1).) But interestingly, the angle between the one special simple root el−1+ el and
the last of this string of simple roots, el−1− el, vanishes, and so the corresponding circles
are not connected. In contrast, (el−1+ el) . (el−2− el−1)=−1, and the angle between the
two roots el−1+ el and el−2− el−1 is 120◦. The corresponding circles are then connected
by one line.

Thus, we obtain the Dynkin diagram shown in figure 6 for SO(2l): it has a forked
structure at the end. The circle associated with the simple root el−2 − el−1 is connected
to both el−1− el and el−1+ el.

SO(2
)
α1 α
−2

α
−1

α


α2

. . .

Figure 6
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SO(4) SO(6)

(a) (b)

Figure 7

SO(8)

Figure 8

Again, it is instructive to look at what happens for some small values of l. For l = 2,
the Dynkin diagram breaks up into two unconnected circles, confirming our knowledge
that the algebra of SO(4) breaks up into two independent SU(2) algebras. For l = 3, the
Dynkin diagram consists of three circles; we see with a glance that the algebras of SO(6)
and SU(4) are isomorphic. See figure 7a,b. We will discuss this isomorphism in chapter
VII.1.

Most interestingly, for l = 4, the Dynkin diagram of SO(8) (as shown in figure 8)
exhibits a remarkable 3-fold symmetry, sometimes called triality by physicists. People often
consider the Lie algebra of SO(8) as the most elegant of them all. We will discuss this
further in chapters VII.1 and IX.3.

Dynkin diagrams for low-ranked algebras

It is perhaps amusing to draw all the Dynkin diagrams for the low-ranked algebras. For
rank 1, there is only one, consisting of a single circle. All rank 2 algebras, SO(4), SO(5),
SU(3), Sp(4), and G2, are given in figure 9.

We have already encountered the algebra G2. Simply by inspection of figure VI.4.2e,
we see that the simple roots are (1, 0) and (−3,

√
3)/2, and the angle between them is

180◦ − 30◦ = 150◦. Thus, we draw three lines between an unfilled circle and a filled circle
to obtain the Dynkin diagram ofG2, as shown in figure 9. It does not belong to any of the
four families and is thus classified as exceptional.

SO(4)

(a) (b)

SO(5)

(e)

G2

(d)

Sp(4)

(c)

SU(3)

Figure 9
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SU(
 + 1)
α1 αm+1 αm+2 α
α2

. . . . . .
αm

Figure 10

Cutting Dynkin diagrams

Consider cutting the connection between two circles in a Dynkin diagram. By construction,
each of the two pieces that result satisfies the rules for being a Dynkin diagram and thus
corresponds to a Lie algebra. Let us see by examples how this works.

The Dynkin diagram of SU(l + 1) consists of l circles connected in a linear chain. Cut
the connection between the mth circle and the (m+ 1)st circle (with m< l, of course).
See figure 10. The piece consisting ofm circles then corresponds to SU(m+ 1); the other,
consisting of l −m circles, to SU(l −m+ 1). Note that SU(l + 1) contains SU(m+ 1)
and SU(l −m+ 1) each as a subalgebra, but not both of them, of course. (Thus, SU(3)
contains two overlapping SU(2)s, but not SU(2)⊗ SU(2).)

Next, cut the Dynkin diagram of SO(2l + 1) between the (l − 2)nd circle and the (l − 1)st
circle. See figure 11. I chose to cut there simply because this will give the largest simple
unitary subalgebra, namely, SU(l − 1). In chapter VII.1, we will see that SU(l − 1) can
be embedded naturally into SO(2l − 2), which indeed is a subalgebra of SO(2l + 1). The
leftover piece contains one open and one shaded circle, and it corresponds to SO(5).

For SO(2l), cut between the (l − 3)rd circle and the (l − 2)nd circle. See figure 12a.
The two pieces correspond to SU(l − 2) and SU(4)� SO(6), respectively. Alternatively,
we could chop off the lth circle from the Dynkin diagram of SO(2l) to obtain the two
subalgebras SU(l) and SU(2). See figure 12b.

Finally, for Sp(2l), we can cut between the (l − 2)nd circle and the (l − 1)st circle. See
figure 13a. The two pieces correspond to SU(l − 1) and SO(5), respectively. Alternatively,

SO(2
 + 1)
α1 α
−1 α
α2

. . .
α
−2

Figure 11

α


α1 α
−2

α
−1

α


α2

. . .
α
−3

(a)

α1

α
−1

α2

. . .

(b)

Figure 12
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α1 α
−1 α
α2

. . .
α
−2

(a)

α1 α
−1 α
α2

. . .

(b)

Figure 13

we could cut the double lines and obtain an SU(l) and an SU(2) subalgebra. See figure
13b. Interestingly, we showed explicitly in chapter IV.8 that SU(l) is contained in Sp(2l).

Some theorems about Dynkin diagrams

At one level, we can regard Dynkin diagrams as “merely” a compact way of denoting the
root diagrams of Lie algebras. There is of course considerably more to Dynkin diagrams
than that, with all sorts of theorems one could prove. I mention a few of them here.3

First, let us simplify notation, drop the arrows on the roots, and use the standard dot
product for the scalar product: α . β = (α , β), α2= α . α = (α , α)= |α|2. Also, henceforth,
let αi , i = 1, . . . , l, denote the l simple roots.∗ It proves convenient to define ui ≡ αi/|αi|
and to work with unit vectors. Then we no longer need to drag along denominators.

By merely rewriting (1) and (3), we have

2ui . uj =−
√
ζij (4)

Here the integer ζij can only take on the values 0, 1, 2, or 3, according to whether the
two simple roots are not connected, connected by one line, by two lines, or by three lines,
respectively, in the Dynkin diagram. Trivially, if αi and αj are connected, then

2ui . uj ≤−1 (5)

2ui . uj Lines connecting i and j

−1 1

−√2 2

−√3 3

We are now ready to prove some theorems.
The no-loop theorem: Loops are not allowed in Dynkin diagrams. (For example, a loop

with six roots is shown in figure 14: each root could be connected to some other roots
outside the loop, as indicated by dotted lines in the figure.)

∗ In this section, all roots are simple unless stated otherwise. Recall that, by definition, any root appearing in
a Dynkin diagram is simple.
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α1

α4

α2

α3

α6

α5

Figure 14

(a) (b) (c)

Figure 15

Proof: Consider a loop with k roots. Then αi is connected to αi+1 for i = 1, 2, . . . , k − 1,
and αk is connected to α1.∗ Hence( k∑

i=1

ui

)2

= k +
∑
i �=j

ui . uj = k + 2
k−1∑
i=1

ui . ui+1+ 2uk . u1 (6)

The left hand side is strictly positive (that is, > 0), while the right hand side is, according
to (5), ≤ k − k (that is, ≤ 0). Proof by contradiction.

Note that if we do not have a loop, then the last term 2uk . u1 is absent, and the right
hand side is then ≤ k − (k − 1), that is, ≤ 1, which is quite consistent† with the left hand
side being >0. In other words, open strings, but not closed strings, are allowed.

The no-more-than-three lines theorem: The number of lines coming out of a small circle
in a Dynkin diagram cannot be more than three.

We conclude immediately that the various situations shown in figure 15 are not allowed.
And indeed, we haven’t seen anything like these.

Proof: Denote byw1, . . . , wk (which, recall, we are taking to be unit vectors) the k simple
roots connected to the given root u. (In figure 15b, for example, four lines come out of the
root u to connect to k = 2 roots. Recall that all roots in a Dynkin diagram are simple.) The

∗ Note that the number of connecting lines must be ≥ k. Logically, we distinguish between the number of
connections and the number of connecting lines. Two roots can be connected by more than one line if they have
different lengths. Also, two non-neighboring roots can be connected. (For example, suppose in figure 14 we now
additionally connect α2 to α4. Then we would actually be dealing with more than one loop.)

† In particular, Ak = SU(k + 1) is allowed.



392 | VI. Roots, Weights, and Classification of Lie Algebras

u1

. . . . . .
u2 uj uk

u

w

w

Figure 16

absence of loops means that the ws are not connected to one another, so that wi .wj = 0.
Thus, the k unit vectors w’s form an orthonormal set. Note that k cannot be ≥l, since
the total number of circles in the Dynkin diagram is l. So k < l, and the set of vectors
wi, i = 1, . . . , k, cannot form a complete orthonormal basis, and so

∑k
i=1(u

. wi)2 < 1.
According to (2), the number of lines connecting u to wi is equal to 4(u . wi)2, and thus
the total number of lines coming out of u satisfies 4

∑
i(u

.wi)2< 4. QED.
Given a Dynkin diagram with two circles, this theorem implies that we can join them

with no line, one line, two lines, or three lines, but not any more than three lines. These
four cases correspond to SO(4), SU(3), SO(5)� Sp(4), and G2. See figure 9.

The shrinking theorem: Shrinking a linear chain of circles connected to one another by
a single line to just one circle leads to a valid Dynkin diagram.

See figure 16 and the proof to understand what this chain of English words means. In
the figure, I have indicated the rest of the Dynkin diagram by two shaded blobs, connected
to the chain under consideration by two wavy lines. I have also shown a root w connected
to a root in this chain (its role will become clear in the proof).

Proof: By assumption, u1, . . . , uk is a chain of simple roots satisfying ui . ui+1=− 1
2 , i =

1, . . . , k − 1. Consider the vector u ≡∑k
i
ui; since u2 =∑k

i=1 u
2
i
+ 2

∑k−1
i=1 ui

. ui+1=
k − 2 . 1

2(k − 1)= 1, it is a unit vector.
Replace the chain by a simple root described by the u. In other words, we have shrunk

the chain consisting of u1, . . . , uk.
Letw be a unit vector that describes a root in the original Dynkin diagram but not one of

the uis. (In other words, it does not belong to the chain we are shrinking.) It can connect
to at most one of the uis (since otherwise we would have one or more loops); call this root
uj . Then

w . u= w .
k∑
i

ui = w . uj (7)

The unit vector w has the same scalar product with u in the new Dynkin diagram as it did
with uj in the original Dynkin diagram. All of Dynkin’s rules are satisfied. This proves the
theorem.
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Figure 17

For example, referring to figure 3, we can shrink SO(2l + 1) for l > 2 down to SO(5).
Note that in figure 16, I show w connecting to uj by a single line just to be definite, but,
as the SO(2l + 1)→ SO(5) (for l > 2) example illustrates, it could be more than one line.

An important corollary follows. I was intentionally vague about the two wavy lines and
blobs in figure 16. The theorem implies that the two wavy lines cannot both consist of two
connecting lines, since then we could end up with a circle with four lines coming out of it,
contradicting a previous theorem. Thus, since the Dynkin diagram of SO(2l + 1) contains
a structure at one end, consisting of a double line and a shaded circle, it cannot contain a
structure at the other end. The same remark applies to Sp(2l).

This theorem also implies that the diagram in figure 17 is not allowed. While the Dynkin
diagram of SO(2l) has a forked structure at one end (figure 6), we cannot have a Dynkin
diagram with a forked structure at each of the two ends.

Discovering F4

Next, consider the double line structure at the end of SO(2l + 1) or Sp(2l). Think of this as
a building block in a children’s construction set. What can we connect to this block? Call
the open circle un and shaded circle vm, and connect to them a chain of n open circles and
a chain of m shaded circles, respectively, as shown in figure 18.

Since un and vm are connected by two lines, un . vm =−1/
√

2, according to the table
given after (5). By construction, ui . ui+1=− 1

2 , i = 1, 2, . . . , n− 1 and vj . vj−1=− 1
2 , j =

m, m− 1, . . . , 2. Now define u=∑n
i=1 iui and v =∑m

j=1 jvj .
Then

u2=
(

n∑
i=1

iui

)2

=
n∑
i=1

i2+ (− 1
2 )2

n−1∑
i=1

i(i + 1)= n2− 1
2 (n− 1)n= 1

2n(n+ 1) (8)

Similarly, v2= 1
2m(m+ 1). Also,

u . v = (nun) . (mvm)=−nm√
2

(9)

un v1vm−1vmu1

. . . . . .
un−1

Figure 18
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F4

Figure 19

Schwartz’s inequality insists that (u . v)2 ≤ u2v2, which after some algebra (in the high
school sense) gives

(m− 1)(n− 1)≤ 2 (10)

The strict inequality is satisfied by (i)m= 1, n any positive integer; (ii) n= 1,m any positive
integer; and (iii) m= 2, n= 2. (In addition, (10) is satisfied as an equality by m= 3, n= 2
or vice versa. But we can immediately dispose of the case of equality: this holds only if
the vectors u and v are equal, which would implym(m+ 1)= n(n+ 1), that is,m= n, but
3 �= 2.)

Possibility (i) gives an algebra we already know, namely, SO(2l + 1), while possibility
(ii) gives Sp(2l). See figures 3 and 5.

While it is pleasing to meet old friends again, possibility (iii) is the most interesting, as
it leads to a rank 4 exceptional algebra, known as F4, that we have not seen before, with
the Dynkin diagram shown in figure 19.

Looking for more Dynkin diagrams

Let us play the same sort of game as in the preceding section, but this time starting with
the Dynkin diagram of SO(8) as the building block (see figure 8). Connect to each of the
three ends a chain of open circles, as shown in figure 20a. Note the integers n, m, and p
are defined such that SO(8) corresponds to n=m= p = 1.

The roots, ui , vj , andwk (with i = 1, . . . , n− 1, j = 1, . . . , m− 1, and k = 1, . . . , p− 1)
satisfy ui . ui+1=− 1

2 , i = 1, . . . , n− 2, vj . vj+1=− 1
2 , j = 1, . . . , m− 2, andwk .wk+1=

x
vm−1

wp−1

w1

v1

u1

. . .

. . .

un−1

. . 
.

x v1vm−1

w1

u1

. . . . . .
un−1

(a) (b)

Figure 20
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− 1
2 , k = 1, . . . , p − 2. Now define u=∑n−1

i=1 iui, v =
∑m−1
j=1 jvj , andw =∑p−1

k=1 kuk. Note
the upper limit in each of the sums here. We obtain (by adjusting (8) appropriately)

u2= 1
2
n(n− 1), v2= 1

2
m(m− 1), w2= 1

2
p(p − 1) (11)

Furthermore, since ui , vj , and wk (with i = 1, . . . , n − 1, j = 1, . . . , m − 1, and k =
1, . . . , p − 1) are not connected, we have

u . v = 0, v .w = 0, w . u= 0 (12)

Denote by x the root at the center of the Dynkin diagram that connects to all three chains.
Since x is connected to un−1, vm−1, and wp−1 each by a single line, we have x . un−1=− 1

2 ,
x . vm−1=− 1

2 , and x .wp−1=− 1
2 , and hence

x . u=−1
2
(n− 1), x . v =−1

2
(m− 1), x .w =−1

2
(p − 1) (13)

While x is by definition a unit vector, the vectors u, v, and w are not. Denote their unit
vector counterparts by û, v̂ , ŵ, respectively. Thus, the angle between the unit vectors x and
û is given by (see (11) and (13))

cos2 θxu = (x . û)2= (x . u)2

u . u
= 1

2

(
1− 1

n

)
(14)

Similarly, cos2 θxv = 1
2(1− 1

m
) and cos2 θxw = 1

2(1− 1
p
). Note that the range of the cosine

does not impose any restriction, since n ≥ 2, m ≥ 2, p ≥ 2 for the construction to make
sense.

We see from (12) that û, v̂, and ŵ form an orthonormal basis for a 3-dimensional
subspace. Subtract out the component of x in this subspace and define

s ≡ x − (x . û)û− (x . v̂)v̂ − (x . ŵ)ŵ (15)

By construction, s . û = 0, s . v̂ = 0, and s . ŵ = 0. Thus, s2 = 1−
(
(x . û)2 + (x . v̂)2

+ (x . ŵ)2
)

. Since s2 is strictly positive (assume that the rank of the algebra is greater

than 3), we have

1> (x . û)2+ (x . v̂)2+ (x . ŵ)2 (16)

Plugging in (14), we obtain the elegant inequality

1
n
+ 1
m
+ 1
p
> 1 (17)

Perhaps you can analyze this inequality before reading on?
Note that if all three of the integers n,m, andp are each≥3, then we have already violated

the inequality. Game over. Thus, at least one of these three integers has to be <3.
As previously noted, they each have to be ≥2 for this discussion to even make sense.

Let p = 2. (In other words, with no loss of generality, take the integer that is <3 and ≥2,
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and call it p.) Then figure 20a simplifies to figure 20b, and (17) becomes

1
n
+ 1
m
>

1
2

(18)

Some Platonic solids appear unexpectedly

Now treat the case m= 2 and m> 2 separately.
Form= 2, any integer n satisfies (18). Thus, (n, m, p)= (n, 2, 2) is allowed. Referring to

figures 20 and 6, we are pleased to meet our old friends the even orthogonals SO(2n+ 4),
starting with the celebrated SO(8). (Recall that n must be ≥2 for this discussion to make
sense.)

Next, for m> 2, by high school algebra, write (18) as

n

(
1− 2

m

)
< 2 (19)

Do you recognize4 the quantity (1− 2
m
)?

Recall from high school geometry that (1− 2
m
)π is the vertex angle of a regularm-sided

polygon (for example, for a triangle,m= 3, and the vertex angle is π/3; for a square,m= 4
and π/2; for a pentagon, m= 5 and 3π/5; for a hexagon, m= 6 and 2π/3). Consider a
regular polyhedron with n regular m-sided polygons that meet at each vertex. Thus, (19),
when multiplied by π , “merely” states that at each vertex, the total angle subtended has to
be less than 2π .

So, let us now study (18) withm> 2. The possible cases are (n, m)= (3, 3), (3, 4), (3, 5).
(Note the symmetry of figure 20b under the interchange of n andm. Hence we don’t have
to worry about n > 3.)

Consider these three cases in turn:

1. (n, m)= (3, 3) describes the tetrahedron, with the Dynkin diagram shown in figure 21. The

corresponding exceptional algebra is called E6.

2. (n, m) = (3, 4) describes the cube, with the Dynkin diagram shown in figure 22. The

corresponding exceptional algebra is called E7.

E6

Figure 21

E7

Figure 22
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E8

Figure 23

3. (n, m)= (3, 5) describes the icosahedron, with the Dynkin diagram shown in figure 23. The

corresponding exceptional algebra is called E8.

We might have expected Platonic solids to appear in a discussion of finite groups (such
as the tetrahedron for A4), but who would have anticipated that some of the Platonic
solids would appear in a general discussion of Lie algebras? To me, it’s the miracle of
pure mathematics.

Exceptional algebras

In addition to the four families Al = SU(l + 1), Bl = SO(2l + 1), Cl = Sp(2l), and Dl =
SO(2l), we have encountered the exceptional algebrasG2,F4,E6,E7, andE8. The beautiful
result is that these Lie algebras are all there are!

A lowbrow way to proceed is to simply try to construct more. We end up violating one
theorem or another. For example, suppose that, in the Dynkin diagram (figure 3) for
Bl = SO(2l + 1), we connect any one of the open circles not at the end to an additional
open circle. By shrinking, we would encounter an open circle with four lines coming out
of it. Similarly, in the Dynkin diagram for any of the algebra in the E series, we cannot
connect any one of the open circles to an additional open circle. Similarly with an additional
shaded circle.

Friends, that’s all there is!

In summary, starting with the basic definition of a compact Lie algebra in chapter VI.3,
mathematicians, by a clever blend of algebra and geometry, have produced a complete
classification. As Hardy said in a quote I used earlier in this book, this is mathematics at
its best. A complete classification, such as the ancient Greek list of the Platonic solids, is
always a monument to the human intellect.

To particle physicists working toward a grand unified gauge theory (whose group theo-
retic aspects we discuss in part IX) of the strong, weak, and electromagnetic interactions,
the Cartan classification is a beacon of light. If the gauge theory is to be based on a compact
Lie group, then there are only a finite (in fact, small) number of possibilities.∗

∗ As you probably have heard, the leading grand unified theories are built on SU(5), SO(10), and E6.
Furthermore, several possible string theories contain E8.



398 | VI. Roots, Weights, and Classification of Lie Algebras

Roots of the exceptional algebras

We will not go into how to realize the exceptional algebras.5 In principle, the procedure is
clear. Given the root vectors, we can construct the weight diagrams of various irreducible
representations, in particular, the defining or fundamental representation.

How do we determine the root vectors? Simply inspect the Dynkin diagram of each
exceptional algebra: the diagram tells us about relative length ratio and angle between the
simple roots and should contain enough information to fix the roots. After all, we found
the exceptional algebras through their Dynkin diagrams.

Let us write the roots of the exceptional algebras in terms of a set of orthonormal vectors
ei, just as we did in chapter VI.2.

G2: There are two simple roots, one
√

3 times longer than the other. Let one simple root be

e1− e2; then the other simple root has to be −2e1+ e2 + e3, fixed by the twin requirements

of relative length ratio and angle between the two simple roots. (Let’s see explicitly how this

works. Write the second root as ae1+ be2+ ce3. Then a2+ b2+ c2= 3 . 2= 6 and a − b =−3

give c2=−2b2+ 6b − 3; the allowed solutions6 are b = 1 and b = 2, both leading to essentially

the same solution.) The two simple roots of G2 are

e1− e2, −2e1+ e2 + e3 (20)

The algebra has rank 2 and so the roots should live in a 2-dimensional space. And indeed they

do, since they are orthogonal to e1+ e2+ e3.

F4: We could determine the four simple roots by plugging through as in the preceding example,

but an easier way is to note that the Dynkin diagram of F4 can be constructed from the Dynkin

diagram of B3= SO(7) (see figures 3 and 19) by adding a short root of the same length as the

short root of B3. From the table in chapter VI.2, the simple roots of B3 are given by e1− e2,

e2− e3, and e3. The simple root we are adding has length 1, a dot product of − 1
2 with e3, and

dot products of 0 with e1− e2 and e2− e3. The unique solution is 1
2

(
e4 − (e1+ e2+ e3)

)
. The

four simple roots of F4 are thus

e1− e2, e2 − e3, e3,
1
2

(
e4 − (e1+ e2 + e3)

)
(21)

E8: Construct the Dynkin diagram of E8 first and then obtain those of E7 and E6 by chopping

off simple roots. The Dynkin diagram ofE8 is obtained easily by connecting an open circle to a

circle at the forked end ofD7 = SO(14). See figures 6 and 23. According to the table in chapter

VI.2, the simple roots ofD7 are e1− e2, . . . , e6 − e7, and e6 + e7. See whether you know what

to do before reading on.

Well, our first thought is to add e8+ e7, but to satisfy the requirement of being orthogonal to

six of the seven simple roots ofD7, the additional root has to be 1
2

(
e8 + e7 −∑6

i=1 e
i
)

. This is

orthogonal to e1− e2, . . . , e5− e6, and e6 + e7. The factor of 1
2 is to make the length squared
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equal to 2. The eight simple roots of E8 are thus∗

e1− e2, . . . , e5− e6, e6 − e7, e6 + e7,
1
2

(
e8 + e7 −

6∑
i=1

ei
)

(22)

It was not difficult at all!

E7: Now it is easy to chop off the simple root at the unforked end of the Dynkin diagram of E8.

The seven simple roots of E7 are

e2 − e3, . . . , e5− e6, e6 − e7, e6 + e7,
1
2

(
e8 + e7 −

6∑
i=1

ei
)

(23)

E6: Chop off another simple root. The six simple roots of E6 are

e3− e4, e4 − e5, e5− e6, e6 − e7, e6 + e7,
1
2

(
e8 + e7 −

6∑
i=1

ei
)

(24)

The root 1
2

(
e8 + e7 −∑6

i=1 e
i
)

in E6, E7, and E8 has length squared equal to 2 regardless of

the algebra, of course.

Note that as for Al = SU(l + 1), the simple roots of G2, E7, and E6 are expressed in a
vector space with dimension higher than the rank of the algebra.

Cartan matrix

Given a rank l Lie algebra with simple rootsα1, α2, . . . , αl, the Cartan matrixA is defined by

Aij ≡ 2
(αi , αj)

(αi , αi)
(25)

Note that A is not necessarily symmetric, since αi and αj may have different lengths. The
diagonal elements are by definition equal to 2, while the off-diagonal elements can only
take on the values 0, −1, −2, and −3 as a result of various theorems we have proved. We
can readily write down A using the Dynkin diagram of the algebra.

Knowing the rules for constructing a Dynkin diagram, we can read off the Cartan matrix
A from the diagram. For example, for SU(3), we have from figure 2b that (α1, α1) =
(α2, α3)= 1 and (α1, α2)=− 1

2 and so

A(SU(3))=
(

2 −1

−1 2

)
(26)

We can readily go on. From figure 1, we see that SU(4) involves adding an α3 orthogonal
to α1 and so forth. Thus,

A(SU(4))=

⎛⎜⎜⎝
2 −1 0

−1 2 −1

0 −1 2

⎞⎟⎟⎠ (27)

I trust you to write down A(SU(l + 1)).

∗ Physics is full of surprises! Remarkably, E8 has emerged in experimental studies of an Ising spin chain.7
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As another example, from figure 9e for the exceptional algebra G2, we deduce that
(α1, α1)= 3, (α2, α2)= 1, and (α1, α2)=

√
3 cos θ12=−

√
3(
√

3/2)=−3/2 (with the sec-
ond equality from (3)) and so

A(G2)=
(

2 −1

−3 2

)
(28)

Since the interchange of black and white circles in the Dynkin diagram interchange Bl
and Cl, the Cartan matrix does not distinguish B and C.

We end our survey of Lie algebras. Other algebras of interest to physicists lie far beyond
the scope of this text.8

Appendix 1: Chevalley basis and the Cartan matrix

Let us sketch briefly how the Chevalley basis for SU(3)mentioned in chapter V.2 can be generalized to a general
Lie algebra. Denote the simple roots byα(i), i = 1, . . . , l. As we will see, in this discussion, α(i)j (the j th component

ofα(i)) will appear, and so, for the sake of clarity but at the price of clutter, we introduce a parenthesis to emphasize
that i specifies which simple root we are talking about. (Also, we write (i) as a superscript, contrary to the
convention used earlier, to avoid too many subscripts.)

Renormalize the raising operator Eα(i) associated with the simple root α(i) by ei = fiEα(i) (no sum over
i); we will choose the numerical factor fi to our advantage. Denote (ei)† by e−i . Referring to the Cartan-
Weyl basis given in chapter VI.3, we have [ei , e−i ]= f 2

i
[Eα(i) , (Eα(i))

†]= f 2
i
α
(i)
j H

j ≡ hi (sum over j but no

sum over i). Then [hi , ei ]= f 2
i
α
(i)
j [Hj , Eα(i)]fi = f 2

i
α
(i)
j (α

(i))jei = f 2
i
(α(i) , α(i))ei . So choose f 2

i
= 2/(α(i) ,

α(i)).
Thus, we obtain

[hi , ei ]= 2ei , [ei , e−i ]= hi , i = 1, . . . , l (29)

There are l SU(2) algebras, one for each i, but clearly they cannot all commute with one another; otherwise,
the Lie algebra would fall apart into a bunch of SU(2) algebras.

One measure of the noncommutativity is provided by, for i �= j ,

[hi , ej ]= f 2
i
α
(i)
k [Hk , Eα(j)]fj = f 2

i
α
(i)
k (α

j)kEα(j)fj

= 2
(α(i) , α(j))
(α(i) , α(i))

ej = Aijej (30)

Very gratifying! The Cartan matrix A pops right out. We see that its off-diagonal elements measure the linkage
between the l “would-be” SU(2) subalgebras.

Appendix 2: Representation theory

I will refrain from working out the irreducible representations of the general Lie algebra.9 However, given our
extensive experience withSU(2) andSU(3), it is fairly clear how to proceed. For a given irreducible representation,
find the state with the highest weight, then use the analogs of the lowering operators in SU(2) and SU(3) to act
on this state, thus filling in the weight diagram.

Similarly, we can multiply two irreducible representations R1 and R2 together by finding the state with the
highest weight in R1⊗ R2 and then applying the lowering operators.
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Exercises

1 Determine the Cartan matrix of F4 from its Dynkin diagram.

2 Calculate hi explicitly for SU(3).

Notes

1. Eugene Dynkin invented these diagrams when, as a student in 1944, he was asked by his professor to prepare
an overview of the classification of Lie algebras.

2. The three possibilities in (3) correspond to pp′ = 1, 2, 3, that is, to θαβ = 120◦ , 135◦ , 150◦.
3. One theorem not proved here states that any root can be written as a linear combination of simple roots with

integer coefficients. See Z.-Q. Ma, Group Theory for Physicists, p. 291, 7.33 p293 level.
4. In particular, those readers who have read G Nut might. This quantity appears on p. 727 in a discussion of

the Descartes theorem on angular deficit.
5. See, for example, R. Slansky, in A. Zee, Unity of Forces in the Universe, volume 1, p. 338.
6. By letting e3→−e3, we can choose c > 0.
7. “Quantum Criticality in an Ising Chain: Experimental Evidence for EmergentE8 Symmetry,” R. Coldea et al.

Science 327 (2010), pp. 177–180.
8. In this text, we restrict ourselves to Lie algebras. In recent decades, other algebras have come into physics,

notably into string theory, such as Kac-Moody algebra, and so on and so forth. For an overview, see P. West,
Introduction to Strings and Branes, Cambridge University Press, 2012.

9. A detailed treatment can be found in more specialized treatments, such as R. Slansky’s review article
reprinted in Unity.





Part VII From Galileo to Majorana

The orthogonal groups SO(N) have a more intricate collection of irreducible represen-
tations than do the unitary groups SU(N). In particular, the spinor irreducible rep-
resentations can be complex, real, or pseudoreal, according to whether N = 4k + 2, 8k,
or 8k + 4, respectively, for k an integer. How the spinor irreducible representations of
SO(2n) decompose on restriction to the SU(n) subgroup turns out to be crucial in our
striving for grand unification.

We then discuss that great chain of algebras of fundamental importance to theoretical
physics, namely, the progression through the Galileo, Lorentz, and Poincaré algebras.

In lieu of Dirac’s brilliant guess leading to his eponymous equation, group theory leads
us by the nose to the Dirac equation via the Weyl equation. A fascinating bit of group
theory, lying deep inside the nature of complex numbers, connects Dirac’s momentous
discovery of antimatter to pseudoreality of the defining representation of SU(2).

In three interludes, we explore the “secret” SO(4) lurking inside the hydrogen atom,
the unexpected emergence of the Dirac equation in condensed matter physics, and the
even more unexpected emergence of the Majorana equation.





VII.1 Spinor Representations of Orthogonal Algebras

Spinor representations

That the orthogonal algebras SO(N) have tensor representations is almost self-evident, at
least in hindsight. What is much more surprising is the existence of spinor representations.
We had a foretaste of this when we saw that the algebra SO(3) is isomorphic to SU(2) and
thus has a 2-dimensional spinor representation, and that the algebra SO(4) is isomorphic
to SU(2)⊗ SU(2) and thus has not one, but two, 2-dimensional spinor representations.

In this chapter, we show the following.∗

1. The algebra SO(2n) has two 2n−1-dimensional spinor irreducible representations.

2. For SO(4k + 2), the spinor representations are complex.

3. For SO(8m), the spinor representations are real.

4. For SO(8m+ 4), the spinor representations are pseudoreal.

Don’t you find the pattern in points 2, 3, and 4 rather peculiar?
We then show how the spinor in odd-dimensional Euclidean space is related to the

spinor in even-dimensional space.
Our discussion will be focused on the Lie algebra of SO(N), rather than on the group.1

Clifford algebra

Start with an assertion. For any integer n, we claim that we can find 2n hermitean matrices
γi, i = 1, 2, . . . , 2n, which satisfy

{γi , γj} = 2δijI (1)

∗ I need hardly say that n, k, and m denote positive integers.
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known as a Clifford2 algebra. As usual in this book, the curly bracket denotes anti-
commutation: {γi , γj} ≡ γiγj + γjγi, and I is the identity matrix.

In other words, to prove our claim, we have to produce 2n hermitean matrices γi that
anticommute with one another (γiγj =−γjγi for i �= j ) and square to the identity matrix
(γ 2
i
= I ). We will refer to the γis as the γ matrices for SO(2n).

Let us do this by induction.
For n= 1, it is a breeze: γ1= τ1 and γ2= τ2. (Here τ1, 2, 3 denote the three Pauli matrices.)

Check that this satisfies (1).
Next, take a baby step and move on to n= 2. We are tasked with producing two more

matrices γ3 and γ4 such that (1) is satisfied. A moment’s thought shows that we are
compelled to enlarge the γ matrices. Using the direct product notation explained in the
review of linear algebra (and which we already used in chapter IV.8), we write down the
four 4-by-4 matrices

γ1= τ1⊗ τ3, γ2= τ2⊗ τ3, γ3= I ⊗ τ1, γ4 = I ⊗ τ2 (2)

Check that these work. For example, {γ1, γ4} = (τ1⊗ τ3)(I ⊗ τ2) + (I ⊗ τ2)(τ1⊗ τ3) =
τ1⊗ {τ3, τ2} = 0.

Now induct in general! Suppose we have the 2n γ matrices for SO(2n), which we denote
by γ (n)j . We then construct the 2n+ 2 γ matrices for SO(2n+ 2) as follows:

γ
(n+1)
j = γ (n)j ⊗ τ3=

(
γ
(n)
j 0

0 −γ (n)j

)
, j = 1, 2, . . . , 2n (3)

γ
(n+1)
2n+1 = I ⊗ τ1=

(
0 I

I 0

)
(4)

γ
(n+1)
2n+2 = I ⊗ τ2=

(
0 −iI
iI 0

)
(5)

The superscript in parentheses keeps track of which set of γ matrices we are talking about.
Every time we go up in n by 1, we add two γ matrices and double the size of all the γ

matrices. Hence, there are 2n γ (n)s, each a 2n-by-2n matrix.∗

Returning to (3), (4), and (5), we check easily that the γ (n+1)s satisfy the Clifford algebra
if the γ (n)s do. For example, {γ (n+1)

j , γ (n+1)
2n+1 } = (γ (n)j ⊗ τ3)(1⊗ τ1)+ (1⊗ τ1)(γ

(n)
j ⊗ τ3)=

γ
(n)
j ⊗ {τ3, τ1} = 0. Do check the rest.
Using the direct product notation, we can write the γ matrices for SO(2n) more com-

pactly as follows, for k = 1, . . . n:

γ2k−1= 1⊗ 1⊗ . . .⊗ 1⊗ τ1⊗ τ3⊗ τ3⊗ . . .⊗ τ3 (6)

∗ Henceforth, as elsewhere in this book, I will abuse notation slightly and use 1 to denote an identity matrix
I of the appropriate size; here I is the same size as γ (n). This will allow us to avoid writing awkward-looking
objects like iI in (5). The same remarks apply to the symbol 0.
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and

γ2k = 1⊗ 1⊗ . . .⊗ 1⊗ τ2⊗ τ3⊗ τ3⊗ . . .⊗ τ3 (7)

with 1 appearing k − 1 times and τ3 appearing n− k times. When and if you feel confused
at any point in this discussion, you should of course work things out explicitly for SO(4),
SO(6), and so forth.

Representing the generators of SO(2n)

But what does this solution or representation of the Clifford algebra (1) have to do with
the rotation group SO(2n)?

Define 2n(2n− 1)/2= n(2n− 1) hermitean matrices

σij ≡− i2[γi , γj ]=
{−iγiγj for i �= j

0 for i = j
First note that if k is not equal to either i or j , then γk clearly commutes with σij (since

each time we move γk past a γ in σij , we flip a sign). However, if k is equal to either i or
j , then we use γ 2

k
= 1 to knock off one of the γ s in σij . In other words,

[σij , γk]=−i[γiγj , γk]= 2i(δikγj − δjkγi) (8)

Explicitly, [σ12, γ1]= 2iγ2, [σ12, γ2]=−2iγ2, and [σ12, γk]= 0 for k > 2.
Given this, the commutation of the σ s with one another is easy to work out. For example,

[σ12, σ23]= (−i)2[γ1γ2, γ2γ3]=−γ1γ2γ2γ3+ γ2γ3γ1γ2= 2γ3γ1= 2iσ31 (9)

Roughly speaking, the γ2s in σ12 and σ23 knock each other out, leaving us with σ31. On the
other hand, [σ12, σ34]= 0, since the γ1 and γ2 in σ12 sail right past the γ3 and γ4 in σ34.

Thus, the 1
2σijs satisfy the same commutation relations satisfied by the generators J ijs

of SO(2n), as discussed in chapter I.3. The 1
2σijs define a 2n-dimensional representation

of the Lie algebra SO(2n). Note how the factor of 1
2 has to be included.

We then expect that exponentials of the 1
2σijs represent the group SO(2n). We will see

in the next section the extent to which this is true.
Explicitly, and for future use, we note that

γ1= τ1⊗ τ3⊗ τ3⊗ . . .⊗ τ3 (10)

and

γ2= τ2⊗ τ3⊗ τ3⊗ . . .⊗ τ3 (11)

Then

σ12= τ3⊗ 1⊗ 1⊗ . . .⊗ 1 (12)

Thus, σ12 is just a diagonal matrix with ±1 along the diagonal.
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From (3), (4), and (5),

σ
(n+1)
ij =−iγ (n+1)

i γ
(n+1)
j = σ (n)ij ⊗ 1

σ
(n+1)
i , 2n+1= γ (n)i ⊗ τ2

σ
(n+1)
i , 2n+2=−γ (n)i ⊗ τ1

σ
(n+1)
2n+1, 2n+2= 1⊗ τ3 (13)

Spinor and double covering

As 2n-by-2n matrices, the σ s act on an object ψ with 2n components, which we will call the
spinor ψ . Consider the unitary transformation

ψ→ e
i
4ωijσijψ (14)

with ωij =−ωji a set of real numbers. (Note the 1
4 inserted for later convenience.) Then

ψ†→ ψ†e−
i
4ωijσij , since σij is hermitean. For ωij infinitesimal, we have

ψ†γkψ→ ψ†e−
i
4ωijσij γke

i
4ωijσijψ � ψ†γkψ − i4ωijψ

†[σij , γk]ψ (15)

Using (8), we see that the set of objects vk ≡ ψ†γkψ , k = 1, . . . , 2n, transforms like a
vector∗ in 2n-dimensional space:

vk→ vk − 1
2
(ωkjvj − ωikvi)= vk − ωkjvj (16)

To relate ωij to the rotation angle, let us be explicit and set all the ωs to 0 except for
ω12=−ω21. Then (16) gives v1→ v1− ω12v2, v2→ v2+ ω12v1 with vk for k > 2 untouched.
Thus, this corresponds to an infinitesimal rotation in the 12 plane through angle ϕ = ω12.

Under a finite rotation in the 12 plane through angle ϕ, the spinor ψ→ e
i
2ω12σ12ψ =

e±i
ϕ
2ψ . (In the last equality, we note by (12) that half of the components of ψ transform

by the phase factor ei
ϕ
2 , and the other half by e−i

ϕ
2 .) Thus, under a complete rotation

through 2π ,

ψ→−ψ (17)

As we might have expected from our experience with the spin 1
2 representation of SO(3),

while the spinorψ furnishes a representation of the Lie algebra SO(2n), it does not furnish
a representation of the group SO(2n). Instead, it furnishes a representation of the double
covering of the group SO(2n).

This discussion also indicates that in (13) the matrices σ (n+1)
ij , σ (n+1)

i , 2n+1, σ (n+1)
i , 2n+2, and

σ
(n+1)
2n+1, 2n+2 generate rotations in the (i , j )-plane, the (i , 2n+ 1)-plane, the (i , 2n+ 2)-plane,

and the (2n+ 1, 2n+ 2)-plane, respectively.

∗ As mentioned in chapter IV.5, in connection with the Pauli matrices, people often speak loosely and say that
the γ s transform like a vector.
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Strictly speaking, the double cover of SO(N) should be called Spin(N), but physicists
are typically lax in distinguishing the two groups. At the level of the Lie algebra (which is
what we generally focus on rather than the corresponding group), they are the same, of
course. We have already seen∗ that Spin(3)� SU(2) and Spin(4)� SU(2)⊗ SU(2).

Left and right handed spinors

Is the 2n-dimensional spinor representation reducible or irreducible?
Define the hermitean† matrix

γF = (−i)nγ1γ2 . . . γ2n (18)

It anticommutes with all the gamma matrices:

γFγi =−γiγF , for all i (19)

To see this, note that, as γi moves through the string of γ s in (18), each time it jumps past
a γ , according to (1), a minus sign pops up, except when it jumps past itself (so to speak),
so that the net sign produced is (−1)2n−1=−1.

By explicit computation, using (1), show that γF squares to the identity matrix I . Thus,
P± ≡ 1

2(I ± γF ) are projection operators in the sense that

P 2
+ = P+, P 2

− = P−, and P+ + P− = I (20)

Thus, we could decompose the spinor into a left handed spinor ψL ≡ 1
2(1− γF )ψ and

a right handed spinor ψR ≡ 1
2(1+ γF )ψ , such that γFψL =−ψL and γFψR = ψR, and

ψ = ψL + ψR.
From (19), it follows that γF commutes with σij . Thus, acting with P± on the transfor-

mationψ→ e
i
4ωijσijψ , we obtain P±ψ→ P±e

i
4ωijσijψ = e i4ωijσijP±ψ = e

i
4ωijσijP±(P±ψ).

We deduce that

ψL→ (e
i
4ωijσijP−)ψL = e

i
4ωijσijψL and ψR→ (e

i
4ωijσijP+)ψR = e

i
4ωijσijψR (21)

In other words, ψL and ψR transform separately‡ and just like ψ .
The projection into left and right handed spinors cuts the number of components by two.

We arrive at the important conclusion that the irreducible spinor representation of SO(2n)

has dimension 2n/2= 2n−1, not 2n. The representation matrices are given by (e
i
4ωijσijP±).

We will often refer to the two spinor representations as S+ and S−, or by their dimen-
sions as 2n−1

+ and 2n−1
− . For example, for SO(10), a group of great relevance for grand

unified theories (see chapter IX.3), we have 16+ and 16−.
It is also useful to note that, in the basis we are using, γF is real; explicitly,

γF = τ3⊗ τ3⊗ . . .⊗ τ3 (22)

∗ We note also that Spin(5)� Sp(4) and Spin(3)� SU(4).
† Verify this using the hermiticity of the gamma matrices and (1).
‡ The peculiar notation γF , ψL, andψR has its origin in the treatment of the Lorentz group in particle physics,

as we will see in chapter VII.3.
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with τ3 appearing n times. (This can be seen from the iterative relation γ (n+1)
F = γ (n)F ⊗ τ3,

which follows from the definition of γF and (3), (4), and (5).) Note that with this explicit
form, the key property (19) clearly holds.

A binary code

Given the direct product form of the γ matrices in (6) and (7), and hence of σij , we can write
the states of the spinor representations as (using the Dirac bra and ket notation already
introduced in the review of linear algebra)∣∣ε1ε2 . . . εn

〉
(23)

where each of the εs takes on the values ±1. From (22) we see that

γF
∣∣ε1ε2 . . . εn

〉= (�n
j=1εj)

∣∣ε1ε2 . . . εn
〉

(24)

The right handed spinor S+ consists of those states
∣∣ε1ε2 . . . εn

〉
with (�nj=1εj)=+1, and

the left handed spinor S− those states with (�nj=1εj)=−1. Indeed, the spinor represen-

tations have dimension 2n−1.

Some explicit examples: SO(2) and SO(4)

The binary notation is very helpful if we want to see explicitly what is going on. Try the
simplest possible example, SO(2). We have γ1= τ1 and γ2= τ2, and hence σ12= τ3. The
two irreducible spinor representations S+ and S− for n= 1 are 2n−1= 20 = 1-dimensional.
Since γF = τ3, they correspond to |+〉 and |−〉, with SO(2) rotations represented by phase
factors eiϕ and e−iϕ, respectively. The spinor representations S+ and S− are manifestly
complex. The reader will of course recognize that this is just the isomorphism between
SO(2) and U(1) discussed back in chapter I.3.

Next, it is also instructive to work out SO(4), the n= 2 case. The γ matrices were given
in (2); for your convenience, I list them here again:

γ1= τ1⊗ τ3, γ2= τ2⊗ τ3, γ3= 1⊗ τ1, γ4 = 1⊗ τ2 (25)

Then, by either direct computation or by (13),

σ12= τ3⊗ 1,
σ31=−τ1⊗ τ2, σ23= τ2⊗ τ2,
σ14 =−τ1⊗ τ1, σ24 =−τ2⊗ τ1,

σ34 = 1⊗ τ3 (26)

You can readily verify the commutation relations befitting SO(4). (For example, [σ12, σ34]=
0, while [σ12, σ23]= [τ3, τ2]⊗ τ2= 2iσ31.) Also, γF = τ3⊗ τ3.

While the commutation relations already confirm that the σ s represent the Lie algebra
of SO(4), it is instructive to verify this using the binary code. Go ahead and do it before
reading on!
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According to (22), the spinor S+ consists of |++〉 and |−−〉, while the spinor S− consists
of |+−〉 and |−+〉.

Acting with the σ s on |++〉 and |−−〉, we have

σ12 |++〉 = + |++〉 , σ12 |−−〉 = − |−−〉 ,

σ23 |++〉 = − |−−〉 , σ23 |−−〉 = − |++〉
σ31 |++〉 = −i |−−〉 , σ31 |−−〉 = i |++〉
σ14 |++〉 = − |−−〉 , σ14 |−−〉 = − |++〉
σ24 |++〉 = −i |−−〉 , σ24 |−−〉 = i |++〉
σ34 |++〉 = |++〉 , σ34 |−−〉 = − |−−〉 (27)

Thus, in the 2-dimensional space spanned by |++〉 and |−−〉, we have σ12∼ τ3, σ23∼−τ1,
σ31∼−τ2, and σ14 ∼−τ1, σ24 ∼−τ2, σ34 ∼ τ3.

Similarly, you can work out the σ matrices in the 2-dimensional space spanned by |+−〉
and |−+〉.

As was discussed in chapters II.3 and IV.7, SO(4) is locally isomorphic to SU(2)⊗
SU(2). By inspection, we see that 1

2(σ12+ σ34),
1
2(σ23+ σ14), and 1

2(σ31+ σ24) acting on
|++〉 and |−−〉 represent∗ SU(2), while (σ12− σ34) and its cousins acting on |++〉 and
|−−〉 give 0.

In contrast, you can (and should) check that 1
2(σ12− σ34) and its cousins acting on |+−〉

and |−+〉 represent the other SU(2), while (σ12+ σ34) and its cousins acting on |+−〉 and
|−+〉 give 0. Furthermore, the two SU(2)s commute. Once again, math works, but what
did you expect?

To summarize, we can write the spinor representations of SO(4) as

S+ ∼ {|++〉 and |−−〉}
S+ ∼ {|+−〉 and |−+〉} (28)

The spinor S+ transforms like a doublet under one SU(2) and like a singlet under the
other SU(2). In other words, it corresponds to the irreducible representation (2, 1) of
SU(2)⊗ SU(2). In contrast, S− corresponds to (1, 2). Explicitly, under one SU(2),

S+→ 2 and S−→ 1+ 1 (29)

Under the other SU(2), the vice versa holds.
We can also write out the 4-by-4 matrices explicitly projected by P±. From (22), γF =

τ3⊗ τ3=
( 1 0 0 0

0 −1 0 0
0 0 −1 0
0 0 0 1

)
. Thus, for example,

σ12P+ =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎟⎠=
⎛⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠ “=”

(
1 0

0 −1

)
= τ3 (30)

∗We might have called this SU(2) SU(2)+, and the other SU(2) SU(2)−. At the risk of potential confusion, we
will see in chapter VII.3 that it makes sense, in another context, to write SU(2)⊗ SU(2) as SU(2)L ⊗ SU(2)R.
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(the next-to-last equality is an effective equality). This agrees with what we have written
above, namely, that, acting on S+, σ12∼ τ3. Similarly,

σ12P− =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ “=”

(−1 0

0 1

)
=−τ3 (31)

Indeed, the whole point of the direct product notation is that we don’t have to write out
4-by-4 matrices, such as those written here.

Complex conjugation: The SO(2n)s are not created equal

Are the spinor representations real, pseudoreal, or complex?
Let us motivate the discussion with a question raised in chapter II.4. Suppose we have

two spinors ψ and ζ , so that ψ→D(g)ψ and ζ →D(g)ζ , where D(g)= e i4ωijσij (with g
an element of SO(2n)). We ask whether there exists a matrixC such that ζCψ is invariant.

Since ζ T Cψ→ ζ T e
i
4ωσ

T

Ce
i
4ωσψ � ζ T Cψ + i

4ωζ
T (σTC + Cσ)ψ , we see that ζ T Cψ

would be invariant if C satisfies

σT
ij
C =−Cσij (32)

In other words,

C−1σT
ij
C =−σij = C−1σ ∗

ij
C (33)

where the second equality follows from the hermiticity of σij . It is also handy to write

e
i
4ωσ

T

C = Ce− i4ωσ (34)

for later use. (Expand the exponential; every time we moveC past a σT , we pick up a minus
sign.)

Note that (32) does not determine C uniquely. For example, given a C that satisfies
(32), then γFC would too. (For some students, this “variability” adds to the confusion
surrounding C: it seems that every text presents a different C.)

In summary, we define C by requiring ζ T Cψ to be invariant.
To see how this works, let us be specific and look at the σ matrices for SO(4) listed

in (26). For what follows, it is helpful to keep in mind that τ2τ
T
a
τ2 =−τa for a = 1, 2, 3.

Note that σ13 and σ24 are antisymmetric, while the rest are symmetric. We see thatC equal
to either iτ2⊗ τ1 or τ1⊗ iτ2 would work∗ (but not τ1⊗ τ1 or iτ2⊗ iτ2). The two possible

choices are related (according to (IV.5.13)) by a similarity transformation U = e i2 ( π4 )τ3. We
choose

C = iτ2⊗ τ1 (35)

∗ Since γF = τ3⊗ τ3, this is precisely the issue of C versus γFC just mentioned.
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(Note that we have exploited the freedom allowed by (32) to multiply C by a constant and

used iτ2=
(

0 1
−1 0

)
instead of τ2.)

Now that we have C for SO(4), we induct∗ to determineC for SO(2n). Suppose we have
C for SO(2n); call it Cn. We want to construct Cn+1, starting with C2 given by (35). We are
invited by (13) to try Cn+1= Cn ⊗ κ .

First, looking at σ (n+1)
2n+1, 2n+2= 1⊗ τ3 in (13), we see that we can choose κ to be either τ1

or iτ2. Next, we take care of σ (n+1)
i , 2n+1 and σ (n+1)

i , 2n+2. For your reading convenience, I repeat

them here: σ (n+1)
i , 2n+1= γ (n)i ⊗ τ2, and σ (n+1)

i , 2n+2=−γ (n)i ⊗ τ1. Impose (33) to determine κ :

C−1
n+1σ

(n+1) T
i , 2n+1 Cn+1= C−1

n
γ
(n) T
i Cn ⊗ (κ−1τ2κ)=−γ (n)i ⊗ τ2

C−1
n+1σ

(n+1) T
i , 2n+2 Cn+1=−C−1

n
γ
(n) T
i Cn ⊗ (κ−1τ1κ)= γ (n)i ⊗ τ1 (36)

(The second equality here is the condition (33).) This could be satisfied if we alternate
choosing κ to be iτ2 or τ1 and if

C−1
n
γ
(n) T
i Cn = (−1)nγ (n)i (37)

Note that, in contrast to the basic requirement on C given in (32), this condition depends
explicitly on n.

Putting it all together, we have

Cn+1=
(

0 Cn

(−1)n+1Cn 0

)
=
{
Cn ⊗ τ1 if n is odd

Cn ⊗ iτ2 if n is even
(38)

One final (trivial) check is that this also works for σ (n+1)
ij = σ (n)ij ⊗ 1. In particular, this

choice agrees with our earlier choice C2= iτ2⊗ τ1 in (35).
From (38), we can write Cn as the direct product of n τ matrices, alternating between

iτ2 and τ1:

Cn = iτ2⊗ τ1⊗ iτ2⊗ τ1⊗ iτ2⊗ τ1 . . . (39)

Incidentally, from (38) and (39), we see that C1= iτ2, which works, since σ12 (the lone
generator of SO(2)) is simply τ3.

From this and (22) we see immediately that

C−1
n
γFCn = (−1)nγF (40)

This peculiar dependence on n forced on us will lead to some interesting behavior of
the orthogonal algebras.

We can determine from (39) whether Cn is symmetric or antisymmetric. The poor man
simply looks at the first few Cns:

C2= iτ2⊗ τ1, C3= iτ2⊗ τ1⊗ iτ2,

C4 = iτ2⊗ τ1⊗ iτ2⊗ τ1, C5= iτ2⊗ τ1⊗ iτ2⊗ τ1⊗ iτ2

C6 = C5⊗ τ1, C7 = C6 ⊗ iτ2, C8 = C7 ⊗ τ1, C9 = C8 ⊗ iτ2 (41)

∗ I strongly advise you to work through this. You will miss all the fun if you read the following passively.
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Thus, CT
n
= −Cn for n = 2, 5, 6, 9, while CT

n
= +Cn for n = 3, 4, 7, 8. Do you see the

pattern?
The rich man, being more systematic, defines the integers an by CT

n
= (−1)anCn, and

plugs this into (38) to obtain the recursion relation (−1)an+1 = (−1)an+n+1. Solving this
(using Gauss’s summation formula, for example), he arrives at the somewhat peculiar-
looking result

CT
n
= (−1)

1
2n(n+1)Cn (42)

We remark in passing that (6) and (7) imply γ T
i
= (−1)i+1γi and that (37) gives

γ
(n) T
i Cn = (−1)nCnγ

(n)
i . Thus,

γ
(n)
i Cn = (−1)n+i+1Cnγ

(n)
i (43)

In particular, for SO(10), n= 5, and γi commutes with C for i even and anticommutes
with C for i odd.

The observation that γ T
i
= (−1)i+1γi (namely, that γi is symmetric for i odd and anti-

symmetric for i even) offers us another way to determine C.
We go back to the defining condition (32): σT

ij
C =−Cσij . Note thatC is determined only

up to an overall constant. Recall that σij =−iγiγj for i �= j (and of course 0 for i = j ). If
one, and only one, of the two integers i , j is even, then (γiγj)T = γ Tj γ Ti =−γjγi = γiγj .
We demand that γiγjC =−Cγiγj . On the other hand, if neither i nor j is even, or if both
i and j are even, then (γiγj)T =−γiγj . We demand that γiγjC = Cγiγj .

We claim that C equals the product of the “even gamma matrices” solves these two
conditions. In other words, for n= 1, C = γ2; for n= 2, C = γ2γ4; for n= 3, C = γ2γ4γ6;
and so on. It would be best if you verify this for a few cases. As a check, forn= 3for example,
C = γ2γ4γ6 = (τ2⊗ τ3⊗ τ3)(1⊗ τ2⊗ τ3)(1⊗ 1⊗ τ2)=−iτ2⊗ τ1⊗ τ2, in agreement with
(41). Note that C is determined only up to an overall constant, as remarked just now.

With this form of C, you can readily verify (37), (40), and (42). For example, since γF
anticommutes with each of the γ matrices, then γF passing through C has to jump across
n γ matrices, thus producing a factor of (−1)n, in agreement with (40). Similarly, withC =
γ2γ4 . . . γ2n, we have CT = γ T2n . . . γ T4 γ

T
2 = (−1)nγ2n . . . γ4γ2= (−1)n(−1)n−1γ2γ2n . . . γ4.

I will leave it to you to complete the process of bringing the γ matrices into the right order
and checking that the resulting sign agrees with (42).

Conjugate spinor

Now that we have determined Cn with its peculiar dependence on n (see (38) and (42)), we
could go back to the question asked earlier. Are the spinor representations complex, real,
or pseudoreal?

It is important to ask this question of the irreducible 2n−1-dimensional representations

rather than of the reducible 2n-dimensional representation. Given that ψ→ e
i
4ωijσijP±ψ ,

then its complex conjugate ψ∗ → e
− i4ωijσ ∗ijP ∗±ψ

∗. If there exists a matrix C such that

C−1e
− i4ωijσ ∗ijP ∗± = e

i
4ωijσijP±C−1 (44)
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then the conjugate spinor

ψc ≡ C−1ψ∗ → C−1e
− i4ωijσ ∗ijP ∗±ψ

∗ = e i4ωijσijP±C−1ψ∗ (45)

would transform like ψ . The condition (44) works out to be

C−1σ ∗
ij

1
2
(I ± γF )∗C =−σij 1

2
(I ± γF ) (46)

From (33) and (40), we have, with the conjugation matrix C that we found,

C−1σ ∗
ij

1
2
(1± γF )∗C = C−1σT

ij

1
2
(1± γF )C =−σij 1

2

(
1± (−1)nγF

)
(47)

The factor 1
2(1± (−1)nγF ) on the right hand side equals P± or P∓ for n even or odd,

respectively.
Thus, for n even, S+ and S− are the complex conjugates of themselves. The irreducible

spinor representations are not complex for SO(4k), in particular, SO(4).
In contrast, for n odd, complex conjugation takes S+ and S− into each other. In other

words, S+ and S− are conjugates of each other. The irreducible spinor representations are
complex for SO(4k + 2), in particular, SO(10).

SO(4k), SO(4k + 2), SO(8m), SO(8m+ 4): Complex, real, or pseudoreal?

Actually, we do not even need the precise form of (38). All we need is that C is a direct
product of an alternating sequence of τ1 and τ2, and thus, acting on

∣∣ε1ε2 . . . εn
〉
, C flips

the sign of all the εs. Thus, C changes the sign of (�nj=1εj) for n odd and does not for n
even. In other words, for n odd, C changes one kind of spinor into the other kind, but for
n even, it does not.

For n even, the conclusion that S+ and S− are complex conjugates of themselves, and
hence not complex, then leads to the question of whether they are real or pseudoreal.
According to Wigner’s celebrated analysis described in chapter II.4, this corresponds to C
being symmetric or antisymmetric.

But we already have the answer in (42): forn= 2k, we haveCT = (−1)k(2k+1)C = (−1)kC.
Thus, for k = 2m, CT =+C. The spinors S+ and S− are real for SO(8m), in particular, for
SO(8). In contrast, for k = 2m+ 1, CT =−C. The spinors S+ and S− are pseudoreal for
SO(8m+ 4), in particular for SO(4).

The complexity of the spinor irreducible representations of the orthogonal algebras are
summarized in this table:

SO(4k + 2) complex

SO(8m) real

SO(8m+ 4) pseudoreal
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Multiplying spinor representations together

We learned how to multiply tensor representations of SO(N) together back in chapter IV.1.
Now we want to multiply spinor representations together.

For pedagogical clarity, let us focus on SO(10), for whichn= 5. There are ten γi matrices,
each 32-by-32 (note 32= 25). Let us take a lowbrow physicist approach and write the spinors
16+ as ψα and 16− as ξβ , with the spinor indices α , β = 1, 2, . . . , 32. (Half of the spinor
components are projected out by P±, of course.)

So, what is 16+ ⊗ 16+? We want to have something likeψβ(. . .)ψα with a matrix denoted
by (. . .) to tie the spinor indices α and β together. Well, the γ matrices γiαβ carry two spinor
indices (and one vector index i), exactly what we need. Indeed, any product of γ matrices
would work. So, try objects like ψα(γiγjγk)αβψβ = ψT (γiγjγk)ψ .

We want to know how these objects transform under SO(10). Read off from (21) that

ψR→ e
i
4ωijσijP+ψR and thus, ψT

R
(γiγjγk)ψR→ ψTP+e

i
4ωσ

T

(γiγjγk)e
i
4ωσP+ψ . Note that

P+ is symmetric.

For e
i
4ωσ

T

and e
i
4ωσ to knock each other off, we have to ask the conjugation matrixC for

help, to do what it did in (34). We are thus forced to insert a C and write ψT
R
CγiγjγkψR→

ψTP+{e− i4ωσ(γiγjγk)e i4ωσ }CP+ψ . But the result in (15) allows us to evaluate the quantity
in the curly bracket: we thereby learn that the object Tijk = ψTCγiγjγkψ transforms like
an SO(10) tensor with three indices, i, j , and k.

Still following thus far? Next, thanks to the Clifford algebra (1) that started this whole
business, we can decompose this tensor into its totally antisymmetric part and the rest.
For instance, write γiγj = 1

2{γi , γj} + 1
2 [γi , γj ]= δijI + iσij . The Kronecker delta leads to

a tensor Tk with only one index, which we can deal with separately. Thus, inductively, we
could in effect take the tensor Tijk to be totally antisymmetric. (Note that these remarks
apply to any pair of indices, not just an adjacent pair like ij , because we can use (1) to bring
γk next to γi if we wish.)

We deduce that the product 16+ ⊗ 16+ transforms like a sum of antisymmetric tensors.
Good. Now we generalize to SO(2n). The product S+ ⊗ S+ is equal to a sum of objects

like ψTC�κψ , where �κ denotes schematically an antisymmetric product of κ γ matrices
(for example, γiγjγk for κ = 3).

But wait: we still have not paid any attention to P+ in the transformation

ψT
R
C�κψR→ ψTP+Ce−

i
4ωσ�κe

i
4ωσP+ψ (48)

The plan is to move the P+ on the left past all the intervening stuff, C and the various γ
matrices, to meet up with the P+ on the right. We will see that sometimes we get a big fat
zero and sometimes not.

Recall that (40) tells us that γFC = (−1)nCγF . Thus, we have to treat n odd and n even
separately.

For n odd, P+C = CP−. Since γF anticommutes with γ matrices, if κ is even, this P−
would run into the P+ in (48), and they would annihilate each other. But if κ is odd, the
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P− would arrive as a P+ to meet P+, and P 2
+ = P+. This is summarized as follows:

For n odd, ψTP+C�κP+ψ = ψTC�κP+P+ψ = ψTC�κP+ψ for κ odd

ψTP+C�κP+ψ = ψTC�κP−P+ψ = 0 for κ even (49)

In particular, for SO(10), n= 5, and so κ has to be odd; thus, we obtain

16+ ⊗ 16+ = [1]⊕ [3]⊕ [5]= 10⊕ 120⊕ 126 (50)

The usual check to make sure that we did not lose anybody: 16 . 16= 256= 10+ 120+ 126.
In calculating dimensions, did you remember that the irreducible representation [5] is self-
dual? Thus the factor of 1

2 in 1
2(

10.9.8.7.6
5.4.3.2.1 )= 126.

For n even, P+C = CP+, and the situation is reversed. If κ is odd, we would get zero,
but if κ is even, the P+ would arrive as a P+ to meet P+. Thus, we simply interchange the
words odd and even in (49).

Fine. We have now evaluated the product S+ ⊗ S+. What about the product S+ ⊗ S−?
Simple. Instead of having P+ and P+ in (48), we now have P+ and P−. We simply flip

our conclusions (49). In the product S+ ⊗ S−, for n odd, κ has to be even, while for n even,
κ has to be odd. In other words,

For n odd, ψTP+C�κP−ψ = ψTC�κP+P−ψ = 0 for κ odd

ψTP+C�κP−ψ = ψTC�κP−P−ψ = ψTC�κP−ψ for κ even (51)

For n even, P+C = CP+, and the situation is reversed.
In particular, for SO(10), n= 5, and so κ has to be even:

16+ ⊗ 16− = [0]⊕ [2]⊕ [4]= 1⊕ 45⊕ 210 (52)

In contrast to (50), now it is those �κ with κ even that live. Note that 45 is the adjoint
representation.

Let us summarize the results obtained here:

S+ ⊗ S+, S− ⊗ S− n κ

odd odd

even even

and

S+ ⊗ S− n κ

odd even

even odd

It is instructive to work out a few other cases. For SO(4), n= 2 is even, and so

2+ ⊗ 2+ = [0]⊕ [2]= 1⊕ 3

2+ ⊗ 2− = [1]= 4 (53)
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But we know that SO(4) is locally isomorphic to SU(2)⊗ SU(2), and that 2+ = (2, 1),
2− = (1, 2). The multiplications above correspond to (2, 1)⊗ (2, 1)= (1, 1)⊕ (3, 1) and
(2, 1)⊗ (1, 2)= (2, 2), which confirms what we knew about multiplying irreducible rep-
resentations in SU(2). Once again, we have learned that the 4-dimensional representation
(2, 2) describes the 4-vector of SO(4).

We postpone working out the multiplication of spinors in SO(6) and SO(8) until the
end of this chapter.

The rotation group in odd-dimensional spaces:
Coming down versus going up

All this stuff about SO(2n) is fine, but what about SO(2n− 1)? Pardon me, but I can’t help
being prejudiced in favor of SO(3).

There are two routes to SO(2n− 1). We could move down from SO(2n), or we could
move up from SO(2n− 2). In particular, we could get to SO(3) either by moving down
from SO(4) or moving up from SO(2).

Suppose we have the γ matrices for SO(2n), namely, 2n 2n-by-2n matrices γi for i =
1, 2, . . . , 2n satisfying the Clifford algebra (1). How do we find the 2n− 1 γ matrices for
SO(2n− 1)?

Simply throw γ2n out.
We still have the 2n-by-2n matrices σij for i = 1, 2, . . . , 2n − 1, representing the Lie

algebra of SO(2n− 1), and hence constituting a spinor representation.
But what about γF as defined in (18)? Without γ2n, it looks like we won’t have a γF

any more; but no, we can perfectly well use the matrix called γF that was constructed for
SO(2n). After all, it is just a 2n-by-2n matrix that anticommutes with all the γ matrices
for SO(2n − 1), namely, γi for i = 1, 2, . . . , 2n − 1. So this spinor representation still
splits into two, with each piece 2n−1-dimensional. This shows that the σijs for SO(2n− 1)
are effectively 2n−1-by-2n−1 matrices. In appendix 2, we will see explicitly how this works
for SO(3). In particular, for SO(3), n= 2, 2n−1= 2, and the σijs are just the 2-by-2 Pauli
matrices we have known since chapter IV.5.

As remarked just now, we can also reach SO(2n+ 1) by adding a γ matrix to SO(2n).
Let us illustrate with SO(3). The Clifford algebra for SO(2) has two γ matrices: γ1= τ1 and
γ2= τ2. Simply add γ3= τ3. These three matrices form the Clifford algebra for SO(3). In
appendix 2, we show that this is equivalent to what we get starting with SO(4).

In general, since the single γ matrix we are adding is merely required to anticommute
with the existing γ matrix of SO(2n) and to square to the identity, we have considerable
freedom of choice. Referring back to (6) and (7), we have γ2n−1= 1⊗ 1⊗ . . .⊗ 1⊗ τ1 and
γ2n = 1⊗ 1⊗ . . .⊗ 1⊗ τ2. Thus, we could simply add

γ2n+1= 1⊗ 1⊗ . . .⊗ 1⊗ τ3 (54)
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Alternatively, we could add the matrix known as γF in SO(2n) and given in (22), namely,
add

γ2n+1= τ3⊗ τ3⊗ . . .⊗ τ3 (55)

How about the charge conjugation matrix C? Again, we could either come down or
go up.

Consider coming down from SO(2n) to SO(2n − 1). Since C is required to satisfy
σT
ij
C =−Cσij , and since coming down we throw out some of the σ s, we could a fortiori

use the C for SO(2n). But again, we must remember that γF cuts the size of C in half,
rendering it a 2n−1-by-2n−1 matrix. For example, the C for SO(4) is 4-by-4, but for SO(3)
is 2-by-2.

To explain what happens when we go up, it may be clearer to focus on the most important
example for physics. As explained earlier, going up from SO(2) to SO(3), we add γ3= τ3

to γ1= τ1 and γ2 = τ2. Thus, C = τ2. In fact, going back to the motivation for C, we see
that if ψ and χ are two SO(3) spinors, then ψTCχ = ψT τ2χ is manifestly invariant under
SO(3). Since C is antisymmetric, the spinors for SO(3) are pseudoreal, as we have known
for a very long time.

Rotation groups inside rotation groups

A natural subgroup of SO(2n + 2m) is SO(2n) ⊗ SO(2m). The decomposition of the
spinors can be read off using the binary code notation

∣∣ε1ε2 . . . εn+m
〉
by inserting a semi-

colon:
∣∣ε1ε2 . . . εn; εn+1 . . . εn+m

〉
.

Since γF is given by the product of the εs, this immediately gives us

2n+m−1
+ → (2n−1

+ , 2m−1
+ )⊕ (2n−1

− , 2m−1
− )

2n+m−1
− → (2n−1

+ , 2m−1
− )⊕ (2n−1

− , 2m−1
+ ) (56)

For example, on restriction of SO(10) is SO(4)⊗ SO(6), the spinor 16+ breaks up into
(2+, 4+)⊕ (2−, 4−).

Embedding unitary groups into orthogonal groups

The unitary group U(n) can be naturally embedded into the orthogonal group SO(2n). In
fact, I now show you that the embedding is as easy as z= x + iy .

Consider the 2n-dimensional real vectors x = (x1, . . . , xn, y1, . . . , yn) and x′ = (x′1, . . . ,
x′
n
, y′1, . . . , y′

n
). By definition, SO(2n) consists of linear transformations3 on these two real

vectors, leaving invariant their scalar product x′x =∑n
j=1(x

′
j
xj + y′jyj).

Now out of these two real vectors we can construct two n-dimensional complex vectors
z= (x1+ iy1, . . . , xn + iyn) and z′ = (x′1+ iy′1, . . . , x′

n
+ iy′

n
). The group U(n) consists of

transformations on the two n-dimensional complex vectors z and z′, leaving invariant their
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scalar product (z′)∗z=∑n
j=1(x

′
j
+ iy′

j
)∗(xj + iyj)=

∑n
j=1(x

′
j
xj + y′jyj)+ i

∑n
j=1(x

′
j
yj −

y′
j
xj).
In other words, SO(2n) leaves

∑n
j=1(x

′
j
xj + y′jyj) invariant, but U(n) consists of the

subset of those transformations inSO(2n) that leave not only
∑n
j=1(x

′
j
xj + y′jyj) invariant,

but also leave
∑n
j=1(x

′
j
yj − y′jxj) invariant as well.

In particular, the U(1) inside U(n) simply multiplies z by a phase eiξ and z∗ by the
opposite phase e−iξ . As a result, xj and yj , for j = 1, 2, . . . , n, rotate into each other:
xj→ cos ξ xj + sin ξ yj , yj→− sin ξ xj + cos ξ yj . This certainly is a rotation in the 2n-
dimensional space with coordinates (x1, . . . , xn, y1, . . . , yn); the rotation just described
leaves (x′

j
xj + y′jyj) and (x′

j
yj − y′jxj) invariant for each j , and thus a fortiori leaves∑n

j=1(x
′
j
xj + y′jyj) (and also

∑n
j=1(x

′
j
yj − y′jxj)) invariant.

Now that we understand this natural embedding of U(n) into SO(2n), we see that the
defining or vector representation of SO(2n), which we will call simply 2n, decomposes on
restriction to4 SU(n) into the two defining representations of SU(n), n and n∗, thus

2n→ n⊕ n∗ (57)

In other words, (x1, . . . , xn, y1, . . . , yn) can be written as (x1+ iy1, . . . , xn + iyn) and
(x1− iy1, . . . , xn − iyn).

Given the decomposition law (57), we can now figure out how other representations
of SO(2n) decompose when we restrict it to its natural subgroup SU(n). The tensor
representations of SO(2n) are easy, since they are constructed out of the vector rep-
resentation. For example, the adjoint representation of SO(2n), which has dimension
2n(2n− 1)/2= n(2n− 1), transforms like an antisymmetric two-indexed tensor 2n⊗A 2n
and so decomposes into

2n⊗A 2n→ (n⊕ n∗)⊗A (n⊕ n∗) (58)

according to (57). The antisymmetric product⊗A on the right hand side is to be evaluated
within SU(n), of course. For instance, n⊗A n is the n(n− 1)/2 representation of SU(n).
In this way, we see that

adjoint of SO(2n)= n(2n− 1)→ (n2− 1)⊕ 1⊕ n(n− 1)/2⊕ (n(n− 1)/2)∗ (59)

In the direct sum on the right hand side, we recognize the adjoint and the singlet of SU(N).
As a check, the total dimension of the representations of SU(n) on the right hand side
adds up to (n2− 1)+ 1+ 2(n(n− 1)/2)= n(2n− 1). In particular, for SO(10)→ SU(5),
we have

45→ 24⊕ 1⊕ 10⊕ 10∗ (60)

and of course, 24 + 1+ 10+ 10= 45.
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Decomposing the spinor

Now that we know how the generators of SO(2n) decompose, we want to figure out how
the spinors of SO(2n) decompose on restriction to SU(n). We will do it intuitively, giving
a heuristic argument that satisfies most physicists but certainly not mathematicians. In
appendix 3, a more precise (that is, more formal) treatment is given.

For ease of writing, I will just do SO(10)→ SU(5), and let you convince yourself that the
discussion generalizes. The question is how the spinor 16 falls apart. Just from numerology
and from knowing the dimensions of the smaller representations of SU(5) (namely 1, 5,
10, and 15), we see that there are only so many possibilities, some of them rather unlikely
(for example, the 16 falling apart into 16 1s).

Picture the spinor 16 of SO(10) breaking up into a bunch of representations of SU(5). By
definition, the 45generators of SO(10) transform the components of the 16 into each other.
Hence the 45 scramble all these representations of SU(5) together. Let us ask what the
various pieces of 45 (namely 24⊕ 1⊕ 10⊕ 10∗, given in (60)) do to these representations.

The 24 generators transform each of the representations of SU(5) into itself, of course,
because they are the 24 generators of SU(5), and that is what generators do in life. The
singlet 1 of SU(5), since it does not even carry an SU(5) index, can only multiply each of
these representations by a real number. (In other words, the corresponding group element
multiplies each of these representations by a phase factor: it generates the U(1) subgroup
of U(5).) As a challenge to yourself, figure out what these real numbers are. We will figure
them out in chapters IX.2 and IX.3.

What does the 10, also known as [2], do to these representations? Suppose the bunch
of representations that S breaks up into contains the singlet [0]= 1 of SU(5). The 10= [2]
acting on [0] gives the [2]= 10. (Almost too obvious for words: an antisymmetric tensor
of two indices combined with a tensor with no indices is an antisymmetric tensor of two
indices.)

What about 10 = [2] acting on [2]? It certainly contains the [4], which is equivalent
to [1]∗ = 5∗. But look, 1⊕ 10 ⊕ 5∗ already adds up to 16. Thus, we have accounted for
everybody. There can’t be more. So we conclude

16+→ [0]⊕ [2]⊕ [4]= 1⊕ 10⊕ 5∗ (61)

We learned earlier that SO(10) contains two spinors 16+ and 16− that are conjugate
to each other. Indeed, you may have noticed that I snuck in a superscript + in (61). The
conjugate spinor 16− breaks up into the conjugate of the representations in (61):

16−→ [1]⊕ [3]⊕ [5]= 5⊕ 10∗ ⊕ 1∗ (62)

Note that [0], [2], and [4] are the conjugates of [5], [3], and [1], respectively, in SU(5).
We could now write down how the spinor of SO(2n) decomposes on restriction to

SU(n) for arbitrary n, but it is more instructive to see how it works for some specific
cases.
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For SO(8)→ SU(4),

8+→ [0]⊕ [2]⊕ [4]= 1⊕ 6⊕ 1

8−→ [1]⊕ [3]= 4⊕ 4∗ (63)

This example confirms our earlier conclusion that the spinors of SO(8m) are real. Note
that in SU(4), 6∼ 6∗, because of the 4-indexed antisymmetric symbols.

For SO(12)→ SU(6),

32+→ [0]⊕ [2]⊕ [4]⊕ [6]= 1⊕ 15⊕ 15∗ ⊕ 1

32−→ [1]⊕ [3]⊕ [5]= 6⊕ 20⊕ 6∗ (64)

Note that a pseudoreal spinor of SO(8m+ 4) breaks up into a real reducible representation
of SU(4m+ 2).

Just for fun, let us do another example of SO(4k + 2). For SO(6)→ SU(3),

4+→ [0]⊕ [2]= 1⊕ 3∗

4−→ [1]⊕ [3]= 3⊕ 1 (65)

Indeed, here the + and − spinors are complex and are the conjugates of each other.
In general, we have for n odd,

S+→ [0]⊕ [2]⊕ . . .⊕ [n− 1]

S−→ [1]⊕ [3]⊕ . . .⊕ [n]

and for n even,

S+→ [0]⊕ [2]⊕ . . .⊕ [n]

S−→ [1]⊕ [3]⊕ . . .⊕ [n− 1]

SO(6) and SO(8)

The group SO(6) has 6(6− 1)/2= 15 generators. Notice that the group SU(4) also has
42 − 1= 15 generators. In fact, SO(6) and SU(4) are locally isomorphic, as we have
already seen in chapter VI.5 by studying their Dynkin diagrams. An explicit way to see

this isomorphism is to note that the spinors S± of SO(6) are 2
6
2−1= 4-dimensional and

that the generators of SO(6) acting on them (namely, σijP±) are represented by traceless
hermitean 4-by-4 matrices. Thus, the two spinor irreducible representations correspond
to the 4-dimensional defining representations 4 of SU(4) and its conjugate 4∗.

It is amusing to identify some low-dimensional representations of SO(6) and SU(4).
Try it before reading on! We just noted that the spinors of SO(6) are the fundamental
or defining representations of SU(4). The vector∗ V i of SO(6) is the antisymmetric†

A[αβ] of SU(4) (with dimension 6 = 1
2(4 . 3)); the adjoint J ij is the adjoint T α

β
(with

dimension 15= 1
2(6 . 5)= 42− 1); the symmetric traceless tensor Sij is the antisymmetric

traceless tensorA[αβ]
γ

(with dimension 20= 1
2(6 . 7)− 1= 4 . 6− 4); and so on. The various

∗ The notation here should be self-explanatory.
† Recall that we already used this correspondence in an appendix to chapter IV.8.
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dimensions in SO(6) and in SU(4) are given by different, but numerically identical,
arithmetical expressions.

The self-dual and antiself-dual n-indexed tensors of SO(2n) were discussed in chapter
IV.1. For SO(6) the 3-indexed self-dual tensor Dijk+ has dimension 10 = 1

2(
6.5.4
3.2 ). What

could it correspond to in SU(4)?
The symmetric tensorSαβ ofSU(4) indeed has dimension 10= 1

2(4 . 5) and corresponds
to the self-dual 3-indexed tensor of SO(6).

The antiself-dual 3-indexed tensor of SO(6) evidently corresponds to the conjugate
symmetric tensor Sαβ of SU(4):

(66)

SO(6) SU(4) Dimension

V i A[αβ] 6= 6= 1
2 (4 . 3)

J ij T α
β

15= 1
2 (6 . 5)= 42− 1

Sij A[αβ]
γ

20= 1
2 (6 . 7)− 1= 4 . 6− 4

D
ijk
+ Sαβ 10= 1

2 (
6.5.4
3.2 )= 1

2 (4 . 5)

Math works, as we have noted many times already in this book.
We noticed, in chapter VI.6, that the Dynkin diagram of SO(8) exhibits a striking 3-fold

symmetry sometimes called triality. We now understand what this signifies; namely, that
the two irreducible spinor representations 8+ and 8− of SO(8) happen to have the same
dimension as the defining vector representation 8v. Check also that the spinors are real
according to the table given earlier. Thus, there exists an automorphism of the Lie algebra
of SO(8) that maps 8+, 8−, and 8v cyclically into one another.

This is underlined by the following observation. In general, a subgroup H of a group
G can be embedded in G in more than one way. As an example, the subgroup SO(6) of
SO(8) can be embedded in SO(8) by saying that the vector 8v decomposes into 6⊕ 1⊕ 1. A
physicist would say that this defines the natural embedding. Indeed, this is the embedding
specified in (56): on the restriction SO(8)→ SO(6)⊗ SO(2)→ SO(6), the two spinors
decompose as 8+ → (4+, 1+)⊕ (4−, 1−)→ 4+ ⊕ 4− and 8− → (4+, 1−)⊕ (4−, 1+)→
4+ ⊕ 4−. But evidently this is quite different from the embedding specified in (63): on
the restriction SO(8)→ SU(4)� SO(6), we have 8+→ 1⊕ 6⊕ 1 and 8−→ 4 ⊕ 4∗, and
also, 8v→ 4⊕ 4∗, as in (57). Evidently, these two SO(6) subgroups of SO(8) are different,
but related to each other by the triality automorphism.

Earlier in the chapter, I promised to work through the multiplication of spinors in SO(6)
and SO(8), which we will now do.

The situation in SO(6) is interesting in light of its local isomorphism with SU(4), as
discussed above. Since n= 3 is odd, our earlier analysis leads to

4+ ⊗ 4+ = [1]⊕ [3]= 6⊕ 10

4+ ⊗ 4− = [0]⊕ [2]= 1⊕ 15 (67)

In light of the table (66) and the remark above that the spinors are just the fundamental 4
and 4∗ representations of SU(4), these multiplication results are also readily understood
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within SU(4). Thus, 4 ⊗ 4 = 6⊕ 10 is just the familiar decomposition of the 2-indexed
tensor into its antisymmetric and symmetric parts, and 4 ⊗ 4∗ = 1⊕ 15 corresponds to
separating out the trace to obtain the adjoint representation.

For SO(8), n= 4 is even, and so, again, according to our earlier analysis

8+ ⊗ 8+ = [0]⊕ [2]⊕ [4]= 1⊕ 28⊕ 35

8+ ⊗ 8− = [1]⊕ [3]= 8v ⊕ 56 (68)

We have indicated that the 8 appearing in the product of 8+ with 8− is the vector 8v. And
of course, 82= 64 = 1+ 28+ 35= 8+ 56.

More fun with local isomorphism

The local isomorphism SU(4)� SO(6) leads to another proof of the local isomorphism
Sp(4)� SO(5), which we already proved by looking at Dynkin diagrams, for example.

Let us consider the antisymmetric tensor A[αβ] of SU(4) furnishing the 4 . 3/2= 6-
dimensional irreducible representation. Denote an element of SU(4) by the simple unitary
4-by-4 matrix U . Then A[αβ] transforms∗ as A[αβ]→ A[γ δ]UγαUδβ = (UT )αγA[γ δ]Uδβ .

But now we see that the symplectic condition (IV.8.4) UT JU = J that defines the
symplectic algebra USp(4) just says that one particular component of A[αβ] is invariant
under SU(4). Since SU(4)� SO(6), and A[αβ] corresponds to the vector representation
6 of SO(6), we conclude that USp(4) (more commonly known to physicists as Sp(4)) is
isomorphic to the subalgebra of SO(6) that leaves one component of the vector 6 invariant,
namely, SO(5). This amounts to another proof that Sp(4)� SO(5) locally, as promised
earlier.

Appendix 1: SO(2)

Confusio speaks up. “I noticed that you started the induction in (38) with SO(4), rather than SO(2).”
Yes, very astute of Confusio! As is often the case in group theory, the smaller groups are sometimes the most

confusing. For SO(2), γ1= τ1, γ2 = τ2, and σ12 = τ3, and so (33) can be solved with either C = τ1 or C = iτ2.
We seem to have a choice. But this should already raise a red flag, since the discussion in chapter II.4 indicates
that whether an irreducible representation is real or pseudoreal is not open to choice. If you go back to that
discussion, you will see that to apply Schur’s lemma it was crucial for the representation in question to be
irreducible. The point is that on the irreducible representations, the generator of SO(2) is represented not by
σ12, but by σ12P± = τ3

1
2 (1± τ3)= 1

2 (τ3± 1). Thus, the irreducible representations of SO(2) are neither real nor
pseudoreal, but complex; that is, the group elements are represented by eiϕ and e−iϕ in S+ and S−, respectively.

Even more explicitly, since γF =−iγ1γ2= τ3, the two spinors areψ+ =
(

1
0

)
andψ− =

(
0
1

)
. The SO(2) group

element eiϕτ3 acting on ψ+ and ψ− is effectively equal to eiϕ and e−iϕ, respectively.
This agrees with a table in the text; for SO(4k + 2), the spinor representations are complex, in particular

for k = 0.
Let us also see how the multiplication rules in (49) and (51) work for SO(2). Since n= 1 is odd, we have

1+ ⊗ 1+ = [1] and 1+ ⊗ 1− = [0]. At first sight, since [1] is the vector of SO(2), the first result appears puzzling.

∗ I put U on the right to make contact with chapter IV.8.
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The resolution is that we should not forget that 1= 1
2

. 2, and the irreducible representation is self-dual or antiself-
dual. Indeed, ψ+Cτ1ψ+ and ψ+Cτ2ψ+ are proportional to each other.

Appendix 2: SO(3)

It is instructive to see how the spinor formalism given in this chapter works for our beloved SO(3). As mentioned
earlier, we can get to SO(3) by descending from SO(4).

For SO(4), n= 2, 2n−1= 2, and thus we have a 2-dimensional spinor, that is, 2-component spinors, precisely
those that Pauli (and others) discovered. More explicitly, remove γ4 from (2) and keep σ12= τ3⊗ 1, σ23= τ2⊗ τ2,
and σ31=−τ1⊗ τ2 from (26). We still have γF = τ3⊗ τ3, and so the three rotation generators are represented by

1
2
σ12(1± γF )= 1

2
(τ3⊗ 1± 1⊗ τ3),

1
2
σ23(1± γF )= 1

2
(τ2⊗ τ2 ∓ τ1⊗ τ1),

1
2
σ31(1± γF )=− 1

2
(τ1⊗ τ2 ± τ2⊗ τ1) (69)

It is more transparent to write out the 4-by-4 matrices. For example, σ12 = τ3⊗ 1=
(

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

)
. Since

P+ = 1
2 (I + τ3⊗ τ3)=

(
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)
, to calculate σ12P+, we simply cross out the second and third rows and the

second and third columns, and thus obtain effectively a 2-by-2 matrix that we recognize as one of the Pauli

matrices: σ12P+ “=” τ3. Similarly, σ23= τ2⊗ τ2=−
(

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

)
and thus, σ23P+ “=” −τ1. I leave you to verify

that σ31P+ “=” −τ2. Thus,

σ12P+ ∼ τ3, σ23P+ ∼ −τ1, σ31P+ ∼ −τ2 (70)

(with ∼ denoting “represented by”). Indeed, what else could the three generators of the SO(3) algebra be
represented by but the three Pauli matrices?

In contrast, to calculate σijP−, we simply cross out the first and fourth rows and the first and fourth columns

of σij , since P− =
(

0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

)
. Given that there are only three traceless hermitean 2-by-2 matrices, we know that

the σijP− also have to be Pauli matrices, up to possibly some signs. A quick calculation shows that σ12P− “=”
−τ3, σ23P+ “=” τ1, and σ31P+ “=” −τ2.

The two representations are in fact equivalent (as expected) and are related by a unitary transformation with
U = iτ2.

Appendix 3: Using fermions to describe the spinors of SO(2n)

Here we introduce a fermionic formalism to describe the spinor representations of SO(2n). I assume that the
reader has heard of the Pauli exclusion principle, stating that you cannot put more than two particles of the type
known as fermions into the same quantum state. The electron is perhaps the most famous fermion of them
all. If this is totally foreign to you, please skip this appendix. Here we merely do more formally what we did
heuristically in the text.

Thus, in our binary code, we could interpret |+〉 as a state containing one fermion and |−〉 as a state containing
no fermion. It is now convenient to use the creation and annihilation operators introduced back in appendix 1
of chapter IV.2, but, instead of a and a†, we write f and f † in honor of Enrico Fermi.

You might also want to change notation slightly to fix on the creation and annihilation language used (but
it is not necessary). Write the state with no fermion as the vacuum state |0〉 instead of |−〉, and the state with
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one fermion as |1〉 ≡ f † |0〉 instead of |+〉. The Pauli condition stating that states with two or more fermions do
not exist can then be written as f †f † |0〉 = 0 or as the operator statement f †f † = 0. The correct quantization
condition then turns out to involve anticommutation, rather than commutation (see chapter IV.2), relations:

{f , f †} = ff †+ f †f = 1 (71)

For your convenience, I list the correspondence here:

|0〉 ↔ |−〉 and |1〉 ≡ f † |0〉 ↔ |+〉 (72)

The operator N ≡ f †f counts the number of fermions. Indeed, using (71), we have

N |0〉 = f †f |0〉 = 0

N |1〉 = f †f |1〉 = f †ff † |0〉 = f †{f , f †} |0〉 = f † |0〉 = |1〉 (73)

When regarded as operators on the states |±〉, the Pauli matrices can then be written as

τ1= f + f †, τ2 = i(f − f †), τ3= 2N − 1= (−1)N+1 (74)

(Henceforth, somewhat sloppily, we confound the↔ sign and the= sign.) For example, τ1 |−〉 = (f + f †) |0〉 =
f † |0〉 = |1〉 = |+〉. Note that the last equality in (74) holds because N can take on only the values 0 or 1.

To discuss the spinors of SO(2n)with the states
∣∣ε1ε2 . . . εn

〉
in the binary code notation, we need to generalize

to n sets of fermion creation and annihilation operators f †
i , fi with i = 1, . . . , n satisfying

{fi , f †
j } = δij , and {fi , fj } = 0 (75)

The number operator for fermions of species i is given byNi = f †
i fi . (For example, the spinor state |+ − ++−〉

of SO(2n) would be written as f †
1 f

†
3 f

†
4 |0〉, with |0〉 short for the more pedantic |0, 0, 0, 0, 0〉. In other words,

we describe |+ − ++−〉 as the state containing a fermion of species 1, a fermion of species 3, and a fermion of
species 4.)

The spinors S± are distinguished by having an even or odd number of fermions present. More formally, this
follows from (22) and (74):

γF = τ3⊗ τ3⊗ . . .⊗ τ3=�i(−1)(Ni+1) = (−1)(N+n) (76)

It is instructive to work out the generators of SO(2n) in this language. From (74) and from what we have

learned in the text, we see that the generators are given by all possible bilinear operators of the form∗ fifj , f
†
i f

†
j ,

and f †
i fj , with i , j = 1, . . . , n. Due to the anticommutation relations (75), the number of these operators are,

respectively, n(n− 1)/2, n(n− 1)/2, and n2, giving a total of 2n2 − n, which is precisely equal to 2n(2n− 1)/2,
the number of generators of SO(2n).

The generators of the U(n) subgroup are then the operators that conserve the number of fermions, namely,

f
†
i fj . The diagonal U(1) is just the total fermion number�ni=1f

†
i fi . Given an irreducible spinor representation,

with its 2n−1 states, those states with the same number of fermions form an SU(n) representation. The generators

of SO(2n) that are not in U(n) (namely, fifj and f †
i f

†
j ) then either create or annihilate two fermions at a time.

This completely accords with the discussion on how spinors decompose given in the text.
We can also readily make contact with the tensor formalism given in chapter IV.4. Denote by (λa)

i
j , with

a = 1, . . . , n2 − 1 and i , j = 1, . . . , n, the n2 − 1 hermitean traceless n-by-n matrices that generate SU(n)
(namely, for particle physicists, the generalized Gell-Mann matrices). Then we can write the n2 − 1 generators

of SU(n) as Ta = (λa)ijf †
i f

j , where we have raised the index on f to accord with the notation in chapter IV.4.
(Summation over i and j is of course implied.)

∗ Note that due to (75), there is no need to include fjf
†
i = δij − f †

i fj .
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Exercise

1 Why doesn’t C = τ1⊗ τ1⊗ τ1⊗ . . .⊗ τ1 work?

Notes

1. This chapter is based on F. Wilczek and A. Zee, Phys. Rev. D 25 (1982), p. 553. See this paper for detailed
references to the relevant physics literature.

2. W. K. Clifford, after translating Riemann’s work into English, proposed a theory of gravity based on curved
space that anticipated, albeit only in broad outline, Einstein gravity by some 40 years.

3. As usual, we know we can take care of reflections if somebody insists.

4. Recall our earlier remark that, rigorously speaking, U(n) =
(
SU(n)/Zn

)
⊗ U(1) rather than U(n) =

SU(n)⊗ U(1).



VII.2 The Lorentz Group and Relativistic Physics

The additive group of real numbers

I showed you, way back in chapter II.1, a peculiar 2-dimensional representation

D(u)=
(

1 0

u 1

)
(1)

of the group of addition, such that

D(u)D(v)=D(u+ v) (2)

I then asked you whether the group described by (1) ever appeared in physics. Where in
physics have you encountered∗ matrices that effectively add two real numbers?

If you didn’t know back then, I reveal to you now thatD(u) represents the Galilean group
of nonrelativistic physics. Denote the 2-dimensional array (call it a vector for short) that

D(u) acts on (rather suggestively) as
(
t

x

)
. Then D(u) transforms this vector into

(
t ′
x′
)

,

with

t ′ = t
x′ = ut + x (3)

This Galilean transformation relates the space and time coordinates t , x and t ′, x′ of two
observers in uniform motion with velocity u relative to each other.† The sophisticated rep-
resentation of addition in (1) merely reflects the addition of relative velocity in elementary
physics.

∗ Yes, in SO(2) the rotation angles add. But we already know all the irreducible representations of SO(2), and
they do not include (1). However, as we shall see, the addition of angles is at some level related to the subject of
this chapter.

† The convention here agrees with that used in G Nut (p. 159) and is chosen to minimize the number of signs
in the Lorentz transformation to be given below in (6). In Einstein’s Gedanken experiment with the train moving
to “the right of the page,” Ms. Unprime is on the train, while Mr. Prime is on the ground. Thus, if the position
of Ms. Unprime is given by x = 0 then x′ = ut = ut ′, and the train is moving in the +x′ direction.
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Relative motion

Observers in motion relative to one another provide one of the most gripping foundational
dramas in physics. The issue is how the laws of physics as codified by one observer are
related to the laws of physics as codified by another observer in motion relative to the
first. Denote, somewhat abstractly, by T (1→ 2) the transformation that takes the laws of
physics seen by observer 1 to the laws of physics seen by observer 2. Similarly, the physics
of observer 2 is transformed into the physics of observer 3 by T (2→ 3). A fundamental
postulate of physics asserts that

T (2→ 3)T (1→ 2)= T (1→ 3) (4)

More precisely, it asserts that the relativity of motion defines a group.
Note that this statement does not specify the precise form of T . As most readers know,

one of the two great revolutions of twentieth-century physics involves a disagreement over
the form of T , whether it is Galilean or Lorentzian.

It could well be that this fundamental postulate will eventually fail, like so many other
truths previously held to be sacred by physicists, but so far, there is no evidence whatsoever
to contradict the postulate that motion forms a group.

The fall of absolute time

The form of T encapsulates what we understand about space and time. Thus, the first
equation in (3) asserts that time is absolute in nonrelativistic physics. But as we now know,
the “self-evident” equality t ′ = t is actually incorrect.

The fall of absolute time was surely one of the most devastating falls in the history of
physics.

Physics in the nineteenth century culminated in the realization that electromagnetism is
not invariant under the Galilean transformation, a realization that led Einstein to formulate
special relativity. As you probably know,1 Einstein showed that the Galileo transformation
is but an approximation of the Lorentz transformation, which we will derive shortly.

Given that this is a book on group theory in physics, rather than physics per se, our
discussion will emphasize the group theoretic aspects, rather than the relevant (and
profound) physics, of special relativity.

It is conceivable that, sometime in the nineteenth century, a bright young person could

have tried to improve2 the “lopsided” matrix
(

1 0
u 1

)
in (1) by filling in the 0, that is, by

replacing the first equation in (3) for small u by something like t + ξ−1ux. She would have
seen immediately that ξ would have to have dimension of (L/T )2, that is, of a universal
speed3 squared.

In the absence of an experimentally observed universal speed, this potential star physi-
cist would have been stymied. We now know, of course, that the speed of light c furnishes
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this universal speed. Once we recognize that the speed of light c provides a universal con-
stant with dimension of L/T , then the door is wide open for modifying4 the Galilean
transformation.

Three derivations of the Lorentz transformation:
Each easier than the preceding

Here we offer three derivations of the Lorentz transformation, each one “easier” than
the preceding one. All derivations of course must input the astonishing fact that c does
not depend on the observer. By an elegant thought experiment in which light is bounced
between two mirrors moving in a direction perpendicular to the separation between the
mirrors, Einstein showed5 that this fact implies (c�t ′)2 − (�x′)2 = (c�t)2 − (�x)2, or
better,

(c dt ′)2− (dx′)2= (c dt)2− (dx)2 (5)

in the infinitesimal limit.
Now we are ready to derive the Lorentz transformation. For pedagogical clarity, we will

continue to stay with the case of one spatial dimension, that is, with (1+ 1)-dimensional
spacetime. (In any case, as the reader probably knows, the other two coordinates, y and
z, orthogonal to the direction of relative motion, merely go along for the ride: the Lorentz
transformation leaves them untouched. See below.)

The first derivation is by brute force. Replace (3) by t ′ =w(t + ζux/c2), x′ = w̃(ut + x),
with w, w̃, and ζ three unknown dimensionless functions of u/c. Plugging this into (5),
we readily determine these functions and obtain

ct ′ = ct + ux/c√
1− u2

c2

x′ = ut + x√
1− u2

c2

(6)

In all likelihood, students of physics first encounter the Lorentz transformation written in

this elementary form, with the infamous
√

1− u2

c2 factor.
Note that, for c =∞, the Lorentz transformation (6) reduces to the Galileo transforma-

tion (3), as expected.
It is clearly convenient to use ct instead of t in (6), so that time and space have the same

dimension of length. Henceforth, we will set c = 1.
For our second derivation, write (dt)2− (dx)2 as dxT ηdx, where dx denotes∗ the column

vector
(
dt

dx

)
and η the 2-by-2 matrix η =

(
1 0
0 −1

)
= σ3, known as the Minkowski metric.†

∗ Here we follow the standard notation (which can be confusing to the rank beginner) of using x for both the
spacetime coordinate and the spatial coordinate along the x-axis. In any case, the level of the presentation here
presupposes that the reader has heard of special relativity before.

† We refrain from going into a long detailed discussion of the metric here. See G Nut, chapter III.3.
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For convenience, we also identify η as the third Pauli matrix. Finally, denote the 2-by-2

matrix representing the Lorentz transformation by L, so that
(
dt ′
dx′
)
= L

(
dt

dx

)
. Then (5)

may be written as dx′T ηdx′ = dxTLT ηLdx = dxT ηdx. Since dx is arbitrary, we can extract
the requirement

LT ηL= η (7)

Perhaps you recognize that the reasoning is essentially the same as that used regarding
rotational invariance back in chapter I.3, where we obtained RTR = I as the definition
of rotation. Indeed, if we write the left hand side of this requirement as RT IR, the
resemblance with (7) becomes even more apparent. The correspondence between rotation
and Lorentz transformation is R→ L, I → η.

Lie taught us that to solve (7) and to obtain the Lorentz group, it suffices to consider
infinitesimal transformations and write L � I + iϕK , with ϕ some infinitesimal real
parameter. (Note that the generator K is defined with a factor of i, in analogy with
how the generators J of rotation were defined in chapter I.3 by R � I + i �θ �J .) We find
KT η + ηK = 0, and hence KT η =−ηK . The solution is immediate:

iK =
(

0 1

1 0

)
(8)

If we recall that η = σ3 and that Pauli matrices anticommute, the solution ofKT η =−ηK
is even more immediate: iK = σ1. Note that, while iJ is real and antisymmetric, iK is real
and symmetric (and hence a fortiori hermitean).

Finally, I show you an even easier way to derive the Lorentz transformation. Write

dt2− dx2= (dt + dx)(dt − dx)≡ dx+dx− (9)

In the last step, I defined the “light cone” coordinates x± = t ± x. Thus, dt2− dx2 is left
invariant if we multiply x+ by an arbitrary quantity and divide x− by the same quantity.

Call this quantity eϕ. We immediately obtain the Lorentz transformation. For example,
t = 1

2(x
+ + x−)→ 1

2(e
ϕx+ + e−ϕx−)= 1

2(e
ϕ(t + x)+ e−ϕ(t − x))= cosh ϕt + sinh ϕx.

By the way, the analogous step for SO(2) rotation would be to replace x and y by the
complex coordinates z ≡ x + iy and z∗ ≡ x − iy. Then under a rotation, z→ eiθz, and
z∗ → e−iθz∗.

The Lorentz transformation stretches and compresses the light cone coordinates x± by
compensating amounts.

Lorentz is more natural than Galileo

I started this chapter with the Galilean transformation to show you that mathematically,
the Lorentz algebra is more natural and aesthetically appealing than the Galilean algebra.

Compare iK =
(

0 1
1 0

)
with the Galilean generator

(
0 0
1 0

)
. (Since we have already set c= 1,

it is no longer manifest that one matrix reduces to the other.)
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In summary, to leading order, the Lorentz transformation is gloriously simple:(
t ′

x′

)
� (I + iϕK)

(
t

x

)
=
(

1 ϕ

ϕ 1

) (
t

x

)
(10)

Could the mystery of spacetime be expressed in a simpler mathematical form than this?
Time rotates into space, and space rotates into time.

Note that
(

1 ϕ

ϕ 1

) (
1 χ

χ 1

)
=
(

1+ϕχ ϕ+χ
ϕ+χ 1+ϕχ

)
. Thus, if we agree to ignore the quadratic

terms ϕχ , the matrix in (10) also approximately represents the additive group.

Building up to finite relative velocities

The reader might wonder about the square roots in (6) so characteristic of elementary
treatments of special relativity. Lie assures us, however, as he did back in chapter I.3, that we
do not lose anything by going to infinitesimal transformations. We can always reconstruct
the finite transformations using the multiplicative structure of the group. Indeed, from
the discussion in chapter I.3, we can simply exponentiate and promote L� (I + iϕK) to
L= eiϕK . Expanding this exponential as a Taylor series just as in chapter I.3, separating
the series into even and odd terms, and using (iK)2 = I , we obtain the finite Lorentz
transformation (keep in mind that iK and hence L are real):

L(ϕ)= eiϕK =
∞∑
n=0

ϕn(iK)n/n!=
( ∞∑
k=0

ϕ2k/(2k)!
)
I +

( ∞∑
k=0

ϕ2k+1/(2k + 1)!
)
iK

= cosh ϕI + sinh ϕiK

=
(

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

)
(11)

Hence,(
t ′

x′

)
=
(

cosh ϕ sinh ϕ

sinh ϕ cosh ϕ

) (
t

x

)
(12)

Comparing the result x′ = sinh ϕt + cosh ϕx with (6), we determine

u= sinh ϕ
cosh ϕ

= tanh ϕ (13)

Solving, we obtain cosh ϕ = 1√
1−u2

, sinh ϕ = u√
1−u2

, and recover the square roots in (6)

(with c set to 1, of course), as expected.
We note that the matrix in (12) now represents the additive group exactly, either by using

various identities for the hyperbolic sine and cosine, or by merely writing eiϕ1Keiϕ2K =
ei(ϕ1+ϕ2)K . The matrix in (10) is of course the small ϕ approximation of the matrix
in (12).
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SO(m, n)

It probably did not escape your notice that our discussion of the Lorentz transformation
in (1+ 1)-dimensional spacetime is totally reminiscent of our discussion of rotation in
2-dimensional space. (Indeed, I already mentioned it.) This is hardly an accident.

We defined rotations back in chapter I.3 as those linear transformations d �x′ =Rd �x (with
d �x = (dx1, dx2, . . . , dxN)) that leave the distance squared between two nearby points
ds2 =∑N

i=1(dx
i)2 = (dx1)2 + (dx2)2 + . . .+ (dxN)2 unchanged. We are now invited to

generalize and consider linear transformations d �x′ = Ld �x, with d �x = (dx1, dx2, . . . ,
dx(m+n)), which leave the generalized distance squared

ds2=
m∑
i=1

(dxi)2−
m+n∑
i=m+1

(dxi)2 (14)

unchanged. This set of transformations defines the group6 SO(m, n). (By now, you should
be able to verify the group axioms in your head.)

Thus, the (1+ 1)-dimensional Lorentz group we discussed is SO(1, 1). It should hardly
surprise you that SO(1, 1) may be analytically continued∗ from SO(2). Write the time
coordinate as t = iy and continue y to a real variable: then−dt2+ dx2= dy2+ dx2. Setting
ϕ = iθ , we continue the Lorentz transformation t ′ = cosh ϕt + sinh ϕx, x′ = sinh ϕt +
cosh ϕx to the rotation y′ = cos θy + sin θx, x′ = − sin θy + cos θx. Indeed, in the older
literature, the fourth coordinate x4 = ict is often used, but by now it has mostly been
replaced by x0.

I close with a “pregnant” and “mystic” quote from Minkowski. The words he chose
probably won’t fly in a contemporary scholarly journal, but I like them all the same.

The essence of this postulate may be clothed mathematically in a very pregnant manner in the

mystic formula 3 . 105 km=√−1 secs.

—H. Minkowski

The Lorentz group SO(3, 1)

It is time to remember that we live in (3+ 1)-dimensional spacetime rather than (1+ 1)-
dimensional spacetime, and so we have to deal with the group SO(3, 1). We will focus on
the Lie algebra rather than on the group itself. With three spatial coordinates, we can boost
in any of three directions, and, of course, we can also rotate. Thus, the Lie algebra SO(3, 1)
consists of six generators: Jx, Jy, Jz andKx,Ky,Kz. It is straightforward to generalize the
2-by-2 matrices in the preceding discussion to 4-by-4 matrices:

∗ Thus, the addition of angles is indeed related to the subject of this chapter, as mentioned in the first footnote
in the chapter.
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iKx =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , iKy =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎟⎠ , iKz =

⎛⎜⎜⎜⎜⎜⎝
0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎟⎠ (15)

I leave it to you to write the 4-by-4 matrices representing Jx, Jy, and Jz.
To repeat, in our convention, iKj is real symmetric and hence hermitean. Thus, Kj is

imaginary symmetric and hence antihermitean. Therefore, as was already pointed out in
the very first chapter, L= eiϕK = eϕ(iK) is manifestly not unitary. Explicitly (see the matrix
in (12)), L†L= LTL �= I (the first equality holds since iK and hence L are real in the
defining representation); rather, LT ηL= η, according to (7).

Instead of matrices, we will use, for a change of pace, the differential operators intro-
duced and discussed in chapter I.3. In particular, Jz = i(y ∂∂x − x ∂∂y ). Similarly,

iKx = t ∂
∂x
+ x ∂

∂t
(16)

Note the plus sign. (Let us check: under an infinitesimal transformation, δt = ϕ(iKxt)=
ϕx, δx = ϕ(iKxx)= ϕt , δy = 0, and δz = 0.) As noted earlier, y and z merely go along
for the ride; nevertheless, the point is that the presence of two other boost operators,
iKy = t ∂∂y + y ∂∂t and iKz = t ∂∂z + z ∂∂t , make the group theory much richer.

The rotation subgroup is generated by Jx, Jy, and Jz, as was discussed in chapter I.3.
The commutators of the J s with one another are given, as in chapter I.3, by

[Ji , Jj ]= iεijkJk (17)

While it should be clear that the J s rotate the threeKs into one another, it is somewhat
instructive to verify this explicitly. For example,

[Jz , iKx]= i
[
y
∂

∂x
− x ∂

∂y
, t
∂

∂x
+ x ∂

∂t

]
= i
([
y
∂

∂x
, x
∂

∂t

]
−
[
x
∂

∂y
, t
∂

∂x

])
= i
(
y
∂

∂t
+ t ∂
∂y

)
= i(iKy) (18)

Thus,

[Ji , Kj ]= iεijkKk (19)

Finally, since the algebra closes, we expect the commutators between the Ks should
produce the J s:

[Kx , Ky]= (−i)2
[
t
∂

∂x
+ x ∂

∂t
, t
∂

∂y
+ y ∂

∂t

]
=
([
y
∂

∂t
, t
∂

∂x

]
−
[
x
∂

∂t
, t
∂

∂y

])
= y ∂

∂x
− x ∂

∂y
=−iJz (20)
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Perhaps one small surprise is that [Kx , Ky] does not yield iJz, but rather −iJz. Thus,

[Ki , Kj ]=−iεijkJk (21)

It goes without saying that you can also obtain (20) and (21) by commuting 4-by-4 matrices,
as you should verify.

Note that under parity, that is, spatial reflection∗ �x→−�x, t→ t , the generators trans-
form as Ji→ Ji,Ki→−Ki. From this, we know7 thatKk cannot appear in the right hand
side of (21). We can also arrive at the same conclusion by appealing to time reversal �x→ �x,
t→−t .

Wait! Haven’t we seen something like this before?

The Lorentz algebra falls apart into two pieces

The reader with a long memory will recall that, way back in chapter I.3, when we spoke
of rotations in 4-dimensional Euclidean space, we denoted the six generators of SO(4),
Jmn =−Jnm for m, n= 1, . . . , 4, by J3= J12, J1= J23, J2 = J31 and K1= J14, K2 = J24,
K3 = J34. Then the commutation relations between these generators (which we wrote
down in general for SO(N)) took the form

[Ji , Jj ]= iεijkJk (22)

[Ji , Kj ]= iεijkKk (23)

[Ki , Kj ]= iεijkJk (24)

I have copied (I.3.25), (I.3.26), and (I.3.27) here. Evidently, theKs are analogs of the boosts
for the Lorentz group, if we think of the coordinate x4 as “Euclid’s time,” so to speak.

For your convenience, I collect the commutation relations for SO(3, 1):

[Ji , Jj ]= iεijkJk (25)

[Ji , Kj ]= iεijkKk (26)

[Ki , Kj ]=−iεijkJk (27)

Comparing the commutation relations (25), (26), and (27) for SO(3, 1)with the commu-
tation relations (22), (23), and (24) for SO(4), we see that there is a subtle (or perhaps not
so subtle) minus sign in (27). Evidently, we can formally obtain the commutation relations
for SO(3, 1) from the commutation relations for SO(4) by letting K→ iK .

We learned in chapter I.3 that SO(4) is locally isomorphic to SU(2)⊗ SU(2): specifically,
if we define J±, i = 1

2(Ji ±Ki), then the Lie algebra of SO(4) falls apart into two pieces.

∗ With the increasing use of Lorentz invariance, Dirac equation, Majorana particle, and related concepts in
condensed matter physics, it is important to note here that while spatial reflection and parity are the same in 3+ 1
dimensions, they are not the same in odd-dimensional spacetimes. For instance, in 2+ 1 dimensions, spatial
reflection �x→−�x is actually a rotation, since it has determinant+1, in contrast to parity, defined to be x1→−x1,
x2→+x2 (or, equivalently, x1→+x1, x2→−x2).
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Later, in chapter IV.7, we constructed the isomorphism explicitly, showing that in fact
SU(2)⊗ SU(2) double covers SO(4).

Since SO(3, 1) can be obtained by analytically continuing from SO(4), we expect some-
thing similar to happen here. We only need to take care of the one difference due to the
minus sign in (27) by defining

J±, i = 1
2
(Ji ± iKi) (28)

with an i. Note that, since Ji and iKi are both hermitean operators, J±, i are manifestly
hermitean.

Let us now verify that the six generators J±, i divide into two sets of three generators
each, the J+s and the J−s, with each set of generators commuting right past the other set.
Using (25), (26), and (27), we have indeed

[J+, i , J−, j ]=
(

1
2

)2

[Ji + iKi , Jj − iKj ]

=
(

1
2

)2(
[Ji , Jj ]− i[Ji , Kj ]− i[Jj , Ki]+ [Ki , Kj ]

)

=
(

1
2

)2

iεijk(Jk − iKk + iKk − Jk)= 0 (29)

To obtain the other commutation relations, we simply flip a few signs in (29):

[J+, i , J+, j ]=
(

1
2

)2

[Ji + iKi , Jj + iKj ]

=
(

1
2

)2(
[Ji , Jj ]+ i[Ji , Kj ]− i[Jj , Ki]− [Ki , Kj ]

)

=
(

1
2

)2

iεijk(Jk + iKk + iKk + Jk)= iεijkJ+,k (30)

Similarly,

[J−, i , J−, j ]= iεijkJ−,k (31)

That the Lorentz algebra falls apart into two pieces will be central to our discussion of
the Dirac equation in chapter VII.4.

It is worth noting again that the algebra (25), (26), and (27) allows us to flip the sign
of Ki: Ki→−Ki, but not the sign of Ji. This corresponds to the interchange J+i↔ J−i.
Physically, this describes spatial reflection.

Space and time become spacetime

Space and time become spacetime, and we can package the three spatial coordinates
and the time coordinate into four spacetime coordinates dxμ = (dx0, dx1, dx2, dx3) =
(dt , dx , dy , dz). By definition, a vector pμ in spacetime is defined as a set of four numbers
pμ = (p0, p1, p2, p3), which transform in the same way as the ur vector dxμ under the
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Lorentz transformation. It is sometimes called a 4-vector to distinguish it from ordinary
3-vectors∗ in space. By convention, we write the index on a 4-vector as a superscript.

The square of the length of the 4-vector p is defined as p2≡ p . p ≡ ημνpμpν. (The dot
will be often omitted henceforth.) Here we generalize the (1+ 1)-dimensional Minkowski
metric to the (3+ 1)-dimensional Minkowski metric given by the diagonal matrix with
η00 =+1, η11=−1, η22 =−1, and η33=−1. As already noted, Lorentz transformations
leave p2 unchanged. Repeating an argument used in chapter I.3, we deduce† that they
also leave the scalar dot product

p . q ≡ ημνpμqν = p0q0 − (p1q1+ p2q2+ p3q3)= p0q0 − �p . �q (32)

between two 4-vectors p and q unchanged.
The attentive reader might have noticed that I snuck in lower indices by writing ημν as

an object carrying subscripts.
Thus far, ημν is the only object with lower indices. Whenever we want to sum over

two indices μ and ν, the rule is that we multiply by ημν and invoke Einstein’s repeated
summation convention. We say that we have contracted the two indices. For example,
given two vectors pμ and qμ, we might want to contract the indices μ and ν in pμqν and
obtain p . q ≡ ημνpμqν. Another example: given pμqνrρsσ , suppose we want to contract
μ with σ and ν with ρ. Easy, just write ημσηνρpμqνrρsσ = (p . s)(q . r). Savvy readers will
recognize that I am going painfully slowly here for the sake of those who have never seen
this material before.

So far so good. All vectors carry upper indices, and the only object that carries lower
indices is η.

The next step is purely for the sake of notational brevity. To save ourselves from con-
stantly writing the Minkowski metric ημν, we define, for any vector pμ, a vector with a
lower index

pν ≡ ημνpμ (33)

In other words, if pμ = (p0, �p), then pμ = (p0, − �p). Thus,‡ p . q = pμqμ = p0q0 −
�p . �q . With this notation, we can write p . q = pνqν = pνqν. Similarly, an expression
ημνp

μqνηρσ r
ρsσ can be written more simply as pνqνrσ sσ . The Minkowski metric has

been folded into the indices, so to speak.
Unaccountably, some students are twisted out of shape by this trivial act of notational

sloth. “What?” they say, “there are two kinds of vectors?” Yes, fancy people speak of
contravariant vectors (pμ, for example) and covariant vectors (pμ, for example), but let

∗ Evidently, the 4-vector pμ contains the 3-vector pi = (p1, p2, p3).
† For two arbitrary 4-vectors p and q, consider the vector p + αq (for α an arbitrary real number). Its length

squared is equal to p2 + 2αp . q + α2q2. Since Lorentz transformations leave lengths unchanged and since α is
arbitrary, p . q cannot change.

‡ Notice that the same dot in this equation carries two different meanings, the scalar product between
two 4-vectors on the left hand side and between two 3-vectors on the right hand side, but there should be no
confusion.
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me assure the beginners that there is nothing terribly profound∗ going on here. Just a
convenient notation.8

The next question might be: given pμ, how do we get back to pμ?
Here is where I think beginners can get a bit confused. If you have any math sense

at all, you would expect that we use the inverse of η, and you would be absolutely right.
If you use η to move indices downstairs, surely you would use the inverse of η to move
them upstairs. But the inverse of the matrix η is itself. So traditionally, the inverse of η is
denoted by the same symbol, but with two upper indices, like this: ημν. We define ημν by
the diagonal matrix with η00 =+1 and η11= η22= η33=−1.

Indeed, ημν is the inverse of ημν regarded as a matrix: ημνηνλ= δμλ , where the Kronecker
delta δμλ is defined, as usual, to be 1 if μ= λ and 0 otherwise. It is worth emphasizing
that while ημν and ημν are numerically the same matrix, they should be distinguished
conceptually. Let us check the obvious, that the inverse metric ημν raises lower indices:
ημνpν = ημνηνλpλ = δμλ pλ = pμ. Yes, indeed.

Confusio: “Ah, I get it. The same symbol η is used to denote a matrix and its inverse,
distinguished by whether η carries lower or upper indices.”

From this we see that the Kronecker delta δμλ has to be written with one upper and one
lower index. In contrast, ημ

ν
does not exist. On the other hand, there is no such thing as

δμν or δμν. Also, note that the Kronecker delta δ does not contain any minus signs, unlike
the Minkowski metric η.

It follows that the shorthand ∂μ for ∂
∂xμ

has to carry a lower index, because

∂μx
ν = ∂x

ν

∂xμ
= δν

μ
(34)

In other words, for the indices to match, ∂μ must be written with a lower index. This
makes sense, since the coordinates xμ carry an upper index but in ∂

∂xμ
it appears in the

denominator, so to speak. We will use this important fact later. It follows that

∂μxν = ημν (35)

in contrast to (34). Again, the difference merely reflects that in the convention used here,
xμ = (t , �x), while xμ = (t , −�x).

The Lorentz transformation revisited

We derived the Lorentz transformation earlier in this chapter, but it is convenient, now
that we have upper and lower indices,9 to write its defining feature again. A Lorentz
transformation is a linear transformation on the spacetime coordinates

xμ→ x′μ = Lμ
ν
xν (36)

∗ Of course, if you woke up one day and discovered that you were a mathematician or a mathematician-want-
to-be, you should and could read more profound books.
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which leaves unchanged the proper time interval dτ , defined by

dτ 2= ημνdxμdxν = dt2− d �x2 (37)

This is of course the same invariant in (5) and (9).
More generally, letp and q be two arbitrary 4-vectors. Consider the linear transformation

p′μ = Lμ
σ
pσ and q ′μ = Lμ

σ
qσ . Notice the upper-lower summation convention. For L

to be a Lorentz transformation, we require p′ . q ′ = p . q; that is, p′ . q ′ = ημνp′μq ′ν =
ημνL

μ
σ
pσLν

ρ
qρ = p . q = ησρpσqρ. Since pσ and qρ are arbitrary, Lmust satisfy

ημνL
μ
σ
Lν
ρ
= ησρ (38)

Let us define the transpose by (LT ) μ
σ
= Lμ

σ
. (Note that when the indices are interchanged,

the guy who was downstairs stays downstairs, and similarly for the guy who was upstairs.)
We may then write (38) as (LT ) μ

σ
ημνL

ν
ρ
= ησρ, or more succinctly, as LT ηL= η. This is

of course the same as (7).
Let me emphasize again an extremely useful feature of this notational device. In the

Einstein convention, a lower index is always contracted with an upper index (that is,
summed over), and vice versa. Never never sum10 two lower indices together, or two upper
indices together!

Energy and momentum become momentum

I have already apologized for the lack of emphasis on physics, but this is after all a book
on group theory. There is of course an enormous amount of profound physics connected
with the Lorentz transformation. I limit myself to one particularly important implication,
which we will need for later use.

In Newtonian mechanics, the conserved momentumpiNewton=mdx
i

dt
plays a central role,

but this expression does not transform in any mathematically sensible way, considering
that it is given by the components of a 3-vector dxi divided by the time component dt of
the 4-vector dxμ. In Einstein’s special relativity, piNewton =mdx

i

dt
is promoted to a 4-vector

pμ =mdxμ
dτ

, with dτ defined in (37). Since dτ is invariant under Lorentz transformations,
the momentum transforms just like dxμ, that is, as a 4-vector (as it should). The time
component p0 = E is identified as the energy of the particle. Henceforth, energy and
momentum become 4-momentum, or momentum for short.

Using the expression for dτ in (37), we obtain p2 = ημνpμpν = m2ημν
dxμ

dτ
dxν

dτ
= m2.

Written out in components, p2=m2 says that E2− �p2=m2, namely, Einstein’s relation
E2 = �p2 +m2 between the energy and momentum of a particle (that is, the layperson’s
E =mc2).

Lorentz tensors

Back in chapter IV.1, we worked out the tensor representations of SO(N) in general and
SO(4) in particular. Evidently, the discussion of the tensors of the Lorentz group SO(3, 1)
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would proceed in the same way, with the additional feature of having indices on two floors,
as mandated by the Minkowskian metric η. As we have learned, out of the two basic vector
representations (namely, the Lorentz vector with an upper index and the Lorentz vector
with a lower index), we can construct the general tensor representation.

In particular, the ur vector dxμ transforms like a vector with an upper index, while ∂μ
transforms like a vector with a lower index.

The multiplication of tensors also works out along a by-now familiar line. As an im-
portant example, multiplying two vectors Aμ and Bν together, we have 4 ⊗ 4 = 6⊕ 10,
corresponding to an antisymmetric tensor and a symmetric tensor, respectively, each with
two lower indices. Indeed, in your study of physics, you might already have encountered
the Lorentz tensor with two lower indices. Given a 4-vector field∗ Aμ(x), we can form the
antisymmetric tensor Fμν ≡ ∂μAν − ∂νAμ. This is of course Maxwell’s electromagnetic
field, which started the entire relativistic story told here.

You can also readily work out how Lorentz tensors break up on restriction to the
rotation subgroup SO(3), starting with how the Lorentz vector decomposes: 4→ 3+ 1.
In particular, 4⊗ 4→ (3+ 1)⊗ (3+ 1)= 5+ 3+ 1+ 1+ 3+ 3. From this we deduce that
6→ 3+ 3, which of course we could also work out directly from inspecting [0, 2]. The
decomposition 6→ 3+ 3 in mathematics corresponds to, in physics, the antihistorical
process of the electromagnetic field breaking up into the electric �E and the magnetic �B
fields. Indeed, I might remind you that, already in chapter IV.1, we have discussed how the
6-dimensional representation of SO(4) breaks up as 6→ 3+ 3 on restriction to the natural
subgroup SO(3). Evidently, much of what was said about SO(4) carries over to SO(3) with
minor or no modification.

Self-dual and antiself-dual tensors and the Lorentz generators

Let us spend a few more moments on the 2-indexed antisymmetric tensor furnishing the
6-dimensional representation of the Lorentz algebra. Recall the discussion of dual tensors
in chapter IV.1. For SO(2k), the antisymmetric symbol εi1i2...i2k carries 2k indices and the
antisymmetric tensor withn indices is dual to a tensor with 2k − n indices. In particular, for
SO(4), given an antisymmetric tensorAij with two indices, the dual tensorBij = 1

2εijklAkl

also carries two indices. Thus, we have the possibility of forming the self-dual and antiself-
dual tensors Aij ± Bij . This indicates that the 6-dimensional representation furnished by
Aij is actually reducible and decomposes into two irreducible representations as 6→ 3+ 3.
The discussion carries over to SO(3, 1). Indeed, back in chapter IV.1, I promised to come
back to the “peculiar” fact 4 − 2= 2, which I do now.

Well, dear readers, where oh where have you seen six objects in our discussion of the
Lorentz group?

Yes, indeed, the generators �J and �K may be packaged into the Lorentz tensor Jμν. In-
deed, Jij correspond to εijkJk, and J0i to Ki, thus verifying explicitly the decomposition

∗ The word “field” in this context merely means a 4-vector that depends on the spacetime coordinates.



VII.2. The Lorentz Group and Relativistic Physics | 441

6→ 3+ 3 on restricting the Lorentz group to its rotation subgroup. This also accords with
the general statement that the generators of a Lie algebra furnish the adjoint representa-
tion. For SO(3, 1), the adjoint is the two-indexed antisymmetric tensor.

But now the statement that duality implies that the adjoint representation is not irre-
ducible just informs us, once again, that the combinations Ji ± iKi form two irreducible
representations.11

The relativistic spacetime notation allows us to package the differential operators Jz =
i(y ∂

∂x
− x ∂

∂y
), iKx = t ∂∂x + x ∂∂t , and so forth into

Jμν = i(xμ∂ν − xν∂μ) (39)

Note that since Jμν is defined with two lower indices, our index convention requires
xμ = ημνxν, rather than xμ, to appear on the right hand side. This leads to various minus
signs in the following identification:

J12= i(x1∂2− x2∂1)=−i
(
x
∂

∂y
− y ∂

∂x

)
= Jz

J01= i(x0∂1− x1∂0)= i(x0∂1+ x1∂0)= i
(
t
∂

∂x
+ x ∂

∂t

)
=−Kx (40)

Thus, the formalism offers the attractive feature of automatically taking care of the relative
signs inside �J and inside �K .

Now the commutation relations (25), (26), and (27) of the Lorentz algebra can be derived
much more compactly. Using (39), we readily calculate∗ the commutation relations

[Jμν , Jρσ ]=−i(ημρJνσ + ηνσJμρ − ηνρJμσ − ημσJνρ) (41)

(Indeed, we can even lift this from the commutation relations between the generators J(mn)
given in (I.3.23).) As already remarked in chapter I.3, while the right hand side of (41) looks
rather involved, it actually is very simple. From the general definition of a Lie algebra, the
right hand side has to be linear in J , which carries two indices. Since there are four indices
μ, ν, ρ, and σ , we need an η to soak up two of these indices. Given the first term on the right
hand side, the other three terms can be obtained by symmetry considerations (for example,
the left hand side is antisymmetric in μν). Only the overall sign has to be fixed, but this
can be determined by the rotation subalgebra: [Jx , Jy]= [J23, J31]= iη33J21=+iJ12= iJz.

Indeed, (41) holds for SO(m, n)with the appropriate ημν. Specialize to the Lorentz group
SO(3, 1). We simply read off

[Kx , Ky]= (−1)2[J01, J02]=−iη00J12=−iJz (42)

We have thus “recovered” the minus sign in (20)!
In this notation, we can then write a Lorentz transformation as

L= e− i2ωμνJμν (43)

∗ Be sure to keep (35) in mind.
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where Jμν is represented by the 4-by-4 matrices in (15), in the same way as our writing a

rotation as R = ei �θ �J in chapter I.3. The six real parameters are ωμν =−ωνμ.
Of course, if you prefer, you can always deal with Jμν = ημρηνσJρσ = i(xμ∂ν − xν∂μ)

instead of Jμν.

From the Lorentz algebra to the Poincaré algebra

A Lorentz transformation (36) supplemented by a translation is known as a Poincaré
transformation:

xμ→ x′μ = Lμ
ν
xν + aμ (44)

Following one Poincaré transformation by another gives x→ x′ = L2(L1x + a1)+ a2 =
L2L1x + (L2a1+ a2). Denote the group elements by g(L, a) characterized by 6+ 4 = 10
real parameters. The composition law is then

g(L2, a2)g(L1, a1)= g(L2L1, L2a1+ a2) (45)

The Lie algebra of the Poincaré group is obtained as usual by expanding the group
elements near the identity. The set of generators Jμν is supplemented by the generators
of translation Pμ = i∂μ. (We see that Pμ generates translation by acting with it: (I −
iaμPμ)x

λ = (I + aμ∂μ)xλ = xλ + aλ. This is of course the same way we see that Jμν in
(39) generates rotations and boosts.)

The Lorentz algebra defined by (41) is thus extended to the Poincaré algebra, generated
by Jμν and Pμ. The commutation relations (41) are supplemented by

[Jμν , Pρ]=−i(ημρPν − ηνρPμ) (46)

and

[Pμ, Pν]= 0 (47)

In chapter I.3, we distinguished between the purely geometrical generators of rotation
and the physical angular momentum operators of quantum mechanics. As you would learn
(or perhaps have learned) in a course on quantum physics, angular momentum operators
are given by the generators of rotation multiplied by Planck’s constant �, which have
dimensions of angular momentum, namely, [ML2/T ]. (We have subsequently touched
on this connection on several occasions, for instance, in chapter IV.3.)

Similarly, multiplying by � allows us to promote the purely geometrical (and dimen-
sionless) translation operator Pμ= i∂μ to the momentum operator Pμ= i�∂μ of quantum
mechanics.12

Particles as representations of the Poincaré algebra

The reader with a long memory will have noticed a striking resemblance of the Poincaré
group to the Euclidean group E(2) studied in Interlude IV.i3. With the replacement of
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Euclid by Minkowski, the Poincaré algebra has the same structure as the Euclidean algebra,
and its representations can be studied by the method of induced representation discussed
earlier. In particular, the momentum operators Pμ form an invariant subalgebra and can
be simultaneously diagonalized. Denote their eigenstates by |p〉, with Pμ |p〉 = pμ |p〉.
Under a Lorentz transformation L, |p〉 → |Lp〉.

Evidently, the operatorP 2= PμPμ is a Casimir invariant, that is, it commutes with all the
generators of the algebra. (ThatP 2 commutes with Jμν is of course just the statement that it
is a Lorentz scalar.) We haveP 2 |p〉 = p2 |p〉 =m2 |p〉. The single particle state |p〉describes
an elementary particle with mass m moving with 4-momentum p. Mathematically, the
mass m labels a representation and is not changed by Poincaré transformations.

Elementary particles also carry spin, and thus the Poincaré algebra should contain
another Casimir invariant that tells us about spin. From our work with SO(3), with its
Casimir invariant �J 2, we might have guessed J 2≡ JμνJμν = �J 2− �K2= J 2

+ + J 2
−, but this

is incorrect, as it also contains the boost operator.13 The invariant, as we will see presently,
should reduce to �J 2 in the rest frame of the particle.

The correct invariant is constructed out of the Pauli-Lubanski vector

Wσ ≡−1
2
εμνρσJ

μνP ρ (48)

(Incidentally, if we had defined the dual generator J̃ρσ =− 1
2εμνρσJ

μν, then we could write,
somewhat more compactly,Wμ = J̃ρσP ρ.)

To see how this works, note that acting on |p〉, the Pauli-Lubanski vector is effectively
equal to − 1

2εμνρσJ
μνpρ. In the rest frame of the particle, with momentum pμ∗ = (m, �0),

Wσ reduces toW0 = 0,Wi = 1
2εijkmJ

jk =mJi. (The 4-dimensional antisymmetric symbol
reduces to the 3-dimensional antisymmetric symbol, and Ji denotes the generators of
SO(3).) Incidentally, thatW0 = 0 also follows fromWμP

μ = 0.
Thus, the correct second Casimir invariant of the Poincaré algebra isWμWμ, and

m−2WμW
μ |p , j〉 = �J 2 |p , j〉 = j (j + 1) |p , j〉 (49)

Note that our states are now characterized by spin j as well as by momentum p.
More formally, we readily∗ derive

[Wμ, Wν]= iεμνρσWρP σ (50)

With Pσ replaced by pσ∗ , this effectively becomes the SO(3) algebra.

The little group

Physically, what we did was to pick out a special momentump∗ and ask for the subgroup of
the Lorentz group that leavesp∗ invariant (namely, SO(3)) and classify the states according
to the irreducible representation of this group, which physicists refer to as the little group.

∗ Schematically, [W , W ]∼ [JP , JP ]∼ [J , J ]PP + [J , P ]JP ∼ JPP ∼WP .
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(This is reminiscent of our treatment ofE(2), in which we also pick out a special �p, pointing
along the x-axis, say.)

What if the particle is massless, with no rest frame for us to go to?
Pick the special momentum p∗ = (p , 0, 0, p). (Simply call the direction of motion the z-

axis.) We want to find the subgroup that leaves p∗ invariant.14 The condition Lμ
ν
pν∗ = pμ∗ ,

since it amounts to three equations, defines a 6− 3= 3-parameter subgroup. Rotations
around the z-axis clearly belong: the subgroup O(2) leaves pμ∗ invariant.

The spin states of a massless particle around its direction of motion are known as helicity
states. For a particle of spin j , the helicities,±j , are transformed into each other by parity
and time reversal, and thus both helicities must be present if the interactions the particle
participates in respect these discrete symmetries, as is the case with the photon and the
graviton.∗ In particular, the photon, as we have seen repeatedly, has only two polarization
degrees of freedom, instead of three, since we no longer have the full rotation group SO(3).
(You already learned in classical electrodynamics that an electromagnetic wave has two
transverse degrees of freedom.) For more on this, see appendix 3.

To find the other transformations, it suffices, as Lie taught us, to look in the neighbor-
hood of the identity, at Lorentz transformations of the formL(α , β)= I + αA+ βB + . . . .
By inspection, we see that

A=

⎛⎜⎜⎜⎜⎜⎝
0 1 0 0

1 0 0 −1

0 0 0 0

0 1 0 0

⎞⎟⎟⎟⎟⎟⎠= i(K1+ J2), B =

⎛⎜⎜⎜⎜⎜⎝
0 0 1 0

0 0 0 0

1 0 0 −1

0 0 1 0

⎞⎟⎟⎟⎟⎟⎠= i(K2− J1) (51)

acting on pμ∗ gives zero. Referring to (15), we have identifiedA and B in terms of J andK .
Note that A and B are to a large extent determined by the fact that J andK are symmetric
and antisymmetric, respectively.

By direct computation or by invoking the celebrated minus sign in (27), we find that
[A, B]= 0. Also, [J3, A]= B and [J3, B]=−A. As expected, (A, B) forms a 2-component
vector under O(2) rotations around the third axis.

We see thatA, B, and J3 generate the groupE(2), the invariance group of the Euclidean
2-plane, consisting of two translations and one rotation. (Perhaps you are surprised, but
then again, as was mentioned in Interlude IV.i3, cylindrical symmetry also comes in
here.) You may well wonder what the translations do; it turns out that they generate
gauge transformations,15 but this will take us far outside the scope of a book on group
theory.

As might be expected, we can also express the preceding discussion in terms of the Pauli-
Lubanski vector. Acting withWμPμ = 0 on

∣∣p∗〉 givesW0
∣∣p∗〉=W3

∣∣p∗〉. The relation (50)
gives effectively

[W1, W2]
∣∣p∗〉= 0 (52)

∗ But not with the neutrino, as we will discuss in chapter VII.3.
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and

[W3, W1]
∣∣p∗〉= ip∗W2

∣∣p∗〉 , [W3, W2]
∣∣p∗〉=−ip∗W1

∣∣p∗〉 (53)

which is effectively isomorphic to theE(2) algebra after a trivial normalization. Consistent
with the somewhat cryptic (field theoretic in origin and thus outside the scope of this book)
remark about gauge transformations just made,W1, 2 then leave physical states unchanged:
W1, 2

∣∣p∗〉= 0. These results imply thatWμ and Pμ are effectively parallel in spacetime:

Wμ
∣∣p∗〉=−hPμ ∣∣p∗〉 (54)

The invariant proportionality factor h defines the helicity.

More on the Lorentz group and its double cover

In the next chapter, I will have more to say about the Lorentz group SO(3, 1) and its double
cover SL(2, C). We will also talk about SO(4), SO(2, 2), and SO(3, C). It is simply more
convenient to discuss these topics after we have studied the Weyl spinor, to be introduced
shortly.

Appendix 1: From the Galilean algebra to the Poincaré algebra:
Missing halves

It is instructive to regress and study the supposedly familiar but in fact somewhat exotic Galilean algebra. We
will be mostly restating some of what we already said in the text but in the language of differential operators.
This will also be useful in chapter VIII.1, when we discuss contractions.

Let us start by writing down the generators of translation∗ and rotation as differential operators, as was done
for the Lorentz algebra in the text:

Translation: Px = i ∂
∂x

, and so forth

Rotation: Jz = 1
i

(
x
∂

∂y
− y ∂

∂x

)
=−xPy + yPx , and so forth

(55)

We verify easily the Euclidean algebra E(3), which tells us about the geometry of Euclidean space:

[Ji , Jj ]= iεijkJk , [Ji , Pj ]= iεijkPk , [Pi , Pj ]= 0 (56)

For example, [Jz , Px ]= [x ∂
∂y

, ∂
∂x

]=− ∂
∂y
= iPy , and [Jz , Py ]= [−y ∂

∂x
, ∂
∂y

]=+ ∂
∂x
=−iPx .

Thus far, it is all geometry. But humans cannot live by geometry alone; we need to introduce physics, in the

person of Newton and his profound laws of motion, namely, dp
i

dt
=md2xi

dt2
= 0 for a free particle.

Generalizing (3) slightly, we have the Galilean transformation t ′ = t , x′ = x + ut , y′ = y, and z′ = z relating
the space and time coordinates t , x , y , z and t ′ , x′ , y′ , z′ of two observers in uniform motion relative to each
other with velocity u along the x direction. Evidently, this transformation leaves Newton’s laws invariant. We can
immediately generalize to many interacting particles, provided that the potential between pairs of particle a and
b is given by V (|�xa − �xb|), which is clearly invariant under �x′

a ,b = �xa ,b + �ut , since the universal Newtonian time
t does not know about a and b, being by definition universal.

∗ To determine the sign here, note that Pμ = i∂μ = i ∂
∂xμ

implies Pi = i ∂∂xi .
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In a beautiful passage,16 Galileo imagines a sailing ship moving smoothly in a calm sea. In a cabin below deck,
we would hardly notice that the ship is moving; in particular, a butterfly flying around would not be affected by
the forward velocity of the ship.

The generators of Galilean transformations are given by

Boost: Kx = t 1
i

∂

∂x
=−tPx , and so forth (57)

Acting with the boost operator Bx(v)≡ (I + ivKx)= (1+ vt ∂∂x ), for example, on the coordinates, we obtain

x′ = Bx(v)x = x + vt , y′ = Bx(v)y = y , z′ = Bx(v)z= z, t ′ = Bx(v)t = t (58)

The boost operator Bx translates x by an amount linear in t and leaves y , z, t untouched, as it should. Note that
Kx is proportional to the generator of translation Px with the time coordinate t as the proportionality factor. (This
in itself is not particularly strange, since Jz also involves xPy and yPx .)

We readily verify that

[Ki , Kj ]= 0, [Ji , Kj ]= iεijkKk (59)

and

[Ki , Pj ]= 0 (60)

In analogy with the generator for translation in space Pi , we introduce the generator for translation in time
which we call17 H

Dynamics: H = i ∂
∂t

(61)

Evidently,

[Pi , H ]= 0, [Ji , H ]= 0 (62)

How does H behave under a boost? Simply calculate: [Kx , H ]= [t 1
i
∂
∂x

, i ∂
∂t

]=− ∂
∂x
= iPx .

In summary, the Galilean algebra is given by

[Ji , Jj ]= iεijkJk , [Ji , Pj ]= iεijkPk , [Ji , Kj ]= iεijkKk
[Pi , H ]= 0 [Ji , H ]= 0, [Pi , Pj ]= 0

[Ki , H ]= iPi , [Ki , Pj ]= 0, [Ki , Kj ]= 0 (63)

We have already talked about, in this chapter, the extension of the Galilean algebra to the Poincaré algebra.
But it is worthwhile looking at this all-important step in physics again.

The ancient Greeks theorized that human beings originally had four legs and four arms. But some god came
around and sliced them into two halves. So now everybody is wandering around looking for his or her missing
half. This explains why everybody needs to find another person. Very charming theory. When I read this long ago,
I thought that it was also relevant for physics, where some expressions looked like they had half of themselves
missing.

The generator of Galilean boost Kx = 1
i
(t ∂
∂x
) is exactly like one of those people who have been cut into two

halves looking around for the other half. The obvious other half, 1
i
(x ∂
∂t
), seems such a natural match for 1

i
(t ∂
∂x
)

that we are immediately tempted to marry them. The strange thing is that Kx has dimension of time over
length, that is (T /L), while its purported other half has dimension (L/T ). We need a fundamental constant
with dimension (L/T ), namely, that of a speed, to get the dimensions to come out right.

You all know that this story has a happy ending. Nature obligingly gives us the speed of light c. So if you divide
one term by c2, then you can join together whom men had put asunder. We thus extend the Galilean Kx to

Kx = 1
i

(
t
∂

∂x
+ 1
c2
x
∂

∂t

)
(64)

Note that as c goes to infinity, we go back to the Galilean boost.
To extend the Galilean algebra represents of course the great discovery of Lorentz, Einstein, Poincaré, and

their colleagues. Adding this extra term also makes the algebra look better, by makingKx more closely resemble
Jz = 1

i
(x ∂
∂y
− y ∂

∂x
).
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The crucial question is: What does the commutator [Kx , Ky ] give us? Rather nicely, it gives us back Jz:

[Ji , Jj ]= iεijkJk , [Ji , Kj ]= iεijkKk , [Ki , Kj ]=− 1
c2
iεijkJk (65)

Next, we should see how the rest of the Galilean algebra changes. We have

[Ki , H ]=
[

1
i

(
t
∂

∂xi
+ 1
c2
xi
∂

∂t

)
, i
∂

∂t

]
= iPi

[Ki , Pj ]=
[

1
i

(
t
∂

∂xi
+ 1
c2
xi
∂

∂t

)
, i

∂

∂xj

]
= iδij 1

c2
H (66)

(You might also check that (66) is consistent with (46) with Ki =−J0i .) The commutator [Ki , H ] is the same as
before, unchanged by the extra term in Ki , but the commutator [Ki , Pj ] no longer vanishes, as in (60).

It is rather pleasing that Ki now turns Pi and H into each other. Note, however, that Pi and H have different
dimensions. This is readily fixed by defining P0 = 1

c
H . Then (66) can be written as

c[Ki , P0]= iPi , c[Ki , Pj ]= iP0δij (67)

So now we are quite happy that our algebra looks more symmetrical. Indeed, a bright young person named
Albert Einstein now comes along and remarks that these two equations imply

[Ki , P
2
0 − �P 2]= 0 (68)

Furthermore, [Ji , P 2
0 − �P 2]= 0 since both P 2

0 and �P 2 are rotational scalars. Thus, P 2
0 − �P 2 is a Casimir invariant,

namely, a quantity that commutes with all the generators in the algebra. It follows that the so-called d’Alembertian,

defined by ∂2 = = 1
c2
∂2

∂t2
− ∇2, and which generalizes the Laplacian ∇2, is a relativistic invariant.

For more on the Galilean algebra, see chapter VIII.1.

Appendix 2: Connected components of the Lorentz group

In our discussion, we implicitly define the Lorentz group to consist of those Lorentz transformations continuously
connected to the identity. A looser definition would include all those transformations satisfying (38), thus
admitting time reversal and spatial reflections. To get at the main point here, it suffices to lower the dimension

of spacetime by 2 and descend to SO(1, 1). Define time reversal by T ≡
(
−1 0
0 1

)
and spatial reflection by

P ≡
(

1 0
0 −1

)
.

In chapter I.3, we noted that, topologically, the group O(2) contains two connected components, one contin-
uously connected to the identity, the other including reflection and hence not. In contrast, the subgroup SO(2)

has only one component, consisting of R(θ)=
(

cos θ sin θ
− sin θ cos θ

)
.

In contrast to O(2), the group O(1, 1) contains four connected components, not two, described as follows:

(i) the set L(ϕ) =
(

cosh ϕ sinh ϕ
sinh ϕ cosh ϕ

)
, (ii) the set T L(ϕ), (iii) the set PL(ϕ), and (iv) the set T PL(ϕ) = −L(ϕ).

Interestingly, SO(1, 1) then contains two connected components, namely, L(ϕ) and −L(ϕ).
The key point is that inL(ϕ), the quantity cosh ϕ ≥ 1, while inR(θ), the quantity cos θ can take on either sign.

Thus, (−I ) is continuously connected to the identity I in SO(2) but not in SO(1, 1).
By the same analysis as given here, we conclude that O(3, 1) also contains four connected components.

Appendix 3: Topological quantization of helicity

I mention and resolve a puzzle here.18 You learned that the nonlinear algebraic structure of the Lie algebra SO(3)
enforces quantization of angular momentum. But the little group for a massless particle is merely O(2). How
do we get the helicity of the photon and the graviton quantized?

Perhaps surprisingly, the answer is to be found in chapter IV.7. Recall that the group manifold of SO(3)
is SU(2)/Z2 = S3/Z2, that is, the 3-sphere with antipodal points identified. Consider closed paths in SO(3).
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Starting at some point P on S3, wander off a bit and come back to P . The path you traced can evidently be
continuously shrunk to a point. But suppose you go off to the other side of the world and arrive at −P , the
antipodal point of P . You also trace a closed path in SO(3), but this closed path obviously cannot be shrunk to a
point. However, if after arriving at−P you keep going and eventually return to P , then the entire path you traced
can be continuously shrunk to a point. Using the language of homotopy groups mentioned in chapter IV.7, we
say that �1(SO(3))= Z2: there are two topologically inequivalent classes of paths in the 3-dimensional rotation
group.

The resolution of our puzzle is that we have to invoke topological, rather than algebraic, quantization. A
rotation through 4π is represented by ei4πh on the helicity h state of the massless particle, but the path traced
out by this rotation in SO(3) can be continuously shrunk to a point. Hence, we must have ei4πh = 1 and so
h= 0, ± 1

2 , ±1, . . . .

Exercises

1 Follow a boost in the x direction with a boost in the y direction, and then boost back in the x direction. Take
the infinitesimal limit, and verify (20).

2 Work out explicitly how the components F0i and Fij of the antisymmetric tensor Fμν transform under a
Lorentz transformation. This tells us how the electric and magnetic fields transform. Compare with standard
textbooks on electromagnetism.

3 Work out the commutation relations of SO(2, 2) and verify (41).

4 Show that the defining relation (38) for the Lorentz group implies that L0
0 either ≥1 or ≤−1. Lorentz

transformations with L0
0 ≥ 1 are known as orthochronous.

5 Prove the practically self-evident fact that the product of two orthochronous Lorentz transformations is also
orthochronous. Hint: You need to use the Cauchy-Schwarz inequality �a2�b2 ≥ (�a . �b)2.

Notes

1. If you don’t, see part III of G Nut.
2. Dyson has indeed conjectured that somebody, proceeding on aesthetics alone, could have proposed this long

before Einstein. The point is that the group theory associated with the Lorentz transformation is considerably
more appealing than the group theory associated with the Galileo transformation.

3. For a somewhat fishy argument for the existence of a universal speed limit and hence the failure of the
Galilean transformation, see G Nut, p. 172.

4. Indeed, the first attempt to modify the Galilean transformation, by W. Voigt in 1887, almost succeeded. Later,
several authors obtained the correct Lorentz transformation. See G Nut, p. 169.

5. See G Nut, pp. 166–167. Here is a sketch of Einstein’s reasoning without the benefit of a figure (which may
be found on p. 167 of G Nut). Let the separation between the two mirrors be L along the y-axis. In the rest
frame of the mirrors, light leaving a mirror and returning to that mirror is described by�x = 0,�t = 2L/c.
Thus, (c�t)2− (�x)2= 4L2. Now let an observer see the whole setup moving at velocity u along the x-axis.
To him,�t ′ = 2

√
(�x′/2)2 + L2/c, and�x′ = u�t ′. Thus, (c�t ′)2− (�x′)2= 4L2, which is indeed equal to

(c�t)2 − (�x)2. A very neat argument indeed!
6. The couplet (m, n) is known as the signature of the group.
7. A similar argument was given in chapter I.3 for SO(4).
8. Let me clear up some potential questions about the notation. Some students ask why there isn’t a distinction

between upper and lower indices for ordinary vectors. The answer is that we could have, if we wanted to,
written the Euclidean metric δij with lower indices back in chapter I.3 and risked confusing the reader at
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that early stage. But there is no strong incentive for doing that: the Euclidean metric does not contain any
minus signs, while the Minkowskian metric necessarily has one positive sign and three negative signs to
distinguish time from space. The upper and lower index notation serves to keep track of the minus signs.
In the Euclidean case, if we define pi = δijpj , the vector pi would be numerically the same as the vector pi .
In Minkowski space, with our convention, p0 = p0, but p1=−p1, p2 =−p2, and p3=−p3.

9. Earlier we saw that SU(N) tensors also require two floors for its indices, but, as is worth emphasizing, for
different reasons (namely, the presence of complex conjugation). Similarly, as was discussed in the review
of linear algebra, unitary matrices are most conveniently written with upper and lower indices.

10. Mathematically, this amounts to the statement that
∑
μ p

μqμ→∑
μ L

μ
σ
Lμ
ρ
pσqρ does not transform into

anything nice.

11. Thus, more accurately, the electromagnetic field does not break up into �B and �E, but into �B ± i �E.
12. Note that the sign choice here is such that the Hamiltonian H = P 0 = P0 = i�∂0 = i� ∂

∂x0 , consistent with

standard convention used in quantum mechanics i ∂
∂t
ψ =Hψ . This will become relevant in chapter VIII.1.

13. Furthermore, it is a Casimir invariant only of the Lorentz algebra, but not of the Poincaré algebra.
14. We follow the treatment given in, for example, QFT Nut, second edition, p. 186.
15. For the curious reader, see chapter III.4 of QFT Nut, second edition.
16. See G Nut, pp. 17–19.
17. Let us not be coy about it. Eventually H will be identified with the energy or Hamiltonian, as was already

alluded to in an earlier endnote.
18. See QFT Nut, second edition, p. 532.



VII.3 SL(2,C) Double Covers SO(3,1):
Group Theory Leads Us to the Weyl Equation

Group theoretic understanding versus a brilliant guess

The Dirac equation is surely the most translucently brilliant equation of theoretical physics.
Dirac derived his elegant∗ equation for the relativistic electron by a brilliantly idiosyncratic
guess. Arguably, it may be pedagogically the best approach for a first pass at the Dirac
equation; indeed, many textbooks1 introduce this celebrated equation in essentially this
way (as we also will in chapter VII.4).

In this book, we would like to develop a group theoretic, and deeper, understanding
of the Dirac equation.2 Here we eschew the “brilliant guess” derivation, and instead,
simply allow group theory to lead us by the nose. We will first discover the Weyl equation.
In chapter VII.4, we will stack two 2-component Weyl spinors together to form the 4-
component Dirac spinor. The Dirac equation appears naturally.

One of the great advances in theoretical physics over the past half-century or so is the
understanding that the Weyl spinors are more fundamental than Dirac spinors; the world
appears to be constructed out of them (see part IX).

We will also learn that the Lorentz group SO(3, 1) is double covered by SL(2, C) just as
the rotation group SO(3) is double covered by SU(2).

Equations of motion in physics and the symmetries of space and time

The quest for equations of motion has been a central theme in physics. Writing down the
first equation of motion demanded such a staggering depth of insight that it still awes me
and most theoretical physicists. The full brilliance of a true genius like Newton was needed

∗ “Elegance is for tailors,” according to Wolfgang Pauli. Most theoretical physicists disagree. Pauli’s own work,
such as that on the hydrogen atom described in interlude 1, shows that he probably said this just for the fun of
saying it.
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for the jump from the first3 to the second derivative in time. The glories of nineteenth-
century physics culminated in Maxwell’s equations of motion for the electromagnetic field,
slowly pieced together through a long series of ingenious experiments involving twitching
frogs and such.

But after the discovery of the symmetric group of spacetime, the search for equations
of motion was reduced to, with only slight exaggeration, merely an application of group
theory.

The point is that once we know how to describe a particle sitting at rest, then a Lorentz
boost to a moving frame of reference immediately tells us about a moving particle. (For a
massless particle, if we know it in one frame, then Lorentz tells us about it in all frames.
In fact, we will deal with this case in this chapter.) More generally, once we know the
behavior of a field (say, the electric or the magnetic field) in some frame of reference, and
if we know, or can guess, how the field transforms, then we can invoke the power of group
theory to determine the behavior of the field in any other frame. If we know Coulomb’s
law �∇ . �E = ρ, then we can determine the full set of Maxwell’s equations.∗

Historically, things happened the other way around: Lorentz invariance was deduced
from the full set of Maxwell’s equations.

In truth, group theory alone cannot tell us which representation of the Lorentz group
physical quantities like the electromagnetic field and charge density belong to. But typ-
ically, it can list the possibilities, and invites us to try a few, starting with the simplest.
Ultimately, the consequences of our guesses would have to be compared with experiments,
of course.

As a simple example, suppose we somehow discovered, experimentally perhaps, that
a static rotationally invariant field φ(�x) satisfies ∇2φ = m2φ. Then Lorentz invariance
immediately tells us that† the time-dependent field φ(t , �x) satisfies the so-called Klein-
Gordon equation4

(
∂2

∂t2
− �∇2+m2

)
φ(x)= (∂2+m2)φ(x)= 0 (1)

Fourier transforming to energy-momentum space (momentum space for short) by setting‡

φ(t , �x)= ∫ d4pe−i(Et− �p.�x)φ(E , �p), we obtain

(E2− �p2−m2)φ(E , �p)= (p2−m2)φ(p)= 0 (2)

The Klein-Gordon equation merely tells us that φ(E , �p) vanishes unless Einstein’s
relation E2= �p2+m2 (which was mentioned in chapter VII.2) is satisfied. Here we have
assumed that the rotational scalar φ is also a Lorentz scalar; a priori, it could belong to

∗ Indeed, starting from the Newton-Poisson equation for the gravitational potential ∇2φ =Gρ (with ρ the
mass density), we can deduce the full set of Einstein’s equations. See, for example, chapter IX.5 of G Nut.

† Similarly, if we were given
(
∂2

∂x2 + ∂2

∂z2

)
φ =m2φ, rotational invariance would require us to add ∂2

∂y2 and

promote the differential operator in this equation to the Laplacian.
‡ I will often use the same symbol to denote a field and its Fourier transform, with essentially no risk of

confusion.
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a more complicated representation. For example, φ could be the time component of a
Lorentz vector.

The crucial point is of course that Lorentz invariance is a symmetry of spacetime, and so
anybody moving in spacetime, be it an electron or a quark, better obey Lorentz invariance.
We thus expect the Lorentz group to “give” us the Dirac equation.

From brilliant guess to group theoretic understanding

Now that we have mastered the Lorentz group, we can adopt the following strategy to get
to the Dirac equation, as explained above. Write down the wave function of the electron in
its rest frame, in which it is completely described∗ by the rotation group. Then boost the
electron to any momentum we like. In other words, the Lorentz group should lead us to
the Dirac equation.

We have already treated the spin 1
2 electron in chapter III.1 by the simple expedient

of attaching an index α to the wave function in Schrödinger’s equation, i� ∂
∂t
ψα(�x , t)=

− �
2

2m∇2ψα(�x , t), so that the wave function ψα furnishes the 2-dimensional representation
of the rotation group.

In a sense, the index α merely functions as a label; once we choose the angular mo-
mentum quantization axis, we might as well be describing two kinds of electrons, called
the “up electron” and the “down electron.” But, as the discussion in chapter VII.2 indi-
cates, this nonrelativistic treatment is not only aesthetically unappealing but also physically
inadequate for relativistic electrons, since boosts and rotations are intimately related:
successive boosts can result in a rotation.5

Group theoretically, this means that the wave function ψ has to furnish an irreducible
representation of the Lorentz group, not merely the rotation group.

For a proper treatment, we need of course to replace the electron wave function by the
electron field, which we then have to quantize.6 Henceforth, we will use the term “wave
function” and field interchangeably. See chapter IV.9 for a discussion of the scalar field.
Since this is a textbook on group theory, not quantum field theory, we will emphasize
the group theoretic aspects, rather than the quantum field theoretic aspects, of the Dirac
equation.

SO(4), SO(3, 1), and SL(2, C)

I have already touched on some of the group theory we need here; nevertheless, at the cost
of repeating a bit, I think it worthwhile to review and reexamine the salient features. We
learned in chapter IV.5 that SU(2) and SO(3) are locally, but not globally, isomorphic. The

∗ We deal with the free electron first. Its interaction with, for example, the electromagnetic field can then be
added later, and in fact, should properly be treated by the methods of quantum field theory.
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group SU(2) double covers the group SO(3): two distinct elements of SU(2)map into the
same element of SO(3).

Let us recall the discussion of SO(4) in chapter IV.7, with a slightly different notation.
We began by writing down the 2-by-2 matrix

XE = x4I + i �x . �σ (3)

with the Euclidean length squared of the 4-dimensional vector (�x , x4) restricted by

(x4)2+ �x2= 1 (4)

ThenXE defines an element of SU(2). (Simply verify thatXE is unitary and that det XE =
(x4)2+ �x2= 1. To do this, it is easiest to invoke rotational invariance and choose �x to point
along the third axis, so that XE is a diagonal matrix with elements x4 ± ix3.)

For any two elements U and V of SU(2), consider the map XE→ X′
E
= U†XEV .

By construction, X′
E

is also an element of SU(2): it is unitary with unit determinant.
Writing X′

E
= x′4I + i �x′ . �σ , we see that (x′4)2 + �x′2 = (x4)2 + �x2 = 1, and so the map

(�x , x4)→ (�x′, x′4) defines a 4-dimensional rotation and an element of SO(4). This shows
explicitly that SO(4) is isomorphic to SU(2)⊗ SU(2), but as explained in chapter IV.5, the
isomorphism is local, rather than global, since the pair (−U , −V ) and (U , V ) correspond
to the same SO(4) rotation. In other words,

(SU(2)⊗ SU(2))/Z2= SO(4) (5)

If U = V we have an SO(3) rotation, and if U†= V , the Euclidean analog of a boost.
Now we are ready to look at the group SO(3, 1). Simply strip off an i from (3) and thus

write down the most general 2-by-2 hermitean matrix

XM = x0I + �x . �σ =
(
x0 + x3 x1− ix2

x1+ ix2 x0 − x3

)
(6)

By explicit computation,

detXM = (x0)2− �x2 (7)

(To see this instantly, again choose �x to point along the third axis and invoke rotational
invariance.) Compare and contrast with (4).

Consider the group SL(2, C), consisting, as the notation indicates, of all 2-by-2 matrices
with complex entries and unit determinant. With L an element of SL(2, C), let XM→
X′
M
= L†XML. Writing X′

M
= x′0I − �x′ . �σ , we see that this defines a map of the 4-

vector (x0, �x) to the 4-vector (x′0, �x′). Manifestly, det X′
M
= det XM and so (x′0)2− �x′2=

(x0)2 − �x2. Thus, the transformation preserves the Minkowski metric and is in fact a
Lorentz transformation. This defines a map from SL(2, C) to SO(3, 1).

SinceL and−L define the same transformationXM→X′
M

, and hence the same x→ x′,
we see that SL(2, C) double covers SO(3, 1). In other words,

SL(2, C)/Z2= SO(3, 1) (8)
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(Strictly speaking, SL(2, C)/Z2 gives the component of SO(3, 1) connected to the identity.
Show this.)

If L is also unitary, that is, if it belongs to the SU(2) subgroup of SL(2, C), then the
transformation is a rotation: L†IL= I , and x0 is left untouched. The SU(2) subgroup
of SL(2, C) double covers the rotation subgroup SO(3) of the Lorentz group SO(3, 1),
something we have known for quite a while.

While we already know that everything works, let us, as a simple check, count the
number of generators of this SL(2, C). Two conditions on the determinant (real part = 1,
imaginary part = 0) cuts the four complex entries containing eight real numbers down to
six, which accounts for the six generators of the Lorentz group SO(3, 1).

Note that while the rotation group SO(3) � SU(2) is compact, the Lorentz group
SO(3, 1) is not.∗ In contrast, the group SO(4) is compact and thus can be covered by
a compact group, namely, SU(2)⊗ SU(2), but the noncompact group SO(3, 1) could not
possibly be. It is double covered by the noncompact group SL(2, C). It is worth mentioning
that the group theoretic facts discussed here and the possibility of writing a Lorentz 4-vector
as a 2-by-2 hermitean matrix as in (6) are highly relevant for the exciting development of
using twistors to understand spacetime.7

In going from (3) to (6) by stripping off an i, we are echoing Minkowski’s pregnant and
mystic expression: 3 . 105 km=√−1 sec.

From algebra to representation

The crucial observation about the Lorentz algebra, as explained in chapter VII.2, is that
it falls apart into two pieces defined by the combinations J±i = 1

2(Ji ± iKi). (Recall, also,
that J±i are hermitean.) We obtained

[J+i , J+j ]= iεijkJ+k
[J−i , J−j ]= iεijkJ−k (9)

and most remarkably,

[J+i , J−j ]= 0 (10)

This last commutation relation tells us that J+ and J− form two separate SU(2) algebras.†

Nature, as She has been time and time again, is kind to theoretical physicists!
She first taught them about the representations of SU(2). Now they don’t have to

learn any more math. To determine the finite-dimensional irreducible representations of
SO(3, 1), we simply apply what we already know.

The representations of SU(2) are labeled by j = 0, 1
2 , 1, 3

2 , . . . , as we learned in chapter
IV.2. We can think of each representation as consisting of (2j + 1) objects φm with m=
−j , −j + 1, . . . , j − 1, j , which transform into one another under SU(2). It follows

∗ As already mentioned in chapter I.1.
† Strictly speaking, as analytically continued from SO(4)� SU(2)⊗ SU(2).
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immediately that the representations of the SO(3, 1) algebra are labeled by (j+, j−),
with j+ and j− each taking on the values 0, 1

2 , 1, 3
2 , . . . . Each representation consists of

(2j+ + 1)(2j− + 1) objects φm+m− with m+ = −j+, −j+ + 1, . . . , j+ − 1, j+ and m− =
−j−, −j− + 1, . . . , j− − 1, j−. The generators J+ act on the index m+, while the J− act
on m−.

Thus, we can list the irreducible representations∗ of the SO(3, 1) algebra as

(0, 0),
(

1
2

, 0
)

,
(

0,
1
2

)
, (1, 0), (0, 1),

(
1
2

,
1
2

)
,
(

3
2

, 0
)

,
(

0,
3
2

)
,
(

1
2

, 1
)

,
(

1,
1
2

)
, . . . (11)

with dimension equal to 1, 2, 2, 3, 3, 4, 4, 4, 6, 6, . . . , respectively. The 1-dimensional
representation (0, 0) is clearly the trivial representation, realized by the Lorentz scalar
φ, for which we derived an equation of motion just now. We expect the 4-dimensional
irreducible representation ( 1

2 , 1
2) to be the Lorentz vector, the defining representation of

the Lorentz group.

Restriction to the rotation subgroup

Ever since chapter II.1, we have learned that it is useful to ask how irreducible represen-
tations decompose on restriction to a subgroup. Here the group of rotations SO(3) form
a natural subgroup of SO(3, 1).

Since the generators of rotations are given by Ji = J+i + J−i, we already know how to
solve the problem of figuring out what a given irreducible representation of the Lorentz
group decomposes into on restriction to SO(3). If we think of J+i and J−i as the angular
momentum operators of two particles called + and −, the problem at hand is just the
addition of angular momentum, which we solved back in chapter IV.3.

To determine how (j+, j−)decomposes, we simply calculate j+ ⊗ j−, as in chapter IV.3.
Thus, with no further work, we deduce that

(j+, j−)→ (j+ + j−)⊕ (j+ + j− − 1)⊕ (j+ + j− − 2)⊕ . . .⊕ |j+ − j−| (12)

on restricting SO(3, 1) to SO(3).
In particular, ( 1

2 , 1
2)→ 1⊕ 0; in other words, this 4-dimensional representation de-

composes† into a 3-dimensional vector plus a 1-dimensional scalar under rotation.‡ This
fact further bolsters our expectation that ( 1

2 , 1
2) furnishes the defining representation of

the Lorentz algebra. The 1-dimensional scalar in the decomposition is the time component
of the Lorentz 4-vector.

∗ A heads-up potential notational confusion: the reader should of course not confuse the (j+ , j−) notation
used here with the (m, n) notation used in chapter VII.2 to describe a tensor with m upper and n lower indices.
Two different types of animals entirely!

† Don’t be confused by the coexistence of two commonly used notations! Thus, ( 1
2 , 1

2 )→ 1⊕ 0 is also written
as 4→ 3⊕ 1.

‡ Note that the other 4-dimensional representations, ( 3
2 , 0) and (0, 3

2 ), are disqualified by their contents under
rotation, for example, ( 3

2 , 0)→ 3
2 , or 4→ 4.



456 | VII. From Galileo to Majorana

What about the representation ( 1
2 , 0)? We have ( 1

2 , 0)→ 1
2 . This 2-dimensional irre-

ducible representation of the Lorentz algebra decomposes into the 2-dimensional spinor of
the rotation algebra, as we might we guessed. What else could it be? Similarly, (0, 1

2)→ 1
2 .

We now study these two spinor representations.

Spinor representations

Examine the representation ( 1
2 , 0) in more detail. Write the two objects as uα, with α = 1, 2.

Well, what does the notation ( 1
2 , 0)mean?

It says that J+i = 1
2(Ji + iKi) acting on u is represented by 1

2σi while J−i = 1
2(Ji − iKi)

acting on u is represented by 0. By adding and subtracting, we find that

Ji = 1
2
σi (13)

and

iKi = 1
2
σi (14)

The equal sign means “represented by” in this context. (By convention, we do not dis-
tinguish between upper and lower indices on the 3-dimensional quantities Ji, Ki , and
σi .)

Repeating the same steps as above, you will find that on the representation (0, 1
2), which

we denote by v,

Ji = 1
2
σi (15)

and

iKi =−1
2
σi (16)

To keep the signs straight, we need to say a word about notation here. Regard the three
Pauli matrices σ1, σ2, and σ3 as matrices introduced in nonrelativistic physics and fixed
once and for all. As a rule, we will always write σi with a lower index, and if we were to
write on occasion σ i, we will set σ i = σi. For example, σ3, and also σ 3= σ3, will always be(

1 0
0 −1

)
. The symbol �σ denotes �σ = (σ1, σ2, σ3).

The single sign difference between the set of equations (13) and (14), on the one hand,
and the set (15) and (16) on the other, is crucial!

The 2-component spinors8 u and v are called Weyl spinors∗ and each furnishes a
perfectly good representation of the Lorentz group. As expected, under rotations ei �θ �J , both

∗ To distinguish between the two Weyl spinors, van der Waerden invented a notation known informally
to particle physicists as “dotted and undotted” notation. One Weyl spinor carries an index with a dot written
over it, the other not. It has become important, because the notation is used in supersymmetric physics and in
superstring theory. Incidentally, Dirac allegedly said that he wished he invented the dotted and undotted notation.
For more details, see QFT Nut, p. 541.
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u→ ei
�θ . �σ2 u and v→ ei

�θ . �σ2 v transform the same way, like a Pauli spinor. In contrast, under

boosts ei �ϕ �K , u→ e �ϕ. �σ
2 u and v→ e−�ϕ. �σ

2 v transform oppositely. This last remark will be key
in what follows.

Transformation of Weyl spinors

First, consider a Weyl spinor u furnishing a representation ( 1
2 , 0) of the Lorentz group.

According to (13) and (14), under rotations ei �θ �J , the spinor transforms as

u→ ei
�θ . �σ2 u (17)

while under boosts ei �ϕ �K , it transforms as

u→ e �ϕ. �σ
2 u (18)

More compactly,

u→ ei(
�θ−i �ϕ). �σ2 u= ei�ξ . �σ2 u (19)

transforms as if in SU(2) but with the angles �θ continued to complex angles �ξ = �θ − i �ϕ.

While ei �θ �
σ
2 is special unitary, the 2-by-2 matrix e �ϕ �

σ
2 , bereft of the i, is merely special but

not unitary. (Incidentally, and as I have already mentioned, to verify these and subsequent
statements, since you understand rotation thoroughly, you could, without loss of generality,

choose �ϕ to point along the third axis, in which case e �ϕ �
σ
2 is diagonal with elements e

ϕ
2 and

e−
ϕ
2 . Thus, while the matrix is not unitary∗ its determinant is manifestly equal to 1.)

By now, you are hardly surprised that ei�ξ . �
σ
2 pops up as an element SL(2, C).

We remark in passing that this discussion also shows that the Lorentz group is locally
isomorphic to SO(3, C), known as the complexification of SO(3), obtained by promoting
the three angles in the rotation group element ei �θ �J from �θ to �θ − i �ϕ. In this textbook, I
have consciously stayed away from complexification.

By hermitean conjugation, under rotations and boosts, the conjugate spinor u†→
u†e−i �θ �

σ
2 and u†→ u†e �ϕ �

σ
2 , respectively. Watch the signs!

Notice that since i �K , rather than �K , is hermitean, the matrix representing the boost
ei �ϕ �K is not unitary for sure.

You can readily repeat this discussion for a Weyl spinor v furnishing a representation
(0, 1

2) of the Lorentz group. We now have

v→ ei(
�θ+i �ϕ). �σ2 v = ei �ξ∗. �σ2 v (20)

Compare and contrast with (19).

∗ We already had a hint of this in chapter II.1: the finite representations of noncompact groups are not
necessarily unitary.
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Pseudoreality of the doublet representation of SU(2):
A caution about terminology

Now the pseudoreality of the defining representation of SU(2) discussed in chapter IV.5
becomes highly relevant. Recall that

σ2σ
∗
i
σ2=−σi (21)

Define ũ≡ iσ2u
∗. Complex conjugating (19), we find

ũ→ iσ2e
−i(�θ+i �ϕ). �σ∗2 u∗ = iσ2e

−i(�θ+i �ϕ). �σ∗2 σ2σ2u
∗ = ei(�θ+i �ϕ). �σ2 iσ2u

∗ = ei(�θ+i �ϕ). �σ2 ũ (22)

Referring to (20), we see that ũ transforms just like v, that is, ũ furnishes the representation
(0, 1

2).

Note that if we write u =
(
u1
u2

)
, then ũ =

(
u∗2
−u∗1

)
is just u with its two components

conjugated and then interchanged, with a minus sign thrown in.
Now comes a cautionary note about terminology. People differ according to whether

they regard u and ũ as independent or not. For the purpose of this book at least, I regard
ũ as derived from u, rather than as an independent entity. In what follows, I will say
things like “consider a world with a single Weyl spinor transforming like ( 1

2 , 0).” Otherwise
excellent theoretical physicists would say that this is impossible, this Weyl spinor is always
accompanied by a Weyl spinor transforming like (0, 1

2).
What is physically relevant is the number of degrees of freedom, and on this everybody

can only agree that there are two complex degrees of freedom or fields, namely, u1 and u2.
Again, you can repeat the discussion for a Weyl spinor v transforming like (0, 1

2). The
spinor ṽ ≡ iσ2v

∗ transforms like ( 1
2 , 0).

Parity forces us to stack two Weyl spinors together to form a Dirac spinor

In introducing this chapter, I mentioned that the electron is described by a 4-component
Dirac spinor. Why then is the electron not described by a Weyl spinor?

The reason is parity. Under parity,9 �x→−�x and �p→−�p , and thus �J → �J and �K→
− �K , as already mentioned in chapter VII.2. Hence �J+↔ �J−. In other words, under parity,
the representations∗ ( 1

2 , 0)↔ (0, 1
2).

To describe the electron, we must use both of these 2-dimensional irreducible repre-
sentations, ( 1

2 , 0) and (0, 1
2), to form the 4-dimensional reducible representation ( 1

2 , 0)⊕
(0, 1

2), known to physicists as a Dirac spinor. We are invited to stack the two 2-component
Weyl spinors u and v together to form a 4-component Dirac spinor, as mentioned at the
start of this chapter. (In light of the remark about terminology in the preceding section,

∗ In general, under parity the representations (j+ , j−)↔ (j− , j+). Yet another reason that ( 1
2 , 1

2 ), which is
its own parity partner, should be identified as the 4-vector, rather than, say, ( 3

2 , 0).
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some authors would insist that we stack four Weyl spinors together, u, v, ũ, and ṽ.) We
will do this in the chapter VII.4.

Finite dimensional nonunitary representations of the Lorentz group

It is worth recalling the theorem we proved back in chapter II.1 stating that the repre-
sentations of finite groups, and by extension, compact groups, are necessarily unitary. We
had pointed out that, in contrast, the finite-dimensional representations of noncompact
groups, in particular the Lorentz group, need not be unitary. In particular, the correspond-
ing generators are not necessarily represented by hermitean matrices. This is explicitly
realized here.

The generators J+i and J−i, being generators of (separate) SU(2) algebras, are neces-
sarily represented by hermitean matrices. This implies that the generators Ji = J+i + J−i
are represented by hermitean matrices, as they should be, since they generate the compact
rotation group. In contrast, the generatorsKi = (J+i − J−i)/i are necessarily represented
by antihermitean matrices. We see that this is indeed the case in (13), (14), (15), and (16).

Indeed, looking back at chapter VII.2, we see that in the defining representation, namely
the ( 1

2 , 1
2), the Jis are represented by hermitean matrices, but theKis are represented∗ by

antihermitean matrices. Mathematically, it would be best to treat10 SO(3, 1) as the analytic
continuation of SO(4), letting the fourth coordinate x4→−ix0 =−it .

Some aspects of the representations of the Lorentz algebra are developed further in the
exercises.

Group theoretic approach to the Weyl equation

For now, let us focus on the Weyl spinors u and v separately. In a world with a single
Weyl spinor (say, u) transforming like ( 1

2 , 0), the equation it satisfies is known as a Weyl
equation.†

Historically, since the Weyl equation did not respect parity, it was rejected in favor of
the Dirac equation. But after the proposal of parity violation by Lee and Yang in 1956, the
Weyl equation was resurrected to describe the neutrino. In an ironic‡ twist of history, it is
now understood that particle physics at the fundamental level does not respect parity, and
that the Weyl equation describes all spin 1

2 fields, quarks and leptons, before they acquire
mass via the Higgs mechanism.

Under a rotation, u†u is invariant, while u†�σu transforms like a 3-vector, as should be
known to you by now. Under a boost, in contrast, u†u is not invariant; rather,

u†u→ u†e �ϕ �
σ
2 e �ϕ �

σ
2 u= u†e �ϕ �σu� u†(I + �ϕ �σ)u= u†u+ �ϕu†�σu (23)

∗ As remarked earlier, we follow the common physicist’s practice of not introducing different notations for
the abstract mathematical entities that appear in the Lie algebra and for the matrices that represent them.

† Similarly, the spinor (0, 1
2 ) also satisfies a Weyl equation, as discussed below.

‡ A graduate student even told me that “nobody” bothered with the Dirac equation any more, but he was
exaggerating.
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for ϕ infinitesimal. This indicates that the 4-objects ωμ ≡ (u†u, u†�σu) transform like a
4-vector.

To be more explicit, it is convenient to work with infinitesimal boosts and to specify the
boost to be in the z direction (with no loss of generality, of course). We haveu→ (I + ϕ σz2 )u,
which we write as δu= σz

2 u, where to lessen clutter I have simply absorbed the infinitesimal
ϕ into the definition of δu. Hermitean conjugation gives δu†= u† σz

2 . First, we have (watch
how the 1

2 disappears)

δ(u†u)= (δu†)u+ u†δu= u†σzu (24)

which is of course just a rewrite of (23). Next,

δ(u†σiu)= (δu†)σiu+ u†σiδu= u† 1
2
{σi , σz}u (25)

which is equal tou†u for i = z and to 0 for i = x , y. In other words, u†u andu†σzu transform
into each other under a boost in the z direction, with u†σxu and u†σyu unaffected.

As claimed, ωμ ≡ (u†u, u†�σu) transforms like a 4-vector with an upper index. We are
now cordially invited by group theory to introduce a fourth Pauli matrix, defined by σ 0≡ I ,
with I the 2-by-2 identity matrix. Then we can write11

σμ = (I , �σ)= (I , σ1, σ2, σ3) (26)

(Note, as remarked earlier, that σ i = σi by fiat.)
Pause for a moment to recall that in our convention, the coordinates xμ = (t , x , y , z)

transform like δt = z, δz = t , δx = 0, and δy = 0 for a boost along the z direction, using
the same abbreviated notation employed above. Here, δω0 = ωz, δωz = ω0, δωx = 0, and
δωy = 0. Indeed, ωμ transforms just like the spacetime coordinates xμ. Note for use
presently that this implies that ∂μ ≡ ∂

∂xμ
transforms like a 4-vector with a lower index

(see exercise 1). In particular, ∂μωμ is a Lorentz scalar.
Group theoretically, what we are doing here is easily understood. Since u∼ ( 1

2 , 0), it
follows that u†∼ (0, 1

2) (because under conjugation, J+↔ J−). Thus, u†u transforms like
a member of ( 1

2 , 0)⊗ (0, 1
2)= ( 1

2 , 1
2), which is precisely the Lorentz 4-vector.

Here u(x)= u(t , �x) is, of course, a function of the spacetime coordinates xμ, which we
can always Fourier transform to momentum space: u(p)= ∫ d4xe−ipxu(x). Henceforth,
unless otherwise noted, we will use relativistic notation x = (t , �x), p = (E , �p) and so forth.
Also, we prefer not to clutter up the notation by distinguishing between u in position space
and u in momentum space.

The Weyl Lagrangian

I gave you a rudimentary grasp of what a Lagrangian is in chapter III.3 and then some
vague notion of what a quantum field theory is in chapter IV.9. (If you feel uncomfortable
with the Lagrangian, you could skip to the equation of motion below.) At this point, all I
require of you, dear reader, is to know that (i) the physics described by a Lagrangian enjoys
a symmetry if the Lagrangian is invariant under the transformations of the symmetry, and
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that (ii) varying the Lagrangian with respect to the dynamical variable and setting the result
to 0 gives the equation of motion for that variable.

Thus, our first task is to construct, out of u and u†, a Lagrangian density L invariant
under Lorentz transformations. Since we already have the 4-vector ωμ, our first thought
would be to try L= ∂μωμ. But it is a total divergence, and so cannot affect the equation of
motion.∗

The solution is to pullωμ apart and sandwich ∂μ in between u† and u, that is, to construct

L= iu†σμ∂μu (27)

The important point, in this context, is that we only care about how L transforms. Where
we put ∂μ does not affect the transformation of u† and u.

I postpone making a couple of technical remarks about L until the end of this section.
Instead, we want to get at the physics immediately. Varying with respect to u† yields the
Weyl equation of motion

σμ∂μu= 0 (28)

Fourier transforming to momentum space by setting

u(t , �x)= e−ip.xu(p)= e−i(Et− �p.�x)u(E , �p),

we obtain in momentum space

σμpμu= 0 (29)

For the readers a bit shaky with the elegantly compact relativistic notation, let us unpack
the Lagrangian in (27) and write it as

L= iu†
(
∂

∂t
+ �σ . �∇

)
u (30)

It is evidently invariant under rotations, and by construction, is invariant under boosts (a
fact you are invited to check). Varying (30) with respect tou† and then Fourier transforming,
we obtain the Weyl equation (28) and (29) in the less relativistic-looking forms(

∂

∂t
+ �σ . �∇

)
u= 0 (31)

and

(E − �σ . �p)u= 0 (32)

Acting with (E + �σ . �p) on this equation from the left, we obtain E2= �p2: the particle
the Weyl equation describes is massless, with energy12 E = | �p|.

If you skipped the construction of the Lagrangian, you could regard (32) (or (31)) as a
reasonable guess for the equation of motion (for example, it makes sense dimensionally)
and simply verify that it respects Lorentz invariance. Do exercise 4 now.

∗ Recall chapter IV.9. In other words, the would-be action S ≡ ∫ d4xL= ∫ d4x∂μω
μ reduces to a surface term

at spacetime infinity on integration by parts.
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As promised, a couple of technical remarks. First, the asymmetry between u† and u
in (30), with the derivatives acting on u but not on u†, is only apparent. Integrating the
action S ≡ ∫ d4xL by parts,13 we can write, equivalently, L=−i(( ∂

∂t
+ �σ . �∇)u†)u. Next,

this form also shows that the factor of i is needed for the action to be hermitean.14

Note that the combination (E − �σ . �p) in (32) indeed corresponds to σμpμ = p0I +
piσ

i = p0I − piσ i = E − �σ . �p in (29). This brings up a question: What does the combi-
nation (E + �σ . �p) used above correspond to in the relativistic notation? I might call this
a self-answering question. Clearly, in analogy to (26), we should define

σ̄ μ = (I , −�σ)= (I , −σ1, −σ2, −σ3) (33)

so that the desired combination σ̄ μpμ = (E + �σ . �p). Hah! We just flip some signs. Inter-
estingly, as you will see shortly, the combination σ̄ μ will come looking for us, even if we
do not look for it here.

Let these technical points not obscure the central message here. Group theory uniquely
determines the Weyl Lagrangian L and hence the physics (which we explore further in the
next section).

A right handed spinor

In our (standard) discussion of angular momentum in chapter IV.3, we chose the z-axis as
the “quantization axis,” and the states are labeled by the eigenvalues of Jz. For a massless
particle, it is natural to choose the direction of its motion as the “quantization axis” for
its spin angular momentum. The helicity of a particle is thus defined as the eigenvalue of
h≡ �σ . p̂, with p̂ ≡ �p/| �p| the unit vector pointing in the direction of the particle’s motion.
Since E = | �p|, we see that the Weyl equation (32) tells us that the helicity of the particle is
equal to +1.

We say that the spinor u is right handed.
We already mentioned in chapter VII.2 that under spatial reflection, �p→−�p and �J → �J .

Thus, helicity flips sign. The reader should draw a picture of a particle with a definite
helicity and then reflect the given situation in mirrors placed perpendicular and parallel
to the direction of the particle’s motion to see that helicity always flips sign on reflection.
See figure 1. A Weyl particle manifestly violates parity, as was noted historically.

mirror

Figure 1
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Indeed, by choosing �p = (0, 0, p) with p > 0, we could have extracted the physical con-

tent of the Weyl equation (32) almost trivially. The equation tells us that
(
E−p 0

0 E+p
) (

u1
u2

)
= 0, which implies u2= 0, since E and p are both positive. To have a nontrivial solution
u �= 0, we must require E = p.

The Weyl equation may be interpreted as a projection. Define the projection operator∗

P ≡ 1
2(1− �σ . p̂)= 1

2(1− h); then the Weyl equation simply says that

Pu= 0 (34)

It sets the h=−1 component of the 2-component spinor u to 0.

The other Weyl equation

The preceding discussion started with the representation ( 1
2 , 0). We could have equally

well envisioned a world with a 2-component spinor v furnishing the representation (0, 1
2).

According to (15) and (16), under rotations, v transforms in the same way as u, but under
boosts, v transforms with the opposite sign as u: with the same choice of conventions and
so forth as before, under boosts δv =−σz2 v, in contrast to δu= σz

2 u.
Convince yourself that as a result, now it is ρμ ≡ (v†v , −v†�σv), with a crucial minus

sign, that transforms like a 4-vector with an upper index. Write ρμ as v†σ̄ μv. Thus, as was
foretold, the matrices σ̄ μ = (I , −�σ) defined in (33) come looking for us.

By now, you can write down the invariant Lagrangian for v as well as anybody else,
namely,

L= iv†σ̄ μ∂μv (35)

Varying with respect to v† we find the other Weyl equation of motion

σ̄ μ∂μv = 0 (36)

and in momentum space

σ̄ μpμv = 0 (37)

Again, unpacking into a less relativistic form, we have

L= iv†
(
∂

∂t
− �σ . �∇

)
v (38)

and the corresponding equations of motion(
∂

∂t
− �σ . �∇

)
v = 0 (39)

and

(E + �σ . �p)v = 0 (40)

∗ By definition, a projection operator satisfies P2= P: if P projects us into a subspace, then projecting again
does not do anything more. Acting with P on a spinor in the orthogonal subspace gives 0 by the very definition
of projection.
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A left handed spinor

Compare these equations for the Weyl spinor v with the corresponding equations for the
Weyl spinor u and notice the crucial sign flips. Similarly to what we did before, we again
conclude, on acting with (E − �σ . �p) on (40) from the left, that the Weyl particle described
by (40) is also massless. It also violates parity. Indeed, if we define the projection operator
Q≡ 1

2(1+ �σ . p̂)= 1
2(1+ h), then we have Qv = 0, that is, h=−1. The Weyl equation sets

the h=+1 component of the 2-component spinor v to 0. The spinor v is said to be left
handed.

Conjugate Weyl spinors

Let us multiply the complex conjugate of the Weyl equation σμpμu= 0 in (29) by σ2 on
the left: σ2(σ

μ∗pμ)u∗ = 0. Note that

σ2σ
μ∗σ2= σ̄ μ (41)

Hence, we obtain

σ̄ μpμũ= 0 (42)

The spinor ũ≡ iσ2u
∗ not only transforms like v, it satisfies the same Weyl equation as v,

entirely as you would expect.
Similarly, ṽ satisfies the same Weyl equation as u, as you would also expect.

The Weyl equation came roaring back

I already mentioned that the Weyl equation, rejected in favor of the Dirac equation, came
roaring back after the discovery of parity violation in 1956. It was realized that the neutrino
is left handed and massless.∗

Since the particle the Weyl equation describes is massless, there is no rest frame, and
Lorentz invariance connects one moving frame to another. It is instructive to work out
what group theory has to say. With no loss of generality, let the particle be moving along
the z direction with some reference 4-momentum p∗ = E∗(1, 0, 0, ±1). The subgroup of
SO(3) that leaves p∗ invariant is SO(2), known as the little group.15 As already discussed
in chapter VII.2, we have to specify that Jz is either + 1

2 or − 1
2 . Since Jz is represented by

σz
2 , the Weyl spinor u is either ∝

(
1
0

)
or ∝

(
0
1

)
, respectively.

∗ The more recent discovery that the neutrino has a tiny but nonvanishing mass only made the story even
more intriguing.
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Majorana mass term

In a world with only u, is there another invariant term we could add to the Lagrangian
given in (27) for u? Think for a moment before reading on.

Well, with all this talk about pseudoreality, you might have written down uT σ2u (or more
sloppily, uσ2u). Let us check: transposing u→ ei

�ζ .�σu (with �ζ being three complex angles)
givesuT → uT ei

�ζ .�σT, but since �σT σ2=−σ2�σ (since the Pauli matrices are hermitean, this is
equivalent to (21)), we have uT σ2u→ uT ei

�ζ .�σT σ2e
i�ζ .�σu= uT σ2u. Thus, this term is indeed

invariant.
But now you might object, noting that the quantity uT σ2u vanishes identically, since σ2

is an antisymmetric 2-by-2 matrix. That would indeed be the case had the two components
u1 and u2 of u been ordinary complex numbers. But here is a subtlety that goes well beyond
the scope of this book: for u to describe a spin 1

2 particle in quantum field theory, u1 and
u2 have to be quantized as anticommuting Grassman numbers,16 so that u1u2=−u2u1.

Let us thus add muT σ2u to the Lagrangian with m some constant. To make the La-
grangian hermitean (as is required in quantum field theory), we add the hermitean conju-
gate of muT σ2u: (uT σ2u)

†= u†σ2u
∗ = (u∗)T σ2u

∗. Thus, we can extend the Lagrangian to

L= iu†
(
∂

∂t
+ �σ . �∇

)
u− 1

2
(muT σ2u+m∗u†σ2u

∗) (43)

Varying with respect to u†, we obtain

i

(
∂

∂t
+ �σ . �∇

)
u=m∗σ2u

∗ (44)

Compare and contrast with (31).
Notice that there is no v here! Once again, use our old trick of charge conjugating this

to get −i( ∂
∂t
+ �σ ∗ . �∇)u∗ = −mσ2u and then multiply by σ2 from the left, which gives

( ∂
∂t
− �σ . �∇)σ2u

∗ = −imu. Acting with ( ∂
∂t
− �σ . �∇) on (44) from the left gives us finally

∂2u= ( ∂2

∂t2
− �∇2)u=−|m|2u. (By redefining u→ eiαu in the Lagrangian, we can make m

real with a suitable choice of α.)
The Weyl particle has become massive, acquiring what is known as a Majorana mass

m. We will return to this in more detail in chapter VII.5, when we discuss the Majorana
equation.

We need hardly mention that, similarly, we could add a Majorana mass term to the
Lagrangian given in the preceding section for v.

Appendix 1: About SO(2, 2)

Having done SO(4) and SO(3, 1) earlier in this chapter, I might as well throw in the group SO(2, 2) for no extra
charge. Let us strip the Pauli matrix σ 2 (kind of a troublemaker, or at least an odd man out) of his i and define

(just for this paragraph) σ 2 ≡
(

0 −1
1 0

)
. Any real 2-by-2 matrix XH can be decomposed as

XH = x4I + �x . �σ (45)
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Compare and contrast with (3) and (6). Now

det XH = (x4)2 + (x2)2 − (x3)2 − (x1)2 (46)

The set of all linear transformations (with unit determinant) on (x1, x2, x3, x4) that preserve this quadratic form
defines the group SO(2, 2) (see chapter VII.2).

Introduce the multiplicative group SL(2, R) consisting of all 2-by-2 real-valued matrices with unit determi-
nant. For any two elementsLl andLr of this group, consider the transformationXH →X′

H
=LlXHLr . Evidently,

det X′
H
= det XH . This shows explicitly that the group SO(2, 2) is locally isomorphic to SL(2, R)⊗ SL(2, R).

The metric of a world described by ds2= (dx4)2+ (dx2)2− (dx3)2− (dx1)2 would have two time coordinates,
x4 and x2. Although we do not know how to make sense of a world with two “times,” scattering amplitudes in
quantum field theory are analytic in various kinematic variables, and theorists could, and do, exploit the group
SO(2, 2) formally in studying17 amplitudes in contemporary research.

Appendix 2: SO(2, 1) and SL(2, R)

We have shown that SO(3, 1) is locally isomorphic to SL(2, C) by studying the most general 2-by-2 hermitean
matrixXM = x0I + �x . �σ shown in (6). Now set x2= 0, so thatXM becomes the most general 2-by-2 real symmetric
matrix

XR = x0I + �x . �σ =
(
x0 + x3 x1

x1 x0 − x3

)
(47)

By explicit computation, det XR = (x0)2 − (x1)2 − (x3)2.
Now consider the group SL(2, R), consisting of all 2-by-2 real matrices with unit determinant.18 With L

an element of SL(2, R), let XR→ X′
R
= LTXRL, which is manifestly real symmetric. Write X′

R
as in (47) in

terms of (x′0, x′1, x′3). Manifestly, det X′
M
= det XM , and so (x′0)2 − x′12 − x′32 = (x0)2 − x12 − x32. Thus, the

transformation (x0, x1, x3)→ (x′0, x′1, x′3) preserves the Minkowski metric in (2+ 1)-dimensional spacetime.
The construction here thus defines a map from SL(2, R) to SO(2, 1). Again, it is a double cover, since L and−L
define the same map.

As a challenge, show that SL(2, H) and SO(5, 1) are locally isomorphic.

Exercises

1 Explicitly verify that ∂μ transforms like a 4-vector with a lower index.

2 Multiplying h 4-vectors together, we generate the tensor representations of the Lorentz algebra. Show how
this works.

3 Show that the irreducible representation ( 1
2h, 1

2h) corresponds to the traceless symmetric tensor represen-
tation of SO(3, 1). Count the number of components. Hint: Recall an exercise you did in chapter IV.1. By the
way, this result will also show up in another guise in interlude 1.

4 Decompose ( 1
2 , 0)⊗ ( 1

2 , 1
2 ).

5 Verify that the Weyl equation (E − �σ . �p)u= 0 in (32) is covariant under the Lorentz group.

Notes

1. See, for example, chapter II.3 in QFT Nut.
2. A deeper understanding of the Dirac spinor not only gives us a certain satisfaction, but is also indispensable

for studying supersymmetry, one of the foundational concepts of superstring theory.
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3. As still believed in by the proverbial guy in the street.
4. First discovered by Schrödinger. See, for example, QFT Nut, p. 21.
5. This fact underlies Thomas precession.
6. See any reputable textbooks on quantum field theory.
7. For an easy introduction to this frontier subject, see chapter X.6 in G Nut.
8. Our use of u and v runs a slight risk of confusing some readers who have studied quantum field theory.

In many quantum field theory textbooks, solutions of the 4-component Dirac equation are written as
ψ(x)= u(p)e−ip.x and ψ(x)= v(p)e+ip.x . But the risk of confusion is truly slight, since u and v denote
2-component spinors and are initially introduced as functions of the spacetime coordinates x = (t , �x). See
the Weyl equations to be derived shortly. In contrast, in the solutions of the Dirac equation, u(p) and v(p)
have 4-components and are functions of the 4-momentum.

9. For a pedagogical discussion of parity and other discrete symmetries in particle physics, see T. D. Lee, Particle
Physics and Introduction to Field Theory, Harwood, 1981.

10. Known as the Weyl unitarian trick. This is done routinely in quantum field theory; see, for example, QFT
Nut, pp. 538–539.

11. See QFT Nut, p. 99, for example.
12. See QFT Nut, p. 113, for a remark about poetic metaphors. Energy is a positive quantity.
13. And dropping a surface term at spacetime infinity.
14. See, for example, QFT Nut.
15. For further discussion, see QFT Nut, pp. 186–187.
16. For Grassman numbers, see, for example, chapter II.5 in QFT Nut. Also, u1u1=−u1u1= 0, and similarly

for u2, but this is not relevant here, since the diagonal elements of σ2 vanish.
17. See, for example, chapter N.3 in QFT Nut.
18. According to chapter IV.8, this is isomorphic to Sp(2, R).
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Two Weyls equal one Dirac

I will give you, in this chapter, two “modern” derivations of the Dirac equation in addition
to Dirac’s original derivation.

We understood that to describe the electron, we need the 4-dimensional reducible
representation ( 1

2 , 0)⊕ (0, 1
2), known to physicists as a Dirac spinor. In other words, we

need both the right handed and the left handed Weyl spinors u and v.
So imagine a world with two 2-component Weyl spinors, transforming as ( 1

2 , 0) and
(0, 1

2), respectively. We add the Lagrangian for u we had in (VII.3.27) and the Lagrangian
for v in (VII.3.35) to obtain L= iu†σμ∂μu+ iv†σ̄ μ∂μv. With this Lagrangian, the two Weyl
spinors u and v live independently of each other.

The possibility of mass

But now a new possibility arises. Recall that under rotations and boosts, u→ e(i
�θ+�ϕ). �σ2 u,

while v→ e(i
�θ−�ϕ). �σ2 v. In other words, u and v transform oppositely under boosts. This

implies that, with bothu and v on hand, we could construct the invariant termsu†v and v†u

(verify that they are invariant!) and include them in the Lagrangian. Hermiticity requires
that we add them in the combination m(u†v + v†u), with some real parameter m whose
physical meaning will become clear presently. Group theory thus leads us to

L= iu†σμ∂μu+ iv†σ̄ μ∂μv −m(u†v + v†u) (1)

Now varying L with respect to u†, we obtain, instead of (VII.3.28), iσμ∂μu=mv, and
thus in momentum space

σμpμu= (E − �σ . �p)u=mv (2)
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Similarly, varying with respect to v†, we obtain σ̄ μ∂μv =mu and thus

σμpμv = (E + �σ . �p)v =mu (3)

Acting with (E + �σ . �p) on (2) from the left and invoking (3), we find (E2− �p2)u=m2u.
In other words, u vanishes unless

E2= �p2+m2 (4)

The term m(u†v + v†u) allowed by group theory has endowed the particle with mass m.
Furthermore, under parity, u↔ v, and so physics now respects parity.

The particle possesses two helicity states with h=±1, is massive, and respects parity:
it could perfectly well be the electron! The two Weyl spinors u and v may be thought of as
the right and left handed components of the electron, respectively.

A somewhat highbrow way of defining the mass of a spin 1
2 Dirac particle is to say that

mass is the quantity that connects its left hand and its right hand.
Physically, if a spin 1

2 particle has mass, then we could go to its rest frame, where
rotation invariance requires it to have two spin states. Boosting implies that a massive
spin 1

2 particle, such as the electron, must have both helicity states.

The Dirac equation pops up

The two equations (2) and (3) are practically begging us to stack the two1 2-component

Weyl spinors together to form a 4-component Dirac spinor2 ψ =
(
u

v

)
(in both position

and momentum space). Then(
σμpμv(p)

σμpμu(p)

)
=
(

0 σμpμ

σμpμ 0

) (
u(p)

v(p)

)
(5)

The formalism is inviting us to define the four 4-by-4 matrices

γ μ ≡
(

0 σμ

σμ 0

)
(6)

so that the left hand side of (5) can be written as γ μpμψ(p).
The matrices in (6) are known as gamma matrices. In this group theoretic approach, we

did not go looking for the gamma matrices, the gamma matrices came looking for us.
We can now package (2) and (3) to read

(γ μpμ −m)ψ(p)=
(
σμpμv(p)−mu(p)
σμpμu(p)−mv(p)

)
= 0 (7)

In position space, this is the famed Dirac equation

(iγ μ∂μ −m)ψ(x)= 0 (8)

We did not go looking for the Dirac equation, the Dirac equation came looking for us!
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The Clifford algebra and gamma matrices

You might recognize the gamma matrices γ μ, which popped up here unbidden as analytic
continuations of the gamma matrices for SO(4), and more generally for SO(2n), as dis-
cussed in chapter VII.1; hence the arrangement of chapters. Indeed, the various spinors
discussed in this chapter represent specializations and continuations of the various
spinors of SO(2n).

From the discussion in chapter VII.1, we expect that γ μ here would satisfy the anti-
commuting Clifford algebra, suitably continued, and indeed, they do.

Let us calculate

γ μγ ν =
(

0 σμ

σμ 0

) (
0 σν

σ ν 0

)
=
(
σμσν 0

0 σμσν

)
(9)

Recall thatσμ= (I , σ1, σ2, σ3) and σ̄ μ= (I ,−σ1,−σ2,−σ3). We want to add γ νγ μ to this to
evaluate {γ μ, γ ν}. Let us calculate σμσν + σνσμ (notice that this is not an anticommutator)
term by term: for μ= ν = 0, 2I ; for μ= 0, ν = i, Iσ i + (−σ i)I = 0; and for μ= i, ν = j ,
(−σ i)σ j + (−σ j)σ i =−2δijI . Thus,

σμσν + σνσμ = 2ημνI (10)

with ημν = diag(1, −1, −1, −1), that is, the Minkowski metric introduced in chapter VII.2.
Similarly, you could check that

σμσν + σνσμ = 2ημνI (11)

Hence

{γ μ, γ ν} = 2ημν (12)

as expected. Recall that the Clifford algebra (12) merely says that each γ μ squares to∗ either
I or −I , and that the γ μs anticommute with one another.

It follows that for any two 4-vectors p and q, we have

(pμγ
μ)(qνγ

ν)= 1
2
{γ μ, γ ν}pμqν = ημνpμqν = p . q = p0q0 − �p . �q (13)

For convenience, introduce the Feynman slash notation, which is now standard.3 For
any 4-vector aμ,

�a ≡ γ μaμ = a0γ
0 + aiγ i = a0γ 0 − aiγ i = a0γ 0 − �a . �γ (14)

Then (13) says �p �q = p . q, in particular �p �p = p . p = p2. The Dirac equation (8) may be
written as

(i �∂ −m)ψ = 0 (15)

or (�p −m)ψ = 0 in momentum space.

∗ Note that, throughout this book, the identity matrix I is often suppressed, for example, in (7), (8), and (12).
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Acting with (�p + m) on the Dirac equation, we obtain (�p + m)(�p − m)ψ = (�p �p −
m2)ψ = (p2−m2)ψ = 0, using (13). In other words,ψ(p) vanishes unlessp2=E2− �p2=
m2, but this is precisely what we deduced in (4). We have merely packaged the previous
information more compactly.

For calculations, it is more efficient to write the γ μ in (6) using the direct-product
notation,4 as we learned in chapter VII.1:

γ 0 =
(

0 I

I 0

)
= I ⊗ τ1, γ i =

(
0 −σi
σi 0

)
=−σi ⊗ iτ2 (16)

We will see presently that we are free to change basis. The basis used here is known as the
Weyl basis.

Different bases for different folks

If we use the gamma matrices γ μ, somebody else is certainly free to use γ̃ μ =WγμW−1

instead, withW any 4-by-4 matrix with an inverse. Evidently, γ̃ μ also satisfies the Clifford
algebra. (Verify this.) If ψ satisfies the Dirac equation (i �∂ − m)ψ = 0, then ψ̃ =Wψ
satisfies (iγ̃ μ∂μ −m)ψ̃ = (iW �∂W−1−m)Wψ =W(i �∂ −m)ψ = 0.

This freedom of choosing the γ matrices corresponds to a simple change of basis; going
from ψ to ψ̃ , we scramble the four components of ψ .

Hermitean conjugating the equation γ̃ μ =WγμW−1 and inserting the fact that γ 0 is
hermitean while γ i is antihermitean (see appendix 1), we deduce thatW−1=W†, that is,
W has to be unitary.

An alternative derivation of the Dirac equation:
Too many degrees of freedom

A profound truth should be honored with more than one derivation. We have derived the
Dirac equation by detouring through the Weyl equation. Suppose we didn’t do that and
proceeded directly to the representation ( 1

2 , 0)⊕ (0, 1
2) as mandated by parity.

Parity forces us to have a 4-component spinor ψ , but we know for a fact that a spin 1
2

particle has only two physical degrees of freedom. What are we to do? We have too many
degrees of freedom.

Clearly, we have to set two of the components of ψ to 0, but this has to be done in such
a way as to respect Lorentz invariance.

Let us go to the rest frame, in which the electron has momentum pr ≡ (m, �0), with m
the electron mass. We are to project out two of the four components contained in ψ(pr),
that is, set Pψ(pr)= 0 with P a 4-by-4 matrix satisfying P 2= P .

Parity suggests that we treat u and v on the same footing, since u↔ v under parity. With
the benefit of hindsight, let us set u= v in the rest frame. In other words, we choose5 the

projection operator to be P = 1
2

(
I −I
−I I

)
, so that Pψ(pr)= 0 corresponds to u− v = 0.
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Next, write P = 1
2(I − γ 0), where γ 0 is, at this point, merely a particularly bizarre notation

for some 4-by-4 matrix.∗ (Remember, we are deriving the Dirac equation from scratch once
again; we have never heard of the gamma matrices, which are waiting to be discovered,
ha ha.) From the form above, we have

γ 0 =
(

0 I

I 0

)
(17)

with I the 2-by-2 identity matrix.6

Write the projection to 2 degrees of freedom, Pψ(pr)= 0, as

(γ 0 − I )ψ(pr)= 0 (18)

The Dirac equation in disguise

We have derived the Dirac equation, but heavily disguised!
The wave function ψ(pr) in the rest frame satisfies (18). Since our derivation is based

on a step-by-step study of the spinor representation of the Lorentz group, we know how
to obtain the equation satisfied by ψ(p) for any p: we simply boost, following the strategy
described in chapter VII.3.

With no loss of generality, let us boost in the z direction. With boost “angle” ϕ, the elec-
tron acquires energy E =m cosh ϕ and 3-momentum p =m sinh ϕ, with m the electron
mass (of course). Note for use below that meϕσ3 =m(cosh ϕ + σ3 sinh ϕ)= E + σ3p.

Group theory tells us that, to obtain the wave function ψ(p) satisfied by the moving
particle, we simply apply eiϕK to ψ(pr) (with K short for Kz). So act with eiϕK on (18)
conveniently multiplied by m:

eiϕKm(γ 0 − I )ψ(pr)=m(eiϕKγ 0e−iϕK − I )ψ(p)= 0 (19)

But we know from chapter VII.3 that eiϕK =
(
e

1
2 ϕσ3 0

0 e
− 1

2 ϕσ3

)
, and thus

meiϕKγ 0e−iϕK =
(
e

1
2ϕσ3 0

0 e−
1
2ϕσ3

) (
0 I

I 0

) (
e−

1
2ϕσ3 0

0 e
1
2ϕσ3

)

=m
(

0 eϕσ3

e−ϕσ3 0

)
=
(

0 E + σ3p

E − σ3p 0

)
(20)

Note that the factors of 1
2 have disappeared. Thus (19) becomes( −m E + �σ . �p

E − �σ . �p −m

) (
u

v

)
= 0 (21)

∗ Intentionally, we have chosen P so that the γ 0 here agrees with the γ 0 in (6).
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Referring to (17), we see that the matrix in (21) can be written as γ 0p0 − γ ipi −m if we
define

γ i =
(

0 −σi
σi 0

)
(22)

We can thus write (21) as (γ μpμ −m)ψ(p)= 0. In position space, we have the Dirac
equation (iγ μ∂μ −m)ψ(x)= 0.

Projection boosted into an arbitrary frame

We recognize the two coupled equations (E − �σ . �p)u=mv and (E + �σ . �p)v =mu con-
tained in (21) as precisely the two coupled equations (2) and (3) obtained earlier. The two
roads of our derivations have come together, so to speak.

The derivation here represents a deep group theoretic way of looking at the Dirac
equation: it is “merely” a projection boosted into an arbitrary frame.

This exemplifies the power of symmetry and group theory that pervades modern physics:
our knowledge of how the electron field transforms under the rotation group (namely, that
it has spin 1

2) allows us to know how it transforms under the Lorentz group. Symmetry
rules!

With group theory, we don’t have to be as brilliant as Dirac, not even a small fraction
really, to find the Dirac equation. Once we solemnly intone ( 1

2 , 0)⊕ (0, 1
2), group theory

leads us by the nose to the promised land.

From Dirac back to Weyl

Suppose that we are given the reducible representation ( 1
2 , 0)⊕ (0, 1

2). How do we extract
the two irreducible representations ( 1

2 , 0) and (0, 1
2)? In other words, we want to separate

out the two Weyl spinors contained in the Dirac spinor.
Define∗ γ5≡ iγ 0γ 1γ 2γ 3. This product of gamma matrices is so important that it has its

own name! (The peculiar name comes about because in some old-fashioned notation, the
time coordinate was called x4 with a corresponding γ 4.) In the Weyl basis used here,

γ5≡ iγ 0γ 1γ 2γ 3= i(I ⊗ τ1)(σ
1σ 2σ 3⊗ (−i)3τ2)= I ⊗ τ3=

(
I 0

0 −I

)
(23)

is diagonal. Verify that γ5 anticommutes with γ μ.
Since (γ5)

2= 1, we can form two projection operators, PL ≡ 1
2(1− γ5) and PR ≡ 1

2(1+
γ5) satisfying P 2

L
= PL, P 2

R
= PR , and PLPR = 0. Note that we have already introduced the

∗ Incidentally, we do not distinguish between γ5 and γ 5.
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analogs∗ of γ5 and of these two projections in chapter VII.1, not surprisingly, since many
properties of the SO(N) spinors can be analytically continued.

We have now solved the problem just posed. Given a 4-component spinor ψ , the two
combinationsψL= 1

2(1− γ5)ψ andψR = 1
2(1+ γ5)ψ correspond to precisely the two Weyl

spinors contained in ψ . Note that ψ = ψL + ψR (of course). With the convention in (23),
ψR = u and ψL = v.

We can readily recover what we learned about the Weyl equation in chapter VII.3. Acting
withPR on the Dirac equation (�p−m)ψ = 0 from the left and noting that γ5 anticommutes
with γ μ (as you have just shown), we obtain

�pψL =mψR (24)

Acting with PL, you would have obtained �pψR =mψL. Once again, we see that the mass
m connects the left and the right.

Now imagine a particle (let’s say the neutrino for definiteness) described by a single
Weyl field, not two Weyl fields like the electron, that is, a particle with ψL but not ψR.
In other words, ψR = 0. Then ψL satisfies the elegant Weyl equation now written in 4-
component form:

�pψL = 0 (25)

Multiplying the Weyl equation by �p from the left, we obtain �p �p = p2= 0. Thus, not only
does a particle described by the Weyl equation violate parity, but it must also be massless.

One physicist told me that as a student he was confused by a triviality. He saw the Weyl
spinor written in the Dirac notation as ψL = 1

2(1− γ5)ψ , an apparently 4-component
object, but then referred to as a 2-component spinor. I trust that the reader under-
stands clearly that projecting two components out of a 4-component Dirac spinor would
leave a 2-component spinor. I hope that this book—which introduces the Weyl spinor
first as a 2-component spinor, then forms the Dirac spinor by stacking two Weyl
spinors together, and finally extracts the left and right handed spinor from the 4-component
Dirac spinor—avoids what this physicist call “notational hiccups.”

Dirac’s brilliant guess

Now that we have gone through the group theoretic derivation of the Dirac equation,
we mention Dirac’s original path7 to “his8 equation.” He started with the Klein-Gordon
equation (∂2 + m2)ψ = 0 (which was actually known before the Schrödinger equation,
since it merely states the Einstein relation p2 = m2 in position space). For misguided
reasons now no longer relevant, Dirac looked for an equation with only one power of
spacetime derivative9 rather than the two powers in the Klein-Gordon equation, and wrote
down (cμ∂μ − b)ψ = 0. Note that in the group theoretic treatment, the fact that the Dirac
equation contains one, rather than two, power of spacetime derivative was forced on us.

∗ Some readers might have guessed that γF in chapter VII.1 is actually short for γFive.
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If cμ were four numbers, then c would define a 4-vector and thus pick out a privileged
direction, which immediately implies that Lorentz invariance is broken. A lesser physicist
might have given up immediately at this point. But not Dirac. He multiplied this equation
from the left by (cμ∂μ + b), thus obtaining ( 1

2{cμ, cν}∂μ∂ν − b2)ψ = 0. He then noticed
that, if {cμ, cν} = −2ημν and b =m, he would have obtained the Klein-Gordon equation.

Dirac realized that to satisfy the required anticommutation relation the cμs would have
to be matrices rather than numbers. By trial and error, he found that the smallest matrices
that worked would have to be 4-by-4. Consequently, ψ must have four components. Write
cμ = iγ μ, with γ μ four 4-by-4 matrices satisfying the algebra {γ μ, γ ν} = 2ημν.

Lorentz transformation of the Dirac spinor

This lightning-bolt-out-of-nowhere derivation segues nicely into the following question.
How could the Dirac equation (iγ μ∂μ − m)ψ = 0 possibly be Lorentz invariant, while
the equation (cμ∂μ −m)ψ = 0, with cμ being four numbers, is clearly not? The magic of
matrices, as we will see presently.

The group theoretic derivation of the Dirac equation, in contrast, leaves no doubt that
it is Lorentz invariant. Indeed, the moment we mutter “( 1

2 , 0)⊕ (0, 1
2)”, we fix completely

how the 4-component Dirac spinor ψ transforms. Lorentz invariance is guaranteed by
construction. Case closed.

Nevertheless, we (along with the poor man) would like to see, in the context of Dirac’s
original derivation, the nuts and bolts behind the Lorentz invariance. Let us state the
question more formally. Under a Lorentz transformation xμ→ x′μ = Lμ

ν
xν , how do the

four components of ψα transform, and how does the Dirac equation respond under this
transformation?

Let us ask Confusio not to confuse the Lorentz index μ= 0, 1, 2, 3 with the spinor or
Dirac index α = 1, 2, 3, 4. He says that he is not confused, even though both indices take
on four different values.

So, let ψ(x)→ ψ ′(x′)≡ S(L)ψ(x) and try to determine the 4-by-4 matrix S(L).

A quick review of what we learned in chapter VII.2: following Lie, write L= e i2ωμνJμν �
(I + i

2ωμνJ
μν) near the identity, with the six (= 4 . 3/2) 4-by-4 matrices Jμν = −J νμ

generating the three rotations and the three boosts. (Here the indices μ and ν are to be
summed over.) The six parameters ωμν =−ωνμ correspond to the three rotation angles �θ
and the three boost angles �ϕ.

Let S(L)� (I − i
4ωμνσ

μν) under this infinitesimal transformation, with the six 4-by-4
matrices σμν to be determined. In other words, the issue is how the generators Jμν are
represented in the spinor representation. How hard can this be? After all, there are only 16
linearly independent 4-by-4 matrices. We already know six of these matrices: the γ μs, the
identity matrix I , and γ5= iγ 0γ 1γ 2γ 3, corresponding to products of k γ matrices, with
k = 1, 0, and 4, respectively.10

What about the products of two or three γ matrices? The products of three γ matrices
are in fact equal to γ μγ 5. (For example, iγ 1γ 2γ 3= γ 0(iγ 0γ 1γ 2γ 3)= γ 0γ5.) Next, thanks
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to the Clifford algebra (12), products of two γ matrices reduce to γ μγ ν = 1
2{γ μ, γ ν} +

1
2 [γ μ, γ ν]= ημν − iσμν, where we define

σμν ≡ i
2

[γ μ, γ ν] (26)

There are 4 . 3/2= 6 of these σμν matrices.
Count them, we got all 16.∗ The set of (1+ 4 + 6+ 4 + 1)= 16 matrices {1, γ μ, σμν ,

γ μγ5, γ5} form a complete basis of the space of all 4-by-4 matrices; that is, any 4-by-4 matrix
can be written as a linear combination of these 16 matrices.

Group theoretically, the question posed earlier is how the generators Jμν are represented
on ( 1

2 , 0)⊕ (0, 1
2). Given the preceding discussion and the fact that there exist six matrices

σμν , we suspect that up to an overall numerical factor, the σμνs must represent the six
generators Jμν of the Lorentz group acting on a spinor. In fact, since I already knew the
answer, I even wrote S(L)� (I − i

4ωμνσ
μν).

To confirm our suspicion and to fix the numerical factor, it is easiest to work out what

a rotation e
i
2ωijJ

ij

does to the Dirac spinor. Choose γ μ =
(

0 σ
μ

σμ 0

)
as in (6), namely, the

Weyl basis. (I remind you that σμ = (I , �σ) and σ̄ μ = (I , −�σ).) Then, from (9), we have

σμν = i
2

(
σ
μ
σν−σνσμ 0

0 σμσ
ν−σνσμ

)
, that is,

σ 0i = i
(
σi 0

0 −σi

)
σ ij = εijk

(
σk 0

0 σk

)
(27)

We see that σ ij are just the Pauli matrices doubly stacked. Thus, for a rotation around the

z-axis, e−
i
2ωij

1
2σ
ij = e−iω12

σ3
2 , with ω12 the rotation angle. This corresponds to exactly how

a spin 1
2 particle transforms.

We have figured out that a Lorentz transformation L acting on ψ is represented by

S(L)= e− i4ωμνσμν .
It is instructive to verify that if ψ(x) satisfies the Dirac equation (iγ μ∂μ −m)ψ = 0,

then ψ ′(x′)≡ S(L)ψ(x) satisfies the Dirac equation (iγ μ∂ ′
μ
−m)ψ ′(x′)= 0 in the primed

frame, where ∂ ′
μ
≡ ∂
∂x′μ . To show this, note that† [σμν , γ λ]= 2i(γ μηνλ− γ νημλ), and hence

for ω infinitesimal, Sγ λS−1= γ λ − i
4ωμν[σ

μν , γ λ]= γ λ − ωλ
μ
γ μ. Building up a finite

Lorentz transformation by compounding infinitesimal transformations, as instructed by
Lie, we have Sγ λS−1= Lλ

μ
γ μ. Math works, of course.

The Lorentz generators and the adjoint representation

Everything is coming together. Now that we understand the representation ( 1
2 , 0)⊕ (0, 1

2)

used in the Dirac equation, we might ask about the pair of 3-dimensional representations

∗ If the reader is worried about factors of i, go through the same counting for SO(4), where all these matrices
are hermitean thanks to Euclid.

† In fact, the astute reader would have realized that we already did a Euclidean version of this calculation in
chapter VII.1.
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(1, 0) and (0, 1) in the list of irreducible representations. We instantly understand that par-
ity maps one into the other, and together, we have a 6-dimensional reducible representation
(1, 0)⊕ (0, 1) of the Lorentz group. What could it be?

Or, I could ask you another question. We know that every Lie group has an adjoint
representation furnished by the generators of the Lie algebra. Well, the Lorentz group
SO(3, 1) has six generators, �J and i �K . How do they transform?

You answered right. Yes, (1, 0)⊕ (0, 1) is the adjoint representation. The reducibility of
(1, 0)⊕ (0, 1) reflects the splitting of the set Ji, Ki into J+, i, J−, i, corresponding to (1, 0)
and (0, 1), respectively.

Referring back to the discussion in chapter VII.3, we see that acting on the 4-component
spinor ψ , we have the generators of rotation

�J =
( 1

2 �σ 0

0 1
2 �σ

)
(28)

and the generators of boost

i �K =
( 1

2 �σ 0

0 − 1
2 �σ

)
(29)

As in the preceding chapter, the equality means “represented by.” Note once again the all-
important minus sign. By the way, we can now see, almost instantly, the commutation
relations (VII.2.23)–(VII.2.25): [J , J ]∼ J , [J , K ]∼K , [K , K ]∼ −J (as realized on the
Dirac spinor).

The Dirac Lagrangian

Go back to the Lagrangian L= iu†( ∂
∂t
+ �σ . �∇)u+ iv†( ∂

∂t
− �σ . �∇)v −m(u†v + v†u) in (1).

Let us now write it in terms of the Dirac spinor ψ .
From (17), we have (u†v + v†u)= ψ†γ 0ψ , which we can write as ψ̄ψ if we define

ψ̄ ≡ ψ†γ 0 (30)

The two time derivative terms then come together as u† ∂
∂t
u+ v† ∂

∂t
v = ψ† ∂

∂t
ψ = ψ̄γ 0 ∂

∂t
ψ

= ψ̄γ 0∂0ψ . I leave it to you to verify that the two spatial derivative terms combine into
ψ̄γ i∂iψ . Writing �∂ = γ μ∂μ, we obtain the Dirac Lagrangian in 4-component form:

L= ψ̄(i �∂ −m)ψ (31)

In nonrelativistic quantum mechanics, you are used to writing ψ†ψ . In relativistic
physics you have to get used to writing ψ̄ψ . Show that ψ̄ψ , but not ψ†ψ , transforms like

a Lorentz scalar. Hint: Show that (σμν)†= γ 0σμνγ 0, and hence, S(L)†= γ 0e
i
4ωμνσ

μν

γ 0.
(Incidentally, this shows clearly that S is not unitary, which we knew, since σ0i is not
hermitean.)
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Dirac bilinears

Denote the 16 linearly independent 4-by-4 matrices11 {I , γ μ, σμν , γ μγ5, γ5} generically by
�. The 16 objects ψ̄�ψ , known as Dirac bilinears, were tremendously important in the
development of particle physics.12 In the exercises, you will work out how they transform
under Lorentz transformations and under spatial reflection. In fact, the notation already
suggests how they transform. Our discussion of the Dirac Lagrangian in (31) indicates
that ψ̄ψ(= ψ̄Iψ)must transform like a Lorentz scalar, since it appears as the mass term.
Similarly, ψ̄γ μψ must transform like a 4-vector, since, when contracted with ∂μ, it appears
as the “kinetic energy” term ψ̄ �∂ψ .

You will not be surprised, then, that ψ̄σμνψ transforms like an antisymmetric tensor.
From exercises 4 and 7, you will learn that ψ̄γ μγ5ψ and ψ̄γ5ψ transform like an axial
vector and a pseudoscalar, respectively, that is, quantities odd under spatial reflection.

The various Dirac bilinears transform according to how they look like they should
transform, as indicated by the Lorentz indices they carry.

Group theoretically, the existence of the 16 Dirac bilinears corresponds to the Clebsch-
Gordon decomposition((

1
2

, 0
)
⊕
(

0,
1
2

))
⊗
((

1
2

, 0
)
⊕
(

0,
1
2

))
=
(

1
2
⊗ 1

2
, 0⊗ 0

)
⊕
(

1
2
⊗ 0, 0⊗ 1

2

)
⊕
(

0⊗ 1
2

,
1
2
⊗ 0
)
⊕
(

0⊗ 0,
1
2
⊗ 1

2

)
= (0⊕ 1, 0)⊕

(
1
2

,
1
2

)
⊕
(

1
2

,
1
2

)
⊕ (0, 0⊕ 1)

= (0, 0)⊕
(

1
2

,
1
2

)
⊕ (1, 0)⊕ (0, 1)⊕

(
1
2

,
1
2

)
⊕ (0, 0) (32)

As always, count to make sure that we did not lose anybody: 4 . 4= 16= 1+ 4+ 6+ 4+ 1.
While the 4s on the left hand side are actually 2+ 2, the 4s on the right hand side are in
fact 4. (Got that?) The 6 is 3+ 3.

Three for the price of one! Here we have gone through two different derivations of the
Dirac equation, plus Dirac’s original derivation. The take home message is that group
theory rules.

Appendix 1: The Dirac Hamiltonian

The Dirac equation (8) can be cast in the Hamiltonian form i
∂ψ
∂t
=Hψ given in chapter III.1 by moving all terms

other than the time derivative term to the right hand side and multiplying by γ 0:

i∂0ψ = (−iγ 0γ i∂i + γ 0m)ψ (33)

Indeed, that was how Dirac originally wrote13 his equation. Thus, we identify the Dirac Hamiltonian as
H =−iγ 0γ i∂i + γ 0m.
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The requirement that the Hamiltonian is hermitean implies that (γ 0)†= γ 0 and (γ 0γ i)†= γ 0γ i . The latter
leads to (γ i)† =−γ i , since γ 0 and γ i anticommute. Thus, we deduce that γ 0 is hermitean while γ i is anti-
hermitean, a fact conveniently written as (γ μ)† = γ 0γ μγ 0. By inspection, we can verify explicitly that the γ
matrices in the Weyl basis in (16) obey these hermiticity requirements, as they must.

Appendix 2: Slow and fast electrons

We learned that we are free to choose the γ matrices up to a similarity transformation. Physics determines which
choice is the most convenient. For example, suppose we want to study a slowly moving electron, as would be the
case in atomic physics.∗

In the discussion leading up to (7) and (18), we chose γ 0 = I ⊗ τ1, as in (6). Let us now choose

γ 0 =
(
I 0

0 −I
)
= I ⊗ τ3 (34)

instead of (17). We keep the γ is the same as in (22): γ i =
(

0 −σ i
σ i 0

)
. This is known as the Dirac basis. Verify that

the Clifford algebra (12) is satisfied.
Since in the Dirac basis γ 0 is diagonal by design, the projection (γ 0 − I )ψ = 0 in the rest frame is trivially

solved. Write the 4-component spinor as ψ =
(
u
v

)
. Inserting (34), we obtain v(pr)= 0, that is, v vanishes for an

electron at rest.
For a slowly moving electron, we thus expect v(p) to be much smaller than u(p). We are invited to develop

an approximation scheme treating v& u.
In the Dirac basis, the Dirac equation works out to be

(�p −m)ψ =
(
E −m −�σ . �p
�σ . �p −E −m

) (
u

v

)
= 0 (35)

(compare with the Dirac equation (21) in the Weyl basis). This equation implies

v = �σ . �p
E +mu�

�σ . �p
2m

u (36)

since in the nonrelativistic limit, the kinetic energy K in E =m+K is much less than the rest energy m. This
expression for v then allows us to calculate the leading relativistic corrections to various physical quantities.14

Notice that in going from the Weyl basis to the Dirac basis, γ 0 and γ5 trade places (up to a sign). As already
mentioned, physics dictates which basis to use: we prefer to have γ 0 diagonal when we deal with slowly moving
spin 1

2 particles, while we prefer to have γ5 diagonal when we deal with fast moving spin 1
2 particles.

Appendix 3: An alternative formalism for the Dirac Lagrangian

Let us start with the Lagrangian in (1). Write v = iσ2w
∗. As explained in chapter VII.3, this means that the Weyl

spinor w transforms like ( 1
2 , 0). Hermitean conjugating, we obtain v†= wT (−iσ2). Thus,

v†σ̄ μ∂μv = wT σ2σ̄
μσ2∂μw

∗ “= ” − (∂μwT )σ2σ̄
μσ2w

∗

= (−)2w†(σ2σ̄
μσ2)

T ∂μw = w†σμ∂μw (37)

∗ For a treatment of the relativistic hydrogen-like atoms, see J. J. Sakurai and J. Napolitano, Modern Quantum
Mechanics, p. 506.
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The effective equality results because in the action, the Lagrangian is integrated over spacetime, and thus
(disregarding possible surface terms) we are allowed to integrate by parts. In the third equality, the extra minus
sign is because the spinor w is to be thought of as a Grassman number, as mentioned in chapter VII.3. Finally,
the fourth equality follows from

(σ2σ̄
μσ2)

T = σ2σ̄
μT σ2 = σ2(I , −σ1, σ2, −σ3)σ2 = σμ (38)

With two Weyl spinors transforming like ( 1
2 , 0), we are invited to write WA with A= 1, 2 such that W1= u

andW2 = w. The Lagrangian allowed by Lorentz invariance is then

L= iW†σμ∂μW − 1
2
(mABW

T
A
iσ2WB + h.c.) (39)

where h.c. stands for hermitean conjugation. Without the mass term, the Lagrangian enjoys a U(2) symmetry
acting on the index A, which (depending on the form of mAB) may be broken down to U(1).

Exercises

1 In chapter VII.2 you worked out how the six components of the electric and magnetic fields �E and �B transform
under the Lorentz group. In fact, the electromagnetic field transforms as (1, 0)⊕ (0, 1). Show that it is parity
that once again forces us to use a reducible representation.

2 Show that we don’t have to list products of k γ matrices with k ≥ 5.

3 Find theW that takes the Weyl basis into the Dirac basis, and verify that it is unitary.

4 Work out how the Dirac bilinears transform under the Lorentz group.

5 Show that the bilinears in the preceding exercise are all hermitean.

6 Consider space reflection or parity: xμ→ x′μ = (x0, −�x). Show that ψ ′(x′) ≡ γ 0ψ(x) satisfies the Dirac
equation in the space-reflected world.

7 Under a Lorentz transformation, ψ̄(x)γ 5ψ(x) and ψ̄(x)ψ(x) transform in the same way. Show that under
space reflection, they transform oppositely; in other words, ψ̄(x)γ 5ψ(x) transforms like a pseudoscalar.

8 Express v†u in terms of v and w.

9 Show that for mAB = mδAB , the Lagrangian in (39) exhibits an SO(2) � U(1) symmetry. Rewrite the
Lagrangian in terms of ψ± = (W1+ iW2)/

√
2.

Notes

1. In light of the cautionary note about terminology given in chapter VII.3, some authors would say that we
need four Weyl spinors.

2. Evidently then, u and v denote 2-component spinors. Hence they are not to be confused with the 4-component
spinors u and v that appear in the solution of the Dirac equation.

3. For a story about the Feynman slash notation, see QFT Nut, p. 105.
4. We have changed the notation from chapter VII.1 slightly, using σ to denote one of the two sets of Pauli

matrices to emphasize that spin is involved.
5. Different choices of P correspond to different choices of basis for the γ matrices, as was just explained.
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6. Alternatively, we could impose the requirement that P is a projection, which implies that (I − γ 0)2 =
2(I − γ 0), and hence (γ 0)2= I . The matrix γ 0 squares to the identity matrix; its eigenvalues can only be±1.

7. According to a possibly apocryphal story, Dirac was staring into a fire when the equation occurred to him.
8. According to another likely apocryphal legend, when the young Feynman introduced himself to Dirac, the

latter said quietly, after a long silence, “I have an equation, do you?”
9. This would be somewhat akin to a confused beginning student writing down ( ∂

∂x
+ ∂

∂y
+ ∂

∂z
)φ = 0 in an

exam rather than Laplace’s equation. The professor would not be amused.
10. I have intentionally changed the superscript on γ 5 to γ5 just to show that it doesn’t matter, to uphold Emerson

and to irk the divines.
11. The corresponding 16 matrices for SO(4) generate an SU(4) algebra.
12. Particularly in the theory of the weak interaction, as is detailed in any book on particle physics.
13. With the somewhat antiquated notation αi = γ 0γ i and β = γ 0. This was how the letter γ came into the

modern form of the Dirac equation.
14. See, for example, J. J. Sakurai, Invariance Principles and Elementary Particles, Princeton University Press,

p. 27.



VII.5 Dirac and Majorana Spinors:
Antimatter and Pseudoreality

We finally come to the shocking prediction of antimatter. Interestingly, the existence of
antimatter is related, in the language of group theory, to the existence of pseudoreal
representations, which we discussed in chapter II.4.

Here we adopt a more traditional and historical approach, using the 4-component Dirac
formalism.

The Majorana mass term has already been mentioned in chapter VII.3. In this chapter,
the notion of the charge conjugate field will offer us another approach (which of course
does not differ in essence) to the fascinating possibility of a Majorana particle.

Antimatter and pseudoreality

The prediction and discovery of antimatter is surely one of the most astonishing and mo-
mentous developments in twentieth-century physics. Here I will show you that antimatter
is intimately tied up with the concept of pseudoreal representation.

For the discussion here to proceed, you need to know that a quick way of introducing
the electromagnetic field is to replace the spacetime derivative ∂μ by the so-called covariant
derivative ∂μ − ieAμ(x), a concept already used in nonrelativistic quantum mechanics.∗ , 1

(Here Aμ(x) denotes the electromagnetic potential mentioned in chapter VII.2.) If you
have never heard of this, you may wish to skip this section.

In the presence of an electromagnetic field, the Dirac equation is thus modified to(
iγ μ(∂μ − ieAμ)−m

)
ψ = 0 (1)

The charge e of the electron measures the strength of the interaction of ψ with Aμ.

∗ You might have seen it in the following form. The Schrödinger equation i∂tψ =− 1
2m
�∇2ψ is changed to

i(∂t − ieAt)ψ =− 1
2m (
�∇ − ie �A)2ψ , that is, i∂tψ = (− 1

2m (
�∇ − ie �A)2+ V )ψ if we define the potential V ≡−eAt .

In particular, the case with �A= 0 appears in an early chapter of practically every quantum mechanics textbook.
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Our strategy for “finding” antimatter is to show that, given (1), we can find a ψc that
satisfies the same equation but with the sign of the charge e flipped.

First, complex conjugate (1): (−iγ μ∗(∂μ + ieAμ)−m)ψ∗ = 0. This looks like (1) with
e→−e, precisely what we want, but with (−γ μ∗) appearing in place of γ μ.

Second, complex conjugating the Clifford algebra {γ μ, γ ν} = 2ημν , we see that the four
matrices (−γ μ∗) also satisfy the Clifford algebra. Thus, (−γ μ∗) must be γ μ expressed in
a different basis. In other words, there exists a matrix Cγ 0 (the notation with an explicit
factor of γ 0 is standard; see below) such that

−γ μ∗ = (Cγ 0)−1γ μ(Cγ 0) (2)

Third, plugging this into (−iγ μ∗(∂μ + ieAμ)−m)ψ∗ = 0 and defining

ψc ≡ Cγ 0ψ∗ (3)

we find(
iγ μ(∂μ + ieAμ)−m

)
ψc = 0 (4)

If ψ is the field of the electron, ψc is the field of a particle with a charge opposite to
that of the electron but with the same mass,2 namely, the antielectron, now known as the
positron.∗

So easy3 in hindsight!

Charge conjugation in the Dirac and Weyl bases

We could continue the discussion in a general basis, but for the sake of definiteness and
ease of exposition, let us restrict ourselves to the Dirac basis and the Weyl basis henceforth.
To fix our minds, we will keep the explicit form of the γ matrices in front of us.

γ 0 = I ⊗ τ1=
(

0 I

I 0

)
Weyl, or γ 0 = I ⊗ τ3=

(
I 0

0 −I

)
Dirac (5)

γ i =−σi ⊗ iτ2=
(

0 −σi
σi 0

)
Weyl and Dirac (6)

Also, γ5≡ iγ 0γ 1γ 2γ 3 is given by

γ5= I ⊗ τ3=
(
I 0

0 −I

)
Weyl, or γ5=−I ⊗ τ1=−

(
0 I

I 0

)
Dirac (7)

∗ The physical approach here shows unequivocally that ψc describes an antielectron. In a more mathematical
treatment, we could write ψ in terms of the Weyl spinors u and v and pass to their conjugates (called ũ and ṽ in
chapter VII.3). But it would require a more sophisticated understanding of electric charge (namely, as determined
by transformation under a U(1) gauge group, which we will get to in part IX) to see that they carry charges
opposite to those carried by u and v. It may be worthwhile to emphasize that the conjugate fieldψc is conceptually
independent of the existence of the electromagnetic field Aμ.
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Note that in going from one basis to the other, we merely have to interchange γ 0 and γ5,
perhaps throwing in a minus sign.

In both bases, γ 2 is the only imaginary gamma matrix. Therefore, the defining equation
(2) for C just says

(Cγ 0)γ μ =−γ μ(Cγ 0) for μ �= 2, while (Cγ 0)γ 2= γ 2(Cγ 0) (8)

We have to find a matrix Cγ 0 that commutes with γ 2 but anticommutes with the other
three γ matrices. Well, Cγ 0 = αγ 2 (with α some constant) would work; the requirement
(derived in chapter VII.4) that the change of basis matrix Cγ 0 has to be unitary gives
|α|2= 1. Let us choose4 α = 1. Then

C = γ 2γ 0 (9)

Referring back to (3), we end up with the remarkably simple (and satisfying) relation

ψc = γ 2ψ∗
(
= γ 2(ψ†)T

)
(10)

With the choice (9), C =−C∗ is imaginary. Note that γ 0 and γ 2 are both symmetric,
and so CT = (γ 2γ 0)T = γ 0γ 2=−C. Hence C is antisymmetric imaginary and therefore
hermitean: C† = C. The unitarity of Cγ 0 implies the unitarity of C: I = Cγ 0(Cγ 0)† =
Cγ 0γ 0C† = CC†. Hence, C2 = I (which we can also check directly: C2 = γ 2γ 0γ 2γ 0 =
−γ 2γ 2γ 0γ 0 = I ), so that C−1= C.

We can summarize all this as

C = C−1=−C∗ = −CT = C† (11)

Explicitly,

C =−σ2⊗ τ3=
(−σ2 0

0 σ2

)
Weyl, or C = σ2⊗ τ1=

(
0 σ2

σ2 0

)
Dirac (12)

The properties of C mentioned above hold true by inspection. Note that Cγ 0 = γ 2 is the
same in the Weyl basis and in the Dirac basis.

Alternatively, to determine C, let us start by complex conjugating the hermiticity equa-
tion (γ μ)†= γ 0γ μγ 0 derived in chapter VII.4. We obtain (γ μ)T = γ 0γ μ∗γ 0, since γ 0 is real
in the bases we are working with. Plugging γ μ∗ = γ 0(γ μ)T γ 0 into the defining equation
(2), we obtain

C−1γ μC =−(γ μ)T (13)

Since γ 0 and γ 2 are symmetric (as already noted), while γ 1 and γ 3 are antisymmetric, we
see that (13) is satisfied. (For example, for μ= 1, γ 2γ 0γ 1γ 2γ 0 = γ 2γ 0γ 2γ 0γ 1= γ 1, while
for μ= 0, γ 2γ 0γ 0γ 2γ 0 =−γ 2γ 0γ 2γ 0γ 0 =−γ 0.)

With γ 0 symmetric and C antisymmetric, we can also write (3) as

ψc ≡ Cγ 0ψ∗ = (ψ∗)T (Cγ 0)T = ψ†γ 0CT =−ψ̄C (14)



VII.5. Dirac and Majorana Spinors: Antimatter and Pseudoreality | 485

The charge conjugate of a spinor transforms as a spinor

Physically, if the positron is described by ψc, then ψc better transforms as a spinor. Just
from the fact that the antiparticle also lives in spacetime, it has to obey Lorentz. Let us

verify this. Under a Lorentz transformation ψ→ e−
i
4ωμνσ

μν

ψ , and complex conjugating,

we have ψ∗ → e+
i
4ωμν(σ

μν)∗ψ∗, hence

ψc = Cγ 0ψ∗ → Cγ 0e+
i
4ωμν(σ

μν)∗ψ∗ = e− i4ωμνσμνCγ 0ψ∗ = e− i4ωμνσμνψc (15)

precisely as expected. (The second equality here follows from the defining equation (2) for
C, namely, (Cγ 0)γ μ∗ = −γ μ(Cγ 0), which implies Cγ 0(σμν)∗ = Cγ 0(−i/2)[γ μ∗, γ ν∗]=
(−i/2)[γ μ, γ ν]Cγ 0 =−σμνCγ 0. Note that σμν is defined with an explicit i .)

As we said, when charge conjugating, it is often more transparent and convenient to go
to a specific basis. But notice that the calculation in (15) is done without committing to
any specific basis. Clearly, that the antiparticle lives in spacetime is a physical statement
that cannot possibly be basis dependent.

Perhaps it is worth repeating that ψc transforms correctly already follows from the
equation of motion (4), since it would not make sense otherwise.

Charge conjugation and pseudoreality

To exhibit the connection with pseudoreality, let us go to the 2-component notation. Writing

ψ =
(
u

v

)
and ψc =

(
uc
vc

)
= γ 2ψ∗, we obtain uc = σ2v

∗ and vc =−σ2u
∗. In other words,

ψ =
(
u

v

)
and ψc =

(−σ2v
∗

σ2u
∗

)
= i

(
ṽ

−ũ

)
(16)

in both the Weyl and Dirac bases (since γ 2 is the same in these bases).
Note in (16) the Weyl spinors ũ and ṽ introduced in chapter VII.3. There we already

worked out that ũ and ṽ transform like v and u, respectively, but it would be good for you
to repeat the exercise here. Using the familiar identity

σ2σ
∗
i
σ2= σ2σ

T
i
σ2=−σi , that is, σ2σ

∗
i
= σ2σ

T
i
=−σiσ2 (17)

from chapter IV.5, you can show that u and uc transform in the same way, and v and vc
transform in the same way, which of course must be the case for ψ and ψc to transform
in the same way. Again, the pseudoreality of the defining representation of SU(2) plays a
crucial role.

Evidently, we also have (uc)c = σ2v
∗
c
= σ2(−σ2u

∗)∗ = u. Similarly, (vc)c = v. And of
course, we also have

(ψc)c = γ 2(γ 2ψ∗)∗ = γ 2(−γ 2)ψ = ψ (18)

The antiparticle of the positron is the electron, as might be expected.
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The conjugate of the left hand is the right hand

The charge conjugate of a left handed field is right handed and vice versa. This fact turns
out to be crucial in the construction of grand unified theory, as we shall see in chapter IX.2.
See whether you can prove this important fact before reading on.

Let us do it together. Suppose ψ is left handed: (1− γ5)ψ = 0. We want to show that
(1+ γ5)ψc = 0. Complex conjugating the definition γ5≡ iγ 0γ 1γ 2γ 3, we obtain, using (2),
γ ∗5 =−iγ 0∗γ 1∗γ 2∗γ 3∗ = −i(Cγ 0)−1γ 0γ 1γ 2γ 3(Cγ 0)=−(Cγ 0)−1γ5(Cγ

0). Thus,

(1+ γ5)ψc = (1+ γ5)Cγ
0ψ∗ = Cγ 0(1− γ ∗5 )ψ∗ = Cγ 0 ((1− γ5)ψ

)∗ = 0 (19)

which is what was to be demonstrated. Again, note that this result is basis independent.

The Majorana equation and the neutrino

Can you possibly construct another relativistic equation for a spin 1
2 particle besides the

Dirac equation? Think for a moment.
Since the Lorentz group transforms ψ and ψc in the same way, Majorana∗ had the

brilliant insight that Lorentz invariance allows not only the Dirac equation i �∂ψ = mψ
but also the Majorana equation

i �∂ψ =mψc (20)

As noted earlier, γ 2 is the only imaginary gamma matrix, and thus γ 2(γ μ)∗ = −γ μγ 2.
Complex conjugating (20), recalling that ψc = γ 2ψ∗, and multiplying by γ 2, we obtain
γ 2(−iγ μ∗)∂μψ∗ = γ 2m(−γ 2ψ), that is,

i �∂ψc =mψ (21)

Thus, −∂2ψ = i �∂(i �∂ψ)= i �∂mψc =m2ψ . As we might have anticipated, m is indeed the
mass, known as a Majorana mass,5 of the particle associated with ψ .

Note that, sinceψc is right handed ifψ is left handed, the Majorana equation (20), unlike
the Dirac equation, preserves handedness. In other words, a left handed fieldψ , satisfying
(1− γ5)ψ = 0 and (20), describes a 2-component massive neutrino. The formalism is
almost tailor made for the neutrino.

Now, suppose that our theory enjoys another symmetry such that the action is invariant6

under the U(1) transformation

ψ→ eiωψ (22)

∗ Ettore Majorana had a shining but tragically short career. While still in his twenties, he disappeared off the
coast of Sicily during a boat trip. The precise cause of his death has long been a mystery, although various theories
have been advanced.7 Some time ago, a photo surfaced, showing Majorana living in a small town in Venezuela
in the 1950s. In 2015, the authorities in Rome announced that the case was officially closed. See the entry in
Wikipedia for further details.
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with 0 ≤ ω < 2π . One fairly well-known example is the symmetry associated with
the conservation of electric charge. Another example is the symmetry associated
with the conservation of “lepton number” in particle physics. The electron and the neutrino
each carry one unit of lepton number.

Since

ψc→ e−iωψc (23)

(remember the complex conjugation in charge conjugation!) transforms oppositely from
ψ under U(1) (compare with (22)), this symmetry would forbid the Majorana equation
(20). Conversely, if (20) holds, then this symmetry must fail. To the extent that electric
charge conservation is considered absolute, the Majorana equation can thus only apply
to electrically neutral spin 1

2 particles. The only such particle known is the mysterious
neutrino.8

From its conception the neutrino was assumed to be massless. Thus, for decades the
Majorana equation remained a mathematical curiosity not particularly relevant for physics.
People were not clamoring for a description of an electrically neutral massive spin 1

2
particle. But in the late 1990s, experiments established that the neutrino has a small but
nonvanishing mass. At present, it is not known whether the neutrino’s mass is Dirac or
Majorana.9 If the neutrino turns out to have a Majorana mass, lepton number would then
necessarily be violated (since the neutrino carries lepton number).

The Majorana Lagrangian

We have already constructed the Lagrangian containing a Majorana mass term in chapter
VII.3. Let us now write it using the 4-component formalism, as is more commonly seen in
the particle physics literature. From (10), we have ψ̄c = ψT γ 2γ 0 and ψ̄cψ = ψT γ 2γ 0ψ =
ψTCψ . With v = 0, ψ =

(
u

0

)
. Let us go to the Weyl basis. Referring to (12), we have

ψTCψ = uT σ2u. Thus, the Lagrangian is

L= ψ̄iγ μ∂μψ − 1
2
m(ψTCψ + h.c.) (24)

Here h.c. denotes the hermitean conjugate of the term explicitly displayed.
Again, in quantum field theory, ψ has to be treated as an anticommuting Grassman

object, since C is manifestly antisymmetric.
At present, it is known that there are three different neutrinos,∗ described by three

Majorana fields ψa, a = 1, 2, 3. The Lagrangian is then generalized to L= ψ̄aiγ μ∂μψa −
1
2(ψ

T
a
MabCψb + h.c.), with the indices a and b summed over. The discussion in this

∗We will discuss this mysterious triplication further in chapter IX.1 and what group theory might have to say
about it.
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chapter thus requires the 3-by-3 mass matrix M to be symmetric and complex. That it
is symmetric is important in the theory of neutrino masses and oscillation.∗

For use in part IX, we note here that the bilinear for the Dirac mass term can be written
(using (11) and (14)) as

−ψcCψ = ψ̄CCψ = ψ̄ψ (25)

Contrast this with the bilinear ψTCψ for the Majorana mass term.

Summary of spin 1
2 fields and particles

In the last three chapters, we studied how the Lorentz group deals with the spin 1
2 field.

Since we have covered a lot of territory, it would be helpful to summarize. Given that this
is a book on group theory rather than quantum field theory, we often blur the distinction
between particle and field, but still, keep in mind that a field is a mathematical construct
that creates and annihilates particles in the minds of theorists, while a particle is a physical
entity that experimentalists can observe, at least in principle.

In the following discussion, the three fundamental discrete Z2 symmetries—parity
or spatial reflection P , charge conjugation† C, and time reversal T—will be important.
The physics governing the neutrino, namely the weak interaction, was discovered in
1956 to be neither invariant under P nor under C. It is, however, invariant under the
combined transformation CP to an excellent approximation. In fact, it was believed to be
exact until 1964, when a slight violation of CP was observed. But for ease of exposition,
we simply assume that CP is still an exact symmetry. Alternatively, we could invoke
CPT , an exact symmetry thought to be sacred in relativistic local quantum field theory.10

Note that under T , momentum and spin are both reversed, and hence helicity remains
unchanged.

Another cautionary note: the terminology I use is common in the particle physics com-
munity; others might prefer a slightly different terminology. A Weyl field is by definition
a 2-component field without a Majorana mass.

Here are some important points.

1. A single Weyl field is by definition massless.‡ It has two components and is either right or

left handed.

2. Let us go back to the days when the neutrino was believed to be massless. It was established

experimentally that the neutrino is left handed. If parityP were a good symmetry, this would

mean that there is also a right handed massless neutrino. That there is no right handed

massless neutrino in the world implies that parity is broken.

∗ This was alluded to in the review of linear algebra, where we showed that for a symmetric complex matrix
M , there always exists a unitary matrix U such that UTMU =D, with D a positive real diagonal matrix. The
unitary transformation U describes neutrino mixing and oscillation.

† I trust the reader not to confound the discrete symmetry transformation C and the matrix C.
‡ Strictly speaking, the particle associated with the Weyl field is massless.
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3. To be definite, consider a Weyl field that creates a left handed massless neutrino. Under

the CP operation, the C turns the neutrino into an antineutrino, while the P turns the left

hand into the right hand. Thus, CP invariance means that the CP transform of this field

would create a right handed massless antineutrino, even if P is broken. Note that the word

“massless” is redundant here. (The operational definition∗ of a neutrino is that it produces

an electron when scattered off a nucleon; an antineutrino would produce a positron.)

4. A Weyl field that acquires a Majorana mass is called a Majorana field. It creates a Majorana

particle which is, by definition, massive.

5. Since a Majorana particle is massive, we can always go to its rest frame, where its spin states

can be analyzed using the rotation group SO(3). By boosting in the appropriate direction,

we can certainly realize both helicities. Another way of saying this is that since the particle

is massive, it cannot be traveling at the speed of light. Thus, we can overrun it and go to a

frame in which it is moving in the opposite direction and thus has opposite helicity.

6. By combining (3) and (5), we see that a Majorana particle is necessarily its own antiparticle.

7. While it is meaningless to ask whether a Majorana particle is left or right handed (since

by definition it is massive), we can still ask, when given a Majorana field ψ , whether

(1− γ5)ψ = 0 or (1+ γ5)ψ = 0.

Appendix 1: Majorana spinor

We mention in passing that it is possible for ψ = ψc , in which case ψ is known as a Majorana spinor.† Referring
to (16), we see that this implies

u= σ2v
∗ , v =−σ2u

∗ (26)

The two Weyl spinors u and v contained in a Majorana spinor are not independent of each other:

ψ =
(

u

−σ2u
∗

)
(27)

Note that given a Dirac spinor (call it ξ ), we can always construct a Majorana spinor, namely,

ψ = 1
2
(ξ + ξc) (28)

Recall (18).
Referring back to (7), we see explicitly that this means that in (3+ 1)-dimensional spacetime, a spinor cannot

be both Majorana and Weyl.
We can also readily prove this fact directly. A 4-component spinorψ is Majorana ifψ =ψc = γ2ψ

∗. It is Weyl if
either (1− γ5)ψ = 0 or (1+ γ5)ψ = 0. Let’s say the former is true. Then we have 0= (1− γ5)ψ = (1− γ5)γ2ψ

∗ =
γ2(1+ γ5)ψ

∗ = γ2((1+ γ5)ψ)
∗, since γ5 is real in both the Dirac and the Weyl bases. This implies (1+ γ5)ψ = 0,

and hence ψ = 0.
Note that in this text, we carefully distinguish between Majorana field, Majorana particle, and Majorana spinor.

∗ Consult any textbook on particle physics. For a bit more detail, see part IX.
† Such fields are useful in modern condensed matter theory.
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Appendix 2: Momentum space

While going to momentum space, we have to watch the signs a bit because of complex conjugation. The Fourier

transform ψ(x)= ∫ d4p

(2π)4 e
−ipxψ(p) implies ψc(x)=

∫ d4p

(2π)4 e
+ipxψc(p)=

∫ d4p

(2π)4 e
−ipxψc(−p). Thus, we have

�pψ(p)=mψc(−p) and �pψc(−p)=mψ(p) (29)

from which p2ψ(p)=m2ψ(p) (and hence p2 =m2) follows almost immediately.

Exercises

1 Show explicitly that the ψ constructed in (28) has the form given in (27).

2 Show that u and uc transform in the same way.

Notes

1. Indeed, it already appears in classical mechanics: in the presence of an electromagnetic potential, the
canonical momentum is modified �p→ �p − e �A.

2. Dirac first thought that ψc could describe the proton, but the difference in mass proved to be a stumbling
block.

3. I can’t resist remarking that when theoretical physicists are shown the Dirac equation, only a small fraction
ε would think of conjugating it, and out of those, only a tiny fraction (of order ε2?) would be so bold as to
predict antimatter. Among mathematical physicists, perhaps a substantial fraction, of order unity, might
have recognized that γ ∗ also satisfies the Clifford algebra if γ does.

4. Another popular choice is α = i to knock out the is in γ 2 and thus make C real.
5. For a particularly clear discussion of the Dirac mass and the Majorana mass, see T. P. Cheng and L. F. Li,

pp. 412–414.
6. Here the symmetry can be either global or gauged, for readers who know what this means.
7. See F. Guerra and N. Robotti, “Ettore Majorana: Aspects of His Scientific and Academic Activity,” 2008.
8. See, for example, Fearful, pp. 34–39. The life of the neutrino is associated with many stories; for instance,

how its “discoverer” C. D. Ellis learned physics.
9. Tremendous efforts, not to mention zillions, are being spent to determine this experimentally. Most theorists

favor a Majorana mass.
10. See, for example, QFT Nut.



I N T E R L U D E

VII.i1 A Hidden SO(4) Algebra in the Hydrogen Atom

An unexpected degeneracy

In a course on quantum mechanics, students are taught to solve the Schrödinger equation
with the potential V (r)=− κ

r
, with the result to be applied to the hydrogen atom. One goes

through various standard steps for dealing with partial differential equations in physics:
set up spherical coordinates, separate variables using spherical harmonics, solve the
resulting differential equation in the radial variable, and so on and so forth.1 Generically,
for a potential with spherical symmetry, the energy levels are specified by three quantum
numbers, n, l, andm, wherem=−l , −l + 1, . . . , l − 1, l runs over a range determined in
chapter IV.2 by group theory. For this particular problem, l = 0, 1, . . . , n− 1 runs over n
values. Astonishingly, after the dust settles, the energy eigenvalues for a given n turn out
not to depend on the angular quantum number l.

Please realize that the degeneracy here goes much beyond the degeneracy guaranteed
by rotation invariance as explained in chapter III.1. The symmetry group SO(3) only says
that the (2l + 1) states belonging to a given l have the same energy independent ofm. For
a given n, if the energy does not depend on l, the degeneracy is increased to

n−1∑
l=0

(2l + 1)= n2 (1)

This additional degeneracy is known as accidental or dynamical degeneracy; but surely,
dear reader, you are sophisticated enough to suspect that this remarkable degeneracy did
not occur by accident.

Pauli was the first to understand this additional degeneracy as having a group theoretic
origin.2 One clue is that the (2l + 1)-fold degeneracy holds as long as the potential V (r)
depends only on r , while this dynamical degeneracy is specific to the inverse square law.
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A clue from the closing of orbits

Another clue is that, in Newtonian mechanics, orbits in a 1/r potential close. Beginning
students often take this for granted, without realizing that a closed orbit is nothing less
than an apparent miracle.

Think of it this way: to determine an elliptical orbit, we extract from Newton’s laws
expressions for dr

dt
and dθ

dt
and hence an expression for dθ

dr
. Over a period, r goes from its

minimum value (when the planet reaches perihelion), to its maximum value, and back
to its minimum value again. Meanwhile, the angle θ changes by �θ = 2

∫ rmax
rmin

dr dθ
dr

. For
an arbitrary V (r), there is no reason for this to be equal to 2π (or multiples thereof), the
necessary condition for the orbit to close.

But remarkably,3 for V (r) = − κ
r

, �θ = 2π . (In fact, in Einstein gravity, the effective
potential is not ∝ 1/r ; planetary orbits do not close, and the precession of the perihelion
of Mercury provides a classic test of general relativity.)

Laplace was the first to understand that this apparent mystery is due to existence of a
conserved vector �L≡ 1

m
�L× �p + κ �r

r
, now known as the Laplace-Runge-Lenz vector. (Here

�L= �r × �p denotes the conserved angular momentum vector, andm the mass of the planet.)

Computing the time derivative �̇L, you can verify that �L is conserved4 for an inverse square
central force. Again, we emphasize that, in contrast, �L is conserved for any V (r). Since �L
is perpendicular to both �r and to �p, this implies that the motion takes place entirely in a
plane orthogonal to �L. In contrast, �L lies in this orbital plane.

When �p is perpendicular to �r , which occurs at perihelion and aphelion, the vector �L
points in the direction of �r . We can take the constant vector �L to point toward the perihelion,
and thus, the position of the perihelion does not change. Hence the conservation of �L
implies that the orbit closes.

Promotion to operators

Everything said thus far pertains to classical mechanics. When we move on to the quantum
mechanics of the hydrogen atom, we trivially replace the planet by the electron, the sun
by the nucleus, and set κ = e2 (or Ze2 for hydrogenic atoms). More significantly, various
physical quantities are promoted to hermitean operators satisfying

[ri , pj ]= i�δij (2)

and

[Li , rj ]= i�εijkrk , [Li , pj ]= i�εijkpk (3)

Also, �L generates the SO(3) algebra:

[Li , Lj ]= i�εijkLk (4)

The commutation relations in (3) and (4) merely say that �r , �p , and �L transform as vectors.5
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Since �L and �p do not commute, we have to worry about the order of �L and �p in the
Laplace-Runge-Lenz vector. The prescription, as is standard in quantum mechanics, is to
modify the classical expression for �L to

�L≡ 1
2m
( �L× �p − �p × �L)+ κ �r

r
(5)

so that it becomes a hermitean operator and hence observable.

The classical statement that d �L
dt
= 0 with the Hamiltonian

H = p2

2m
− κ
r

(6)

is now replaced by

[H , �L]= 0 (7)

(which you can readily verify).
The Laplace-Runge-Lenz vector is evidently a vector, and so we have to add to (3) and (4)

the commutation relation

[Li , Lj ]= i�εijkLk (8)

The emergence of SO(4)

Our next question is naturally to ask about the commutation between the Ls. A straight-
forward but rather tedious calculation6 yields

[Li , Lj ]= i�εijk
(−2H
m

)
Lk (9)

Let us note several remarkable features of this crucial result.

1. The Hamiltonian appears in the algebra, but in a rather different role from the one it had

in chapter III.1. There the generators of the algebra commute with H . Here H pops up in

the algebra.

2. Define

Mi ≡
√
− m

2H
Li (10)

so that we can replace (9) by

[Mi , Mj ]= i�εijkLk (11)

Note that this makes sense only because H commutes with both L and L.

3. Acting on the eigenstates |E〉 of H with eigenvalue equal to E (that is, states such that

H |E〉 =E |E〉), we can replaceH effectively by E. The important point is that if we restrict

ourselves to bound states so that E < 0, then
√
− m

2H is a real number andMi is hermitean

just like Li. We also trivially replace (8) by

[Li , Mj ]= i�εijkMk (12)
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Lo and behold! The commutations (4), (12), and (11) characterize the Lie algebra of
SO(4), as was first given in chapter I.3. The dynamics of the hydrogen atom has hidden
in it an SO(4) algebra.

We proceed just as in chapter I.3 (and also chapters VII.2 and VII.3, dropping a few is
here and there). Define A±i = (Li ±Mi)/2. Then the SO(4) algebra breaks up into two
SU(2)s, as is familiar by now:

[A+i , A+j ]= i�εijkA+k (13)

[A−i , A−j ]= i�εijkA−k (14)

and

[A+i , A−j ]= 0 (15)

The irreducible representations of SO(4) are then labeled by (a+, a−), with a+ =
0, 1

2 , 1, 3
2 , . . . and a− = 0, 1

2 , 1, 3
2 , . . . . The states in the irreducible representation (a+, a−)

can be listed as
∣∣b+, b−

〉
, with b+ = −a+, −a+ + 1, . . . , a+ − 1, a+ and with b− = −a−,

−a− + 1, . . . , a− − 1, a−. The irreducible representation (a+, a−) thus has dimension
(2a+ + 1)(2a− + 1).

Finding the energy spectrum

For the problem at hand, an additional constraint comes from the fact that classically,
�L . �L= 0, since �L is perpendicular to the orbital plane while �L lies in it. You can check
that this persists into quantum mechanics. Therefore,

�A2
+ − �A2

− = �L . �M = 0 (16)

Thus, only irreducible representations with a+ = a− = a are allowed.
In contrast,

�A2
+ + �A2

− =
1
2
( �L2+ �M2)= 1

2
( �L2− m

2E
�L2) (17)

Now we need to do another straightforward but tedious calculation7 to obtain

�L2= 2H
m
( �L2+ �

2)+ κ2 (18)

Plugging this into (17), we simplify the right hand side to− 1
2(�

2+ m
2E κ

2). Then, evaluating
(17) on a state in the irreducible representation (a , a), we obtain 2 . a(a + 1)�2=− 1

2(�
2+

m
2E κ

2), which immediately fixes the bound-state energies to be

E =−mκ
2

2�2

1
n2

(19)

where we define n= 2a + 1. Since a could be half-integral or integral, n ranges over the
positive integers n= 1, 2, . . . . This is the famous Balmer series8 for the spectrum of the
hydrogen atom. The degeneracy is just the dimension of the irreducible representation
(a , a), namely, (2a + 1)2= n2, in agreement with (1).
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As you can see, this algebraic approach to the spectrum (19) is not any easier than the
standard (“just solve the partial differential equation!”) approach given in standard text-
books. The advantage is that it reveals the accidental degeneracy to be not accidental at all.9

Appendix 1: Symmetric traceless tensors of SO(4)

Another way to count the degeneracy is instructive from the group theoretic point of view. It consists of noting that
the irreducible representation (a , a) corresponds to the symmetric traceless tensor with h= 2a indices of SO(4).
For example, ( 1

2 , 1
2 ) is the vector, h= 1; (1, 1), with dimension equal to (2 . 1+ 1)2= 9, is the symmetric traceless

tensor withh= 2; and so on. Note that under theSO(3) subgroup, (a , a)decomposes as 0⊕ 1 . . .⊕ (2a − 1)⊕ 2a,
and does not contain any half-integral representations; in other words, it may be described purely as a tensor
with no spinorial content.

The diligent reader with a good memory will recall the result of exercise IV.1.13 that the symmetric traceless
tensor with h indices of SO(4) has (h+ 1)2 components. We thus obtain the degeneracy given in (1). For example,
for the principal quantum number n= 3, the corresponding SO(4) tensor has h= n− 1= 2 indices, and thus
has 1

2 (4 . 5)− 1= 9 components. On the other hand, l = 0, 1, 2, with 2l + 1= 1, 3, 5 states, respectively. In other
words, 1

2 (4 . 5)− 1= 1+ 3+ 5.

Appendix 2: The periodic table and “accidental” degeneracy

The pioneers of quantum mechanics realized that this “accidental” degeneracy could explain the periodic table
and, in broad outline, the chemical properties of the elements∗ contained therein. With Z electrons moving
around, we would in principle have to solve a rather complicated problem in quantum mechanics, but early
on, in 1928, Hartree suggested that we can focus on one electron and think of it as moving in the average
electric field generated by the other Z − 1 electrons plus the nucleus. The single electron in the Hartree “mean
field” approximation thus finds itself in a potential ∼−Ze2/r near the nucleus and ∼−e2/r far away. Since the
potential is still spherically symmetric, we can still use the principal quantum number n and angular momentum
l = 0, 1, 2, . . . , n− 1 to organize the states. For each n and l, there are 2(2l + 1) states. To make contact with high
school chemistry,10 it is convenient to use the spectroscopic notation s , p , d , f , . . . corresponding respectively
to l = 0, 1, 2, 3, . . . with 2 . 1= 1, 2 . 3= 6, 2 . 5= 10, 2 . 7= 14, . . . states.

But since the potential is not ∝ 1/r , for each n, the states with different l no longer have precisely the same
energy.11 We expect states with larger l to have higher energy, since our electron is spending less time near the
nucleus, where the attractive potential is the deepest. Call this the “large l effect.” The states in order of increasing
energy would thus start out as

1s; 2s , 2p; 3s , 3p; (20)

giving 2; 2+ 6= 8; 2+ 6= 8 elements, respectively. The first two are of course hydrogen and helium; the two
8s are the second and third rows in the periodic table, taking us from lithium to neon, and sodium to argon.

But now the funny business starts. Due to the “large l effect,” 3d has higher energy than 4s. Similarly for 4d
versus 5s. The next set of states are thus

4s , 3d , 4p; 5s , 4d , 5p; (21)

giving 2+ 10+ 6= 18; 2+ 10+ 6= 18 elements, respectively. That explains why in the fourth and fifth row of
the periodic table, giving ten “extra” elements in each row (including iron, copper, and zinc in the fourth row,
and niobium and silver in the fifth row), and causing the characteristic “valley” in the shape of the table.12

As is well known from high school chemistry, this shell structure, due to Fermi statistics obeyed by the
electrons and to the way these states are organized energetically, accounts for quite a lot. When a shell is
completed, such as 4s, 3d, and 4p, it takes a relatively large amount of energy to step up to 5s, the next set
of states. Hence the elements in the last column of the table, with their complete shells, are inert noble gases,
so noble that they don’t want to interact with the hoi polloi. We can read off their atomic numbers from (20) and

∗ Different use of the word than in the rest of this book!
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(21): helium Z = 2, neon Z = 2+ 8= 10, argon Z = 2+ 8+ 8= 18, krypton13 Z = 2+ 8+ 8+ 18= 36, xenon
Z = 2+ 8+ 8+ 18+ 18= 54, and so on. Without physics and mathematics, these numbers would pose a total
mystery. Interestingly, the two groups SO(3) and SO(4) both play important roles.

In contrast, the elements in the first column of the table have an “extra” electron and are eager to get rid of it.
They are the alkali metals: lithiumZ = 2+ 1= 3, sodiumZ = 2+ 8+ 1= 11, potassiumZ = 2+ 8+ 8+ 1= 19,
and so on. But the halogens in the next-to-last column are eager to grab an electron to complete their shells:
fluorine Z = 2+ 8− 1= 9, chlorine Z = 2+ 8+ 8− 1= 17, bromine Z = 2+ 8+ 8+ 18− 1= 35, and so on.

Beyond the list in (21), the “large l effect” continues to wreak havoc on the periodic table, causing it to have
the two “fold-out strips” bedeviling high school students. Now the f states come in, giving us

6s , 4f , 5d , 6p; 7s , 5f , . . . , (22)

2(2 . 3+ 1) = 14 “additional” elements in the sixth and seventh row, the rare earth or lanthanides, and the
actinides.

Without group theory (plus a bit of mean-field dynamics), these “magic numbers” of chemistry—2, 10, 18,
36, 54, and so on—would have been a total mystery.

Notes

1. The hydrogen atom is treated in every book on quantum mechanics. See, for example, J.J. Sakurai and
J. Napolitano, Modern Quantum Mechanics, p. 216.

2. W. Pauli, Z. Phys. 36 (1926), p. 336; V. A. Fock, Z. Phys. 98 (1935), p. 145; V. Bargman, Z. Phys. 99
(1936), p. 576. Note that Pauli’s group theoretic solution came mere months after the invention of quantum
mechanics as we know it. This is also discussed in a number of quantum mechanics textbooks, such as
Baym, Lectures on Quantum Mechanics; J.J. Sakurai and J. Napolitano, Modern Quantum Mechanics; and
S. Weinberg, Quantum Mechanics.

3. See, for example, chapter I.1 in G Nut.
4. See, for example, G Nut, p. 794.
5. Strictly speaking, we should call �r and �p vectors, and �L an axial vector or a pseudovector: under spatial

reflection, �L transforms oppositely to �r and �p.
6. I urge the reader to build strength of character: just do it. Since this result is crucial, it is worthwhile

to see even schematically how the Hamiltonian pops up. Roughly, the basic commutator of quantum
mechanics [x , p]= i means that an x and a p would knock each other out in a back-of-the-envelope type
calculation. So here goes: [L, L]∼ [ 1

m
xpp + κ x

r
, 1
m
xpp + κ x

r
]∼ 1

m2 [xpp , xpp]+ 1
m

[xpp , κ x
r

]∼ 1
m
( 1
m
xp3+

κxp 1
r
)∼ xp

m
(
p2

m
+ κ

r
)∼ LH/m.

7. The hard part is to get the �
2 in this equation. The rest of the terms just require vector gymnastics in classical

mechanics:

�L2 =
(

1
m
�L× �p + κ �r

r

)2

= 1
m2
( �L× �p)2 + 2κ

m
( �L× �p) . �r

r
+ κ2 = 1

m2
�L2 �p2 − 2κ

mr
�L2 + κ2

= 2H
m
�L2 + κ2 (23)

8. The Swedish spectroscopist A. J. Ångström (1814–1874) had published four lines in the visible spectrum of
light emitted from hydrogen at wavelengths of 6562.74, 4860.74, 4340.10, and 4101.2 ×10−8 cm. In 1885,
Johann Balmer, a 60-year-old mathematician teaching at a girls school, noticed that these measured numbers
divided by 3645.6 gave four numbers close to the fractions 9/5, 4/3, 25/21, and 9/8, which he guessed were
in fact 32/(32 − 4), 42/(42 − 4), 52/(52 − 4), and 62/(62 − 4). We now understand that when the hydrogen
atom makes a transition from level n to levelm, the energy of the emitted photon is equal to a constant times

1
m2 − 1

n2 whose inverse equals n2m2/(n2−m2). Luckily for Balmer, all four lines involve quantum jumps to
the same level m= 2.

9. Quite amazingly, the SO(4) can be extended to SO(4, 2). A single irreducible representation of SO(4, 2)
contains all the states of the hydrogen atom.

10. A personal note: I didn’t get to take physics in high school; I had chemistry instead.
11. The discussion here is adapted from S. Weinberg, Lectures on Quantum Mechanics, pp. 125 ff.
12. For example, see http://en.wikipedia.org/wiki/Periodictable.
13. Known to every little kid who is into superheroes.

http://en.wikipedia.org/wiki/Periodictable
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VII.i2 The Unexpected Emergence of the Dirac
Equation in Condensed Matter Physics

From our description of the Lorentz group leading us by the nose to the Dirac equation,
you would think that this equation would be the exclusive province of relativistic physics.
In fact, the realization that the Dirac equation naturally emerges in a solid was one of the
interesting surprises in theoretical physics.

Noninteracting hopping electrons

Consider the quantum Hamiltonian

H =−t
∑
j

(f
†
j+1fj + f †

j fj+1) (1)

describing noninteracting electrons on a 1-dimensional lattice (figure 1) with sites labeled
by j . Here f †

j and fj create and annihilate an electron on site j , respectively. Thus, the
first term in H removes an electron from site j and places it on site j + 1, effectively
describing an electron hopping from site j to site j + 1 with amplitude t . The second
term, required by the hermiticity of H , effectively describes an electron hopping in the
opposite direction, from site j + 1 to site j . We have suppressed the spin label on the
electron; since the electrons are assumed to be noninteracting, we can deal with the spin
up electrons and the spin down electrons separately. This is just about the simplest model
in solid state physics; a good place to read about it is in Feynman’s “Freshman lectures.”

To proceed, we Fourier transform∗ fj = 1√
N

∑
ke
ikajf (k), where a is the spacing be-

tween sites. We also impose a periodic boundary condition on a lattice withN sites, so that
the lattice effectively forms a ring, and site N + 1 is actually site 1. Since j and N + j are
merely different labels for the same site, the wave number kmust satisfy eikaj = eika(N+j),
that is, eikNa = 1, which implies that k = ( 2π

Na
)n with n an integer ranging from − 1

2N to

∗ I do not introduce an additional symbol for the Fourier transform such as f̃ (k) and instead trust you to
discern whether we are in position or momentum space.
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j − 1 j + 1j

Figure 1

1
2N . The allowed range for k is then −π

a
< k ≤ π

a
, which defines the Brillouin zone. The

spacing between successive values of k is given by �k = 2π
Na

, which vanishes as N→∞;
k becomes a continuous rather than a discrete variable. All this is basic solid state physics,
reviewed here for your convenience.

In quantum mechanics, the wave eikaj describes a state of momentum p = �k. In the
continuum limit, with a→ 0 and aj→ x, this becomes the familiar de Broglie wave eipx/�.
We will not distinguish the wave number k and the momentum p. In what follows, to
lessen clutter, we will choose units with a = 1 and � = 1. You can always restore them
when desired by appealing to dimensional analysis.

To determine the energy spectrum, we plug fj = 1√
N

∑
ke
ikjf (k) into the Hamiltonian,

written more conveniently as H = −t∑j (f
†
j+1+ f †

j−1)fj , and use the Fourier identity∑
je
ikj =Nδk , 0. We obtain

H =−t
∑
k

∑
q

(e−iq + eiq)
(

1
N

∑
j

e−iqjeikj
)
f †(q)f (k)=−2t

∑
k

cos k f †(k)f (k) (2)

Thus, when we create an electron with momentum k, its energy is equal to

ε(k)=−2t cos k (3)

See figure 2.

εF

ε(k)

k

π–a− π–a+

Figure 2
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The Fermi sea

Where is the Dirac equation? No trace of it anywhere! There is absolutely nothing relativis-
tic thus far. Indeed, at the bottom of the spectrum, the energy (up to an irrelevant additive
constant) goes like ε(k)� 2t ( 1

2k
2)≡ k2

2meff
. The electron has a nonrelativistic Newtonian

energy with an effective mass meff ∝ t−1.
Yet in a metal we are not dealing with a single electron, but rather a macroscopically

large number of electrons. Since electrons obey the Pauli exclusion principle, we can put
only one electron in a single quantum state. We thus fill the system with electrons up to
some Fermi energy∗ εF =−2t cos kF , determined by the density of electrons (see figure 2).
This is known as a Fermi sea.

Suppose we now add an electron with energy just above the Fermi sea. Measure its
energy from εF and momentum from+kF . We are interested in energies small compared
to εF , that is,E ≡ ε− εF & εF , and momenta small compared to kF , that is, p≡ k − kF &
kF . This electron thus obeys a linear energy momentum relation

E = ∂ε
∂k

∣∣∣∣
k=kF

p = vFp (4)

where we have defined the Fermi velocity vF .
These electrons with momentum k � kF + p are known as “right movers” for the obvi-

ous reason that they are moving to the “right” (more strictly speaking, moving clockwise,
say, around the ring). Fourier transforming (4), we can write down the equation of motion
for the wave function ψR describing a right moving electron, namely,(

∂

∂t
+ vF ∂

∂x

)
ψR = 0 (5)

The solution is ψR ∝ e−i(Et−px), with E and p related as in (4).
Similarly, the electrons with momentum k � −kF + p obey the energy momentum

relationE =−vFp (with p < 0). These electrons are known as “left movers,” and the wave
function describing them satisfies(

∂

∂t
− vF ∂

∂x

)
ψL = 0 (6)

Emergence of the Dirac equation

By introducing a two-component ψ =
(
ψL
ψR

)
, we can package these two equations (5) and

(6) into a single equation:(
∂

∂t
− vFσ3

∂

∂x

)
ψ = 0 (7)

∗ If this is totally unfamiliar to you, you would need to consult a textbook on solid state physics.
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Let us choose units for space and time such that vF = 1. Then multiplying from the left
by iσ1 we can write (7) in a more familiar form as

i

(
σ1
∂

∂t
+ iσ2

∂

∂x

)
ψ = iγ μ∂μψ = 0 (8)

with γ 0 = σ1 and γ 1= iσ2 satisfying the Clifford algebra {γ μ, γ ν} = 2ημν .
Amazingly enough, the massless Dirac equation i �∂ψ = 0 for (1+ 1)-dimensional space-

time emerges in a totally nonrelativistic situation! Evidently, the key observation is that the
presence of the Fermi sea forces a linear relation between energy and momentum.

From the massless to the massive Dirac equation

You might wonder whether it would be possible to go from the massless Dirac equation
to the massive Dirac equation (i �∂ −m)ψ = 0.

First of all, you would have noticed that in the massless Dirac equation (8), the right
moving and the left moving componentsψR andψL are merely packaged together. In fact,
they do not talk to each other. In other words, they each separately obey a Weyl equation.
This is completely in accord with the general discussion in chapters VII.3 and VII.4,
but here in the context of (1+ 1)-dimensional spacetime. In contrast, the massive Dirac
equation

(iγ μ∂μ −m)ψ =
(
iσ1

∂

∂t
+ iσ2

∂

∂x
−m

)
ψ = 0 (9)

links ψR and ψL together.
Thus, physics mandates that the massive Dirac equation can emerge only if there is

some physics on the lattice scale that would connect the right and left moving electrons.
In fact, it turns out that when the “energy band” is half-filled (that is, when kF = π/2),
there is a lattice distortion known as the Peierls instability that does precisely this. We
would wander off much too far beyond the scope of this book to go into this in any detail.1

Note

1. See, for example, chapter V.5 in QFT Nut.



I N T E R L U D E

VII.i3 The Even More Unexpected Emergence of the
Majorana Equation in Condensed Matter Physics

The realization that the Dirac equation naturally emerges in a solid, as described in
interlude 2, was one of the interesting surprises in theoretical physics. Perhaps even more
surprising is the emergence of the Majorana equation. It almost goes without saying that
here we can merely touch on this rapidly evolving subject.

The Kitaev chain

Consider a set of hermitean (or more loosely, real) operators μj = μ†
j satisfying the anti-

commutation relation1

{μj , μl} = 1
2
δjl (1)

(The factor of 1
2 is merely a convenient normalization.) In particular, μ2

j
= 1

4 . Condensed
matter physicists call such operators Majorana operators.

Consider a 1-dimensional chain of 2N sites indexed by j = 1, 2, . . . , 2N . On each site
is a Majorana operator μj . For our purposes here, we need not inquire where they came
from.

One possibility is that the μjs are actually constructed as follows out of electron cre-

ation and annihilation operators f †
n and fn living on a chain of N sites indexed by

n= 1, 2, . . . , N :

μ2n−1= 1
2
(f †
n
+ fn) and μ2n = 1

2i
(f †
n
− fn) (2)

In other words, the complex operator fn at each site of an N -sited chain is split into its
two real components μ2n−1 and μ2n living on two sites of a 2N -sited chain obtained by
duplicating each site of the N -sited chain. Using the fermionic commutation relations
{fn, fm} = 0 and {f †

n , fm} = 1, we readily check that (1) holds:
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μ2
2n−1=

1
4
(f †
n
+ fn)2= 1

4
and μ2

2n =−
1
4
(f †
n
− fn)2= 1

4

{μ2n−1, μ2n} = 1
4i
{f †
n
+ fn, f †

n
− fn} = 0 (3)

But in fact, as you will see, this level of detail is not necessary for much of what follows.
Consider the Hamiltonian2

H =−iJ2(μ1μ2+ μ3μ4 + . . .)− iJ1(μ2μ3+ μ4μ5+ . . .) (4)

(Note that, with J1 and J2 real, the overall (−i) is needed for the hermiticity of H .) In
other words, the coupling between the Majorana operators on neighboring sites alternates
between J1 and J2, which we write more conveniently as J1= 1

2(t +m) and J2= 1
2(t −m).

Then we can rewrite the Hamiltonian as

H =−1
2
i

2N−1∑
j=1

(
t + (−1)jm

)
μjμj+1 (5)

This is known as a Kitaev chain,3 proposed in the context of error correction in quantum
computing.

To determine the energy spectrum, we proceed as in interlude 2 and Fourier transform
to momentum space, μj = 1√

2N

∑
ke
ikajμ(k), where a is the spacing between sites. Again,

the periodic boundary condition implies eikaj = eika(2N+j), that is, eik(2N)a = 1, in other
words, k = ( 2π

2Na )n with n an integer ranging from −N to N . The allowed range for k is
then −π

a
< k ≤ π

a
, which defines the Brillouin zone. As in interlude 2, we choose units

such that a = 1 and � = 1, so that the momentum p = �k = k ranges between −π and π .
Using the anticommutation relation, we write the two terms in the Hamiltonian (5)

more symmetrically:∑
j

μjμj+1= 1
2

∑
j

μj(μj+1− μj−1)

∑
j

(−1)jμjμj+1= 1
2

∑
j

eiπjμj(μj+1+ μj−1) (6)

Plugging in μj = 1√
2N

∑
pe
ipjμ(p), we see that the first term in (6) becomes

1
2

∑
j

1
2N

∑
p′

∑
p

eip
′jeipj (eip − e−ip)μ(p′)μ(p)= i

∑
p

sin p μ(−p)μ(p) (7)

That was a warm-up exercise before dealing with the second term in (6). Going through
the same steps, we see that the + sign now produces a cos p rather than a sin p; more
interestingly, the factor (−1)j = eiπj kicks in a momentum of π . We obtain

1
2

∑
j

1
2N

∑
p′

∑
p

eip
′jeipjeiπj (eip + e−ip)μ(p′)μ(p)

=
∑
p

cos p μ(−p − π)μ(p)

= 1
2

∑
p

cos p
(
μ(−p − π)μ(p)− μ(−p)μ(p + π)

)
(8)
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In the last step we used cos(p + π)=− cos p to write the result more symmetrically. In
parallel with this, we can use sin(p + π)=− sin p to write the sum in (7) as

i

2

∑
p

sin p
(
μ(−p)μ(p)− μ(−p − π)μ(p + π)

)
.

That the sum in (8) connects μ(−p − π) with μ(p) in (8) suggests introducing a

2-component notation ψ(p) =
(

μ(p)

μ(p+π)
)

. We can then express the Hamiltonian H =
1
2
∑
p ψ(−p)h(p)ψ(p) in terms of the 2-by-2 matrix Hamiltonian

h(p)= t sin p

(
1 0

0 −1

)
+m cos p

(
0 −i
i 0

)
= t sin p σ3+m cos p σ2 (9)

Interestingly, due to the alternating couplings in (4), a 2-component spinor effectively
appears. Note also that the Pauli matrices naturally pop up. (How could they not, given the
hermiticity of the Hamiltonian?)

Note that the conditionμj = μ†
j becameμ(p)†= μ(−p); hence,ψ(p)†=ψ(−p) (since

μ(−p − π)= μ(−p + π)). Thus, the hermiticity of H translates to h(p)†= h(p).
The eigenvalues ±E(p) of h(p) are then easily determined by squaring h(p): we have

two bands given by E(p) = ±
√
t2 sin2 p +m2 cos2 p = ±

√
m2+ (t2−m2) sin2 p as p

runs from −π to +π .
Let the bottom band be filled. Then, with t2>m2, the top band bottoms out at p = 0 and

at p = π . A particle with momentum p � 0 is then governed by the effective Hamiltonian
h(p)= tσ3p +mσ2 with terms of order O(p2) dropped.4 Since p � 0, the scale of p is no
longer set by π and we are free to absorb t into p.

On Fourier transforming back to space, we have Eψ(x)= (iσ3
∂
∂x
+ σ2m)ψ(x).

A notational alert: some students are justifiably confused by the distinction between
the symbols † and ∗ for hermitean conjugation and complex conjugation, respectively.
In linear algebra, hermitean conjugation is defined as complex conjugation followed by
transposition. In quantum mechanics, however, hermitean conjugation, also known as
the adjoint, carries another layer of meaning associated with operators in Hilbert space.
Since this is a text on group theory for physicists, not a text on quantum field theory, we
gloss over this point. We regard ψ(x) as a two-component wave function rather than as a
quantum field. Then, strictly speaking, we should write the relationψ(p)†=ψ(−p) stated
earlier asψ(p)∗ = ψ(−p), namely, as an equality between two column spinors. We do not
transpose.

After a Fourier transform, the wave function in position space ψ(x)= ψ(x)∗ is con-
sequently real. Introduce time by writing ψ(t , x)= e−iEtψ(x). We thus obtain the wave
equation∗ i ∂

∂t
ψ(t , x)= (iσ3

∂
∂x
+ σ2m)ψ(t , x). Multiplying this by σ2, we finally arrive at

(iγ μ∂μ −m)ψ(x)= 0 (10)

∗ Needless to say, time, denoted as usual by t , is not to be confused with the parameter t ≡ J1+ J2 that appears
in the lattice Hamiltonian.
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where γ 0 = σ2, γ 1= −iσ1 and where x now denotes the spacetime coordinates xμ =
(x0, x1)= (t , x).

Majorana and Weyl in (1+ 1)-dimensional spacetime

We can now simply carry over the discussion on charge conjugation and the Majorana
equation given in chapter VII.5. You learned that the charge conjugate field is defined by
ψc = Cγ 0ψ∗, with C a matrix that satisfies −γ μ∗ = (Cγ 0)−1γ μ(Cγ 0). (Evidently, you can
think of Cγ 0 as one unit here.5)

Interestingly, in the basis used here (and commonly in the condensed matter literature),
both γ 0 = σ2 and γ 1= −iσ1 are imaginary. The defining condition given above6 for C
becomes γ μ = (Cγ 0)−1γ μ(Cγ 0). Thus, we can choose Cγ 0 = I so that ψc(x)= ψ∗(x).
Hence, in the condensed matter literature, the term Majorana is often taken to mean

ψc(x)= ψ(x)= ψ∗(x) (11)

In the basis used here, we define γ5=−γ 0γ 1= σ3. Thus, the Weyl condition (either
ψ = 1

2(I + γ5)ψ or ψ = 1
2(I − γ5)ψ) can coexist peacefully with the Majorana condition.

In contrast, recall from chapter VII.5 that a spinor cannot be both Weyl and Majorana in
(3+ 1)-dimensional spacetime.

Notes

1. I use the letter μ for Majorana.
2. The more advanced reader will have noticed that when written out in terms of the electron operator, this

Hamiltonian contains not only f †f terms, but also f †f † and ff terms, and hence describes a system of
electrons in the presence of superconducting order.

3. A. Kitaev, arXiv: cond-mat/0010440v2 (2000), Phys.-Usp. 44 (2001) 131. I follow closely the treatment given
by Y. BenTov, arXiv:1412.0154v3 (2015).

4. Particles with momentum p � π + q can be treated in a similar fashion by expanding in q.
5. Indeed, some authors absorb γ 0 into C, but only to have it pop up somewhere else.
6. Notice that the condition is not basis invariant.



Part VIII The Expanding Universe

In physics, we often let a parameter, such as the speed of light, tend to infinity. The
group or its associated algebra is said to contract. The opposite of contracting an algebra is
known as extending an algebra. While contracting an algebra merely requires the turning
of a crank, extending an algebra in physics requires revolutionary insights. Indeed, the
two great developments of early twentieth-century physics, special relativity and quantum
mechanics, can both be thought of as extending the Galilean algebra. Here we discuss
how to go from the Galilean algebra to the quantum Galilean algebra, also known as the
Schrödinger algebra.

Almost from day one of school, we learned about mass (as inma = F , for instance) but
few of us know mass as a central charge that we can add to the Galilean algebra.

By adding the generators of dilation and conformal transformations, we extend the
Poincaré algebra to the conformal algebra. As “Jerry the merchant” pointed out, when
you are lost, it matters more to you to know that you are going in the right direction than
to know how far you are from your destination.

The universe is expanding exponentially. What does group theory have to do with it? A
lot, it turns out. The d-dimensional de Sitter spacetime that for d = 4 describes our universe
to leading approximation is a coset manifold of two analytically continued orthogonal
groups: dSd ≡ SO(d , 1)/SO(d − 1, 1).





VIII.1 Contraction and Extension

The mathematical notion of contracting a group arises naturally in physics. When a
parameter contained in a group, implicitly or explicitly, tends to infinity (or if you prefer,
zero), the group or its associated algebra is said to contract.∗ Indeed, the Lorentz group
could be chosen as the poster child of this phenomenon: when c→∞, it contracts to the
Galilean group.

Reverting to the flat earth

For the simplest example, let us contract the rotation algebra SO(3). Set z = Lζ , with L
some length and ζ some dimensionless number of order 1. If we let L tend to infinity,
then ∂

∂z
= L−1 ∂

∂ζ
→ 0. Referring back to the differential representation of the rotation

generators given in chapter I.3, we have

Jz =−i
(
x
∂

∂y
− y ∂

∂x

)
Jx =−i

(
y
∂

∂z
− z ∂

∂y

)
→ i(Lζ )

∂

∂y
= LζPy

Jy =−i
(
z
∂

∂x
− x ∂

∂z

)
→−i(Lζ ) ∂

∂x
=−LζPx (1)

We have written, as usual, the translation operatorsPa ≡ i ∂∂xa , a = x, y. Note that a rotation
around the x-axis amounts to a large translation along the negative y direction, and around
the y-axis to a translation along the positive x direction.

The commutation relation [Jx , Jy]= iJz=−L2ζ 2[Py , Px]becomes [Px , Py]= iL−2ζ−2Jz

→ 0. The other two commutation relations, [Jz , Jx]= iJy and so forth, become [Jz , Pa]=
iεabPb, with εxy =+1 the 2-dimensional antisymmetric symbol.

∗ Our friend the jargon guy informs us that this is sometimes known as the Wigner-Inonü contraction.
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The Lie algebra generated by Px, Py, and Jz (which we might as well call simply J ) is
known as E(2), the invariance algebra of the Euclidean plane.∗

The group SO(3) contracts† to the group E(2). This of course merely represents the
regression from the round earth to the flat earth, which we humans thought of as home
for millennia. You might have recognized the contraction parameter L as the radius of
the earth. This discussion expresses Riemann’s essential idea1 that a (sufficiently smooth)
curved space is locally flat. Over an everyday region of size much less than L, we can
certainly take our world to be flat, described by E(2).

Indeed, we can readily contract the algebra of SO(N), given way back2 in chapter
I.3: [Jmn, Jpq ]= i(δmpJnq + δnqJmp − δnpJmq − δmqJnp), with m, n, p , q = 1, 2, . . . , N .
Simply split these indices into two sets, with i , j , k , l = 1, 2, . . . , N − 1, and the index
N . Set xN = Lζ , and let L→∞. Then JiN =−i(xi ∂

∂xN
− xN ∂

∂xi
)→ i(Lζ ) ∂

∂xi
= LζPi is

proportional to translation in the ith direction. Meanwhile, the Jijs are unchanged and
generate SO(N − 1). In other words, SO(N) contracts to‡ E(N − 1), consisting of the
rotations SO(N − 1) and the (N − 1) translations.

From Lorentz to Galileo

Of more physical relevance is the contraction of the Lorentz algebra to the Galilean algebra.
Start with the generators Jμν = i(xμ∂ν − xν∂μ) and the commutation relations

[Jμν , Jρσ ]=−i(ημρJνσ + ηνσJμρ − ηνρJμσ − ημσJνρ) (2)

given in (VII.2.41). Here ημν denotes the Minkowski metric, with the convention η00 =
+1, ηij =−δij .

In light of the preceding example, set x0 = ct , and let the speed of light c→∞. Then

J0i = i(x0∂i − xi∂0)= i
(
ct
∂

∂xi
+ xi 1

c

∂

∂t

)
→ ict

∂

∂xi
=−ctPi (3)

In contrast, Jij =−i(xi ∂∂xj − xj ∂

∂xi
) (which does not depend on c, of course) is unchanged.

Note that the Galilean boost operator, which we define by c−1J0i, is proportional to spatial
translation, with the proportionality factor given by the time coordinate t . Analogous to the
flat earth example, we recover from [J0i , J0j ]=−iJij the fact that translations commute:
[Pi , Pj ]=O(1/c2)→ 0.

The commutation relations [J0i , Jkl]= i(δilJ0k − δikJ0l), after dividing out the com-
mon factor (−ct), simply tell us how translations transform under rotations: [Jkl , Pi]=
i(δkiPl − δliPk), or in a more familiar notation, [Jm, Pi]= [ 1

2εmklJkl , Pi]= εmikPk, as ex-

∗ As we had studied in interlude IV.i3.
† In fact, one motivation of the Wigner-Inonü paper was to study how spherical harmonics become Bessel

functions.
‡ The jargon guy tells us that E(N) is also known as ISO(N).
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pected. Finally, for completeness, we mention that the remaining commutations, [Jij , Jkl]
(namely, those describing SO(3)), are evidently not affected by c→∞ at all.

Indeed, if we trust the various signs stemming from the metric to take care of them-
selves, contracting the Lorentz algebra corresponds to contracting SO(4) to E(3), as dis-
cussed in the preceding section. Our two examples are thus essentially the same.

Beyond Lorentz invariance

From these two examples, we see that it is algorithmic, and hence straightforward,3 to
contract an algebra. Simply introduce some parameter and let that parameter tend to
infinity (or zero). But going in the opposite direction is not so easy. Indeed, going from
the flat earth to the round earth, and going from Galilean spacetime to Minkowskian
spacetime, mark two enormous, even epoch-changing, steps in physics.

We might invite ourselves to think what the next step might be, going beyond
Minkowskian spacetime.

It would seem entirely natural to think that we would go from SO(3, 1) to SO(4, 1).
Indeed, by now, it is almost self-evident how SO(4, 1) would contract to the Poincaré
algebra (which was mentioned in chapter VII.2 and already discussed in an earlier section
modulo some signs). The algebra of SO(4, 1) is given as in (2), where the indices run
over 0, 1, 2, 3, and 4. To emphasize this, let us rename these indices pertaining to the 5-
dimensional spacetime of SO(4, 1) asA andB, so thatA ranges over the Minkowski index
μ= 0, 1, 2, 3, and 4. Thus, the 10 generators JAB divide into two sets, Jμν, the familiar
generators of the Lorentz algebra, and Jμ4, generating translations in spacetime.

Most intriguingly, SO(4, 1) is the invariance group4 of an expanding universe (see
chapter VIII.3) driven entirely by the vacuum energy known as the de Sitter universe.5

It is in fact a good first approximation to the universe we inhabit. The length scale being
sent to infinity in the contraction is none other than the size of the universe.

I am even tempted to speculate6 that in a civilization in a galaxy far far away a brilliant
person could be motivated by the attractive group theory of the 4-sphere S4 to analyze the
de Sitter group7 SO(4, 1) and thus discover the expanding universe “by pure thought,” as
Einstein put it.

Two ways of extending the Galilean algebra

The opposite of contracting an algebra is known as extending an algebra. Some authors
refer to the process as deformation, but in general, I prefer a more descriptive terminology.8

As I just remarked, while contracting an algebra merely requires the turning of a
crank, extending an algebra requires revolutionary insights. In chapter VII.2, we discussed
how the Galilean algebra can be extended to the Poincaré algebra, corresponding to the
development of special relativity. In a sense, we simply work backward. Here we discuss
how to extend the Galilean algebra in another way, corresponding to the other great
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development of early twentieth-century physics: quantum mechanics. This is discussed
in appendix 1.

Appendix 1: From the Galilean algebra to the quantum Galilean algebra:
Mass as a central charge

Let us first review the Galilean algebra, derived in appendix 1 in chapter VII.2. I copy the algebra here for your
convenience:

[Ji , Jj ]= iεijkJk , [Ji , Pj ]= iεijkPk , [Ji , Kj ]= iεijkKk
[Pi , H ]= 0, [Ji , H ]= 0, [Pi , Pj ]= 0

[Ki , H ]= iPi , [Ki , Pj ]= 0, [Ki , Kj ]= 0 (4)

Recall the generators of translation in space and in time:

Pi = i ∂
∂xi

and H = i ∂
∂t

(5)

We will have to be careful about signs here.9

As promised, we now extend (4) to accommodate quantum mechanics. We will see that we have to amend the
commutator [Ki , Pj ]= 0.

The astute reader would have noticed that thus far, we still do not have physics, only rotations and translations
in space and time. Indeed, H and Pi have dimensions of 1/T and 1/L, respectively. To turn these into energy
and momentum (as the notation suggests), we need a previously unknown fundamental constant.

Happily, Nature obliges and provides us with Planck’s constant �. From Planck’s relationE = �ω, which turns
a circular frequency into an energy, we see that � has dimensions of M(L/T )2/(1/T )=ML2/T . Alternatively,
from the Heisenberg commutation relation [q , p]= i�, we can also deduce the dimension of � to be equal to
L(ML/T )=ML2/T . Hence, if we multiply H and P by �, then they would have dimensions M(L/T )2 and
M(L/T ), respectively (namely, the dimensions of energy and momentum, respectively).

To avoid introducing more symbols, let us agree to continue to denote byH and P theH and P written down
earlier multiplied by �. In other words, the generators of translation in time and in space have been promoted
to energy (the Hamiltonian) and to momentum, respectively. For instance, Pi = i� ∂

∂xi
.

We do not touch J and K ; they continue to be the generator of rotation and of boost, respectively.
Look at the Galilean algebra (4). Let us focus on the zero in the commutation [Ki , Pj ]= 0. To a mathematician,

this zero means that the commutator [Ki , Pj ] commutes with all other generators. For example, use the Jacobi
identity to write [H , [Ki , Pj ]]=−[Ki , [Pj , H ]]− [Pj , [H , Ki ]]. We can check that algebra (4) implies the vanishing
of the right hand side, which is consistent with [Ki , Pj ] commuting with H on the left hand side.

Therefore, we can modify the algebra by setting [Ki , Pj ] equal to a number, known as a c-number (defined in
this context as something that commutes with all the generators of the algebra), which we denote by∗ M :

[Ki , Pj ]= iMδij (6)

The δij follows from rotational invariance. In mathematics, the modification of an algebra by changing the 0 in
a commutation relation to a c-number is known as a central extension.

SinceK has the dimension of T/L, and P the dimension ofML/T , the c-numberM has dimension of mass.
Hermitean conjugating (6), we deduce thatM is real.

We have discovered something called mass, known to mathematicians in this context as a central charge. By
the way, I learned this basically the first day in graduate school10 from Julian Schwinger’s course on quantum
field theory. So I thought to myself, “Wow, it’s a really good idea to come to graduate school, because when I was
an undergraduate, they told me that mass was the proportionality factor in F =ma. But in graduate school they

∗ An M which, pace Confusio, is not to be confused with the symbol M we used when doing dimensional
analysis.



VIII.1. Contraction and Extension | 511

now tell me something much more interesting, that mass is the central charge∗ in some algebra. So graduate
school is definitely worthwhile.”

To show thatM is indeed the mass we first encountered in our study of physics, consider this particular object
P 2

2M . Under a boost,[
Ki ,

P 2

2M

]
= 1

2M

(
[Ki , Pj ]Pj + Pj [Ki , Pj ]

)
= 1

2M
(2iMδij )Pj = iPi

(7)

But we also have [Ki , H ]= iPi from (4). Thus, [Ki , H − P 2

2M ]= 0. Furthermore, (H − P 2

2M ) also commutes with
Ji , H , and P . Therefore, it is consistent to write

H = P 2

2M
(8)

with the trivial freedom of adding an arbitrary c-number. IdentifyingH and Pi with the generators of translation
in time and space (multiplied by �), we obtain Schrödinger’s equation:

i�
∂

∂t
ψ =−�

2∇2

2M
ψ (9)

The classical Galilean algebra (4) is modified by (6) to become the quantum Galilean algebra.†

Equivalently, we can also say that we modify the boost generatorKi =−tPi in such a way as to reproduce (6).
Let

Ki =−tPi −Mxi (10)

To avoid any confusion about signs, let us also write this without indices:

Kx =−it ∂
∂x
−Mx (11)

Thus,

[Kx , Px ]=
[
− it ∂

∂x
−Mx , i

∂

∂x

]
= (−)2

[
i
∂

∂x
, Mx

]
=+iM (12)

This agrees with (6) (clearly, Ki and Pj commute if i �= j ).
Another way to understand the central charge is to take a detour through the Poincaré algebra, which tells

us that under a boost, energy and momentum transform into each other. Indeed, this is one way to verify that
our signs here are correct, since Lorentz invariance interlocks various terms that are decoupled in nonrelativistic
physics, so to speak. Pass to the relativistic regime:

Kx =−it ∂
∂x
→Kx =−i

(
t
∂

∂x
+ x ∂

∂t

)
(13)

The relative + sign between the ∂
∂x

and ∂
∂t

was explained in chapter VII.2. Since Px = i ∂∂x , we have

[Kx , Px ]=
[
− ix ∂

∂t
, i
∂

∂x

]
= (−i)2

[
∂

∂x
, x
∂

∂t

]
=− ∂

∂t
=+iH (14)

∗ Although my memory is vague, I am almost certain that Schwinger did not use this term.
† The jargon guy says that this is also known as the centrally extended Galilean algebra and as the Bargmann

algebra. I take the liberty to remark here that as an undergraduate, I once took a course from Valentine Bargmann,
mostly about the Lorentz group, but I don’t remember him mentioning any of this.
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Let us restore c momentarily and then return to the nonrelativistic regime:

[Kx , Px ]= i 1
c2
H = i 1

c2

(
Mc2 + P 2

2M
+ . . .

)
= iM + . . . (15)

In the limit c→∞, the central charge11 emerges in front of our very eyes.
Indeed, to check that the signs in (11) are correct, take the non-relativistic limit of (13):

Kx =−i
(
t
∂

∂x
+ x ∂

∂t

)
=−i

(
t
∂

∂x
− ixH

)
→−it ∂

∂x
−Mx (16)

We have simply replaced H byM .

Appendix 2: Central charge and de Broglie’s relation

I now mention a pedagogically illuminating episode12 in physics that serves to highlight the crucial role played
by the central charge (which for our purpose here, I am using as a shorthand for (6)) in nonrelativistic quantum
mechanics.

In 1975, Landé pointed out13 that de Broglie’s relation between the momentum p of a particle and its
wavelength λ, namely, p = �k = h/λ (with the wave number k = 2π/λ, as usual), is inconsistent with Galilean
invariance. This turned out to be a pseudo-paradox, since we know perfectly well that nonrelativistic quantum
mechanics should respect Galilean invariance. Let us first go over Landé’s remark more explicitly and then seek
a resolution.

From x′ = x + ut , we see that the distance between two points (say, two successive crests of a wave) is
unchanged14 under a Galilean transformation at a given instant of time (that is,�x′ =�x since t ′ = t). In other
words, the wavelength λ, and hence the wave number k, is unchanged.

In contrast, we all know that momentum of the particle allegedly described by the de Broglie wave changes.
Indeed, the everyday law of addition of velocity, alluded to in chapter VII.2, states that dx

′
dt ′ = d(x+ut)

dt
= dx

dt
+ u.

Thus,

p′ =M dx
′

dt ′
=M dx

dt
+Mu= p +Mu (17)

Hencep′ �= p but k′ = k, which would appear to contradictp = �k. So, apparently de Broglie clashes with Galileo.
But . . . but, we just derived Schrödinger’s equation (9) from the Galilean algebra, and Schrödinger contains

de Broglie. So what’s going on?
Landé’s argument can be rendered more explicit by writing the expression for a wave: ψ(x , t)= A sin(kx −

ωt). In a moving frame, since the amplitude of the wave is unchanged, being perpendicular to the direction of
relative motion (I’m not bothering to draw a figure here; you can supply one), the wave is given by ψ ′(x′ , t ′)=
ψ(x , t), and thus

A sin(k′x′ − ω′t ′)= A sin(kx − ωt)= A sin(k(x′ − ut ′)− ωt ′)= A sin(kx′ − (ω + uk)t ′) (18)

where we have plugged in t = t ′ and x = x′ − ut ′.
This simple exercise shows k′ = k, which is just what we said, that the wavelengths seen by the two observers

are the same.
In fact, we obtain more—namely, that ω′ = ω + uk, which we recognize as the Doppler effect. This shows,

by the way, that if Landé’s argument holds, the Planck-Einstein relation E = �ω is in just as much trouble as de
Broglie’s relation, since under a Galilean transformation, energy transforms by

E→ E′ = p′2

2M
= (p +Mu)

2

2M
= E + up + 1

2
Mu2 (19)

which is quite different from the way frequency transforms.
Do you see the resolution to this apparent paradox?
The resolution is that in quantum mechanics, the wave ψ(x , t) is complex, and Galilean invariance only

requires that |ψ ′(x′ , t ′)|2= |ψ(x , t)|2, notψ ′(x′ , t ′)=ψ(x , t). In other words, possiblyψ ′(x′ , t ′)= eiϕ(x , t)ψ(x , t)
with some phase factor.
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You can also work out explicitly what the phase factor is for a finite Galilean transformation. Consider a

plane wave solution ψ(x , t)= e i� (px−Et) of the Schrödinger equation i� ∂
∂t
ψ =− �

2∇2

2M ψ in (9). (We restore �

temporarily to make a point below.) Then the plane wave solution of the transformed Schrödinger’s equation

i� ∂
∂t ′ψ

′ = − �
2∇′2
2M ψ ′ is given by

ψ ′(x′ , t ′)= e i� (p′x′−E′t ′) = e i� (p′(x+ut)−E′t) = e i� (p′x−(E′−up′)t)

= e i�
(
(p+Mu)x−(E− 1

2Mu
2)t
)

= e iM� (ux+ 1
2 u

2t)ψ(x , t) (20)

where we used (17) and (19): in particular, E′ − up′ = E + up + 1
2Mu

2 − u(p +Mu)= E − 1
2Mu

2.
We remark that there is no sense in which the phase factor that saves us would disappear in the limit �→ 0.
The phase factor15 eiϕ(x , t) in (20) reflects the presence of the central charge in (10). To see this, take the

infinitesimal limit u→ 0 to get at the generator of a Galilean boost. To linear order in u,

ψ ′(x , t)= eiϕ(x−ut , t)ψ(x − ut , t)�
(

1+ i M
�
(ux + . . .)

)(
1− ut ∂

∂x
+ . . .

)
ψ(x , t)

=
(

1+ iu
(
M

�
x + it ∂

∂x
+ . . .

))
ψ(x , t)= (1− iuKx)ψ(x , t) (21)

This shows that in the quantum world, the generator Kx has to be modified. By the way, this also verifies the
relative sign in (11).

Math and physics work, as always.

Appendix 3: Contraction and the Jacobi identity

Another way of obtaining a subalgebra takes advantage of the Jacobi identity.16 Given an algebra consisting of the
generators {A1, A2, . . .}, pick one of these generators and call it C. Consider all those elements that commute
withC and call them Bn (which of course includesC itself). Then the Bns form a subalgebra. To see this, observe
that [[Bm , Bn], C]=−[[Bn , C], Bm]− [[C , Bm], Bn]= 0. Thus, [Bm , Bn] belongs to the subalgebra. Indeed, C is
then a central charge of this algebra.

As a simple example, take SU(3) and let C = λ8. Then the Bns form an SU(2)⊗ U(1) algebra.

Notes

1. See, for example, G Nut, p. 82.
2. We are now sophisticated enough to drop the parentheses in J(mn).
3. That is, if we ignore various issues real mathematicians would worry about, such as the existence of the limit,

and so on and so forth.
4. This invariance group is known as the isometry group of the spacetime. See chapter IX.6 in G Nut.
5. See G Nut, p. 359; also see chapter IX.10 in that book.
6. Which I did elsewhere. See G Nut, p. 645.
7. For the group theory of SO(4, 1), see chapter VIII.3 and p. 644 in G Nut.
8. Besides, deformation sounds derogatory.
9. We go over some tricky signs here for the benefit of some readers. This note is written in a somewhat tele-

graphic style, addressed to those with some nodding familiarity with basic special relativity and quantum
mechanics. We use the so-called Bjorken-Drell convention (see J. D. Bjorken and S. Drell, Relativistic Quan-
tum Mechanics; the same convention is used in QFT Nut) in which the coordinates are xμ= (x0, xi)= (t , �x),
and the diagonal elements of the metric ημν are given by (+1,−1,−1,−1). We start with an indisputable sign,
namely,H =+i ∂

∂t
, because in everybody’s convention the Schrödinger equation reads i� ∂

∂t
ψ =Hψ . (We set

� = 1 henceforth.) SinceH = P 0 = P0, this impliesPμ = i ∂
∂xμ
= i∂μ, and thus, Pi = i ∂∂xi , as given in the text.

In the Bjorken-Drell convention, P i =−Pi , and thus the issue is whether Pi or P i corresponds to what I will
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call the football player’s momentum �P =m�v. This is resolved by the relativistic equation Pμ =mdxμ/dτ ,
with P i =mdxi/dτ→mdxi/dt in the nonrelativistic limit. Just as �x has components xi , the football player’s
momentum �P has components P i . Thus, P i = 1

i
∂

∂xi
=−i ∂

∂xi
. (Note that, with this sign, the signs in (1) are

consistent with the elementary formula for angular momentum �J = �x × �P . Note also that this is consistent
with Heisenberg’s [p , q]=−i.)

10. In fact, Schwinger probably went three times faster than my presentation, and I understood little of what he
said. Consequently, as I will explain, I learned quantum field theory and Mandarin during my first year in
graduate school. Both turn out to be very important in my life.

The serious theory students at Harvard in those days attended Schwinger’s course year after year in hopes
of gleaning some insights. The older students impressed upon the first year students that if you raised your
hand, Schwinger might think that you were an idiot and kick you out of his class. So nobody asked questions.
Schwinger would already be orating the first sentence of his lecture as he came in the door of the lecture
room, and would utter the last sentence as he sailed out the door at the end of the class.

At that time, the number one physics undergraduate in Taiwan was sent to Harvard every year, and all of
them wanted to work with the legendary Nobel Prize winner. Part of the legend was that Schwinger liked to
work at night and get up late, and so his lecture was always held at eleven. After the lecture, it was noon and I
would try to go to lunch with the students from Taiwan and ask them questions about quantum field theory.
But they all spoke Mandarin, and said, “You come from Brazil and only speak Shanghainese and Cantonese;
you really should learn Mandarin.” So I learned quantum field theory and Mandarin at the same time, which
probably squared the difficulty.

By the way, Schwinger was very fond of the students from Taiwan, and one of them, for his wedding,
asked Schwinger to give away the bride (her father could not come; in those days international travel was far
less common and affordable). Since Schwinger and his wife did not have children of their own, they agreed
enthusiastically and beamed throughout the ceremony. I discovered on this social occasion that Schwinger
was in fact extremely approachable and friendly.

11. Incidentally, the material discussed here is very much used on the forefront of physics. See, for example,
D. Son et al., arXiv:1407.7540, and the references therein.

12. I am grateful to C. K. Lee for telling me about the Landé pseudo-paradox.
13. I follow the treatment given by J.-M. Lévy-Leblond, Am. J. Phys. 44 (1976), p. 1130. Various references,

including that of A. Landé’s paper, can be found in this paper.
14. To paraphrase Landé, a photo of ocean waves taken from a ship and a photo of ocean waves taken from a low

flying airplane look the same.
15. The jargon guy tells us that this is related to the cocycles discussed in the mathematical physics literature.
16. See D. T. Son, arXiv:0804.3972.
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Conformal transformations

Besides rotation and translation, we can apply other transformations to space. In particular,
one familiar transformation often practiced in everyday life is a change of scale, magnifying
or shrinking a picture (now doable with the flick of two fingers). And from space it is but
a hop to spacetime by flipping a sign between us friends, so that rotation gets generalized
to Lorentz transformation.

As we shall see, the set of transformations that preserve∗ the angle between any two
line segments generates the conformal algebra. Historically, after special relativity was
established, people studied the invariances of the free Maxwell equations (that is, the
equations without any charges and currents) and found that they generated the conformal
algebra.1

Here we consider only flat Euclidean space or Minkowskian spacetime, but as is often
the case in math and in physics, to set the stage, it is actually better to be more general and
consider a curved space (or spacetime). Curved spaces are defined in general by the metric
gμν(x), such that the distance squared between two neighboring points with coordinates
xμ and xμ + dxμ is given by

ds2= gμν(x)dxμdxν (1)

(This is in fact the starting point of Riemann’s development of differential geometry2

used in Einstein’s theory of gravity.) A familiar example is the sphere, on which ds2 =
dθ2+ sin2 θdϕ2, with θ and ϕ the familiar angular coordinates. We have already touched
on curved spaces in this text on several occasions, for example, when discussing integration
over group manifolds in chapter IV.7. The notion of a metric was mentioned peripherally
in our study of the general Lie algebra in chapter VI.3.

∗ Clearly, changes of scale do not preserve the length of a line segment.
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Thus, we will set up the framework with a general metric gμν(x), but promptly set gμν(x)
to be equal to δμν for flat space or to ημν for flat spacetime.

Under a change of coordinates x→ x′(x), we have, according to the rules of differ-
ential calculus, dxμ = ∂xμ

∂x′ρ dx
′ρ. The distance between two nearby points ds is of course

independent of our coordinate system. Thus, plugging into (1), we obtain

ds2= gμν(x) ∂x
μ

∂x′ρ
∂xν

∂x′σ
dx′ρdx′σ = g′

ρσ
(x′)dx′ρdx′σ (2)

Here the second equality is merely the definition of the metric g′
ρσ
(x′) in the new coordi-

nate system. Thus, under a change of coordinates, the metric transforms according to

g′
ρσ
(x′)= gμν(x) ∂x

μ

∂x′ρ
∂xν

∂x′σ
(3)

For example, under a scale transformation xμ→ x′μ= λxμ (forλ a real number), g′
ρσ
(x′)=

g′
ρσ
(λx)= λ2gμν(x).

Suppose we now impose the condition

g′
ρσ
(x′)=�2(x′)gρσ (x′) (4)

for some unknown function∗ �. Transformations x→ x′(x) that satisfy (4) are known as†

conformal transformations. In fact, we just saw an example, scale transformation, which
corresponds to �(x)= λ being a constant.

Note, by the way, that in (4), x′ is a dummy variable, and so we could, for example, simply
erase the prime on x′. But of course we are not allowed to erase the prime on g′

ρσ
; (4) tells

us that the new metric is given by the old metric multiplied by the function �2.
Conformal transformations clearly form a group. After a conformal transformation

associated with�1, perform another one associated with�2. We end up with a conformal
transformation associated with �2�1:

g′′
ρσ
(x)=�2

2(x)g
′
ρσ
(x)=�2

2(x)�
2
1(x)gρσ (x)= (�2(x)�1(x))

2gρσ (x) (5)

Following a long line of luminaries from Newton to Lie, we now go to the infinitesimal
limit. Consider the infinitesimal coordinate transformation x′μ= xμ+ εξμ(x). For ε→ 0,
we expand �2(x′)� 1+ εκ(x′)= 1+ εκ(x)+O(ε2) with some unknown function κ(x).
Plug this into the condition (4). Collecting terms of order ε, we obtain what is known as
the conformal Killing condition:

gμσ∂ρξ
μ + gρν∂σξν + ξλ∂λgρσ + κgρσ = 0 (6)

(For κ = 0, the conformal Killing condition reduces to what is called the isometry condition.
Indeed, setting �= 1, we see that (4) just says that the two metrics are the same.)

∗ The square on �2 is conventional.
† The important special case with�(x)= 1 is known as an isometry (= equal measure). Our friend the jargon

guy is overcome with joy.
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We could eliminate κ(x) in (6) by contracting with gρσ (the inverse of gμν), so that this
amounts to a condition on the metric gμν and the vector field ξ , known as a conformal
Killing vector field. See below.

To the lost, angles are more important than distances

Some readers may be aware of the many motivations—historical, mathematical, and
physical—for studying conformal transformations. Here I mention one familiar from
everyday life. The key property is of course that while conformal transformations do not
preserve the length between neighboring points, they do preserve the angle between two
line segments.

When you are lost, it matters more to you to know that you are going in the right direction
than to know how far you are from your destination. To the lost, angles are more important
than distances. Gerardus Mercator (1512–1594), or “Jerry the merchant,” fully appreciated
this. The familiar Mercator map of the world is obtained by a conformal transformation
of the spherical coordinates θ and ϕ on the globe, at the price of stretching lengths near
the two poles.3

Retreat to flat spacetime

If someone hands us a metric gμν(x), we could in principle find its conformal Killing
vectors by solving (6).

The simplest metric to deal with is the Minkowski metric, of course. (By the way,
spacetime with the metric given by �2(x)ημν, as in (4), is known as conformally flat.)
Here we content ourselves by studying this easy case, for which (6) simplifies to (with
ξσ ≡ ησμξμ, as usual) ∂ρξσ + ∂σξρ + κηρσ = 0. Contracting this with ηρσ , we obtain κ =
−2∂ . ξ/d in d-dimensional spacetime. Hence the condition (6) becomes

∂ρξσ + ∂σξρ = 2
d
ηρσ∂ . ξ (7)

Infinitesimal transformations x′μ = xμ + εξμ(x) that satisfy (7) are said to generate the
conformal algebra for Minkowski spacetime. Clearly, with the substitution of δρσ for ηρσ ,
this entire discussion applies to flat space as well as to flat spacetime. As promised, we are
now done with gμν and can forget about him.

As mentioned at the start of this chapter, we already know that translations and Lorentz
transformations solve (7), namely, ξμ = aμ + bμ

ν
xν, with bμν = bμληλν =−bνμ required to

be antisymmetric (see chapter VII.2). Note that the right hand side of (7) vanishes for this
class of solutions.

In search of conformal generators

At this point, you should look for more solutions of (7). Go ahead. I already gave you a
huge hint.
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We could also wing it like the poor man. Stare at Minkowski spacetime: ds2 =
ημνdx

μdxν. What transformations on x would change the metric conformally? Well, I
already mentioned earlier that the scale transformation, or more academically, dilation,4

xμ→ λxμ (for λ a real number), that is, stretching or shrinking spacetime by a constant
factor, is a solution. To identify the corresponding ξμ, consider an infinitesimal transfor-
mation with λ= 1+ εc; then ξμ = cxμ, with some (irrelevant) constant c. Sure enough,
this satisfies (7), of course.

Now, can you find another transformation? Think for a minute before reading on.
The clever poor man notices that inversion∗ xμ = e2yμ/y2 would solve (4). Plug in

dxμ = e2(δ
μ
λ y

2 − 2yλyμ)dyλ/(y2)2. We obtain ds2 = ημνdxμdxν = (e4/(y2)2)ημνdy
μdyν,

which indeed is conformally flat. I introduced e to avoid confusing you, but now that its
job is done, we will set it to 1 and define inversion as the transformation (for x2 �= 0)

xμ→ xμ

x2
(8)

Schematically, x goes into 1/x: inversion does what the word suggests.
You object, saying that the entire discussion has been couched in terms of infinitesimal

transformations. The inversion is a discrete transformation, and is in no way no how
infinitesimal.

That is a perfectly valid objection. There is no parameter in (8) that we can send to 0.
How then can we identify the corresponding ξμ?

Invert, translate, then invert

Now the poor man makes another clever move: invert, translate by some vector aμ,
and then invert back. The composition of these three transformations is surely a con-
formal transformation, since inversion and translation are both conformal transforma-
tions. For aμ = 0, the two inversions knock each other out, and we end up with the
identity transformation. Thus, as aμ→ 0, the composition of inversion, translation,
and inversion would indeed be a conformal transformation infinitesimally close to the
identity.

Let’s work out what I just said in words:

xμ→ xμ

x2
→ xμ

x2
+ aμ→

(
xμ

x2
+ aμ

)/ (
ηρσ

(
xρ

x2
+ aρ

)(
xσ

x2
+ aσ

))
=
(
xμ

x2
+ aμ

)/ ( 1
x2
+ 2a . x

x2
+ a2

)
= (xμ + aμx2)/(1+ 2a . x + a2x2)� (xμ + aμx2)(1− 2a . x)+O(a2)

= xμ + aλ(ημλx2− 2xμxλ)+O(a2) (9)

∗ An irrelevant constant e, with dimension of length, is introduced here to ensure that x and y both have
dimensions of length.
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The transformation xμ→ xμ + aλ(ημλx2 − 2xμxλ) is sometimes known, specifically, as
a conformal transformation. You can verify that ξμ = aλ(ημλx2 − 2xμxλ) satisfies (7), of
course.

The corresponding generators are denoted by∗

Kμ = (ημνx2− 2xμxν)∂ν (10)

As I said, you could have also simply solved (7) by brute force, and I am counting on you
to have already done so. It is also instructive to act with ∂ρ ≡ ηρσ∂σ on (7); we obtain

d∂2ξσ = (2− d)∂σ (∂ . ξ) (11)

Applying ∂σ , we obtain further ∂2(∂ . ξ)= 0 (all for d �= 1).
We now draw two important conclusions.

1. The case d = 2 is special. We learn from (11) that any solutions of the generalized Laplace

equation ∂2ξν = 0 yield a conformal transformation. Indeed, for d = 2, either go to light cone

coordinates for Minkowski spacetime, or to complex coordinates for Euclidean space. With

complex coordinates z= x + iy, we have (∂2
x
+ ∂2

y
)ξσ = (∂x + i∂y)(∂x − i∂y)ξσ = ∂

∂z∗
∂
∂z
ξσ =

0, and hence we can exploit the full power of complex analysis.5 For d = 2, there exist an

infinite number of solutions of (7) for ξμ.

2. For d �= 2, these equations tell us that ξμ can depend on x at most quadratically. Thus, we

have in fact found all the solutions of (7) for d �= 2, namely,

ξμ = aμ + bμ
ν
xν + cxμ + dν(ημνx2 − 2xμxν) (12)

with bμν antisymmetric. We had noted all these terms already. Pleasingly, in (12), the

constant term corresponds to translation, the linear terms to Lorentz transformation and to

dilation, and the quadratic term to conformal transformation.

Generators of conformal algebra

Associated with each of these terms, we have a generator of the Minkowskian conformal
algebra. As in chapters I.3 and VII.2, it is convenient to use a differential operator repre-
sentation. Recall that in chapter VII.2, by adding the generators6 of translation Pμ to those
of Lorentz transformation Jμν, we extended the Lorentz algebra to the Poincaré algebra,
defined by commuting

Pμ = ∂μ and Jμν = (xμ∂ν − xν∂μ) (13)

By adding the dilation generator D and the conformal generator Kμ,

D = xμ∂μ and Kμ = (ημνx2− 2xμxν)∂ν (14)

∗ Even Confusio would not confuse the conformal generators Kμ with the generators of Lorentz boosts
discussed in chapters VII.2 and VII.4. In the present context, the latter are contained in Jμν , the generators
of Lorentz transformations. There are only so many letters in the alphabet, and the use of K for both is more or
less standard.
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we can now, in turn, extend the Poincaré algebra to the conformal algebra, defined by
commuting Pμ, Jμν, D, and Kμ.

In other words, the commutators between P , J , D, and K generate an algebra that
contains the Poincaré algebra.

The commutators involving D are easy to compute: [D , xν]= [xμ∂μ, xν]= xμ[∂μ, xν]=
xν, and [D , ∂ν]= [xμ∂μ, ∂ν]= [xμ, ∂ν]∂μ=−∂ν. (To work out various commutators, keep in
mind the identity [A, BC]= [A, B]C + B[A, C].) Evidently, D (as is sensible for a dilation
generator) simply counts the length dimension,+1for xν and−1for ∂ν. Thus, [D , Jμν]= 0,
since J ∼ x∂ has zero length dimension. Interestingly, another way of reading this is
to write it as [Jμν , D]= 0, which says that D is a Lorentz scalar. Next, we can read off
[D , Pμ]=−Pμ and [D , Kμ]=+Kμ just by counting powers of length dimension (P ∼ ∂ ,
K ∼ xx∂).

The commutators involving Kμ are not much harder to work out. First, [Jμν , Kλ]=
−ημλKν + ηνλKμ just tells us thatKμ transforms like a vector, as expected. The nontrivial
commutator is [Kμ, Pλ]=−[∂λ, (ημνx2 − 2xμxν)∂ν]=−2(ημνxλ − ηλμxν − xμηλν)∂ν =
2(Jμλ + ηλμD). Finally, verify that [Kμ, Kν]= 0. Can you see why? (Recall that we con-
structed the conformal transformation as an inversion followed by a translation and then
followed by another inversion.)

Collecting our results, we have the conformal algebra

[Pμ, P ν]= 0, [Kμ, Kν]= 0

[D , Pμ]=−Pμ, [D , Jμν]= 0, [D , Kμ]=+Kμ

[Jμν , Pλ]=−ημλP ν + ηνλPμ, [Jμν , Kλ]=−ημλKν + ηνλKμ

[Jμν , J λρ]=−ημλJ νρ − ηνρJμλ + ηνλJμρ + ημρJ νλ

[Kμ, P ν]= 2(Jμν + ημνD) (15)

We see that, in some sense, K acts like the dual of P .
As we saw just now, the dilation generator D counts the power-of-length dimension:

so that P ∼ ∂ counts as −1, D ∼ x∂ and J ∼ x∂ both count as 0, and K ∼ xx∂ counts
as +1. When we commute these generators, we “annihilate” ∂ against x, but this process
preserves the power-of-length dimension. Thus, whatever [K , P ] is, it counts as 0, and
thus must be a linear combination of D and J . This counting also serves as a mnemonic
for [K , K ]∼ 0, since [K , K ] counts as +2 and there aren’t any generators around that
count as +2. (Another way of remembering this is that K is sort of the dual of P and
[P , P ]∼ 0.)

In light of this counting scheme, the apparent “mess” in (15) is actually easy to under-
stand. We just explained the first and last lines. The second line tells us about the length
dimension of D, P , and K . The third line says that Pμ and Kμ are Lorentz vectors. The
fourth line is of course just the Lorentz algebra, which in some sense we have already
encountered way back in chapter I.3.
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Identifying the conformal algebra

Now that we have used our eyeballs and brains, let’s use our fingers. Count the number
of generators (P , K , D , J ): d + d + 1+ 1

2d(d − 1)= 1
2(d + 2)(d + 1). Do you know an

algebra with this many generators? Hint: It has to contain the Lorentz algebra SO(d − 1, 1)
of d-dimensional Minkowski spacetime.

Yes, SO(d , 2). Good guess!
Remarkably, the conformal algebra of d-dimensional Minkowski spacetime, with the

invariance groupSO(d − 1, 1), is the Lie algebra ofSO(d , 2), the Lorentz algebra of (d + 2)-
dimensional Minkowski spacetime. The two algebras are isomorphic. Let that sink in for
a minute.

The rule is that, given SO(d − 1, 1), the conformal algebra is SO(d − 1+ 1, 1+ 1)=
SO(d , 2): we “go up by (1, 1)”, so to speak. We can prove this assertion by the “what else
could it be” argument. We could of course verify the assertion by direct computation and
thus also ascertain the signature. Instead, we will argue our way through.

Denote the generators of SO(d , 2) by JMN , with M , N = 0, 1, 2, . . . , d − 1, d , d + 1
(and μ, ν = 0, 1, 2, . . . , d − 1) satisfying

[JMN , JPQ]=−ηMPJNQ − ηNQJMP + ηNPJMQ + ηMQJNP (16)

with η00 =+1, ηij =−δij , ηdd =−1, and ηd+1,d+1=+1. The coordinates x0 and xd+1 are
both like time coordinates.

The isomorphism between the conformal algebra of d-dimensional Minkowski space-
time and the SO(d , 2) algebra is almost fixed by symmetry considerations.

We already have the generators of the Lorentz algebra SO(d , 1), namely Jμν. Now we
want to identify the additional generators D , Pμ, and Kμ. By eyeball, we see that D is a
scalar under SO(d , 1), and so it can only be J d ,d+1. We identify J d ,d+1=D. Similarly, by
eyeball, we see that Pμ and Kμ carry an index μ, and hence are vectors under SO(d , 1).
They could only be linear combinations of Jμ,d and Jμ,d+1. So, let us make the educated
guess Jμ,d = 1

2(K
μ + Pμ) and Jμ,d+1= 1

2(K
μ − Pμ).

We check only a few commutators to show that this assignment is correct. For ex-
ample, (16) gives [Jμ,d , J ν ,d ]=−ηddJμν = Jμν = 1

4 [Kμ + Pμ, Kν + P ν]= 1
4 ([K

μ, P ν]−
[Kν , Pμ])= 1

4 (4J
μν), where in the last step we used (15). Similarly, [Jμ,d+1, J ν ,d+1]=

−ηd+1,d+1Jμν = −Jμν = 1
4 [Kμ − Pμ, Kν − P ν] = − 1

4 (4J
μν). As another example,

[D , 1
2(K

μ + Pμ)]= [J d ,d+1, Jμ,d ]= ηddJ d+1,μ = 1
2(K

μ − Pμ).
The poor man now speaks up. “It is easier to see through all this if we pick a definite

value of d + 2, say 6, and forget about signature, let it take care of itself. Just think about
SO(6).” Evidently, Jμν, for μ, ν = 1, 2, 3, 4, generates the rotation algebra for SO(4). In
addition, we have Jμ, 5 and J ν , 6, clearly vectors labeled by 5 and 6. Forμ �= ν, they commute
with each other, while for μ= ν, they commute to produce J 56. Recall, as we learned in
chapter I.3, that (16) merely says that JMN and JPQ commute with each other, unless a
pair of indices, one from each of the J s, are equal, in which case the commutator is a J
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carrying the remaining two indices. Thus, J 56 commuted with Jμ, 5 and Jμ, 6 just turns
one into the other.

Very good! In fact, an even simpler case is the conformal algebra of (1+ 1)-dimensional
Minkowski spacetime, namely, the SO(2, 2) algebra.

You might feel that dilation obviously does not hold in physics, since there are fun-
damental length scales set by the masses of elementary particles. But in our present
theoretical understanding, the building blocks of the universe, the quarks, the leptons,
and all the rest, are postulated to be massless before the Higgs mechanism kicks in.

Appendix: (1+ 1)-dimensional Minkowski spacetime
in light cone coordinates

It is instructive to work out the conformal algebra for a familiar spacetime written in not-so-familiar coordinates,
namely, the (1+ 1)-dimensional Minkowski spacetime written in the light cone coordinates introduced in chapter
VII.2. Define x± = t ± x. Then ds2 = dt2 − dx2 = dx+dx− = ημνdxμdxν , which tells us that η+− = η−+ = 1

2
and η+− = η−+ = 2. The other components, which we do not display, such as η++, all vanish. Also, define

∂± = 1
2

(
∂
∂t
± ∂

∂x

)
, so that ∂+x+ = 1 and ∂−x− = 1.

ThenP± = ∂± = 2∂∓,D = x+∂+ + x−∂−, J ≡ 1
2J
+− = 1

2 (x
+∂− − x−∂+)= x+∂+ − x−∂−. Note thatD ± J =

2x±∂± works out nicely. (It is understood that the± signs are correlated unless otherwise noted.) Can you guess
what the conformal generators are? Let’s find out; simply evaluate (14):K+ = x2η+−∂− − 2x+(x+∂+ + x−∂−)=
−2(x+)2∂+, and similarly, K− = −2(x−)2∂−.

Rather elegantly, the six generators of SO(2, 2) can be taken to be

∂± , x±∂± , and − (x±)2∂± (17)

You can now check the algebra in (15). For example, (15) gives [K+ , P−]= 2(J+− + η+−D)= 4(J +D)=
8x+∂+, and indeed, we compute [K+ , P−]= [−2(x+)2∂+ , 2∂+]= 8x+∂+.

Interestingly, SO(4) and its two analytically continued descendants, SO(3, 1) and SO(2, 2), have all appeared
in this book.

Notes

1. See, for example, chapter IX.9 in G Nut.
2. See, for example, chapter I.5 in G Nut.
3. Some people have argued that this has led to a distorted view of the world with unfortunate consequences.
4. Or dilatation, if dilation is not academic enough for you.
5. This observation turns out to be of central importance in string theory. See J. Polchinski, String Theory,

chapter 2.
6. Here I omit the overall factors of i commonly included in quantum mechanics. You and I live in free countries

and, according to what is convenient in a given context, can include or omit overall factors at will.



VIII.3 The Expanding Universe from Group Theory

O God, I could be bounded in a nutshell, and count myself a
king of infinite space—were it not that I have bad dreams.

—Hamlet, speaking to Rosencrantz and Guildenstern

The everyday sphere as a coset manifold

We learned, back in chapter IV.7, that, in contrast to S1 and S3 (which are both group
manifolds), the familiar everyday sphere S2 is a coset manifold: S2= SO(3)/SO(2). You
might want to review the discussion in chapter IV.7 to recall how the coset construction
works, but a simple intuitive understanding is easy to acquire.

Pick any fiducial point, say, the south pole. To rotate it to an arbitrary point on the
sphere—say, your favorite city—you first rotate around the x-axis and bring the south
pole to the appropriate latitude, and then rotate around the z-axis to further bring it to the
appropriate longitude. In other words, an arbitrary point on the sphere is characterized
by the two angles characterizing these two rotations; the dimension of the coset manifold
G/H is given by the number of generators of G (three in the case of SO(3)) minus the
number of generators of H (one in the case of SO(2)).

More explicitly, we can write a general element of SO(3) as eiϕJzeiθJxeiψJz. When this
rotation acts on the south pole, the angle ψ drops out (it “quotients out” or “mods out”),
and the general point on the sphere is characterized by θ and ϕ. The first rotation Rz(ψ),
corresponding to the denominator SO(2) in SO(3)/SO(2), can be omitted.

One point to keep in mind for later use is that we enjoy considerable freedom in choosing
the “two-parameter net rotation” eiϕJzeiθJx , as long as the rotation on the right is not around
the z-axis and that the two rotations are not around the same axis. We can choose eiϕJyeiθJx ,
or eiϕ(Jx+Jy)eiθJx , or eiϕ(Jx+Jy)eiθ(Jx−Jy), or any number of other possibilities. The canonical
choice is convenient merely because θ and ϕ then correspond to spherical coordinates.

All this amounts to a quick summary of the discussion in chapter IV.7 (and goes back
conceptually to the first introduction of cosets in chapter I.2). Another way of looking at
this is to imagine ourselves living at the south pole. Then the invariance group of our local
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flat space right at the south pole is in fact SO(2), the denominator in the construction of
the coset manifold.

Since the invariance group of our local flat spacetime is the Lorentz group SO(3, 1), we
are motivated to look at the coset manifold SO(4, 1)/SO(3, 1). Amazingly, this leads us to
an expanding universe that closely approximates the universe we live in.

The purpose of this chapter is to study the manifold1 SO(4, 1)/SO(3, 1), which, in
analogy with the Euclidean sphereSO(3)/SO(2), we may refer to as a Minkowskian sphere.

The group theory behind the exponentially expanding universe

Let us be a bit more general and discuss dSd ≡ SO(d , 1)/SO(d − 1, 1), known as the
d-dimensional de Sitter spacetime. (The dimension of the coset manifold is equal to
the difference in the number of generators of SO(d , 1) and of SO(d − 1, 1), namely,
1
2(d + 1)d − 1

2d(d − 1) = d .) We proceed by analogy with Sd = SO(d + 1)/SO(d). In
essence, it boils down to the plea “What are a few signs among friends?”

Picture (d + 1)-dimensional Minkowski spacetime defined by2

ds2= ηMNdXMdXN =−(dX0)2+
d−1∑
i=1

(dXi)2+ (dXd)2 (1)

Here the indicesM andN range over 0, 1, 2, . . . d. We split the index range into time and
space as follows:M = (0, i , d), where the index i = 1, 2, . . . , d − 1 takes on d − 1 possible
values. (For the real world with d = 4, we are thus working in (4 + 1)= 5-dimensional
Minkowski spacetime.)

Consider the d-dimensional manifold in this (d + 1)-dimensional spacetime defined by

ηMNX
MXN =−(X0)2+

d−1∑
i=1

(Xi)2+ (Xd)2= 1 (2)

As remarked earlier, this may be thought of as a Minkowski unit sphere. It is left invariant
under SO(d , 1) (just as the Euclidean unit sphere S2 defined by X2+ Y 2+ Z2= 1 is left
invariant under SO(3).) In fact, you have known the Lie algebra of SO(d , 1) for a long time,
ever since chapter I.3. In the notation used here, it reads

[JMN , JPQ]= i(ηMPJNQ + ηNQJMP − ηNPJMQ − ηMQJNP ) (3)

As in the S2 = SO(3)/SO(2) example, pick a reference point on the Minkowski unit
sphere defined in (2), say, X∗ = (0, �0, 1). It is left invariant by SO(d − 1, 1), namely, the
set of transformations that do not touch the dth axis. Acting with SO(d , 1) onX∗, we then
map out the coset manifold.

Writing out SO(d , 1)/SO(d − 1, 1) explicitly

In a sense, that is the end of the story. But as in the case of the S2, the goal is to choose a
convenient set of coordinates analogous to the familiar spherical coordinates. For ease of
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exposition, it is convenient to give names to the generators JMN . (For S2, this step is taken
implicitly, since we already have the names Jx, Jy, and Jz branded into our brains virtually
since childhood.) But wait, we already have a set of names ready made from chapter
VIII.2, when we discussed the conformal algebra, namely, P , K , and D (the generators
of translation, conformal transformation, and dilation, respectively) and the generators of
Lorentz transformation. Even though we are not discussing conformal transformations
here, we can use these names for free.

There is a slight catch: in chapter VIII.2 we talked about SO(d , 2); here we are dealing
with SO(d , 1). But we are surely adult enough to deal with this minor adjustment in
the range of indices. As already noted, we divide the index M into M = (0, i , d), with
i = 1, 2, . . . , d − 1.

We now identify the 1
2(d + 1)d generators of SO(d , 1). First, we have the generators of

rotation Jij . Next, recall from chapter VIII.2 that P andK are orthogonal combinations of
the Ji0 and Jd , i (adapting the notation to suit the discussion here). So, let us denote

Pi ≡ Ji0 + Jd , i , Ki ≡ Ji0 − Jd , i , D ≡ Jd , 0 (4)

Then, for example, [Pi , Pj ]= [Ji0 + Jd , i, Jj0 + Jd , j ]= i(−Jij + Jij − δijD + δijD)= 0.
Note that to obtain this familiar result, we have to define translation Pi as a linear combi-
nation of a boost in the ith direction and a rotation in the (d , i)-plane. As another example,
[D , Pi]= [Jd , 0, Ji0 + Jd , i]=−i(Jd , i − J0i)=−iPi.

Since the context is different from chapter VIII.2 (and also given our inclusion of factors
of i here), we display here the SO(d , 1) algebra, which you can also deduce from (3):

[Pi , Pj ]= 0, [Ki , Kj ]= 0,

[D , Pi]=−iPi , [D , Jij ]= 0, [D , Ki]= iKi ,

[Jij , Pk]= i(δikPj − δjkPi), [Jij , Kk]= i(δikKj − δjkKi),

[Pi , Kj ]= 2iδijD − 2iJij (5)

Perhaps it is worth emphasizing that the algebra SO(d , 2) in chapter VIII.2 has two time
coordinates, while the algebra SO(d , 1) here has only one. We are merely borrowing the
names D, P , K , and J .

These generators act linearly on the embedding coordinates XM . As in chapter III.3,
their action can be represented by JMN = i(XM∂N −XN∂M). Thus, each of these gener-
ators is represented by a (d + 1)-by-(d + 1) matrix. We arrange the indices in the order
(0, {i}, d) = (0, 1, 2, . . . , d − 1, d), as already indicated above. For example, the boost
D ≡ Jd , 0 in the dth direction is represented by

D = i

⎛⎜⎜⎜⎝
0 0 −1

0 0 0

−1 0 0

⎞⎟⎟⎟⎠ (6)

The notation is such that along the diagonal, in the upper left, the 0 represents a 1-by-1
matrix with entry equal to 0; in the center, the 0 represents a (d − 1)-by-(d − 1) matrix with
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all its entries equal to 0; and finally, in the lower right, the 0 once again represents a 1-by-1
matrix with entry equal to 0. Exponentiating the generatorD to obtain the group element,
we obtain

eiDt =

⎛⎜⎜⎜⎝
cosh t 0 sinh t

0 I 0

sinh t 0 cosh t

⎞⎟⎟⎟⎠ (7)

In other words, this is a (d + 1)-by-(d + 1) matrix with a (d − 1)-by-(d − 1) identity matrix in
its center. It is simply a boost in the dth direction, leaving the other d − 1spatial coordinates
untouched.

Similarly, we have

�P . �x = i

⎛⎜⎜⎜⎝
0 �xT 0

�x 0 �x
0 −�xT 0

⎞⎟⎟⎟⎠ (8)

In the matrix, �x is to be interpreted as a (d − 1)-dimensional column vector (so that �xT is
a (d − 1)-dimensional row vector). (Notice that as a linear combination of a boost and a
rotation, �P . �x is symmetric in its upper left corner and antisymmetric in its lower right
corner, so to speak.) Exponentiating, you will find

ei
�P .�x =

⎛⎜⎜⎜⎝
1+ 1

2 �x2 �xT 1
2 �x2

�x I �x
− 1

2 �x2 −�xT 1− 1
2 �x2

⎞⎟⎟⎟⎠ (9)

Notice that ( �P . �x)3= 0, so that the exponential series terminates. You are invited to verify
that ei �P .�xei �P .�y = ei �P .(�x+�y).

Choice of coordinates on the coset manifold
and observational astronomers

Our chosen reference pointX∗ = (0, �0, 1) is not touched by Jij and Ji0= 1
2(Pi +Ki). Thus,

in analogy with the general rotation eiϕJzeiθJxeiψJz in the case of the ordinary sphere, we
can place the transformations generated by Jij and (Pi +Ki) on the right. They don’t do
anything. For the analog of the rotations eiϕJzeiθJx on the left, which do the actual work, we
have any number of choices, as explained above. Different choices correspond to different
coordinates on the de Sitter spacetime dSd .

With the benefit of hindsight, we choose ei �P .�xeiDt . As we will see momentarily, the
parameters �x and t turn out to be what observational astronomers call space and time in
an expanding universe. All that remains for us to do is plug in (7) and (9) and determine
where X∗ gets mapped to:
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X = (gX∗)= ei �P .�xeiDt(0, �0, 1)=
(

sinh t + 1
2
et �x2, et �x , cosh t − 1

2
et �x2

)
(10)

From (10), a straightforward computation gives

ds2= ηMNdXMdXN =−(dX0)2+
∑
i

(dXi)2+ (dXd)2

=−dt2+ e2td �x2 (11)

This group theoretic derivation should make us a bit less amazed at the simplicity of the
final result.

We recognize this as the metric of the exponentially expanding, spatially flat universe.
Space is Euclidean, described by the Pythagorean d �x2 multiplied by the scale factor e2t , so
that the distance between any two points in space is increasing like et .

I mentioned earlier that our observed universe is well approximated by this metric.
Group theoretically, we coordinatize an event at (t , �x) by the group element g(t , �x) =
exp(i �P . �x) exp(iDt) needed to bring the reference point X∗ on the Minkowskian sphere
to our event.

Appendix: Helmholtz’s remarkable insight

In 1876, Helmholtz understood3 that space could be Euclidean, spherical, and hyperbolic using the language of
coset manifolds. Imagine ourselves living in the late nineteenth century (and as smart as Helmholtz). Then we
could have started with two empirical observations and arrived at these three possibilities. The isotropy of space
implies that space is of the formG/SO(3). The 3-dimensionality implies thatGmust have 3+ 3 generators. There
are three Lie groups with six generators, namely, G= E(3) (that is, the Euclidean group consisting of rotations
and translations), G= SO(4), and G= SO(3, 1). The resulting manifold G/SO(3) corresponds to Euclidean,
spherical, and hyperbolic, respectively. Note the appearance, in this context, of the Lorentz group long before
special relativity!

Now let us generalize this discussion to spacetime. We know that spacetime is Lorentz invariant and 4-
dimensional. Thus, if spacetime is homogeneous, it should be of the formG/SO(3, 1), withG having 6+ 4= 10
generators. Again, there are three possibilities, namely, G= E(3, 1) (that is, the Poincaré group consisting of
Lorentz transformations and translations),G= SO(4, 1), andG= SO(3, 2). The resulting manifoldG/SO(3, 1)
corresponds to Minkowski de Sitter, and anti de Sitter spacetime, respectively. We have not discussed anti de
Sitter spacetime here; the reader is invited to work it out or to look it up.4

Notes

1. The material here is based on the work by S. Deser and A. Waldron.
2. This material is adapted from appendix 1 to chapter IX.10 in G Nut. Since in gravity, the metric choice
η00 =−1, ηij =+1 is almost standard (see G Nut, p. 866), we have flipped the overall sign of η. Again, I
invoke Emerson here.

3. H. Helmholtz, “The Origin and Meaning of Geometrical Axioms,” Mind, Vol. 1, No. 3 (Jul. 1876), pp. 301–
321, http://www.jstor.org/stable/2246591.

4. One possible reference is chapter IX.11 in G Nut.

http://www.jstor.org/stable/2246591




Part IX The Gauged Universe

The modern understanding of the strong, weak, and electromagnetic interactions involves
quarks and leptons interacting with one another via a web of gauge bosons. Group theory
determines the interactions among the gauge bosons as well as the interactions of the
gauge bosons with the quarks and leptons.

The discussion here emphasizes the group theoretic aspects rather than the field theo-
retic aspects of this understanding. My hope is that readers without a firm grounding in
quantum field theory will still be able to appreciate the crucial role played by group theory.
My goal is to show that the group theory you studied in this book suffices in this daring
enterprise of grand unifying the three nongravitational interactions.

In the final chapter I describe the puzzle of why quarks and leptons come in three
generations. We do not yet know how this family problem is to be resolved and whether
group theory will play an essential role.





IX.1 The Gauged Universe

The Creator likes group theory

When a clergyman asked J.B.S. Haldane1 what he had learned about the Creator after
a lifetime of studying Nature, he answered, “an inordinate fondness for beetles.” If the
clergyman were to ask a theoretical physicist like me a similar question, I would have
answered, an inordinate fondness for group theory.2

Group theory governs the universe. Literally.
Group theory is useful not only in classifying the states of atoms and molecules, or in

determining what types of crystals are possible. Sure, that’s all important stuff, but group
theory can do a lot more. Leaving aside gravity, which is not yet completely understood,
we now know that the universe is governed by a web of gauge bosons, each corresponding
to a generator of a Lie algebra.

Let that statement sink in for a second. It is almost as if the Creator of the universe
understood Lie groups and decided to use them (a few of the simplest exemplars anyway)
to construct the interactions among the fundamental particles that fill the universe. You
might call Him or Her an applied group theorist.

To read this chapter, you need a rudimentary sense of what quantum field theory is.
Since I will be emphasizing the group theoretic rather than the field theoretic aspects of
the story, what knowledge I require is actually quite minimal. I also have to assume that
you have heard of quarks and leptons, and about the four fundamental interactions among
them—the strong, the electromagnetic, the weak, and gravity (which we are leaving aside,
as just mentioned).

Quarks and leptons

So first we have to talk about the quarks and the leptons, known collectively as fermions in
honor of Enrico Fermi. In school we learned that matter is composed of protons, neutrons,
and electrons. The proton is now known to be made of two up quarks and a down quark,
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thus P = (uud), and the neutron to be made of two down quarks and an up quark, thus
N = (ddu). In β-decay, a down quark inside the neutron is transformed by the weak
interaction into an up quark and an electron and an antielectron-neutrino, in a process
written as d→ u + e− + ν̄e. At this level, matter is composed of u, d, ν̄e, and e−. The
electron carries electric charge −1, the up quark charge + 2

3 , the down quark charge − 1
3,

and the antineutrino charge 0. The photon couples to the various fermions with a strength
proportional to the fermion’s charge, thus generating the electromagnetic interaction we
know, love, and depend on for livelihood and entertainment. It leaves the antineutrino
alone.∗

For a long time, the strong interaction gluing the quarks inside protons and neutrons
together (not to mention the protons and neutrons inside nuclei) was not understood.
Eventually, it was realized that the quarks carry a quantum number named color by Gell-
Mann. Each quark comes in three color varieties, call them red, green, and yellow. For
example, a red up quark ur and a yellow down quark dy could scatter off each other
to become a yellow up quark uy and a red down quark dr . Processes such as ur + dy→
uy + dr are then responsible for the strong interaction.

It would certainly seem to you and me that this motley crew of fermions (ur , ug, uy, dr ,
dg, dy, e−, and νe), dancing to the tune of the four fundamental interactions, would suffice
to make up an attractive and functioning universe, which in fact could closely approximate
the actual universe we live in.

But how naive we are compared to the all-knowing Creator. Physicists later discovered
that this crew actually appears in triplicate!

Corresponding to the up quark is the charm quark c; to the down quark, the strange
quark s; to the electron, the muon;† and to the electron-neutrino, the muon-neutrino. We
have what is sometimes called the second generation of fermions, consisting of cr , cg, cy,
sr , sg, sy, μ−, and νμ. Utter amazement and disbelief among physicists.

To even more amazement and disbelief, experimentalists subsequently discovered a
third generation, consisting of t r , tg, ty, br , bg, by, τ−, and ντ . The street names these guys
are known by also got uglier: the top quark, the bottom quark, the tau, and the tau-neutrino.

Why matter comes triplicated is a totally unsolved puzzle in particle physics known as
the family problem.3

So much for a lightning-quick inventory of the matter content of the universe. For
the purpose of this chapter, we will simply ignore the existence of the second and third
generations.4 I need hardly say that in this chapter I will be necessarily cutting corners,
omitting details, and ignoring subtleties. For example, what appears with the up quark in
the first generation is not purely the down quark, but the down quark mixed in with a bit
of the strange quark, and an even smaller bit of the bottom quark. As another example,
before the year 2000 or so, neutrinos were believed to be strictly massless, but then they

∗ It goes without saying that each one of these statements represents decades of work, sweat mixed in, not
with blood, but with serious headaches and puzzlements, by armies of nuclear and particle physicists, theorists,
and experimentalists collaborating closely.

† To wit, the famous query by I. I. Rabi, “Who ordered the muon?”
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were discovered to have tiny masses much less than that of the charged leptons (the
electron, the muon, and the tau). Again, what appears in the first generation is not the
electron neutrino νe but a linear combination of νe, νμ, and ντ , in a phenomenon known
as neutrino mixing. None of this is understood, and group theory may or may not play a
role in the pattern of masses and mixing.

A web of interacting gauge bosons

Now that we have gone through what matter is made of, we have to discuss the forces
among these fundamental particles.

We now know that the strong, the electromagnetic, and the weak interactions are
described by nonabelian gauge theories written down by Yang and Mills in 1954. We will
refer to these theories5 as gauge theories for short.

For any compact Lie group G, we can write down a gauge theory. For each generator
T a of the Lie algebra of G, there exists a gauge boson, namely, a spin 1 particle that
obeys Bose-Einstein statistics. (The familiar photon is an example of a gauge boson.) The
gauge bosons interact among themselves in a manner discovered by Yang and Mills and
determined by the structure constants f abc of the Lie algebraG. The precise nature of this
interaction does not concern us here but is in fact essential for the properties of the strong,
the electromagnetic, and the weak interactions.

The notion of gauge theories evolved out of our understanding of electromagnetism,
which turns out to be a particularly elementary (once again, Nature is kind to physicists)
gauge theory based on that simplest possible Lie group, U(1). Since U(1) has only one
generator, there is only one gauge boson, namely, our much-loved photon, which bestows
light on the world. And since the structure constant vanishes for U(1), the photon does
not interact with itself. It only interacts with particles that carry electric charge, and the
photon itself carries no charge.6

Constructing gauge theories

Clearly, there is no way for me to explain gauge theory here. I refer you to various modern
textbooks on quantum field theory.7 I can only give you the recipe for constructing a gauge
theory. Group theory is essential.

Here is the setup for the fun and games.

1. Pick a compact Lie group G. For our purposes, simply fixate on SU(N).

2. The 1
2N(N − 1) gauge bosons Aa

μ
transform like the adjoint representation (since that is

how the generators transform, as explained in chapter IV.1, for example).

3. The fermions (namely, the quarks and leptons) are put into various representations R ofG,

with a dR-dimensional representation accommodating dR fermion fields. The interactions

between the gauge bosons and the fermions are then fixed by the representation each

fermion belongs to (similar to the way that the interactions between the photon and the
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fermions are fixed by the charge assigned to each fermion; each of the representations of

U(1) is characterized by a number identified physically as the electric charge).

You see that you can’t even begin to talk about fundamental physics without learning
group theory. Group theory provides the language of fundamental physics.

Strong interaction and SU(3)

I will presently illustrate this recipe with an SU(3) example, but before I do that I have
to mention the Lorentz group. In chapter VII.3, you learned that each spin 1

2 fermion is
described by two Weyl fields, one left handed, the other right handed. Parity conservation
requires that the left and right handed fields be put into the same representation R of
the gauge group G. For example, the discovery that quarks come in three different color
varieties means that they can be put in the fundamental 3-dimensional representation 3
of SU(3). Parity then requires that the two sets of fields for the up quark—the left handed
ur
L

, ugL, and uyL, and the right handed ur
R

, ugR, and uyR—are both put into the 3.
You also learned in chapter VII.3 that the conjugate of a left handed field transforms like

a right handed field.8 It turns out to be convenient for grand unified theorists to rewrite
all the right handed fields in the gauge theory as conjugate left handed fields. In other
words, instead of ψR, we could just as well write ψcL. Thus, the fields ur

L
, ugL, and uyL are

put into the 3, while the conjugate fields ucr
L

, ucgL, and ucyL are put into the 3∗ of SU(3).
Since everybody is left handed, henceforth we can omit the subscript L. The ucs are the
fields for the different color varieties of the anti-up quark.

Our task is to assign the fermion fields of the first generation, namely, the 15 (left
handed) fields

ur , ug , uy , ucr , ucg , ucy , dr , dg , dy , dcr , dcg , dcy , e−, e+, νe (1)

into an assortment of representations of SU(3).
We are now ready to describe the interaction of the gauge bosons with the fermions in

this particular example. The eight gauge bosonsAa
μ

(a = 1, . . . , 8) couple to the generators
T a as represented in the representation R the fermions belong to. In other words, Aa

μ

couples to the uLs via λa and to the ucLs via λ∗
a
. (Here λa denotes the Gell-Mann matrices

in chapters V.2 and V.3.)
More precisely, for those readers who know a bit of quantum field theory, the relevant

terms in the Lagrangian involving the u quark read

L= gAa
μ
(ūλaγ

μu+ ūcλ∗
a
γ μuc) (2)

(Those readers who do not know can safely ignore this more technical remark.) To read off
the coupling of a given gluon to the quarks, we simply look up the λmatrices in chapter V.3

and plug in. With the names chosen arbitrarily here of red, green, and yellow, u=
(
ur

ug

uy

)
.

For example, the fourth gluon A4
μ

couples to (ūrγ μuy + ūyγ μur + ūcrγ μucy + ūcyγ μucr):
it turns a yellow up quark into a red up quark, and so on.
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This being a book on group theory, we focus on the group theoretic, rather than the field
theoretic, aspects of gauge theories. Suffice it to know the eight SU(3) gauge bosons, called
gluons, transform the three up quarks into one another and the three anti-up quarks into
one another, according to the group properties of the 3 and 3∗ representations, respectively.
Similarly for the down quarks and the antidown quarks. The process ur + dy→ uy + dr ,
mentioned earlier as responsible for the strong interaction, is then understood “more
microscopically” as due to the effect of a gluon being exchanged between an up quark and
a down quark: ur becomes uy by emitting an appropriate gluon, which when absorbed
by dy turns it into dr . The resulting gauge theory, known as quantum chromodynamics,
furnishes the modern theory of the strong interaction.

The strong interaction is explained in this way in terms of the gauge group, namely,∗

SU(3), and the representations R the fermions are put into. We list the representations
as follows, using a self-evident notation: u∼ 3, uc ∼ 3∗, d ∼ 3, dc ∼ 3∗, e ∼ 1, ec ∼ 1, and
νe ∼ 1. The leptons, the electron, the antielectron, and the neutrino, are assigned to the
singlet representation ofSU(3). Recall that by definition the singlet or trivial representation
does not transform at all under the group. Thus, the assignment of the leptons to the 1 of
SU(3) just states mathematically the physical fact that they do not participate in the strong
interaction. They are ignored by the gluons, which do not transform them at all.

This cold shoulder can be expressed by saying that we can obtain the term describing
the coupling of the electron to the gluon analogous to those terms in the Lagrangian in (2)
by replacing λa with a big fat 0; thus, Aa

μ
(ē0e)= 0, which is as 0 as any 0. In other words,

the term coupling the electron to the gluon does not exist. Mathematically, the generator
Ta of SU(3) is represented in the trivial representation 1 by 0.

In summary, the strong interaction can be specified by listing the nontrivial irreducible
representations of SU(3). We replace the list in (1) by

(ur , ug , uy), (ucr , ucg , ucy), (dr , dg , dy), (dcr , dcg , dcy) (3)

In other words, the gluons transfer the three fields within each pair of parentheses into
one another. Note that e−, e+, and νe are not listed. The group theoretic statement is
that the fermion fields of the first generation are assigned to the reducible representation
3⊕ 3∗ ⊕ 3⊕ 3∗ ⊕ 1⊕ 1⊕ 1 of SU(3).

The neutrino has no conjugate partner

Another detail here—namely, that we write only νe but not νc
e
—is of great importance in

particle theory, but readers not into particle physics may safely ignore it, at least for now.
In chapter VII.3, I mentioned that the profound discovery of parity is intimately connected
with the neutrino having only a left handed component, thus satisfying the Weyl equation

∗ At the risk of confusing some readers, I should mention that this SU(3), which is supposed to be exact and
fundamental, is to be clearly distinguished from the SU(3) discussed in chapter V.2, which is approximate and
not associated with any gauge bosons. Under that SU(3), the up, down, and strange quarks transform into one
another.
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rather than the Dirac equation. There is νL, but not νR, and hence there is no νcL. (By the
way, since we are considering only one generation of fermions here, we can also safely
drop the subscript e on the neutrino field νe.)

Let us pause and count how many Weyl fields we have in one generation: 3+ 3+ 3+
3+ 1+ 1+ 1= 15. That is a number to keep in mind.

Weak interaction and SU(2)

Now that we have gone through the strong interaction in record time, let us now tackle
the weak interaction.9 The β-decay d→ u+ e+ ν̄ which started the arduous century-long
study of the weak interaction (which is still going on) will act as our guide.

This process would be explained if we propose an SU(2) gauge theory in which the up

and down quarks transform as a doublet, schematically ∼
(
u

d

)
. The gauge theory would

have 22− 1= 3 gauge bosons calledWa
μ

(with a = 1, 2, 3 here) coupled to the generators T a

of SU(2), which by now you know all too well. In the doublet representation (namely, the
2 of SU(2)), T a is represented by the Pauli matrices τa. Hence the linear combinations10

W 1±i2
μ

couple to τ∓ = 1
2(τ1∓ iτ2). These two gauge bosons thus transform the up quark

into the down quark and vice versa. Similarly, we will put the neutrino and the electron

into a doublet ∼
(
ν

e

)
. The same two gauge bosons thus transform the neutrino into the

electron and vice versa.

Direct product structure

We are obliged to mention a couple of details, even in such a broadbrush description of
the gauge theories of the fundamental interactions. Since the gauge group SU(2) and the
Lorentz group SO(3, 1) operate in different arenas—the former in an internal space (as
alluded to in chapter V.1) and the latter in spacetime—they commute.

It follows that since the neutrino is left handed, the electron field in the doublet has to
be left handed. The right handed electron field eR (or equivalently, ecL) has no neutrino
field to partner with. Thus, it has to be a singlet, that is, transforming like the 1 of SU(2).

Decades of experiments on the weak interaction, particularly those focusing on parity

violation, have shown that the u and d in the weak interaction doublet ∼
(
u

d

)
are left

handed. The gauge bosons W 1±i2
μ

leave the right handed u and d fields alone; in other
words, the fields uc and dc, just like ec, transform like the 1 of SU(2), that is, they don’t
transform at all.

Another important feature of the weak interaction bosons W 1±i2
μ

is that, while they
transform uL and dL into each other, they do not touch the color the quarks carry. In
other words, the strong and weak interactions do not talk to each other. Mathematically,
the statement is that the gauge group has a direct product structure (as was first mentioned
way back in chapter I.1), namely, SU(3)⊗ SU(2).
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Nature strikes me as being extraordinarily kind to theoretical physicists, as I have
remarked elsewhere. I am not going to make you guys master some horribly large group,
Nature says. Since you live in 3-dimensional space, surely you can figure out SO(3), and
eventually its double cover SU(2). And once you learn that, you are smart enough to figure
out SU(3), no? Yes, I know that the direct product is a cheap way of making a bigger group
out of smaller groups, but I like it, and also I want to make life simple for you, so then
how about SU(3) ⊗ SU(2)? Is that easy enough?

The bottom line is that our 15 Weyl fields are assigned to irreducible representations of
SU(3) ⊗ SU(2) as follows:⎛⎝( ur

dr

)
,

(
ug

dg

)
,

(
uy

dy

)⎞⎠,

(
ν

e

)
, (ucr, ucg, ucy), (dcr, dcg, dcy), ec (4)

Stated more compactly, the fields of the first generation form the reducible representation
(3, 2)⊕ (1, 2)⊕ (3∗, 1)⊕ (3∗, 1)⊕ (1, 1), giving in total 3 . 2+ 1 . 2+ 3 . 1+ 3 . 1+ 1 . 1=
6+ 2+ 3+ 3+ 1= 15. These numbers are intended to test whether you are following the
discussion. If they don’t make sense, please go back some.

Thus far, our gauge theory of the universe minus gravity is based on SU(3) ⊗ SU(2)
⊗ SO(3, 1). Henceforth, we will omit mentioning the Lorentz group; it is certainly under-
stood that we ain’t talking about nonrelativistic physics when we discuss the fundamental
interactions.

Where is electromagnetism?

Confusio suddenly speaks up. “What about the gauge bosonW 3
μ

? Is it the photon?”

Confusio is not confused at all this time. Good question! The gauge boson W 3
μ

is

associated with the generator T 3. Thus, it couples to u and ν with strength + 1
2 , to d and e

with strength − 1
2 , and does not couple to uc, dc, or ec at all. Hence this boson cannot be

the photon, which could not couple to the neutrino at all, since it carries no electric charge.
Also, since electromagnetism respects parity, the photon must couple to eL and eR with
the same strength, or equivalently, to e and ec with the opposite strength.

We thus conclude that at least one more gauge boson has to be introduced. Here the Gell-
Mann Nishijima formula,Q= I3+ 1

2Y (withQ the electric charge, I3 the third component
of isospin, and Y the hypercharge), introduced historically in a different context and
discussed in chapter V.1, gives us a hint. Let us write, in the present context∗

Q= T 3+ 1
2
Y (5)

Introduce another gauge group U(1) with 1
2Y as its generator. We could determine the

values of 1
2Y as follows. Given an SU(2) representation, the sum of T 3 for the fields in the

∗ It must be emphasized that T 3 is not the third component of isospin, but one of the generators of the SU(2)
gauge group introduced here.
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representation must add up to 0 by definition (recall the S in SU(2)!). Hence (5) tells us
that 1

2Y of the representation is equal to the average electric charge Q of the fields in the
representation.

Recall that the electric charges of the up quark, the down quark, the neutrino, and the
electron are equal to + 2

3 , − 1
3, 0, and −1, respectively. We can then readily determine

the hypercharges of the 15 fermion fields. Thus, in the list (4), the fields transforming
like the singlet representation 1 of SU(2) have hypercharge equal∗ to its electric charge;
1
2Y for the fields uc, dc, and ec is equal to − 2

3 , + 1
3, and +1, respectively. (The hypercharge

of the quarks, just like electric charge, is independent of the quark’s color.)

For the fields in (4) transforming like the 2 of SU(2),
(
u

d

)
and

(
ν

e

)
have 1

2Y equal to

the average charges, 1
2

(+ 2
3 + (− 1

3)
)= 1

6 and 1
2

(
0+ (−1)

)=− 1
2 , respectively.

The gauge group underlying the theory of the strong, weak, and electromagnetic inter-
actions is thus extended to SU(3)⊗ SU(2)⊗U(1). The irreducible representations of this
direct-product group are then identified by three numbers, specifying how the irreducible
representation transforms under SU(3), SU(2), and U(1), respectively. The third number
is just the value of 1

2Y for the representation. For example, the neutrino electron doublet(
ν

e

)
transforms like the irreducible representation (1, 2, − 1

2). With this notation, the 15

Weyl fields of the first generation are then assigned to the reducible representation(
3, 2,

1
6

)
⊕
(

3∗, 1, −2
3

)
⊕
(

3∗, 1,
1
3

)
⊕
(

1, 2, −1
2

)
⊕ (1, 1, 1) (6)

The values of 1
2Y do not particularly concern you; the important point is that the

interactions of the gauge boson associated with U(1), call it Bμ, with the quarks and the
leptons are completely determined.

The photon comes out to be a particular linear combination of theW 3
μ

and Bμ, coupling
to electric charge as given by (5). The linear combination orthogonal to the photon is known
as theZ. The discovery of a gauge boson with the predicted properties of theZ gave particle
physicists tremendous confidence in the correctness of the SU(3)⊗ SU(2)⊗ U(1) gauge
theory outlined here.

The electron mass

Recall that the electron mass is described by the bilinear ecCe given in chapter VII.5.
In electrodynamics, the two fields e and ec, having opposite electric charges, transform
oppositely (e→ eiθe, ec→ e−iθec), and thus the Dirac mass bilinear does not change under
the U(1) of electromagnetism.† But in the SU(2)⊗ U(1) theory, e and ec transform quite

differently: e lives inside a doublet l ≡
(
ν

e

)
, but ec is a singlet living by herself. Thus, under

∗ Since there is only one field in each singlet representation 1, we do not even have to average.
† If you confused Thomson’s e with Euler’s e at this stage, go back to square one.
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SU(2), l→ ei
�θ �σ l, while ec→ ec. Similarly, under the U(1), l→ e−iξ/2l and ec→ eiξec.

Thus, the mass bilinear ecCe is not invariant under SU(2)⊗ U(1).
This poses a serious problem, which Weinberg solved by introducing a scalar (that

is, scalar under the Lorentz group) doublet∗ (doublet under SU(2)) ϕ ≡
(
ϕ0

ϕ−
)
=
(
ϕ1

ϕ2

)
,

known as a Higgs field, which transforms just like l under SU(2)⊗ U(1), namely, ϕ→
ei
�θ �σϕ. Thus, as we learned in chapters IV.4 and IV.5, the combination liϕjεij (with

i , j = 1, 2) is a singlet under SU(2). The idea is then to replace the Dirac mass bilinear for
the electron by

ecCe→ (ecCli)ϕjεij (7)

Note that for the hypercharge Y/2 to add up correctly (+1− 1
2 − 1

2 = 0), ϕ must have
Y/2=− 1

2 . In other words, ϕ has the same quantum numbers as l and so has the same
electric charge content, as already indicated: the top component ϕ1= ϕ0 carries no electric
charge.

Since ϕ1(x) is a scalar field, it is a function of the spacetime coordinates x and thus
the right hand side of (7) looks nothing like the left hand side. But now notice that if
ϕ1(x) = v happens to equal a constant v while ϕ2(x) = 0, then (ecCli)ϕjεij becomes
(ecCl2)vε21∝ ecCe. We get what we had asked for: the Dirac bilinear for the electron mass.

Roughly speaking, we can understand what is going on by appealing to an analogy.
That one component of ϕ can be a constant while the other component vanishes is not so
different from the electric field �E between two capacitor plates oriented perpendicular to
the x-axis, say. Then E1 is constant independent of �x, while E2 and E3 vanish.

In this breathless rush11 through what is called the standard model of particle physics,
we have, as I forewarned, by necessity omitted a number of important topics. In particular,
we did not address how some gauge bosons become massive, while others (the gluons and
the photon) remain massless. (I will leave it to you to figure out how the quarks get mass.
Remarkably, you will discover that one single Higgs field transforming, like (1, 1

2 , − 1
2) and

its conjugate, can do the job for both the electron and the up and down quarks.) But as I
said, I am focusing on the group theoretic, rather than the field theoretic, aspects of the
story. Keep (7) in mind. When we do grand unified theory in chapter IX.2, we will need its
analog.

Pieces of the jigsaw puzzle

In summary, our universe with gravity set aside is well described by a gauge theory based
on the Lie group (or better,† algebra) SU(3)⊗ SU(2)⊗ U(1). The quarks and leptons of

∗ Here (ϕ0, ϕ−) and (ϕ1, ϕ2) are just different names for the same two fields.
† As remarked long ago in chapter I.3, for most purposes, and certainly for the purposes of this chapter, it

suffices to talk about the Lie algebra and avoid global issues.
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each generation are placed in the following representations of this group:(
3, 2,

1
6

)
,
(

3∗, 1, −2
3

)
,
(

3∗, 1,
1
3

)
,
(

1, 2, −1
2

)
, and (1, 1, 1) (8)

Call this the master list of the jigsaw puzzle.
The notation has been explained. For example, (3, 2, 1

6 ) is a 6-dimensional representa-
tion of the direct product group SU(3)⊗ SU(2)⊗U(1), transforming like a 3 of SU(3), a 2
of SU(2), with hypercharge 1

6 (and hence electric charges 1
2 + 1

6 =+ 2
3 and− 1

2 + 1
6 =− 1

3).
These “quantum numbers” thus identify the six fields as ur , ug, uy, dr , dg, and dy. An-
other example: (1, 1, 1) is a 1 under both SU(3) and SU(2), with hypercharge 1 and hence
electric charge 1. It can only be e+. Can you identify (1, 2, − 1

2)?
So, this is the most compact description of how the nongravitational physical world

works. Matter is specified by a triplet of numbers. The gluons couple to the first number;
the weak bosonsW± and a linear combination of the photon γ and the Z boson couple to
the second number; and the orthogonal linear combination of γ andZ couples to the third
number. In a sense, Nature appears to have tricked the theoretical physicists: they might
have thought that the photon should naturally couple to the U(1) subgroup of SU(2) and
have the world be simply SU(3)⊗ SU(2). We will see in chapter IX.2 that Nature has Her
reason.

Could this list (8) be the end of the story?

Exercises

1 Work out the group theory behind the quark masses.

Notes

1. From Boilerplate Rhino, by D. Quammen, p. 242.
2. Fearful, p. 132.
3. It has been hoped that group theory might be of some help here. What we need is a group with 3-dimensional

representations. For instance, the Frobenius groups and the tetrahedral group have been considered in the
literature. See interludes II.i3 and IV.i1.

4. The terminology has not been codified. Sometimes what I call “generation” is referred to as a family. One
lame joke is that the family problem occurs when three generations have to live together.

5. The word “theory” in this context represents a slight abuse of language; in fact, the standard model of the
three nongravitational interactions is fairly well established, at least in broad outline.

6. See QFT Nut, p. 230.
7. For example, chapter IV.5 and part VII in QFT Nut.
8. In 1974, very few particle physicists knew this fact due to the predominance of Dirac’s 4-component spinor

formulation in all the leading textbooks.
9. For example, E. Commins and P. Buksbaum, Weak Interactions of Leptons and Quarks.

10. We ignore various factors, such as 1/
√

2, which are not relevant for our purposes.
11. For a more detailed exposition of the standard model, see, for example, chapters VII.2 and VII.3 in QFT Nut.
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Crying out for unification

In the standard model of particle physics, quarks and leptons are put into this collection
of irreducible representations of SU(3)⊗ SU(2)⊗ U(1):(

3, 2,
1
6

)
,
(

3∗, 1, −2
3

)
,
(

3∗, 1,
1
3

)
,
(

1, 2, −1
2

)
, and (1, 1, 1) (1)

This motley collection of representations practically cries out for further unification. Who
would have constructed the universe by throwing this bizarre looking list down?

What we would like to have is a larger gauge groupG containingSU(3)⊗ SU(2)⊗U(1),
such that this laundry list of representations would be unified into (ideally) one great big
representation. The gauge bosons in G (but not in SU(3)⊗ SU(2)⊗ U(1), of course)
would couple the representations in (1) to each other, for example, (3, 2, 1

6 ) to (1, 2, − 1
2).

Clues galore

There are many clues, at least in the glare of hindsight.
Imagine yourself a spy in some espionage movie finding a slip of paper with the list (1)

written on it. What does it say to you? Here is one clue. Add up the hypercharges 1
2Y of these

15 first generation Weyl fields: 3 . 2 . 1
6 + 3 . 1 . (− 2

3)+ 3 . 1 . 1
3 + 1 . 2 . (− 1

2)+ 1 . 1 . 1=
1− 2+ 1− 1+ 1= 0. Is that a coincidence or what?

Well, if the U(1) is part of a simple Lie algebra, such as SU(N) or SO(N), then Y would
be a generator and its trace would vanish; in other words, the sum of Y would equal 0. In
fact, if you are good at this sort of thing (that is, grand unifying the universe), you might
see that the sum 1− 2+ 1− 1+ 1 can be arranged as the sum of two zeroes: 1+ 1− 2= 0
and 1− 1= 0. Is this significant? By the end of this chapter, you will see that it is.
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Do-it-yourself grand unification

By now, you know enough group theory to construct the so-called grand unified theory,
unifying the strong, weak, and electromagnetic interactions. Indeed, I set up this book in
such a way so that you can do it now. You should try it before reading on.

To start, answer this question: What is the smallest group that contains SU(3) ⊗
SU(2)⊗ U(1)?

The smallest group that contains SU(3)⊗ SU(2)⊗ U(1) is SU(5). By now you know
all this stuff in your sleep after having gone through the discussion of SU(N) in chapter
IV.4. In particular, you know that SU(5) is generated by the 52− 1= 24 5-by-5 hermitean
traceless matrices acting on five objects we denote by ψμ with μ= 1, 2, . . . , 5, and which
form the fundamental or defining representation of SU(5).

Simply separateψμ into two sets:ψα with α = 1, 2, 3, andψi with i = 4, 5. Those SU(5)
matrices that act on ψα define an SU(3), and those SU(5) matrices that act on ψi define

an SU(2). Indeed, of the 24 matrices that generate SU(5), 8 have the form
(
A 0
0 0

)
, and 3

the form
(

0 0
0 B

)
, where A represents 3-by-3 hermitean traceless matrices (of which there

are 32− 1= 8, the Gell-Mann matrices of chapter V.3), and B represents 2-by-2 hermitean
traceless matrices (of which there are 22− 1= 3, namely, the Pauli matrices). Clearly, the
former generate an SU(3) and the latter an SU(2). This specifies how SU(3) and SU(2) fit
inside SU(5). The matrices of SU(3) and the matrices SU(2) commute, and so the group
so defined is actually SU(3)⊗ SU(2).

Furthermore, the 5-by-5 hermitean traceless matrix

1
2
Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
3 0 0 0 0

0 − 1
3 0 0 0

0 0 − 1
3 0 0

0 0 0 1
2 0

0 0 0 0 1
2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(2)

generates a U(1). Without being coy about it, we have already called this matrix the
hypercharge 1

2Y .
And indeed, it is traceless.
At the end of the preceding chapter, some theoretical physicists were left wondering why

Nature had to throw in that extra U(1) in SU(3) ⊗ SU(2) ⊗ U(1). We now see that the
reason may be grand unification: SU(5) naturally breaks up into SU(3) ⊗ SU(2) ⊗ U(1),
not SU(3)⊗ SU(2).

A perfect fit

The three objects ψα transform like a 3-dimensional representation under SU(3) and
hence could be a 3 or a 3∗. We have a choice here, which corresponds to choosing Y/2
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as the matrix in (2) rather than minus that matrix. Let us choose ψα as transforming like
the 3, which corresponds to ψμ transforming like the 5 of SU(5). In other words, we take
ψμ to furnish the defining irreducible representation of SU(5).

The three objects ψα do not transform under SU(2) and hence belong to the singlet 1
representation. Furthermore, they carry hypercharge − 1

3, as we can read off from (2). To
sum up, ψα transform like (3, 1, − 1

3) under SU(3)⊗ SU(2)⊗ U(1).
In contrast, the two objects ψi transform like 1 under SU(3) and 2 under SU(2), and

carry, according to (2), hypercharge 1
2 , and thus transform like (1, 2, 1

2).
This means that we embed SU(3)⊗ SU(2)⊗ U(1) into SU(5) by specifying how the

defining representation 5 of SU(5) decomposes into representations of SU(3)⊗ SU(2)⊗
U(1):

5→
(

3, 1, −1
3

)
⊕
(

1, 2,
1
2

)
. (3)

Taking the conjugate,∗ we obtain

5∗ →
(

3∗, 1,
1
3

)
⊕
(

1, 2, −1
2

)
(4)

Inspecting (1), we see that (3∗, 1, 1
3) and (1, 2, − 1

2) appear on the list. We are on the
right track! The fields in these two representations fit snugly into 5∗.

This accounts for five of the fields contained in (1); we still have to find the remaining
ten fields(

3, 2,
1
6

)
,
(

3∗, 1, −2
3

)
, and (1, 1, 1) (5)

Consider the next representation of SU(5) in order of size, namely, the antisymmetric
tensor representation ψμν. Its dimension is (5 . 4)/2= 10. Precisely the number we want,
if only the quantum numbers under SU(3)⊗ SU(2)⊗ U(1) work out!

You should have the fun of working it out, and of course this stuff would work out if it
is in textbooks by now.

Well, here we go. Since we know that 5→ (3, 1, − 1
3)⊕ (1, 2, 1

2), we simply work out (as
in part IV, for example, chapter IV.4) the antisymmetric product of (3, 1, − 1

3)⊕ (1, 2, 1
2)

with itself, namely, the direct sum of (where ⊗A denotes the antisymmetric product)(
3, 1, −1

3

)
⊗A

(
3, 1, −1

3

)
=
(

3∗, 1, −2
3

)
(6)(

3, 1, −1
3

)
⊗A

(
1, 2,

1
2

)
=
(

3, 2, −1
3
+ 1

2

)
=
(

3, 2,
1
6

)
(7)

and(
1, 2,

1
2

)
⊗A

(
1, 2,

1
2

)
= (1, 1, 1) (8)

∗ Note that there is no such thing as 2∗ of SU(2); we learned back in chapter II.4 that 2 is pseudoreal.
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(I will walk you through (6): in SU(3) 3⊗A 3= 3∗ (remember εijk?), in SU(2) 1⊗A 1= 1,
and inU(1) the hypercharges simply add:− 1

3 − 1
3 =− 2

3 . Were you paying attention? How
come for SU(2) we don’t add 1 and 1 to get 2?)

Thus

10→
(

3, 2,
1
6

)
⊕
(

3∗, 1, −2
3

)
⊕ (1, 1, 1) (9)

Lo and behold, these SU(3)⊗ SU(2)⊗U(1) representations form exactly the collection
of representations in (5).

The known quark and lepton fields in a given family fit perfectly into the 5∗ and 10
representations of SU(5)!

I have just described the SU(5) grand unified theory of Georgi and Glashow.1 In spite
of the fact that the theory has not been directly verified by experiments, it is extremely
difficult for me and for many physicists not to believe that SU(5) is at least structurally
correct, in view of the perfect group theoretic fit.

It is often convenient to display the content of the representation 5∗ and 10, using the
names given to the various fields historically rather than, say,∗ (3∗, 1, 1

3). We write 5∗ as a
column vector

ψμ =
(
ψα

ψi

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dc

dc

dc

ν

e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(10)

and the 10 as an antisymmetric matrix

ψμν = {ψαβ , ψαi , ψij}

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 uc −uc d u

−uc 0 uc d u

uc −uc 0 d u

−d −d −d 0 ec

−u −u −u −ec 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
(11)

(I suppressed the color indices on the right hand sides here.)
We now understand why the hypercharges of the 15 Weyl fields add up to zero in two

separate sets, as described at the start of this chapter. Hypercharge is a generator of SU(5),
and so is traceless in any given representation. Note the electric charge assignment in the
5∗, as shown in (10) (namely,Q=+ 1

3 onψα, 0 onψ4, and−1 onψ5), implies thatQ=− 2
3 ,

− 1
3, + 2

3 , 1 on ψαβ , ψα4, ψα5, and ψij , respectively, as shown in (11). (For example, acting
on ψα5, Q=− 1

3 + 1=+ 2
3 , and that identifies the up quark u in the first three rows and

the fifth column.)

∗ You recognize this? Yes, the antidown quark.
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Aside from its aesthetic appeal, grand unification based on SU(5) deepens our under-
standing of physics enormously. Among other things, it explains (i) that electric charge
is quantized and (ii) that the proton charge is exactly equal and opposite to the electron
charge.2

Quark and lepton masses in grand unified theory

We discussed how the electron gets its mass in the SU(3)⊗ SU(2)⊗ U(1) theory in
chapter IX.1. Let us now see how quarks and leptons get their masses in the SU(5) grand
unified theory.

Consider the Dirac mass bilinear ucCu for the up quark. Both the Weyl fields uc and u
appear in the 10 ∼ ψμν, and so we have to search for the up quark mass in the bilinear
ψμνCψρσ . But we have known since chapter IV.4 on SU(N) that this 4-indexed tensor is
not invariant under SU(5). This is precisely the same problem for the electron mass in the
SU(2)⊗ U(1) theory, as discussed in chapter IX.1.

We can solve the problem with the same “trick” as was used there: introduce a Lorentz
scalar field ϕτ transforming like the 5 under SU(5) and bring out the antisymmetric
symbol. As promised, the group theory we learned in chapter IV.4 is just what is needed
here. Add the SU(5)-invariant term εμνρστψ

μνψρσϕτ to the Lagrangian. The electric
charges of the five fields contained in ϕ are the opposite of those inψμ in (10); in particular,
ϕ4 is electrically neutral. Setting ϕ4 to a constant (that is, independent of spacetime),
we have

εμνρσ4ψ
μνCψρσϕ4→ ψ12Cψ35± permutations∼ ucCu (12)

We thus obtain the up quark mass, as desired.
What about the masses of the down quark and of the electron? Since dc and e belong

to the 5∗, while their partners d and ec belong to the 10, these masses have to come
from multiplying 5∗ and 10. Indeed, 5∗ ⊗ 10 does contain the 5, as we have known since
chapter IV.4. Explicitly, in parallel to (12), we have

ψμCψ
μνϕν→ ψμCψ

μνϕ4→ ψμCψ
μ4 ∼ dcCd + ecCe (13)

Here ϕν is the conjugate of ϕν, as explained in chapter IV.4.
Again, as in SU(3)⊗ SU(2)⊗U(1), one single Higgs field transforming like the 5 does

the job in SU(5). This offers a clue that SU(5)may not be the end of the story either.

Protons are not forever

I have to mention here one stunning prediction of the SU(5) grand unified theory, namely,
that protons, on which the world is founded, are not forever. I sketched in chapter IX.1
how the weak interaction, as described by SU(2), causes the neutron to decay; a similar
mechanism occurring in SU(5) causes the proton also to decay.
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Again, group theory rules. There are 52− 1= 24 generators, and hence 24 gauge bosons,
in the Lie algebra SU(5), 32− 1= 8 gauge bosons in SU(3), 22− 1= 3 gauge bosons in
SU(2), and 1 gauge boson in U(1). Thus, the grand unified theory contains an additional3

24 − (8+ 3+ 1)= 12 gauge bosons not in the standard SU(3)⊗ SU(2)⊗ U(1) theory.
You could well ask what these bosons do.

Back in part IV, you learned that the adjoint representation of SU(N) is furnished by
the traceless tensor with one upper index and one lower index. The 24 gauge bosons of
SU(5) can be identified with the 24 independent components of the traceless tensor Aμ

ν

with μ, ν = 1, 2, . . . , 5.
Recall that we decompose the SU(5) index μ, into μ = {α , i}, with α = 1, 2, 3 and

i = 1, 2. The eight gauge bosons in SU(3) transform an index of the type α into an index
of the type α , while the three gauge bosons in SU(2) transform an index of the type i into
an index of the type i .

The fun comes with the (2 . 3)+ (2 . 3)= 6+ 6= 12 additional gauge bosons Aα
i

and
Ai
α
, which transform the index α into the index i and vice versa. In other words, these

gauge bosons have one foot in SU(3) and the other foot in SU(2). Since α is a color index
pertaining to quarks, these previously unknown gauge bosons are capable of turning a
quark into a lepton and vice versa. Referring to (11), we see that A5

α
can change

ψα4 = d→ ψ54 = e+ (14)

for example. Group theoretically, the productA5
α
ψα4 transforms just likeψ54, as we can see

simply by contracting indices. This is just how we multiply tensors inSU(N), as we learned
in chapter IV.4. That a generator of the Lie algebra transforms ψα4 into ψ54 inside an
irreducible representation is realized physically in a gauge theory by a fermion absorbing
a gauge boson to turn into another fermion. Mathematics is realized as physics.

Similarly, the gauge boson Aα5 can change an up quark into an anti-up quark:

ψ5β = u→ ψαβ = u (15)

(Again, group theoretically, this corresponds to Aα5ψ
5β ∼ ψαβ .) In quantum field theory,

as mentioned in chapter IV.9, this can be described equivalently as an up quark changing
into an anti-up quark upon emitting the gauge boson A5

α
, namely, ψ5β ∼ A5

α
ψαβ .

Picture a proton= uud (that is, a bag of two up quarks and one down quark) sitting there
minding its own business. By emitting a gauge boson of the typeA5

α
, one of the up quarks

u becomes an anti-up quark u, according to (15). This gauge boson, when absorbed by the
down quark d , changes it into an antielectron e+, also known as the positron, according
to (14). Thus, this gauge boson, by being emitted and then absorbed, can generate the
process u+ d→ u+ e+, causing uud→ uu+ e+. Note that one of the two up quarks in
uud sits around as a spectator when the other up quark combines with the down quark
to produce an anti-up quark and a positron. The bag uu, consisting of an up quark with
an anti-up quark, describes a neutral pion π0. At the level of hadrons, this process is thus
observed as proton decay: p→ π0 + e+.

Proton decay has not yet been observed, but this could be due simply to the tank of
water used to detect the process not being large enough. Note the important conceptual
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point that while group theory allows us to predict which processes are possible, it cannot
possibly tell us what the actual decay rate is. For that we need quantum field theory.

The power of group theory as a constraint
on the low energy effective theory

As I said, SU(5) grand unification has not yet been confirmed, although the fit has
been seamless. Quite impressively, group theoretic arguments can take us a long way
in discussing proton decay. Here is another chance for me to impress on you the power of
group theory.

Within SU(3)⊗ SU(2)⊗U(1), the proton has no inclination—indeed, has no ability4—
to decay. It is only when we grand unify that the proton decays (as shown in the preceding
section). Now suppose that there is indeed physics beyond the SU(3)⊗ SU(2)⊗ U(1)
gauge theory, be it grand unified theory or something else, and that it causes the proton
to decay. But regardless of the details of this unknown physics, whatever it might be—let
that “regardless” and the “whatever” sink in for a minute—we can use group theory to say
something about proton decay. How is that possible? Read on.

Experimentally, there are in principle several observable decay modes, such as p→
π0 + e+, p→ π+ + ν̄, and p→ π+ + ν. If we don’t know in detail the physics causing
proton decay, we are surely not able to calculate the rates for each of these processes. But
remarkably, we are able to relate the various rates.∗

The reason is that in the face of almost total ignorance, we are nevertheless armed
with one crucial piece of knowledge, namely, the list (1). We know how the various
quark and lepton fields involved transform under SU(3)⊗ SU(2)⊗ U(1). Group theory
thus determines a good deal of what the Lagrangian (known as the effective Lagrangian)
responsible for proton decay must look like.5

The proton contains three quark fields and has spin 1
2 . Lorentz invariance insists that the

initial state and the final state must match, or in other words, that the effective Lagrangian
responsible for proton decay must transform as a singlet under SO(3, 1). Since group
theory tells us that 1

2 ⊗ 1
2 ⊗ 1

2 ⊗ 1
2 contains a singlet, but not 1

2 ⊗ 1
2 ⊗ 1

2 , to form a singlet,
we need another spin 1

2 field. Thus, the relevant terms in the effective Lagrangian must
consist of three quark fields and one lepton field, with the schematic form∼qqql. To form
a Lorentz scalar, we have to bring the knowledge we gained in part VII to bear and tie up
the spinor indices on these four Weyl fields by inserting various matrices (such as the C
matrix of chapter VII.5). You are fully capable of doing this now, but this is not the point
I want to emphasize here.

Instead, note that since SU(3)⊗ SU(2)⊗ U(1) is a good symmetry at the energy scale6

relevant for the physics of proton decay, the terms ∼qqql must also not transform under
SU(3)⊗ SU(2)⊗ U(1), as well as under the Lorentz group. Another way of saying this

∗ This is somewhat reminiscent of the discussion in part III: group theory can tell us about the degeneracy
and the pattern of the energy levels, but not the energies themselves.
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is that the quark field q and the lepton field l carry SU(3)⊗ SU(2)⊗ U(1) indices (as
specified by (1)), and you must tie up these indices as well as the spinor indices. This ends
up relating the various observable proton decay modes.

The stability of the world and conservation laws

That the proton cannot decay in SU(3)⊗ SU(2)⊗ U(1), a profound fact that accounts for
the stability of the world, can be put on a loftier footing by saying that baryon number
B is conserved. As the name suggests, and as you might recall from chapter V.2, each
baryon, such as the proton and the neutron, is simply assigned the number B =+1. The
up quark and down quark each carry B = 1

3. Since nothing in the SU(3)⊗ SU(2)⊗ U(1)
theory changes a quark into something else, the conservation of B follows essentially
by definition. The conservation law is associated∗ with a global7 U(1) symmetry of the
Lagrangian: transform every quark field by the same phase factor q→ eiαq, and the
SU(3)⊗ SU(2)⊗ U(1) Lagrangian is left unchanged. While this conservation law is of
fundamental importance, the group theory behind the associated symmetry is elementary.

Similarly, leptons (such as the neutrino and the electron) are assigned a lepton number
L = +1. Lepton number conservation is then associated with another U(1) symmetry:
transform every lepton field by the same phase factor l→ eiβl, and the SU(3)⊗ SU(2)⊗
U(1) Lagrangian is left unchanged.

Well, in SU(5), neither B nor L is conserved, and the proton can decay, as already
noted. But observe that the terms∼qqql describing proton decay still conserveB −L. The
combination of fields qqql has B = 1

3 + 1
3 + 1

3 = 1 and L= 1. Thus, B − L= 1− 1= 0.

Conservation or violation of B − L in proton decay

Whether B − L is conserved or violated is not merely for theoretical debate, but a matter
of some importance for experimenters searching for proton decay. Possible decay modes
includep→ π0+ e+ in the first case, andp→ π+ + π+ + e− in the second. Do you expect
a positron or an electron? Looking back, we see that (14) is what decides the issue.

To achieve a deeper understanding8 of why B − L is still conserved while neither B
nor L is conserved, and also for guidance in how to construct alternative theories that
would violate B − L, let us go through an instructive little exercise in group theory. Go
back to the two terms in (12) and (13) εμνρστψμνCψρσϕτ and ψμCψμνϕν that we added
to the Lagrangian. Write them group theoretically as (10 10 5ϕ) and (5∗ 10 5∗

ϕ
). These

two terms conserve a quantum number, call it X, because 3− 2= 1; what I mean by
that is that there are three numbers we can choose freely (namely, X(10), X(5∗), and
X(5ϕ), the quantum number of the fermions in the 10, of the fermions in the 5∗, and
of the Higgs field ϕ, respectively), while there are only two constraints imposed by the

∗ The deep connection between symmetry and conservation laws was mentioned in chapter III.3.



IX.2. Grand Unification and SU(5) | 549

two terms added to the Lagrangian. The two constraints are X(10)+ X(10)+ X(5ϕ)=
0 and X(5∗) + X(10) − X(5ϕ) = 0, with the solution9 X(10) = 1 (this merely sets the
overall normalization of X and is arbitrary), X(5ϕ)=−2 (from the first equation), and
X(5∗)=−3. In other words, under theU(1) transformationψμν→ eiθψμν, ϕτ→ e−2iθϕτ ,
ψμ→ e−3iθψμ, the Lagrangian (in particular the two terms in (12) and (13)) remains
unchanged.

But you object. Since to generate quark and lepton masses, we set the component ϕ4 of
5∗
ϕ

to a constant, doesn’t this break this U(1) symmetry?
Excellent, it does. Looking at the charge (and hence hypercharge) content (10) of the

fermions assigned to 5∗, we see that ϕ4 has the same quantum numbers as the neutrino
field ν, in particular, Y/2=−1/2. Thus, the linear combination X + 4(Y/2) is still con-
served (since its value on ϕ4 is equal to 2+ 4(−1/2)= 0).

We conclude that SU(5) grand unification conserves a mystery quantum number X +
4(Y/2). What is it? It turns out that 1

5(X+ 4(Y/2)) is none other thanB −L, baryon minus
lepton number. You can verify this as an exercise.

Exercise

1 Show that 1
5 (X + 4(Y/2))= B − L.

Notes

1. H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974), p. 438. For this and other important papers on grand
unified theory, see the collection of reprints in A. Zee, Unity of Forces in the Universe.

2. Since this is a textbook on group theory, I am content to merely mention these points, referring you to various
standard sources for details. There exist any number of excellent texts on particle physics. See also chapter
VII.5 in QFT Nut.

3. In other words, 52 − 32 − 22 + (−1+ 1+ 1− 1)= 52 − 32 − 22 = 42 − 22 = (4 + 2)(4 − 2)= 12.
4. An aside for the experts: I am leaving aside tiny nonperturbative effects, which cause protons to decay in sets

of three.
5. See S. Weinberg, Phys. Rev. Lett. 43 (1979), p. 311; F. Wilczek and A. Zee, Phys. Rev. Lett. 43 (1979), p. 1571;

H. A. Weldon and A. Zee, Nucl. Phys. B 173 (1980), p. 269. For more details, see chapter VIII.3 in QFT Nut.
6. I am glossing over a detail here, seeing that it pertains to quantum field theory rather than to group theory.
7. Unfortunately, it is beyond the scope of this book to discuss the distinction between global and local

symmetries. See any modern quantum field theory textbook.
8. This is taken from the article “Conservation or Violation of B − L in Proton Decay,” F. Wilczek and A. Zee,

Phys. Lett. 88 B (1979), p. 311.
9. We have in some sense come full circle from the first page of the linear algebra review.
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An entire generation of quarks and leptons into a single representation

Aesthetically, it seems rather unsatisfactory that the 15 quark and lepton Weyl fields in
each generation are put into two irreducible representations, 5∗ and 10, of SU(5).

An important hint comes from quantum field theory, which requires theories to pass
a “health check,” known as freedom from anomaly (which you may think of as a kind of
disease). Each Weyl field in a gauge theory contributes to the anomaly a certain amount,
which, roughly speaking, involves the cube1 of various charges. All these contributions
must add up to zero for the theory to pass muster. In SU(5) theory, the contribution
of the 5∗ and the contribution of the 10 happen to cancel each other exactly (see exer-
cise 1).

This cancellation strongly suggests that SU(5) unification is not the end of the story.
What larger2 group G, with SU(5) as a subgroup, would have a single irreducible

representation that would break into the 5∗ and the 10 when we restrict G to SU(5)?

The spinor representation of SO(10)

Now that you have mastered the spinor representations of SO(N) in chapter VII.1, you
should be able to answer this question and to take the next crucial step. Recall that we can
embed SU(5) naturally into3 SO(10). Indeed, in chapter VII.1 you learned that the spinor
of SO(10) decomposes,4 upon the restriction of SO(10) to SU(5), into the representations
of SU(5) as follows:

16+→ [0]⊕ [2]⊕ [4]= 1⊕ 10⊕ 5∗ (1)

The 5∗ and the 10 of SU(5) fit inside the 16+ of SO(10)! Again, the tight fit of the 5∗

and the 10 of SU(5) inside the 16+ of SO(10) has convinced many physicists that it is
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surely right. Another benefit of SO(10) grand unification∗ is that the anomaly vanishes
automatically (see exercise 2).

One feature of SO(10) grand unification appeals to me greatly: the quarks and leptons
transform as spinors in both spacetime and in internal space. At present, we do not know
quite what to make of this. So back to the fit.

Almost a perfect fit, but not perfect. The 16+ breaks into 5∗ ⊕ 10⊕ 1. We have to throw
in an additional Weyl field transforming as an SU(5) singlet.

Who is this mysterious intruder?

The long lost antineutrino field

We don’t have to guess his identity: group theory pins it down.
He is a singlet under SU(5), and hence is a fortiori a singlet under SU(3)⊗ SU(2)⊗

U(1). This Weyl field does not participate in the strong, weak, and electromagnetic inter-
actions. In plain English, he is a lepton, with no electric charge, and is not involved in
the known weak interaction. Thus, we identify the mysterious 1 in (1) as the “long lost”
antineutrino field νcL. This guy does not listen to any gauge bosons, known or unknown†

to experiments.
We are using a convention in which all fermion fields are left handed, and hence we have

written νcL. By a conjugate transformation, as explained in chapter VII.5, this is equivalent
to the right handed neutrino field νR, which was missing from the SU(3)⊗ SU(2)⊗U(1)
theory. Why have experimentalists not seen it? The natural explanation is that this field is
endowed with a large Majorana mass.

Majorana versus Dirac mass

Let us recall, summarize, and generalize the discussion of Majorana versus Dirac mass
given in chapter VII.5. Majorana explained to us that a field without any electric charge
can have a Majorana mass. In contrast, a charged field, such as the electron field, can only
have a Dirac mass. Let us review.

Consider a Weyl field ψL, that is, something transforming like ( 1
2 , 0) under the Lorentz

group. Group theory allows us to write a Majorana mass term of the form ψLCψL, since
( 1

2 , 0)⊗ ( 1
2 , 0) contains‡ (0, 0).

Suppose the field ψL also transforms under a nontrivial irreducible representation R
under some internal (that is, not having to do with spacetime) symmetric groupG, which
is of course the group theoretic way of saying that ψL carries a charge. (The familiar
electric charge corresponds to G= U(1) and R equal to some nontrivial 1-dimensional

∗ Ironically, in a 1961 paper,5 Glashow and Gell-Mann listed Lie algebras up to SO(9), saying that it was “hard
to imagine that any higher Lie algebras will be of physical interest.”

† Even the gauge bosons of SU(5) don’t know about him.
‡ Although we are talking about the Lorentz group here, the fact that 1

2 ⊗ 1
2 contains 0 goes back to SU(2).
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representation characterized by q �= 0.) The Majorana mass term ψLCψL transforms like
R ⊗ R. Thus, unless R ⊗ R contains the trivial identity representation in its decompo-
sition, ψLCψL will not be invariant. The symmetry group G forbids the Majorana mass
term. (In the simple case of the electric charge, this just says that unless q + q = 0, that
is, unless q = 0, the Majorana term is not allowed.) The executive summary is that the
Majorana term is possible only if ψL does not carry a charge. More precisely, a Majorana
mass is allowed if

R ⊗ R = 1⊕ . . . (2)

in words, if R ⊗ R contains the singlet, that is, the identity representation.
Next, consider the Dirac mass. Suppose that in addition to ψL, we are given a Weyl field

ψR, that is, a field transforming like (0, 1
2) under the Lorentz group. Due to the magic

of J + iK↔ J − iK , the hermitean conjugate of ψR, namely ψ̄R (the bar contains the
conjugation and was introduced in chapter VII.4), transforms like ( 1

2 , 0). Something new,
namely, a Dirac mass term (schematically of the form ψ̄RψL) then becomes possible;
it transforms like ( 1

2 , 0)⊗ ( 1
2 , 0), which contains the singlet (0, 0) under the Lorentz

group.
The next twist in the story is that given a ψR, we can also form the charge conjugate

field ψcL, as explained in chapter VII.5. A key fact is that ψcL transforms like ( 1
2 , 0), as the

subscript L indicates. Thus, we can write the Dirac mass bilinear ψ̄RψL as ψcLCψL.
Here is a quick summary. In the all-left-handed fields formalism used here, the Dirac

mass links a Weyl 2-component field with its conjugate. For example, the electron mass
would have schematically the form ecCe in the Lagrangian. In contrast, a Majorana mass
for the electron would have the form eCe, but this violates charge conservation, since this
combination carries electric charge−1− 1=−2. In contrast, the Dirac mass has the form
ecCe and hence carries electric charge+1− 1= 0. The electron can have a Dirac mass but
not a Majorana mass.

The mass of the right handed neutrino

Under SU(5), the left handed antineutrino (or equivalently, the right handed neutrino)
transforms like a singlet. Thus, as far as SU(5) is concerned, the right handed neutrino
can have Majorana mass: 1⊗ 1= 1 is a particularly forceful realization of (2). In other
words, SU(5) does not forbid the right handed neutrino from being massive.

Thus, the right handed neutrino can have a mass as high as the energy or mass scale
M at which SU(5) becomes a good symmetry. This scale is thought to be extremely high,
many orders of magnitude beyond what present accelerators can reach.6 Here we focus
on the group theory.

In contrast, under SO(10), the right handed neutrino transforms like the 16+. We
learned in (VII.1.50) that

16+ ⊗ 16+ = 10⊕ 120⊕ 126 (3)
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Recall that the irreducible representations of 10, 120, and 126 are furnished by anti-
symmetric tensors with 1, 3, and 5 indices, respectively.

The right hand side of (3) most definitely does not contain the 1 of SO(10). Thus, SO(10)
forbids the right handed neutrino from having a Majorana mass. Since SO(10) breaks
into its subgroup SU(5), the mass scale M̃ at which SO(10) becomes a good symmetry is
supposed to be higher than M . In other words, the right handed neutrino cannot have a
Majorana mass larger than M̃ .

Quark and lepton masses in SO(10)

In the previous two chapters we learned how to render quarks and leptons massive by
setting a Higgs field to a constant. Recall that in SU(5), the Higgs field transforms like a
5. In SO(10), it follows from the group theory decomposition in (3) that the Higgs field ϕ
needed transforms like a 10, which on restriction to SU(5) transforms like 5⊕ 5∗. In other
words, denoting the 16+ by ψ , we simply add the term ψCψϕ to the Lagrangian. The two
terms (IX.2.12) and (IX.2.13) in the SU(5) theory naturally combine into a single term in
the SO(10) theory. Everything fits together and make sense.

But what about the Majorana mass of the right handed neutrino, which (as just noted)
transforms like a singlet under SU(5)? Where oh where can we find an SU(5) singlet in
the right hand side of (3)? Do you see it?

Yes, it is in the 126= [5]! Recall from chapter VII.1 that the [5] is the self-dual 5-indexed
tensor of SO(10) (as the notation indicates). When restricted to SU(5), it contains, among
a whole load of other stuff, the 5-indexed antisymmetric tensor of SU(5), but as we learned
way back in chapter IV.4, this is nothing but the singlet 1 of SU(5). Again, the group theory
“conspires” to endow the right handed neutrino with a Majorana mass.

A binary code for the world

In the early 1970s, after SU(2), SU(3), and SU(5), many theoretical physicists felt they had
reached a new level of sophistication, moving from the orthogonal world, with its rotation
and Lorentz transformation, to the more sophisticated unitary world, with two kinds of
indices and what not. The sudden appearance of SO(10) almost felt like the revenge of the
orthogonals.

Group theory is trying to tell us something.
Go back to chapter VII.1. Because of the direct product form of the γ matrices, and

hence of σij , we can write the states of the spinor representations of SO(2n) as
∣∣ε1ε2 . . . εn

〉
where each of the εs takes on the values ±1. The right handed spinor consists of those
states

∣∣ε1ε2 . . . εn
〉

with (�nj=1εj) = +1, and the left handed spinor those states with
(�nj=1εj)=−1.

Thus, in SO(10) unification the fundamental quarks and leptons are described by a 5-
bit binary code, with states like |+ + −−+〉 and |− + −−−〉. Personally, I find this a
rather pleasing picture of the world.
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Let us work out the quark and lepton states explicitly, to clarify the group theory
involved.

Start with the much simpler case of SO(4). The spinor S+ consists of |++〉 and |−−〉,
while the spinor S− consists of |+−〉 and |−+〉. As discussed in chapter II.3, SO(4)
contains two distinct SU(2) subgroups. Recall from chapter VII.1 that, under one SU(2),
|++〉 and |−−〉 transform as a doublet, while |+−〉 and |−+〉 transform as two singlets.
Or, we could choose the other SU(2), under which |++〉 and |−−〉 transform as two
singlets, while |+−〉 and |−+〉 transform as a doublet. This is consistent with what we
learned in chapter VII.1, that on the restriction of SO(4) to U(2), the spinors decompose
as S+→ [0]⊕ [2]= 1⊕ 1 and S−→ [1]= 2.

Similarly, on the restriction of SO(6) to U(3), 4+→ [0]⊕ [2]= 1⊕ 3∗, and 4−→ [1]⊕
[3]= 3⊕ 1. (Our choice of which triplet representation of U(3) to call 3 or 3∗ is made to
conform to common usage, as we shall see presently.)

We are now ready to figure out the identity of each of the 16 states, such as |+ + −−+〉
in SO(10) unification. First of all, (VII.1.56) tells us that under the subgroup SO(4)⊗
SO(6) of SO(10) the spinor 16+ decomposes as (since�5

j=1εj =+1 implies ε1ε2= ε3ε4ε5)

16+→ (2+, 4+)⊕ (2−, 4−) (4)

We identify the natural SU(2) subgroup of SO(4) as the SU(2) of the electroweak inter-
action and the natural SU(3) subgroup of SO(6) as the color SU(3) of the strong interac-
tion. Thus, according to the preceding discussion, (2+, 4+) are the SU(2) singlets of the
standard U(1)⊗ SU(2)⊗ SU(3) model, while (2−, 4−) are the SU(2) doublets. Here is
the line-up (all fields left handed as usual):

SU(2) doublets

ν = |− +−−−〉
e− = |+ −−−−〉
u= |− +++−〉, |− + +−+〉, and |− + −++〉
d = |+ −++−〉, |+ − +−+〉, and |+ − −++〉

SU(2) singlets

νc = |+ ++++〉
e+ = |− −+++〉
uc = |+ ++−−〉, |+ + −+−〉, and |+ + −−+〉
dc = |− −+−−〉, |− − −+−〉, and |− − −−+〉
I assure you that this is a lot of fun to work out, and I urge you to reconstruct this

table without looking at it. Here are a few hints if you need help. From our discussion
of SU(2), I know that ν = ∣∣−+ ε3ε4ε5

〉
and e− = ∣∣+− ε3ε4ε5

〉
, but how do I know that

ε3= ε4= ε5=−1?First, I know that ε3ε4ε5=−1. I also know that 4−→ 3⊕ 1on restricting
SO(6) to color SU(3). Well, of the four states |− − −〉, |+ + −〉, |+ − +〉, and |− + +〉, the
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odd man out is clearly |− − −〉. By the same heuristic argument, among the 16 possible
states, |+ + +++〉 is the odd man out and so must be νc.

There are lots of consistency checks. For example, once I identified ν = |− +−−−〉,
e− = |+ −−−−〉, and νc = |+ ++++〉, I can figure out the electric chargeQ, which—
since it transforms as a singlet under color SU(3)—must have the valueQ= aε1+ bε2+
c(ε3+ ε4 + ε5) when acting on the state

∣∣ε1ε2ε3ε4ε5
〉

. The constants a , b, and c can be
determined from the three equationsQ(ν)=−a + b− 3c= 0,Q(e−)= a − b− 3c=−1,
andQ(νc)= a + b + 3c = 0. Thus,Q=− 1

2ε1+ 1
6 (ε3+ ε4 + ε5).

The SU(5) singlet generator of SO(10)

In discussing B − L conservation or violation in chapter IX.2, we encountered a mystery
quantum number we calledX, which is an SU(5) singlet. In other words, when evaluating
X on a given SU(5) irreducible representation, we obtain a number. Using a rather
circuitous physicist’s route giving masses to the quarks and leptons, we found that

X(10)= 1, X(5∗)=−3 (5)

(The overall normalization is arbitrary.) The experimentally important quantum number
B − L turns out to be a linear combination of X, which is outside SU(5), and of hyper-
charge Y/2, which is of course inside. So is B − L entirely inside SO(10), or does it have
a piece outside?

In chapter VII.1 we showed that the 45 generators of SO(10) break up, on restriction to
the natural subgroup SU(5), into 24 ⊕ 1⊕ 10⊕ 10∗. I then challenged you to figure out
what the singlet 1 of SU(5) does to the irreducible representations of SU(5) contained in
the spinor 16 of SO(10). Surely, you figured it out?

With this setup, it is almost signed sealed and delivered that the 1 contained in the 45
must have something to do with the mysteriousX. This gives me another chance to show
the power of the binary code formalism. Since 1 is an SU(5) singlet, it can’t tell the five εs
apart; so up to an overall normalization, X = ε1+ ε2+ ε3+ ε4 + ε5.

Let’s check by evaluatingX on the states listed in the previous section. Since ε1ε2ε3ε4ε5=
+1, we can only have them equal to (i) all +s, in which case X = 5; (ii) three +s and two
−s, in which case X = 1; and (iii) one + and four −s, in which case X =−3. Referring to
the list, we see that the states with one + and four −s describe ν, e−, and dc, which form
the 5∗ of SU(5), while the states with three +s and two −s describe u, d, uc, dc, and e+,
which form the 10 of SU(5).

Lo and behold, this agrees with (5).
As a bonus we learned that X = 5 on the 1 contained in the spinor 16. Trivial check:

tr X = 10 . 1+ 5 . (−3)+ 1 . 5= 0, as expected.
So the X of chapter IX.2 is a generator of SO(10), and since hypercharge 1

2Y is for sure
a generator of SO(10), this means that the physicist’s B − L, being a linear combination
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ofX and Y , is a generator of SO(10). This provides another way to see the necessity of the
right handed neutrino field: tr(B − L)= 0 only with it included.

Lepton as the fourth color in a left right symmetric world

I interrupt this narrative stream to discuss an interesting idea, due to Jogesh Pati and
Abdus Salam, which unifies quarks and leptons. Each quark comes in three colors. Could
it be that the fourth color describes a lepton?

Starting from the SU(3)⊗ SU(2)⊗ U(1) theory, Pati and Salam built up to SU(4)⊗
SU(2)⊗ SU(2). To see how this works, let us go back to (IX.1.4), which I reproduce here
for your convenience:((

ur

dr

)
,

(
ug

dg

)
,

(
uy

dy

))
,

(
ν

e

)
, (ucr , ucg , ucy), (dcr , dcg , dcy), ec (6)

The 15 Weyl fields of the first generation are listed as variously belonging to doublets and
singlets of SU(2).

Recall that in chapter IX.1 we conjugated the right handed fields to write all 15 Weyl
fields as left handed fields. For the Pati-Salam theory, it is convenient to undo this and
write, instead of (6),((

ur

dr

)
L

,

(
ug

dg

)
L

,

(
uy

dy

)
L

)
,

(
ν

e

)
L

; (ur
R

, ugR , uyR), (d
r
R

, dgR , dyR), eR (7)

To lessen clutter, let us suppress the color indices r , g, and y and write (7) as(
u

d

)
L

1
6

,

(
ν

e

)
L

− 1
2

; uR
2
3

, dR
− 1

3

, eR−1
(8)

where uR, for instance, is shorthand for the three Weyl fields (ur
R

, ugR, uyR). Here we have
listed the value of Y2 under each set of fields.

Note that in (7) and (8) the left and right handed worlds are separated by a semicolon.
Historically, before SU(2)⊗ U(1) became firmly established, various authors proposed
making the two worlds look similar by enlarging the electroweak gauge group from
SU(2)⊗ U(1) to SU(2)L ⊗ SU(2)R ⊗ U(1).

The standard SU(2) responsible for the weak interaction is renamed SU(2)L. Corre-
spondingly, the standard W bosons introduced in chapter IX.1, which transform uL and
dL into each other, are renamedWL.

An additional gauge group SU(2)R is introduced, under which uR and dR transform as

a doublet
(
u

d

)
R

. Now there are gauge bosons, call them WR, which transform uR and dR
into each other.
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You might immediately object that the corresponding processes are unknown experi-
mentally, but this can be explained by postulating that the WR bosons are much heavier∗

than the WL bosons. The suggestion is that the left and right handed worlds have the
same structure and that the underlying left-right symmetry is hidden from us because
the SU(2)R gauge bosons are much heavier than the SU(2)L gauge bosons. Thus, at this
point, we have an SU(3)⊗ SU(2)L ⊗ SU(2)R ⊗ U(1) gauge theory with quarks and lep-
tons assigned to the following irreducible representation:(

u

d

)
L

,

(
ν

e

)
L

;

(
u

d

)
R

,

(
ν

e

)
R

(9)

At the cost of introducing unobserved gauge bosons, we have made the world look more
symmetrical: compare (8) with (9).

But now you have another serious objection. To have the desired left-right symmetry,
we have to put eR into an SU(2)R doublet, but there is no known field to partner it with.
We are forced to introduce† a field νR with the quantum numbers of the right handed
neutrino, and to explain away the fact that no such particle is observed experimentally by
giving it a very large Majorana mass, beyond the energies accessible to experimentalists.

The notion that the world is secretly left-right symmetric appeals to many theoretical
physicists. But the pronouncement that the invented particles are all too massive to be
seen also turns off many. Each to his or her own taste, and you should make up your
own mind.

Looking at (9), Pati and Salam proposed unifying quarks and leptons by extending SU(3)
to SU(4). This amounts to putting parentheses around the quarks and lepton doublets in
(9), so that((

u

d

)
L

,

(
ν

e

)
L

)
;

((
u

d

)
R

,

(
ν

e

)
R

)
(10)

Recall that the quark doublet is written in shorthand and actually represents three
doublets (as written in (7)). So there are in fact four doublets in each of the pairs of big
parentheses in (10), and we might as well further compactify the notation and write(

U

D

)
L

;

(
U

D

)
R

(11)

by defining (UA, DA), A= 1, 2, 3, 4, with (Uα , Dα)= (uα , dα), α = 1, 2, 3, and U4 = ν,
D4 = e. In other words, the leptons are theorized to be quarks carrying a fourth color. In

∗ In quantum field theory, the quantum effect of a gauge boson becomes weaker as the mass of the gauge
boson increases.

† This evasive ploy, of inventing new particles and then giving them huge masses to explain away the fact that
they are unknown experimentally, unfortunately has been much abused in the subsequent decades.
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SU(4) there are then gauge bosons capable of changing a quark into a lepton and vice
versa.

This scheme is sometimes referred to as partial unification, since the gauge theory is
still based on a direct product group. Quarks and leptons are unified but not the gauge
forces.

Different routes to our low energy world

Remarkably, group theory indicates that the Pati-Salam theory and the Georgi-Glashow
theory, which at first sight look quite different, may end up being realizations of the same
underlying theory. Starting with the grand unified world of SO(10), there is another route
to our low energy world other than SO(10)→ SU(5)→ SU(3)⊗ SU(2)⊗ U(1).

We have discussed SU(5) as a natural subgroup of SO(10), but SO(10) is large enough
to have other interesting subgroups. It clearly contains SO(6) ⊗ SO(4), under which
the defining vector representation 10→ (6, 1)+ (1, 4). In other words, we split the ten
components of the vector φM , M = 1, . . . , 10 trivially into the two sets φA, A= 1, . . . , 6
and φP , P = 7, . . . , 10.

Furthermore, from chapter VII.1 we know that SO(6) is locally isomorphic to SU(4),
which contains SU(3). We also know that SO(4) is locally isomorphic to SU(2) ⊗
SU(2), which contains SU(2)⊗ U(1). Thus, we can travel an alternate route to the low
energy world, going through the following chain of subgroups:

SO(10)→ SO(6)⊗ SO(4)= SU(4)⊗ SU(2)⊗ SU(2)
→ SU(3)⊗ U(1)⊗ SU(2)⊗ U(1)→ SU(3)⊗ SU(2)⊗ U(1) (12)

The same spinor 16+ now decomposes quite differently than in (1):

16+→ (4+, 2+)⊕ (4−, 2−)= (4, 2, 1)⊕ (4∗, 1, 2)

→ (3, 2, 1)⊕ (1, 2, 1)⊕ (3∗, 1, 2)⊕ (1, 1, 2) (13)

We explained, earlier in this chapter, that the right handed neutrino could acquire a
large Majorana mass from the 126 of SO(10). As a good exercise in group theory, you
should be able to work out how the 126 decomposes under SO(10)→ SO(6)⊗ SO(4)=
SU(4)⊗ SU(2)⊗ SU(2)→ SU(3)⊗ SU(2)⊗ SU(2). Do it before reading on!

I need perhaps only remind you that the 126, being a 5-indexed antisymmetric tensor
T ABCDE, is self-dual (or antiself-dual). Here we denote the vector index of SO(10) by
A= 1, 2, . . . , 10. DividingA= {a , i} into two sets with a = 1, 2, 3, 4, 5, 6 and i = 7, 8, 9, 10
pertaining to SO(6) and SO(4), respectively; keeping in mind the duality properties of the
tensor T abcij ; and perhaps consulting the table in (VII.1.66), we obtain the decomposition:

126→ (6, 1)⊕ (15, 4)⊕ (10, 3)⊕ (10, 3)

→ (6, 1, 1)⊕ (15, 2, 2)⊕ (10, 3, 1)⊕ (10∗, 1, 3)

→ (3∗, 1, 1)⊕ (3, 1, 1)⊕ (8, 2, 2)⊕ (3∗, 2, 2)⊕ (3, 2, 2)⊕ (1, 2, 2)

⊕ (6, 3, 1)⊕ (3, 3, 1)⊕ (1, 3, 1)⊕ (6∗, 1, 3)⊕ (3∗, 1, 3)⊕ (1, 1, 3) (14)
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In the first line, the 6 is the [1] of SO(6) and [2] of SU(4), respectively; the 15 is the
[2] and the adjoint (1, 1); and the 10 is the [3] and the {2}. In the third line, under
SU(4)→ SU(3), 6→ 3∗ ⊕ 3, 15→ 8⊕ 3∗ ⊕ 3⊕ 1, and 10→ 6⊕ 3⊕ 1. The usual check:
126= 1 . 6+ 4 . 15+ 3 . 10+ 3 . 10= 3+ 3+ 32+ 12+ 12+ 4 + 2(18+ 9+ 3).

Exercises

1 The contribution to the anomaly by a given irreducible representation is determined by the trace of the
product of a generator and the anticommutator of two generators, namely, tr T A{T B , T C}. Here T A denotes
a generator of the gauge group G. Show that for G= SU(5), the anomaly cancels between the 5∗ and the
10. Note that for SU(N), we can, with no loss of generality, take A, B, and C to be the same, so that the
anomaly is determined by the trace of a generator cubed (namely, tr T 3). It is rare that we get something
cubed in physics (see endnote 1), and so any cancellation between irreducible representations can hardly be
accidental.

2 Show that the anomaly vanishes for any representation of SO(N) except for SO(6). Why is SO(6) exceptional?

3 Work out how the 3-indexed antisymmetric 120 decomposes on restriction to SO(4)⊗ SO(6).

Notes

1. Yes, quantum field theory is very strange. See chapter IV.7 in G Nut.
2. Incidentally, your first guess might be SU(6) with its 15-dimensional irreducible representation furnished

by the 2-indexed antisymmetric tensor ψAB with the indices A, B = 1, 2, . . . , 6. But on restriction to its
natural SU(5) subgroup, the 15 breaks into ψμν and ψμ6, with μ, ν = 1, 2, . . . , 5, corresponding to 10 and
5, not 10 and 5∗.

3. Howard Georgi told me that he actually found SO(10) before SU(5).
4. Recall also that the conjugate spinor 16− breaks up into the conjugate of the representations in (1): 16− →

[1]⊕ [3]⊕ [5]= 5⊕ 10∗ ⊕ 1.
5. S. L. Glashow and M. Gell-Mann, Ann. Phys. 15 (1961), p. 437.
6. The mass of the gauge bosons responsible for proton decay is intimately tied toM . In quantum field theory,

the more massive a gauge boson, the weaker is the effect of that gauge boson. (As mentioned in chapter IX.1,
this explains why the weak interaction is weak.) Since the lower bound on the proton lifetime is enormous
(something like 1020 times the present age of the universe), M has to be huge. At low energies, the strong,
the electromagnetic, and the weak couplings are very different. Grand unification can only happen at an
energy scale M when the three couplings become comparable. In quantum field theory, how the couplings
vary with the energy scale is known and calculable. For both of these points, see any modern textbooks on
quantum field theory, for example, part VII in QFT Nut.
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A speculation on the origin of three generations in a family

I now end this book on group theory with a profound mystery.
A great unsolved puzzle in particle physics is the family problem. Why does Nature

repeat herself? Why do quarks and leptons come in three generations∗ {νe , e, u, d},
{νμ, μ, c, s}, and {ντ , τ , t , b}?

The way we incorporate this experimental fact into our present day theory can only be
described as pathetic: we repeat the fermionic sector of the Lagrangian three times without
any understanding whatsoever. Fundamental forces are unified, but not fundamental
fermions. Three generations living together gives rise to a nagging family problem. Group
theory may or may not offer a solution.

Even before grand unification, at the level of SU(3)⊗ SU(2)⊗U(1), the family problem
already poses a puzzle. The family problem may be a separate issue from grand unification,
or the two might be inextricably linked. We don’t know.

One natural approach that almost suggests itself is to introduce a family group1 F , under
which the three generations transform as a 3-dimensional irreducible representation, and
to extend the theory2 to have the symmetry SU(3)⊗ SU(2)⊗ U(1)⊗ F . With the advent
of grand unification, theories based on SU(5)⊗F and SO(10)⊗F have all been explored.
That the number of generations is equal to three is not explained at all in this approach;
we merely look for an F with a 3-dimensional representation. Both continuous and finite
groups have been considered, and you sure know enough group theory by now to be able to
join in the fun. Continuous groups, such as SO(3) or SU(3), tend to be far too constraining:
one difficulty is that the masses of the three generations are vastly different,3 unlike the
situations confronting our great predecessors Heisenberg and Gell-Mann. Perhaps finite
groups offer a better bet, and a number of them have been explored, for example the
tetrahedral group.4

∗ As mentioned in chapter IX.1.
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Quarks and leptons as possibly composites

Another possibility, one that has been entertained for a long time but has not progressed
very far, is that perhaps quarks and leptons are not elementary. If so, then group theory
might be expected to play a role5 as well, perhaps similar to the ways in which atomic states
are organized, as was discussed in parts III and IV.

Living in the computer age, I find it intriguing that in SO(10) the fundamental con-
stituents of matter are coded by five bits. Our beloved electron is composed of the binary
strings +−−−− and −−+++. An attractive possibility6 suggests itself, that quarks
and leptons may be composed of five different species of fundamental fermionic objects.7

We construct composites, writing down a+ if that species is present, and a− if absent. For
example, from the expression forQ given in chapter IX.3, we see that species 1 carries elec-
tric charge−1, species 2 is neutral, and species 3, 4, and 5 carry charge 1

3 . In other words,
Q=−n1+ 1

3(n3+ n4 + n5) with nj = 1
2(εj + 1). A more or less concrete model can even

be imagined by binding these fundamental fermionic objects to a magnetic monopole.

The dream of one group, one irreducible representation

Behind the thrust that has successfully moved us from SU(3)⊗ SU(2)⊗ U(1) to SO(10)
is the desire to have the fermions of one generation unified into one single irreducible
representation R of a group G. We can now be more ambitious and continue that thrust.
Imagine putting all the fundamental fermions, of all three known generations, into one
single irreducible representation R of a group G, such that when we restrict G to its
subgroupG, the irreducible representation breaks up into several copies of R—hopefully,
three copies in the form R ⊕ R ⊕ R, thus reproducing the repetitive structure seen in
Nature.

A survey of all Lie algebras reveals that only the spinor representations of orthogonal
groups come close∗ to having the desired decomposition property.8 I remind you that the
reason that a spinor decomposes into a direct sum of spinors essentially rests on two facts:
(i) spinor representations exist because Clifford algebras exist, and (ii) Clifford algebras
may be constructed iteratively.

Indeed, our binary code view of the world encodes this approach to the family problem:
we add more bits, generalizing |+ + −−+〉, for example, to

∣∣++−−+ε6ε7 . . .
〉
. One

∗ To see what goes wrong with other groups, consider, as an illustration, the traceless antisymmetric tensor
T μν
ρ

of SU(8). Break SU(8) down to SU(5) in the standard way, such that 8→ 1+ 1+ 1+ 5. To be specific,

split the index set μ= {i , A} with i = 1, 2, . . . , 5 and A= 6, 7, 8. Then the decomposition of T μν
ρ

contains T AB
i

equal to three copies of the 5∗ of SU(5) and T ijA equal to three copies of the 10 of SU(5). This would appear to
account for the observed three generations, but unfortunately, we also obtain a bunch of unwanted fermions
transforming like the 24 and 5. Of course, at the cost of being contrived, one could then try to find ways of hiding
these unwanted fermions by giving them large masses, for example. But then, with SO(10), we no longer have
so much faith in SU(5).
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possibility is to “hyperunify” into an SO(18) theory, putting all fermions into a single
spinorial representation S+ = 256+, which on the breaking of SO(18) to SO(10)⊗ SO(8)
decomposes as

256+→ (16+, 8+)⊕ (16−, 8−) (1)

The good news and the bad news. First the good news: we get the 16+s we want, repeated.
The bad news: too many∗ of a good thing, eight of them instead of three. More bad news:
group theory dictates that we also get a bunch of unwanted† 16−s.

We are left with several possibilities, which are not necessarily mutually exclusive. (i) The
idea of obtaining repetitive family structure from spinor representations may be altogether
wrong. (ii) The idea of using spinor representations is correct. Two further possibilities.
(iia) Perhaps fermions transforming like the 16− will eventually be seen. (iib) The 16−

fermions, as well as the additional 16+ fermions, are to be concealed somehow.9

Concealing unwanted particles

Two ways of concealing particles are known. One way, already mentioned in passing
in chapter IX.3, is to give the unwanted fermions large masses by using the Higgs
mechanism. This would appear somewhat ad hoc and contrived. A better way may be
to take a hint from the way Nature conceals quarks.

After quarks were first proposed, physicists generally found the idea implausible. Why
are these fractionally charged particles not seen? Eventually, it was theorized that quarks
were permanently confined.‡ The “dogma” that emerged, now widely accepted, holds that
the color SU(3) force is such that any state that does not transform as a color singlet cannot
be liberated and exist in isolation. For instance, an up quark, which transforms as a 3,
cannot exist in isolation and be observed. Similarly an antidown quark, which transforms
as a 3∗, cannot exist in isolation. But since 3⊗ 3∗ = 1⊕ 8 (as you learned in parts IV and V),
a bound state of an up quark and an antidown quark that transforms as the 1 could exist;
this is in fact the positively charged pion π+. So you see that once again, group theory plays
a leading role. As another example, the proton, consisting of two up quarks and a down
quark, exists because 3⊗ 3⊗ 3 contains the 1. In short, only objects that do not transform
under color SU(3) (sometimes referred to as colorless) can exist in isolation.§

In this picture, the observed strong interaction between, say, the pion and the nucleon
(as discussed in chapter V.1) is but a pale shadow of the strong color force. A rough (but
rather misleading10) analogy would be that if the electric force were much stronger than it
is, then only electrically neutral atoms and molecules could exist. The ionization threshold

∗ In contrast, SO(14) would give only two 16+s, too few.
† The 16−s lead to fields with opposite handedness from those that are observed. But for all we know, they

could be just around the corner.
‡ I have already alluded to quark confinement in chapter V.2.
§ Are there some other ways of concealing particles?
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may be unattainable. The observed interaction between atoms and molecules would then
be a mere shadow of the underlying electric force.

Hypercolor

The hope is that Nature would once again show theoretical physicists her legendary
kindness and use the same trick twice. Let us start with SO(10+ 4k) and break it to SO(10)
⊗ SO(4k). Suppose some subgroup of SO(4k) remains unbroken down to low energy (just
like the SU(3) of color remains unbroken down to low energy11), and thus generates an
analog of the strong color force, call it hypercolor. We then expect that only those fermions
that transform like singlets under hypercolor can exist in isolation.12

Now the key point is that the two spinors S± of SO(4k) can decompose quite differently
under the hypercolor subgroup and thus will contain a different number of hypercolor
singlets. An example would make this clear. Group theory tells us that the two spinors
S± of SO(8m) are real, as we learned in chapter VII.1, and so on restriction of SO(8m) to
SU(4m), will in general decompose differently. In particular, under SO(8)→ SU(4), we
have 8+→ 1⊕ 6⊕ 1, while 8−→ 4⊕ 4∗. Thus, we will end up with two 16+s and no 16−s
in the low energy world.

In the pantheon of attractive groups, SO(8) is regarded by many as the most beautiful
of all. We hope that Nature likes it too. In any case, SO(8) has a strikingly symmetrical
Dynkin diagram∗ with a 3-fold symmetry that arises because the two spinors 8± have the
same dimension as the vector 8v. (The equation 2n−1= 2n has the unique solution n= 4.)
The algebra admits a transformation† that cyclically rotates these three representations
8+, 8−, and 8v into one another.

Indeed, under the “natural” embedding of SO(6)= SU(4) into SO(8) (leaving two of
the eight Cartesian axes untouched), the vector decomposes as 8v→ 6⊕ 1⊕ 1, while
8± → 4 ⊕ 4∗. Thus, we can understand the embedding used above (under which 8+ →
6⊕ 1⊕ 1, while 8−→ 4⊕ 4∗ and 8v→ 4⊕ 4∗) as the natural embedding followed by an
outer automorphism. Loosely speaking, the spinor 8+ in the embedding used above is
secretly the vector in the natural embedding. In other words, the embedding we want
corresponds to the natural embedding followed by a “twist.”

But now we see how to get three generations: we break the SO(6) further down to an
SO(5) = Sp(4) of hypercolor, so that 8+ → 5⊕ 1⊕ 1⊕ 1. The 5 is confined by SO(5),
leaving us three SO(5) singlets transforming like the 16+ of SO(10). Meanwhile, 8− →
4⊕ 4∗, and the 16−s remain confined.

The trouble is that nothing prevents us from saying that SO(5) breaks further to SO(4)=
SU(2)⊗ SU(2) of hypercolor, so that 8+ → 4 ⊕ 1⊕ 1⊕ 1⊕ 1. We get four generations.
One step further, with SO(4)→ SO(3)= SU(2), and we get five generations.

∗ As shown in figure VI.5.8.
† Our good friend the jargon guy informs us that this is called an outer automorphism.
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Thus, our nice little group theoretic game ends up predicting the number of 16+

generations to be two, three, four, or five, respectively, according to whether SO(8) is
broken down to13 SO(6), SO(5), SO(4), or SO(3). Unfortunately, our knowledge of the
dynamics of symmetry breaking is far too paltry for us to make any further statements. It
is as if our mastery of classical mechanics is so incomplete that we cannot predict where
a rolling ball will end up, but can merely list the various possibilities.

It seems somehow appropriate, as we come to the end of this book, to hope that Nature
will show her kindness once again. I have spoken about Nature’s kindness at various points
in this book and in my popular books. Indeed, the history of physics almost amounts to a
series of beginner’s luck. We got to practice classical mechanics before tackling quantum
mechanics, Maxwell’s theory before Yang-Mills theory, and so on. In group theory also,
Nature, like a kindly pedagogue, first showed us SO(3), then SU(2). From SU(2) and
SO(3), we graduated to SO(4)= SU(2)⊗ SU(2), and then were able to move to SO(3, 1)
and SU(3). Imagine being in another universe where we are slammed with SO(9) from
day one. Imagine encountering as our first internal symmetry group, not Heisenberg’s
SU(2), but G(2) or E(8), say. Nature takes us by the hand, and lets us cut our teeth
on representations with dimensions of 2 or 3, before moving onto larger irreducible
representations.

Nature is kind.

Notes

1. There is by now a vast literature on the family group; an early paper is F. Wilczek and A. Zee, Phys. Rev. Lett.
42 (1979), p. 421.

2. The group F may or may not be gauged; people have considered both possibilities.
3. Feynman allegedly said, “Do you want to be famous? Do you want to be a king? Do you want more than the

Nobel Prize? Then solve the mass problem.”
4. This has been long advocated by E. Ma and collaborators (E. Ma and G. Rajasekaran, Phys. Rev. D 64 (2001)

113012; E. Ma, Mod. Phys. Lett. A 17 (2002), p. 289; hep-ph/0508099, and references therein). As you may
recall from parts II and IV, this group has many attractive features. For instance, the existence of three
inequivalent 1-dimensional representations might be relevant.

5. There is a vast literature on this. For one speculative attempt to make the neutrinos composite using SU(2),
see P. Kovtun and A. Zee, Phys. Lett. B 640 (2006), pp. 37–39.

6. For further details, see F. Wilczek and A. Zee, Phys. Rev. D 25 (1982), p. 553, section IV.
7. Recall the description of SO(2n) spinors using fermions given in appendix 3 to chapter VII.1.
8. The fact that the group decomposition property of spinors is highly suggestive of the observed repetitive

family structure was noted independently by Gell-Mann, Ramond, and Slansky, and by Wilczek and Zee.
Some other authors have also studied the use of spinor representations to unify fermions. See the references
given in F. Wilczek and A. Zee, ibid.

9. For a recent development on this front, see Y. BenTov and A. Zee, arXiv:1505.04312.
10. For one thing, the electrostatic potential goes likeV (r)∝−1/r , while the confining potential between quarks

is theorized to grow like r .
11. In fact, down to zero energy.
12. This general picture was proposed by Gell-Mann, Ramond, and Slansky.
13. Note that these orthogonal subgroups are not embedded in SO(8) in the standard way, however.



Epilogue

We have traveled a long road together. You ought to be impressed with yourself. Starting
from a vague notion that an equilateral triangle is more symmetrical than an isosceles
triangle, we saw the role of transformations, which led us to ponder what one transforma-
tion followed by another would produce. Concepts pop up one after another, often naturally
suggesting themselves. We stand in awe of the beautiful results mathematicians have un-
covered, such as the complete classification of Lie algebras.

Perhaps because of this sentiment, somebody famous once referred to group theory as
an alluring temptress. But group theory is much much more than a temptress; it is our
indispensable guide to a fundamental understanding of the universe. The Lorentz group
determines for us how the fundamental fields should comport themselves in spacetime.
Eventually, group theory, together with quantum field theory, shows us how three of the
four fundamental interactions can be unified. And thus we arrive at the threshold of our
understanding of the universe, confronted by dark but yet concrete mysteries, such as
why the matter content of the universe is repeated three times. Cartoonists often imagine
theorists pondering the basic laws standing before some massive computer, but in truth
computations such as 16→ 10⊕ 5∗ ⊕ 1 are more like it. Who would have guessed that
figuring out what it is exactly that makes the circle so pleasing turns out to be the key first
step in our quest to make sense of the universe? But such is the human mind and the
creative spirit.
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Solutions to Selected Exercises

In the book of life, the answers aren’t in the back.
—Charles M. Schulz, speaking through

Charlie Brown

A Brief Review of Linear Algebra

Exercises 1, 2, and 3 simply test if you understand how to multiply matrices.

1
(

0 1
1 0

) (
a b
c d

)
=
(
c d
a b

)
.

2
(
s1 0
0 s2

) (
a b
c d

)
=
(
s1a s1b
s2c s2d

)
.

3
(

1 0
s 1

) (
a b
c d

)
=
(

a b
sa+c sb+d

)
.

5
(
a b c
d e f

g h i

) (
1 0 0
0 0 1
0 1 0

)
=
(
a c b
d f e

g i h

)
and

(
1 0 0
0 0 1
0 1 0

) (
a c b
d f e

g i h

)
=
(
a c b
g i h

d f e

)
.

6 For example, to add the ith row to the j th row (for i < j ), multiplyM from the left by the matrixE defined
as the identity matrix modified by adding a 1 to the entry in the j th row and the ith column.

8 Note that detM = detMT = det(−M)= (−1)n detM . For n odd, this vanishes.

9 The two eigenvalues are a and b, with the corresponding eigenvector
(

1
0

)
and

(
1
b−a

)
. Thus, S =

(
1 1
0 b−a

)
with the inverse S−1= 1

b−a
(
b−a −1

0 1

)
. You should check that S−1MS is diagonal. But if a = b, then S−1

fails to exist. For example, the matrix M =
(

0 1
0 0

)
cannot be diagonalized. (A quick way of seeing this is

to note that M2 = 0. Thus, if M could be diagonalized, its diagonal elements have to be 0, but then M
would be the zero matrix, which it is not.)

10 DiagonalizeM .

11 Note that λ solves the equation det(λI −M)= λ2− (a2− b2+ c2)= 0. Thus,w = (a2− b2+ c2)
1
2 , which

is either real or imaginary, according to whether b2 is larger or smaller than a2 + c2. For b = 0 the
eigenvalues are real, thus verifying that a real symmetric matrix must have real eigenvalues.
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13 A−1(I + AB)A= (I + BA).

14 Take the transpose of M−1M = I to obtain MT (M−1)T = I , and thus the first identity follows. Similarly,
complex conjugateM−1M = I , and the second identity follows.

15 The expression�i<j(xi − xj) follows instantly by noting that when xi = xj for any pair of i and j , row i
and row j in M are equal, and hence the determinant vanishes. (That the determinant cannot be equal
to �i<j(xi − xj)s for some integer s �= 1 follows from counting powers of the xs.)

16 You could simply evaluate the determinant by brute force and verify that it is equal to the area, as claimed.
More elegantly, note that the area is invariant under translation and rotation of the triangle. Call the matrix
in the statement of the exerciseM . Adding a suitable multiple of the third row ofM to its first and second
row, we could set x1= y1= 0. This is of course just placing the origin at vertex 1 of the triangle. Then
by multiplying the first row by a suitable factor and adding to it the second row multiplied by a suitable

factor, we can change M to the form

(
0 b x′3
0 0 h
1 1 1

)
without changing the determinant. (The more advanced

reader will realize that we are simply multiplyingM by a 2-by-2 rotation matrix; the less advanced reader
will have to wait until after he or she reads chapter I.3.) We then recover the familiar high school formula
that the area of a triangle is equal to half of its base b multiplied by its height h.

I.1 Symmetry and Transformation

2 This is a consequence of the “once and only once rule.”

I.2 Finite Groups

2 In the text it was shown that any permutation can be written as a product of 2-cycles. The permutations
in An are even, and hence are equal to the product of an even number of 2-cycles. Using the result of the
preceding exercise, we could write this product in the form (1a)(1b)(1c) . . . with an even number of 2-
cycles. Each neighboring pair, for example, (1a)(1b)= (a1)(1b)= (a1b), can be written as a 3-cycle. Thus,
any element An can be written as a product of 3-cycles.

A more laborious proof is to simply multiply two 3-cycles together. The possible cases are three letters
in common, two in common, one in common, and none in common (which is a trivial case). Thus,
(123)(123)= (132), (123)(234)= (12)(23)(23)(34)= (12)(34), (123)(345)= (12345).

4 1+ 1+ 1+ 1+ 1, 2+ 1+ 1+ 1, 2+ 2+ 1, 3+ 1+ 1, 3+ 2, 4 + 1, 5.

5 The required number is just the number of ways of putting n objects into nj boxes of length j each. To
start with, we visualize that all the boxes are lined up in order from large to small and that the j objects in
each box of length j are lined up in some order, as in (xxxxx)(xxxxx)(xxxx)(xx)(xx)(xx)(x)(x)(x)(x).
There are n! ways of putting the n objects into the n available slots, but we overcount, since for each j the
nj boxes could be permuted around in nj ! ways. Furthermore, in each box, the objects can be cyclically
permuted without changing anything. For each box, there are j ways of ordering the j objects (by starting
with any one of them at the “head” of the box). We should thus divide by j for each box, and thus, by jnj
all together. The number of elements with a given cycle structure is then n!/�j(j

njnj !), thus verifying (4).

8 We have (132)(13)(24)(123)= (14)(23). Thus, the elements of A4 with the cycle structure (xx)(xx) form
an invariant subgroup.
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10 If f (h1) = I and f (h2) = I , then f (h1h2) = f (h1)f (h2) = I . So the kernel of f forms a subgroup.
Next, f (g−1hg)= f (g−1)f (h)f (g)= f (g−1)If (g)= f (g−1)f (g)= I , and so the kernel is an invariant
subgroup.

11 The elements consist of (Rk , Rkr , k = 0, 1, . . . , n− 1). Calculate away! Thus, 〈Rk , Rl〉 = I , 〈Rk , Rlr〉 =
R−kr−1R−lRkRlr = R−krRkr = R−kR−k = R−2k = Rn−2k, and 〈Rkr , Rlr〉 = R2(k−l).

The derived subgroup consists of the elements {I , Rn−2k , R2(k−l)} with various possibilities for k
and l. For n = 4 (for example), the derived subgroup {I , R2} = Z2. For n = 5, the derived subgroup
{I , R , R3, R2, R4} = Z5. Convince yourself that the derived subgroup is Zn/2 for n even and Zn for n odd.

13 Divide the set of group elements into the two disjoint sets I = {all g such that g2 = I } and N =
{all g such that g2 �= I }. Pick an element g1 of N . Since g2

1 �= I , g−1
1 �= g1, and N contains at least two

distinct elements, namely g1 and g−1
1 . If these exhaust N , then, since by assumption G has an even

number of elements, I has an even number of elements. But I cannot be null, since it contains the
identity I . The theorem is proved. If g1 and g−1

1 do not exhaust N , then we pick another element g2 and
ask whether {g1, g−1

1 , g2, g−1
2 } exhaust N . We repeat this process until N is exhausted. Thus, N has an

even number of elements, and so I has an even number of elements. The theorem is proved.

16 Given (ab)2 = abab = I , we have ba = ba(abab)= (baab)ab = ab.

17 SinceH is invariant, for any of its elements hi , ghig−1= hj for some hj . Thus, the set {gh1, . . . , ghi , . . .}
is the same as the set {h1g , . . . , hig , . . .} with the elements listed in a different order.

18 Label the six edges of the tetrahedron by 1, 2, . . . , 6. When each element ofA4 permutes the four vertices,
it also permutes the six edges.

19 Explicitly, take two 2-cycles in Sn and calculate 〈(xy), (yz)〉 = (yx)(zy)(xy)(yz)= (xyz)(xyz). Now use
the result of exercise 2 that the An is generated by 3-cycles. More quickly, given two permutations P
and Q, det(P−1Q−1PQ)= det(P−1P) det(Q−1Q)= 1, and so P−1Q−1PQ is an element of An. Note
that Sn/An = Z2 is abelian.

I.3 Rotations and the Notion of Lie Algebra

4 Hermitean conjugate (18) to obtain [Ji , Jj ]† =−ic∗ijkJk. Remembering that hermitean conjugation in-
volves the transpose, which reverses the order in a product, the left hand side is equal to −[Ji , Jj ]=
−icijkJk. Therefore, c∗

ijk
= cijk.

6 Two. We could choose, for example, J12 and J34, since they commute with each other. This will be of use
in part VI.

7 Define fi(ϕ)= e−iϕJ3Kie
iϕJ3 for i = 1, 2. Differentiate to obtain df1

dϕ
= f2(ϕ) and df2

dϕ
=−f1(ϕ). Solve for

f1(ϕ) with appropriate initial conditions at ϕ = 0.

II.2 Schur’s Lemma and the Great Orthogonality Theorem

1 u + v + w = 0, u + ωv + ω∗w = 0, u + ω∗v + ωw = 0. Adding, we get u = 0. Subtracting the second
equation from the third, we get v − w = 0, and hence v = w = 0.
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2 As discussed in chapter I.2, the groupD5, the invariance group of the pentagon, consists of ten elements
{I , R , R2, R3, R4, r , Rr , R2r , R3r , R4r} falling into four classes. Call these classes I , R, R2, and r . The
class averages are K(I)= I , K(R)= 1

2 (R + R4), K(R2)= 1
2 (R

2 + R3), and K(r)= 1
5
∑4
k=0 R

kr . Then

K(R)K(R)= 1
4
K(R)+ 1

2
K(R2) (31)

K(R)K(R2)= 1
2
(K(R)+K(R2)) (32)

K(r)K(r)= 1
5
K(I)+ 2

5
(K(R)+K(R2)) (33)

You could work out the rest.

II.3 Character Is a Function of Class

1 Again we look for fixed points, if any. The (123) leaves 4 untouched; so there is one fixed point, and hence

χ = 1. Explicitly, (123)∼
(

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

)
with trace= 1. Similarly for (132). In contrast, (12)(34) has no fixed

points and is represented by a matrix with trace = 0. Thus, the regular representation has characters

given by

4
0
1
1

. Now we merely have to apply the orthogonality theorems. For example, 1 . 42+ 3 . 02+ 4 .

12+ 4 . 12= 16+ 0+ 4 + 4 = 24 = 2(12), and hence the regular representation contains two irreducible
representations. It is fairly clear which two these are. For example, calculate the orthogonality between
the 4 and the 1: 1 . 4 + 3 . 0+ 4 . 1+ 4 . 1= 4 + 0+ 4 + 4 = 12, and thus the 4 contains 1 once. Indeed,

by inspection

4
0
1
1

=
1
1
1
1

+
3
−1
0
0

. Thus, 4→ 1+ 3.

3 Imposing various orthogonality theorems, obtain the character table as shown. Here are some selective
checks:

Column orthonormality.
The irreducible representation 2: 1 . 22 + 3 . 22 + 8 . (−1)2 + 0+ 0= 24, ✓.
The irreducible representation 3: 1 . 32 + 3 . (−1)2 + 0+ 6 . 12 + 6 . (−1)2 = 24, ✓.
Column orthogonality.
The irreducible representations 1 and 1̄: 1 . 1 . 1+ 3 . 1 . 1+ 8 . 1 . 1+ 6 . 1 . (−1)+ 6 . 1 . (−1)=
1+ 3+ 8− 6− 6= 0, ✓.
The irreducible representations 1 and 2: 1 . 1 . 2+ 3 . 2+ 8 . 1 . (−1)+ 0+ 0= 0, ✓.
The irreducible representations 1 and 3: 1 . 1 . 3+ 3 . 1 . (−1)+ 0+ 6 . 1 . 1+ 6 . 1 . (−1)= 0, ✓.

Note that by subtracting the orthogonality between 1 and 3 and between 1̄ and 3, we can immediately
conclude that the character of (12) and the character of (1234) in 3 (and in 3̄ also of course) have to be
equal and opposite.

The irreducible representations 2 and 3: 1 . 2 . 3+ 3 . 2 . (−1)+ 0+ 0+ 0= 0. ✓

Row orthogonality between the first and the second rows: 1 . 1+ 1 . 1+ 2 . 2+ 3 . (−1)+ 3 . (−1)=
0. ✓

At this point, I will just let you go on.

6 Within Sn, any 3-cycle x is equivalent to (123): that is, there exists a permutation s ∈ Sn such that
x = s−1(123)s. If s is also in An, then the claim stated in the exercise is true. If not, define s = (45)t ;
then t ∈ An. Now s−1(123)s = t−1(54)(123)(45)t = t−1(123)t = x. Thus, t does the job. In A4, (132) is
manifestly not equivalent to (123).
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7 As explained in chapter I.2, D5 is presented by D5= 〈R , r|R5= I , r2 = I , Rr = rR−1〉. The 10 elements
are divided into four equivalence classes, namely, {I }, {R , R4}, {R2, R3}, and {r , Rr , R2r , R3r , R4r}. Thus,
there are four irreducible representations with dimensions fixed by 12+ 12+ 22+ 22. The character table
works out to be

(26)

D5 nc 1 1′ 2 2′

1 I 1 1 2 2
Z5 2 R 1 1 2 cos θ 2 cos 2θ
Z5 2 R2 1 1 2 cos 2θ 2 cos θ
Z2 5 r 1 −1 0 0

with e5iθ = 1. As usual, the first row and the first and second columns can be written down immediately.
Column and row orthogonality fix the remaining entries.

II.4 Real, Pseudoreal, Complex Representations, and the
Number of Square Roots

5 On the 3 of S4,
∑
g χ(g

2)= 1 . 3+ 3 . 3+ 8 . 0+ 6 . 3+ 6 . (−1)= 3+ 9+ 18− 6= 24, and so the 3 is real.

6 Simply look up the character table of quarternionic group Q given in chapter II.3. Of the eight elements
{1, −1, i , −i , j , −j , k , −k}, two square to 1 (namely, 1 and −1), while six square to −1 (namely, i, −i, j ,
−j , k, and −k). Thus, for the 2-dimensional irreducible representation, our trusty reality checker gives∑
g χ

(2)(g2)= 2 . 2+ 6 . (−2)=−8, and so the 2 is pseudoreal.
The neat thing is that we never have to explicitly show what the 2-dimensional irreducible representa-

tion actually is, as you might have noticed.

7 We know that (123)2 = (132). Evaluate σ(123) = 1− 0= 1, ✓. Similarly, σ(132) = 1, ✓.

8 For S4,

σ(12)(34) = 1+ 1+ 2 . 2− 3− 3= 0 ✓ (18)

σ(123) = 1+ 1− 1= 1 ✓ (19)

σ(12) = 1− 1+ 0+ 1− 1= 0 ✓ (20)

σ(1234) = 1− 1+ 0− 1+ 1= 0 ✓ (21)

9 For A5,

σI = 1+ 3+ 3+ 4 + 5= 16= 1+ 15 ✓ (22)

σ(12)(34) = 1− 1− 1+ 1= 0 ✓ (23)

σ(123) = 1+ 0+ 0+ 1− 1= 1 ✓ (24)

σ(12345) = σ(12354) = 0 ✓ (25)

10 Calculate
∑
g D

(r)(g2) for A4. The character table, from which the representation matrices for the 1-
dimensional representations can be read off (of course), and the representation matrices for the
3-dimensional representation were all given in chapter II.3. The element (12)(34) squares to I , while
the elements (123) and (132) square to each other. Thus, for 1′, the sum equals 4 . 1+ 4 . (ω + ω∗)= 0,
which equals to N(G)(η(r)/dr)I trivially, since η1′ = 0. Similarly for 1′′. For the 3, the sum equals 4I , be-
cause c+ r1cr1+ r2cr2+ r3cr3= 0, and similarly for c→ a. In contrast,N(G)(η(r)/dr)I = 12(12/3)I = 4I .
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11 SinceA4 has two real representations, we get, applying (17), τI = 12 . 2= 24. To verify this, solve f 2g2= I .
Denote {I , (12)(34), (13)(24), (14)(23)} by ai , i = 1, . . . , 4. Then a2

i
a2
j
= I . For examples,

I 2((12)(34))2 = I , ((12)(34))4 = I . This gives all together 4 . 4 = 16 solutions. Next, (123)2(132)2 = I ;
there are 2 . 4 = 8 of these. All together 16+ 8= 24, ✓.

II.i2 Euler’s ϕ-Function, Fermat’s Little Theorem, and Wilson’s Theorem

1 The group G10 has four elements: 1, 3, 7, 9. But in chapter I.1, we found all possible groups with four
elements. Working out a few entries of the multiplication table (for example, 32 = 9 (mod 10), 72 = 9
(mod 10), 92= 1 (mod 10), 7 . 3= 1 (mod 10), and 7 . 9= 3 (mod 10)), we see that this is just Z4 with the
identification 1→ 1, 3→ i , 7→−i , and 9→−1.

3 Let’s keep the elements G16 in front of us: 1, 3, 5, 7, 9, 11, 13, and 15. Again, by brute force, 3= 3,
32 = 9, 33= 11, and 34 = 1. The arithmetic here is mod 16. This generates a Z4 subgroup. The elements
yet unaccounted for are 5, 7, 13, and 15. Next, 5= 5, 52= 9, 33= 11, and 34 = 1; again, this generates a Z4
that intersects with the previous Z4. Next, try 7= 7 and 72= 1, generating a Z2, which does not intersect
with the Z4 generated by 3, for example. Hence we conclude G16 = Z4 ⊗ Z2.

You might wonder where the three elements 5, 13, and 15 are. In the notation of the direct product
group Z4 ⊗ Z2 they are (3, 7), (11, 7), and (13, 7), respectively. (In other words, 3 . 7= 21= 5, 11 . 7=
77= 13, and 9 . 7= 63= 15.)

III.2 Group Theory and Harmonic Motion: Zero Modes

1 Sure there is. The problem is still translation invariant: the two masses could be gliding along without
stretching the spring. So we even know the eigenvector: it has to be (1, 1). With m1ẍ1=−(x1− x2), and

so forth, and defining ai = 1/mi , i = 1, 2, we end up with a nonsymmetric H =
(
a1 −a1−a2 a2

)
. Verify that

a zero mode exists. The other eigenvector is (a1, −a2), which is no longer orthogonal to (1, 1), with the
corresponding eigenfrequency ω2 =m−1

1 +m−1
2 .

2 Setting i = j in the Great Orthogonality theorem and summing, we obtain
∑
g χ

(r)∗(g)D(s)(g)kl =
N(G)
dr
δrsδkl. The harmonic oscillator problem gives us a reducible representation D(g) (for example,

the 6-dimensional representation for the triangular molecule in the text). The operator Pr ≡
dr
N(G)

∑
g χ

(r)∗(g)D(g) thus projects out the irreducible representation r contained in D(g).

IV.1 Tensors and Representations of the Rotation Groups SO(N)

5 It has only one component, which we can write as T 123 = 1
3!ε

ijkT ijk. Under a rotation, εijkT ijk→
εijkRii

′
Rjj

′
Rkk

′
T i
′j ′k′ = (det R)εi

′j ′k′T i
′j ′k′ = εi′j ′k′T i′j ′k′, where we used the definition of the determi-

nant.

8 For example, forD = 2, evaluate εijRipRjq for p = 1, q = 2. We have εijRi1Rj2= ε12R11R22+ ε21R21R12

= ε12(R11R22 − R21R12)= ε12 det R.

10 To show theC indeed transforms like a vector, let εijkAiBj→ εijkRimRjnAmBn = εmnlRklAmBn =RklCl.
Thus, as expected, Ck→ RklCl. An extreme nerd joke from the American Mathematical Society: What
do you get when you cross a mosquito with a mountain climber? Nothing. You can’t cross a vector with a
scaler.
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11 Simply note that both sides transform as invariant symbols with four indices, and the symmetry properties
(such as under i↔ j ) of the two sides match. You can also prove this by trying it out for various values
of i , j , l , n.

12 1, 5, 10, 14, and 30.

13 Simply repeat the reasoning in the text. The symmetric tensor has the form S44...4xx ...x (that is, among
the indices are j xs, where x stands for 1, 2, or 3, with j ranging from 0 to h, and h− j 4s). Thus, the total
number of components is determined by

∑h
j=0

1
2 (j + 1)(j + 2)= 1

6 (h+ 1)(h+ 2)(h+ 3). Here we used∑h
j=0 j

2= 1
6h(h+ 1)(2h+ 1). (As an interim check, we have 1

6 2 . 3 . 4= 4 for h= 1; and 1
6 3 . 4 . 5= 10 for

h= 2.) Next, impose the traceless condition: δi1i2Si1i2...ij = 0. The left hand side here is a totally symmetric
tensor carrying (h− 2) indices, which has 1

6 (h− 1)h(h+ 1) components. Therefore, the dimension is
given by d = 1

6 (h+ 1)(h+ 2)(h+ 3)− 1
6 (h− 1)h(h+ 1)= (h+ 1)2.

IV.2 Lie Algebra of SO(3) and Ladder Operators: Creation and Annihilation

1 For j = 1
2 , J+ =

(
0 1
0 0

)
, J− = J T+ , and Jz = 1

2

(
1 0
0 −1

)
.

For j = 1, J+ =
(

0 1 0
0 0 1
0 0 0

)
, J− = J T+ , and Jz =

(
1 0 0
0 0 0
0 0 −1

)
.

For j = 2, J+ =
⎛⎜⎝ 0 2 0 0 0

0 0
√

6 0 0
0 0 0

√
6 0

0 0 0 0 2
0 0 0 0 0

⎞⎟⎠, J− = J T+ , and Jz =
⎛⎝ 2 0 0 0 0

0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2

⎞⎠.

Verifying the commutation relations is a straightforward exercise involving multiplication and subtraction
of matrices.

2 Write T ijkl = V iV jV kV l − A(δijV kV l + δjkV iV l + δkiV jV l + δilV kV j + δjlV iV k + δklV jV i
+ B(δijδkl + δjkδil + δkiδjl). Impose the traceless condition to obtain A = 1/7, B = 1/35. We obtain
P4(cos θ)= 35 cos4 θ − 30 cos2 θ + 3.

IV.3 Angular Momentum and Clebsch-Gordan Decomposition

1, 2 Tables of Clebsch-Gordan coefficients are readily found on the web. For example, http://pdg.lbl.gov/2002/
clebrpp.pdf.

5 Start with
∣∣∣j = l + 1

2 , m= l + 1
2

〉
=
∣∣∣l , s = 1

2 , l , 1
2

〉
=
∣∣∣l , 1

2

〉
and climb down by applying J− repeatedly.

6 We have 3⊗ 3= 1⊕ 3⊕ 5, and so (3⊗ 3)⊗ (3⊗ 3) contains 1 three times. The three scalars are (�u . �v)( �w .
�z) and its two “cousins” by permutation. Thus, (�u× �v) . ( �w × �z) should be expressible in terms of these
three guys, and indeed, it is equal to (�u . �w)(�v . �z)− (�u . �z)(�v . �w).

IV.4 Tensors and Representations of the Special Unitary Groups SU(N)

2 For SU(2), they are simply given by the antisymmetric symbol εabc . For SU(3), the answer is given in
chapter V.2.

3 Write U = eiH . Then UT = eiHT = U implies that HT =H . LetW = e 1
2 iH .

http://pdg.lbl.gov/2002/clebrpp.pdf
http://pdg.lbl.gov/2002/clebrpp.pdf
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IV.5 SU(2): Double Covering and the Spinor

2 The symmetric 2-indexed tensor T ij has 2 . 3/2= 3 components. By the “what-else-could-it-be” argument,
it is clearly the vector of SO(3). We can make this explicit as follows. Written as a 2-by-2 matrix, this
tensor transforms as T ij → UikUjlT kl = UikT kl(UT )lj = (UT UT )ij . The 3 components of the vector
are then given by φa = tr T σ2σa. Since UT σ2 = σ2U

†, we have, under an SU(2) transformation, φa→
tr UTUT σ2σa = tr T σ2U

†σaU = Rab tr T σ2σa = Rabφb, as expected.

IV.7 Integration over Continuous Groups, Topology,
Coset Manifold, and SO(4)

1 Trace to obtain tr R(�n, ψ)= tr R(�ez , ψ)= 1+ 2 cosψ . For the last equality, simply look at the form of
R(�ez , ψ) given in chapter IV.3.

2 The axis �n is defined by R�n = �n. First, note that, as is sensible, this equation determines �n only up
to an overall constant, which is fixed on imposing the normalization condition �n2 = 1. Next, note that
RT �n= RTR�n= �n, where we use the orthogonality of R. Subtracting, we obtain (R − RT )�n= 0, that is,∑
j (Rij − Rji)nj = 0. Setting i = 1, 2, we obtain two equations that determine n1 and n2 in terms of n3,

namely (R12−R21)n2=−(R13−R31)n3 and (R21−R12)n1=−(R23−R32)n3. This fixes the rotation axis.

IV.i2 Crystal Field Splitting

2 We obtain 13→ 3⊕ 3⊕ 3⊕ 1⊕ 1⊕ 1′ ⊕ 1′′. The 1 appears twice, because 1 . 1 . 13+ 3 . 1 . 1+ 4(1 . 1+
1 . 1)= 24 �⇒ n1= 2. A check: 132 + 3 . 12 + 4(12 + 12)= 180= 15(12), and 32 + 22 + 12 + 12 = 15.

IV.i3 Group Theory and Special Functions

2 We have (suppressing some not-so-relevant factors) P+ |pm〉 = −ip |p , m+ 1〉 = cm
∫
(. . .)eimϕP+ |p , ϕ〉

= cmp
∫
(. . .)eimϕeiϕ |p , ϕ〉 = (cmp/cm+1) |p , m+ 1〉, where in the first equality we used (8). Thus, cm+1=

icm, and so cm = im if we fix c0 = 1.

IV.i4 Covering the Tetrahedron

1 From chapter II.3, we learned that c corresponds to a rotation through angle 2π/3. Referring to the SU(2)
matrix U given in the text, we see that the character = 2 cos π3 = 1.

V.1 Isospin and the Discovery of a Vast Internal Space

1 The ratio is 2. The key observation is that the initial state is an I = 1
2 , while the final state has isospin

1
2 ⊗ 1.
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2 The relevant Clebsch-Gordan decompositions are

∣∣π+p〉 = ∣∣∣∣ 32 ,
3
2

〉
∣∣π−p〉 =√ 1

3

∣∣∣∣ 32 , − 1
2

〉
−
√

2
3

∣∣∣∣ 12 , − 1
2

〉
∣∣∣π0n

〉
=
√

2
3

∣∣∣∣ 32 , − 1
2

〉
+
√

1
3

∣∣∣∣ 12 , − 1
2

〉
(15)

Thus,〈
π+p

∣∣ T ∣∣π+p〉 = A 3
2〈

π−p
∣∣ T ∣∣π−p〉 = 1

3
A 3

2
+ 2

3
A 1

2〈
π0n

∣∣∣ T ∣∣π−p〉 = √2
3

(
A 3

2
− A 1

2

)
(16)

Here T denotes some complicated strong interaction transition operator that is beyond our powers to
compute analytically even today, and A the amplitude in the two isospin channels. According to the rules
of quantum mechanics, σ(π+p)= C|A 3

2
|2 and

σ(π−p)= C 1
9

{
(1+ 2)|A 3

2
|2 + (4 + 2)|A 1

2
|2
}

(17)

with C some kinematic factor we don’t care about. For A 1
2
� 0, we obtain the stated result.

V.2 The Eightfold Way of SU(3)

2 The relevant identity is (note that none of the indices is summed over) εikmεjln ∝ δjiδlkδnm± permutations.
(We could of course work out the proportionality constant, but we won’t need it.) This follows from
the trivial observation that the left hand side vanishes unless (i , k , m) is a permutation of (1, 2, 3), and
similarly for (j , l , n). Thus, εikmεjlnAjlik is equal to various traces of the traceless tensor Ajlik and hence
vanishes.

3 Now that we listed all ten states for n = 3 in the text, we understand how it goes. Here we list the
representative states and write the corresponding number of states and then total it up. For n= 4: (4,0,0),
(3,1,0), (2,1,1), and (2,2,0), with, respectively, 3+ 3 . 2+ 3+ 3= 15= 1

2 (5 . 6). For n= 5: (5,0,0), (4,1,0),
(3,2,0), (3,1,1), and (2,2,1), with, respectively, 3+ 3 . 2+ 3 . 2+ 3+ 3= 21= 1

2 (6 . 7). See the pattern?

4 The U(1) corresponds to multiplying each a†
i by a common phase. It is none other than translation in

time, according to the rules of quantum mechanics.

VI.2 Roots and Weights for Orthogonal, Unitary, and Symplectic Algebras

1 The first two are easy: e1− e3= (e1− e2)+ (e2 − e3), and e1+ e3= (e1− e2)+ (e2 + e3). The other one
is a bit harder and is best done in two steps: (e2 − e3)+ (e2 + e3)= 2e2, and (e1− e2)+ e2 = e1. Hence
e1+ e2 is not simple.
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VI.4 The Killing-Cartan Classification of Lie Algebras

1 Suppose that it contains three different lengths. Then, according to the table in this chapter, there are
only a finite number of possibilities. For example, the three lengths (in some suitable units) could be 1,√

2, and
√

3. But then this would contradict the table, since the ratio of the lengths of some roots would
be
√

3/2.

VI.5 Dynkin Diagrams

1 A(F4)=

⎛⎜⎜⎝
2 −1 0 0
−1 2 −2 0
0 −1 2 −1
0 0 −1 2

⎞⎟⎟⎠.

VII.1 Spinor Representations of Orthogonal Algebras

1 Because from (6) we would get Cγ ∗2kC
−1= (−1)n−kγ2k, and the overall factor would depend on k.

VII.2 The Lorentz Group and Relativistic Physics

1 Suppress the coordinate z and write the Lorentz transformations as 3-by-3 matrices. Use an abbreviated
notation c = cosh ϕ, c′ = cosh ϕ′ , etc. Then

L−1
x
LyLx =

⎛⎜⎝ c −s 0

−s c 0

0 0 1

⎞⎟⎠
⎛⎜⎝ c
′ 0 s′

0 1 0

s′ 0 c′

⎞⎟⎠
⎛⎜⎝ c s 0

s c 0

0 0 1

⎞⎟⎠ (69)

As per the discussion of Lie algebra in chapter I.3, to extract the commutator we need only calculate the
terms proportional to ϕϕ′ , which fact allows us to simplify the calculation enormously. We could, for

example, set c and c′ effectively to 1. We obtain, almost immediately, L−1
x
LyLx ∼

(
1 0 0
0 1 −ss′
0 ss′ 1

)
, where

“∼” means effectively equal. We see explicitly that two boosts give a rotation: [Kx , Ky ]=−iJz.

4 Setting σ = ρ = 0 in (38) gives (L0
0)

2 = 1+∑i(L
i
0)

2 ≥ 1. Evidently, cosh ϕ ≥ 1 and − cosh ϕ ≤−1.

ημνL
μ
σ
Lν
ρ
= ησρ (38)

VII.3 SL(2, C) Double Covers SO(3, 1):
Group Theory Leads Us to the Weyl Equation

1 Boost in the z direction. Start with iKz = t ∂∂z + z ∂∂t . In the notation used here, δz= t , δt = z, that is, z′ =
z+ ϕt , t ′ = t + ϕz, or z= z′ − ϕt = z′ − ϕt ′ +O(ϕ2), t = t ′ − ϕz′ +O(ϕ2). Hence ∂

∂t ′ = ∂t
∂t ′

∂
∂t
+ ∂z

∂t ′
∂
∂z
=

∂
∂t
− ϕ ∂

∂z
, that is, δ ∂

∂t
=− ∂

∂z
. Similarly, δ ∂

∂z
=− ∂

∂t
.

2 Using the multiplication rule for SU(2), we have ( 1
2 , 1

2 )⊗ ( 1
2 , 1

2 ) = (1⊕ 0, 1⊕ 0) = (1, 1)⊕ (1, 0)⊕
(0, 1)⊕ (0, 0). Repeating, we see that the direct product of h 4-vectors gives
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(
1
2

,
1
2

)
⊗ . . .⊗

(
1
2

,
1
2

)
=
(

1
2
h⊕ 1

2
h− 1 . . . ,

1
2
h⊕ 1

2
h− 1 . . .

)
=
(

1
2
h,

1
2
h

)
⊕ . . .

3 According to the preceding exercise, ( 1
2h, 1

2h) is the SO(3, 1) tensor with h indices. The number of
components is (2 . 1

2h+ 1)2= (h+ 1)2, but according to exercise 13 you did in chapter IV.1, this is precisely
the number of components contained in a symmetric traceless tensor of SO(3, 1). Note that, although
you did the counting for SO(4), the number of components does not care about the analytic continuation
from SO(4) to SO(3, 1).

5 Given (E − �σ . �p)u = 0, let us boost infinitesimally along the z direction and show that the variation
of the left hand side of the Weyl equation vanishes. Use the notation in the text; in particular, �σ . �p =
σ1p

x + σ2p
y + σ3p

z, where I intentionally abuse notation. The variation is (δE − �σ . δ �p)u+ (E − �σ .

�p)δu= (pz − σ3E)u+ (E − �σ . �p) 1
2σ3u. Multiplying this by 2σ3 from the left, we obtain−(E − σ3p

z)u+
(σ1p

x + σ2p
y)u=−(E − �σ . �p)u= 0.

VII.4 From the Weyl Equation to the Dirac Equation

1 Under parity, (1, 0)↔ (0, 1). The two irreducible representations correspond to �E ± i �B.

4 We have

ψ̄ ′(x′)= ψ(x)†S(L)†γ 0 = ψ̄(x)e+ i
4 ωμνσ

μν

(40)

and thus, for example,

ψ̄ ′(x′)ψ ′(x′)= ψ̄(x)e+ i
4 ωσe−

i
4 ωσψ(x)= ψ̄(x)ψ(x) (41)

as claimed. The necessity for introducing ψ̄ in addition to ψ† in relativistic physics is traced back to the
(+, −, −, −) signature of the Minkowski metric. For other bilinears of the form ψ̄�ψ , with � denoting

a product of γ matrices, we encounter the expression e+
i
4 ωσ�e−

i
4 ωσ . Each of the γ s contained in �

transforms separately along the lines discussed in chapter VII.1.

5 For example, (ψ̄ψ)†= (ψ†γ 0ψ)†= ψ†γ 0ψ = ψ̄ψ .

8 v†u=−iwT σ2u.

9 The SO(2) in question rotates (W1, W2) as a vector. We find

L= iψ†
+σμ∂μψ+ + iψ†

−σμ∂μψ− −m(ψT+iσ2ψ− + h.c.)

which exhibits the U(1) symmetry ψ± → e±iθψ±.

VII.5 Dirac and Majorana Spinors:
Antimatter and Pseudoreality

1 Let ξ =
(
χ
ζ

)
. Then ψ = 1

2

(
χ+σ2ζ

∗
ζ−σ2χ

∗
)

. We check that indeed,−σ2(χ + σ2ζ
∗)∗ = −σ2χ

∗ + ζ , in agreement

with (27).
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IX.1 The Gauged Universe

1 The mass terms for the up and down quarks transform like (3, 2, 1
6 )⊗ (3∗ , 1, − 2

3 ) ∼ (1, 1
2 , − 1

2 ) and
(3, 2, 1

6 )⊗ (3∗ , 1, 1
3 )∼ (1, 1

2 , 1
2 ), respectively. Again, due to the defining representation of SU(2) being

pseudoreal, the representations (1, 1
2 , − 1

2 ) and (1, 1
2 , 1

2 ) are conjugate to each other, and one Higgs field
does the job. One reason that some people do not like low-energy supersymmetry is that in that theory,
separate Higgs fields have to be introduced for the up and down quarks.

IX.2 Grand Unification and SU(5)

1 First, X(5∗)=−3, while (Y/2)=+ 1
3 , − 1

2 , and − 1
2 on dc, ν, and e, respectively. Thus, 1

5 (X + 4(Y/2))=
1
5 (−3+ 4/3)=− 1

3 on dc and= 1
5 (−3− 2)=−1on ν and e. Next,X(10)= 1, while (Y/2)=−2/3, 1/6, 1/6,

and 1onuc, u, d, and ec, respectively. Thus, 1
5 (X+ 4(Y/2))= 1

5 (1− 8/3)=− 1
3 onuc and= 1

5 (1+ 2/3)= 1
3

on u, d, and= 1
5 (1+ 4)= 1 on ec, respectively. We conclude that 1

5 (X + 4(Y/2))= B − L, baryon minus
lepton number.

IX.3 From SU(5) to SO(10)

1 Clearly, to calculate tr T 3, our work is minimized by taking a diagonal T (for example, the hypercharge Y ).
To simplify the arithmetic, multiply Y by −3 and write T = diag(2, 2, 2, −3, −3). Then tr T 3 evaluated
on the 5∗ gives 3(−2)3+ 2(+3)3=−24 + 54 = 30, and evaluated on the 10 it gives 3(+4)3+ 6(−1)3+
1(−6)3= 192− 6− 216=−30.

2 The generators of SO(N) are given by T ij =−T ji , with i , j = 1, . . .N , as we learned way back when. The
anomaly is determined by tr T ij {T kl , T mn}. But this transforms like a 6-indexed tensor of SO(N), with
various symmetries, such as antisymmetry under the exchange of i and j . No such tensor exists except
for SO(6), in which case the antisymmetric symbol εijklmn works. (This argument is due to H. Georgi
and S. L. Glashow, Phys. Rev. D 6 (1972), p. 429.) This is all consistent, because, as you might recall from
chapter VII.1, SO(6) is locally isomorphic to SU(4). Remarkable how group theory all hangs together.

3 120→ (20, 1)⊕ (15, 4)⊕ (6, 3)⊕ (6, 3)⊕ (1, 4); check: 120= 20+ 60+ 18+ 18+ 4.
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representations of, 136–137; in spinor
representations, 412–415; Weyl spinors, 464

connected components of Lorentz groups, 447
conservation: of lepton numbers, 487; and

symmetry, 180
conservation laws in unification, 548–549
conserved momentum, 439
constraints: on character tables, 114–115;

on lengths and angles in Killing-Cartan,
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expansion, 9–11, 17; and permutations, 13–
14; of products, 27–29; of rotation matrices,
41; summary, 18

deuteron production in nucleon-nucleon
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from Weyl basis, 479
Dirac construction of angular momentum

algebra, 214
Dirac equation: Clifford algebra and gamma

matrices in, 470–471; in condensed matter
physics, 497–500; degrees of freedom
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Dirac mass vs. Majorana mass, 551–552
Dirac spinors: description of, 468; Lorentz

transformations of, 475–476; from Weyl
spinors, 458–459



Index | 587

Dirac’s bra, 29–31
direct product: in gauged universe, 536–

537; of groups, 44–45; of matrices, 29;
representations of, 98–99

direct sum representation, 98–99
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287; overview, 284–286; symmetry groups
in, 286

fields: crystal (see crystal field splitting); in
matrix operations, 19; vs. particles, 488; Weyl
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finite dimensional nonunitary representations
of Lorentz groups, 459

finite groups: commutators and commutator

subgroups, 67; composition series and
maximal invariant subgroup, 66; cosets
and quotient, 64–65; Coxeter, 61–62; cycle
structure and partition of integers for,
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flat earth, reverting to, 507–508
flat spacetime for conformal algebra, 517
formalism in theoretical physics, 179
founders of group theory, 45–46
Fourier, C., 113n
Fourier series: for group manifolds, 269;
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Galilean invariance, 311n
Galilean transformations: vs. Lorentz, 431–
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Gell-Mann Nishijima formula, 537
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369–373; symmetry of structure constants
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551n; and unification theory, 544

global action principle, 178
gluons, 534–535, 540
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323; number operator in, 283

harmonics, spherical, 210–212
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invariance: under linear transformations,
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Kitaev chain, 501–504
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term, 465; in particle position, 176–177; in
quantum field theory, 284–287; in SU(3)
symmetry, 338–339; in symmetry, 178–180;
in unification theory, 545, 547–549; Weyl,
460–462

Lambda () to the Eightfold Way, 318
Landé, Alfred, 512
Laplace, Pierre-Simon: lifetime dates of, 567;

and orbits, 492
Laplace equation in conformal algebra, 519
Laplace expansion: and determinants, 9–11;

proof of, 17
Laplace-Runge-Lenz vector, 492–493
large l effect, 495–496
lattices: in crystals, 146; impurity atoms in,

292–293; in particle promotion, 284
laws of physics, symmetry of, 176–179
least time principle, 178
Lee, C. K., 514
Lee, T. D.: parity violation proposal by, 459;

spin proposal by, 324n; spinning top field
theory reported by, 288n

left handed fields, charge conjugate of, 486
left handed spinors, 409–410, 464
left inverse: of groups, 39; of matrices, 13
Legendre, Adrien-Marie: lifetime dates of, 567;

portrait of, 215n
Legendre polynomials for SO(3) groups,

210–212
length: of Dynkin diagram roots, 384–386; in

Killing-Cartan classification, 376–377; of
root vectors, 330

lepton masses: in SO(10), 553; in unification
theory, 545

lepton numbers: conservation of, 487; in
unification, 548

leptons: in family problem, 561; in gauge
theories, 535; in gauged universe, 539–540;
overview, 531–533; and quark color, 556–
558; and quarks in single representation,
550; spin 1/2 carried by, 255; states of,
553–555

Lie, Marius Sophus: lifetime dates of, 567;
rotation ideas of, 73–74

Lie algebras: adjoint representation in, 477;
Cartan classification of, 364; classifications
of, 347; in conformal algebra, 521; in
contraction, 508; Dynkin diagrams (see
Dynkin diagrams); of Euclidean plane,
296; exponentiating, 84; in family problem,
561; for gauge bosons, 533; for Gell-Mann
matrices, 326–327; general (see general
Lie algebras); irreducible representations
of, 400; and Jacobi identity, 200; Killing-
Cartan classification (see Killing-Cartan
classification of Lie algebras); in ladder
multiplication, 218; overview, 77–78; of
Poincaré group, 442–443; rank and maximal
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Lie algebras (continued)
number of mutually commuting generators,
350–351; rank of, 327–328; for SO(3), 203–
204; for SO(4), 83, 494; for SO(N), 81–82;
structure constants of, 238–240; for SU(2),
247–248; for symplectic groups, 279; in
unification, 546, 551n

Lie approach to rotation: in higher dimensions,
76–77, 80; from planes to higher-dimensional
space, 76; structure constants in, 78–80

Lie groups, 79
light cone coordinates: and Lorentz

transformations, 431; Minkowski spacetime
in, 522

linear algebra, 1; coupled linear equations in,
1–2; Dirac’s bra and ket notation, 29–31;
hermitean conjugation in, 503; indices, 3–4,
22–23; matrices (see matrices); rectangular
matrices, 3–4; turning problems around
in, 3

linear differential operators for Hamiltonian,
161

linear transformations, invariance under,
71–72

linearity of quantum mechanics, 161–163, 168
Little, W. A., 152
local action principle, 178
local isomorphism: SO(4) and SU(2), 274–

275; SO(5) and Sp(4), 424; SO(6) and
SU(8), 422; SU(2) and SO(3), 245–246; in
symplectic groups, 279

long roots: in Dynkin diagrams, 386; in SO(5),
355

loops for Dynkin diagrams, 390–392
Lorentz, Hendrik Antoon, lifetime dates of,

567
Lorentz algebras: contraction to Galilean, 508–

509; falling apart of, 435–436; Poincaré
algebra from, 442

Lorentz generators in Dirac equation, 476–477
Lorentz groups: and absolute time, 429–

430; in additive groups of real numbers,
428; compact vs. noncompact, 266–267;
connected components of, 447; Dirac
equation derived from, 452–454; double
covering of, 445; falling apart of, 454; finite
dimensional nonunitary representations
of, 459; in finite relative velocities, 432–
433; in gauge theories, 534; little group,
443–445; and missing halves, 445–447;
and momentum, 439; and relative motion,
429; representation of additive groups,

92; SO(3, 1), 433–435; and spacetime,
436–438; tensors, 439–442; topological
quantization of helicity in, 447–448; Weyl
spinor representation of, 457

Lorentz invariance: in contraction, 509;
deduction of, 451; and Dirac spinors,
475–476; in Galilean extension, 511; and
spacetime symmetry, 452; in unification
theory, 547

Lorentz scalar fields in unification theory, 545
Lorentz transformation: derivations of, 430–

431; description of, 438–440; of Dirac
spinors, 475–476; vs. Galilean, 431–432; and
theory of special relativity, 42

lost antineutrino fields, 551
Louis, Joseph, 181n
low energy effective theory, 547–548
low energy world, routes to, 558–559
low-ranked algebras, Dynkin diagrams for,

388–389
lower indices, 22–23, 232–235
lowering operators for ladders, 205

m-by-n rectangular matrices, 4
Ma, E., 134n
magnetic field in spin precession, 257
Majorana, Ettore: lifetime dates of, 567;

mystery of, 486
Majorana equation: in (1+ 1)-dimensional

spacetime, 504; in condensed matter physics,
501–504; and neutrinos, 486–487

Majorana fields, 489
Majorana Lagrangian, 487–488
Majorana mass term: description of, 486; vs.

Dirac mass, 551–552; overview, 465
Majorana operators, 501
Majorana spinors, 489
manifolds. See group manifolds
mass: of baryons, 341–342; as central charge,

510–512; in Dirac equation from Weyl
equation, 468–469; harmonic systems of,
168–169; of hyperons, 318; Majorana vs.
Dirac, 551–552; of mesons and pions, 324n;
of protons and neutrons, 303; of right
handed neutrinos, 552–553

mass bilinears in unification theory, 545
massive Dirac equation, 500
matrices: associativity of, 6; from character

tables, 117–118; complex and complex
symmetric, 31–32; count components of,
26–27; determinants (see determinants);
diagonal form, 16–17; diagonalizing, 23–26;
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vs. differential operators, 82; direct product
of, 29; eigenvectors and eigenvalues for, 20–
21; functions of, 27; gamma, 469–470, 473;
group element representation of, 90–91;
hermitean conjugation, 19, 21–22; inverse,
7–8, 18; inverting, 8–10; multiplying, 4–
5; noninvertible, 19–20; orthogonal, 72;
overview, 2–3; polar decomposition of,
31; real symmetric, 21–22; rectangular, 3–
4; representation of (see representations);
right inverse of, 13; simultaneously
diagonalizable, 25–26; special, 43, 72; of
squares, sum of, 143; symplectic, 277–278;
traces of, 6–7; transpose, 6; triality, 319;
turning problems around in, 3

Matthew principle, 311n
maximal invariant subgroups, 66
maximal number of mutually commuting

generators, 350–352
Maxwell equations: conformal algebra from,

515; of motion in electromagnetic fields, 451
medians in dihedral groups, 60–61
Mercator, Gerardus, 517
Mercator maps, 517
Merton, R. K., 311n
mesons: in Eightfold Way, 318–319; Gell-

Mann-Okubo mass formula for, 339–340;
mass of, 324n; octets, 338–339; and quarks,
320; in strong interaction, 304; and SU(3),
322; in SU(3) breaking, 337–339

Miller, G. A., 45
Mills, Robert, 533
Minkowski, H., 433
Minkowski metric: in conformal algebra, 517;

in Dirac equation, 470; in Lorentz tensors,
440; in Lorentz to Galilean contraction, 508–
509; in Lorentz transformations, 430, 453;
signs for, 449n; in spacetime, 437–438

Minkowski spacetime: in conformal algebra,
517–519, 521–522; in expanding universe,
524; in light cone coordinates, 522

missing halves, 445–447
modular arithmetic, 152
modular groups, 52
molecules, triangular, 172–174, 338
momentum: angular (see angular momentum);

and energy, 439
momentum space, 490
Monster group, 66
motion: equations of, 450–452; harmonic, 168–

174, 180–181; invariance and covariance,
180; Weyl equation for, 461

multiplication: direct product matrices, 99;
groups, 39; ladders, 217–219; matrices,
4–5, 19; permutations, 56–57; SO(3), 207–
209; spinors, 416–418; SU(3), 317–318;
SU(3) irreducible representations, 315–316;
SU(N), 242; tensors, 440

multiplication tables for groups, 46–50
muon-neutrinos, 532
muons, 532–533
mutually commuting generators: in general

Lie algebras, 367; rank and maximal number
of, 350–352

“My Memory of Ken Wilson” essay, 153n

n-by-n matrices: diagonalizing, 23–24; direct
product of, 29; inverting, 18

N -dimensions, rotations in, 76–77
Nahin, Paul, 134n
Nair group, 242n
naming irreducible representations, 209–210
Nayar group, 242n
Ne’eman, Yuval, 318
neutrino mixing, 533
neutrinos: conjugate partners for, 535–536; in

gauge theories, 535; and Majorana equation,
486–487; and Majorana Lagrangian, 487–
488; mass of, 551–552; Weyl equation
description of, 459, 464

neutrons: mass of, 303; quarks in, 532
Newton, Isaac, motion equations of, 450–451
Newton-Poisson equation, 451
Newton’s laws and elliptical orbits, 492
no-loop theorem for Dynkin diagrams, 390–391
no-more-than-three lines theorem for Dynkin

diagrams, 391
Noether, Emmy: and Gordan, 226; lifetime

dates of, 567; and symmetry in conservation,
180

nonabelian gauge theories, 533
nonabelian groups, 39
noncompact groups vs. compact, 97–98,

266–267
noncomplex representations, invariant bilinear

for, 138–139
noninteracting hopping electrons, 497–498
noninvertible matrices, 19–20
nonunitary representations of Lorentz group,

459
normal subgroups, 62
nucleon-nucleon collision, deuteron

production in, 305–306
nucleon-nucleon scattering, 307–308
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nucleons, pion coupling with, 307, 309–310
number theory and group theory, 150–151

observational astronomers in expanding
universe, 526–527

octahedrons, character tables for, 132–133
odd-dimensional spaces, rotation groups in,

418–419
odd permutations, 41, 57
Okubo, Susumu, 340
Omega− symbol for tenth baryonic

particle,230–231
once and only once rule, 46–49
operators: creation and annihilation, 212–213,

285–286; in Hilbert space, 503; for ladders,
206–207; Majorana, 501; promotion to,
492–493

orbits, closing of, 492
Orland, H., 202n
orthogonal algebras. See spinor representations

of orthogonal algebras
orthogonal groups: embedding unitary groups

into, 419–420; and squares, 352–354; unitary
from, 227–228

orthogonal matrices, 72
orthogonal representations: for character

tables, 120; irreducible, 109–110; rows,
110–111

orthogonality, character: for compact
continuous groups, 261; in group manifolds,
268–269; in representation, 104

oscillators: in 3-dimensional space, 323;
number operator in, 283; in quantum field
theory, 285

palindromic characteristic polynomials, 281
parameterization, axis-angle, 263–264
parity: in Dirac spinor formation, 458–459; in

gauge theories, 534; Hamiltonian, 165; and
neutrinos, 488; and spin 0 mesons, 318; and
spinors, 462, 464, 471; in weak interaction,
53n, 536

particle physics, SU(3) in, 312
particles: vs. fields, 488; as Poincaré algebra

representations, 442–443
partition of integers for finite groups, 59–60
Pati, Jogesh, 556
Pati-Salam theory, 556–558
Pauli, Wolfgang: and dynamical degeneracy,

491; and electron spin, 259n; on elegance,
450n; on opposition to group theory, 46;
personality of, 54n

Pauli exclusion principle, 425–426

Pauli-Lubanski vector, 443–444
Pauli matrices: and Kitaev chains, 503; in

Lorentz transformations, 431; properties
of, 246–247; and quarternions, 254n; for
SU(2), 245–247; for SU(N), 236–239; in
weak interaction, 536; in Weyl equation, 460

Peierls instability, 500
Penrose, Roger, 149n
periodic table and accidental degeneracy,

495–496
permutation groups: description, 41; finite

groups and Cayley’s theorem, 55
permutations: and determinants, 13–14;

multiplying, 56–57
perturbations, Hamiltonian, 339
photons: in Eightfold Way, 323; in

electromagnetism, 537–538; and fermions,
532; as gauge boson, 533, 537; and helicity
states, 444, 447n

physical laws, symmetry in, 176–177
physics: equations of motion in, 450–452;

symmetry in, 38
pions: and electric charge, 304–305; in Fermi-

Yang model, 310; mass of, 324n; nucleon
coupling with, 307, 309–310

Pisano, Leonardo, 134n
Planck’s constant: in Galilean extension, 510;

in Schrödinger equation, 161
planes, rotation in, 81
Plato, 121
Platonic solids and Dynkin diagrams, 396–397
Poincaré, Henri, lifetime dates of, 567
Poincaré algebra: in conformal algebra, 520;

in Galilean extension, 511; from Lorentz
algebras, 442; and missing halves, 445–447;
particles as representations of, 442–443

point groups of crystals, 146
polar decomposition: of matrices, 31; in

rotation group representation, 195–196
positive roots: description of, 352; in

Dynkin diagrams, 384; in Killing-Cartan
classification, 381–382; in SU(3), 331–332

positrons: and antimatter, 483; in unification,
546

power series, 74
presentations of groups, 49–50
products: decomposition of, 290–291;

determinants of, 27–29; in gauged universe,
536–537; groups, 44–45; representation of,
98–99; of two squares, 143–144

projective representation in quantum
mechanics, 166

promotion to operators, 492–493
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properties of determinants, 14–15
protons: mass of, 303; quarks in, 531–532; in

unification, 545–549
pseudoreal conjugates, 415
pseudoreal representations: vs. real, 137–138;

of SU(2), 251–252
pseudoreality. See antimatter and pseudoreality

quantized angular momentum, 216–217
quantum chromodynamics: and “27,” 340; in

gauge theories, 535
quantum field theory: continuous labels from

discrete in, 284–286; executive summary
for, 287–288; Lagrangians with internal
symmetries, 286–287; overview, 283–284;
symmetry groups in, 286

quantum Galilean algebra from Galilean,
510–513

quantum mechanics: addition of angular
momentum in, 217; Bloch’s theorem and
Brillouin zone, 165–166; degeneracy in,
162–163; and double covering, 250; and
Hamiltonian, 180; harmonic motion in,
168–169; Heisenberg algebra in, 212–213;
hermitean conjugation in, 503; linearity
of, 161–163, 168; parity in, 165; ray and
projective representation, 166; and Schur’s
lemma, 164; triangular molecule, 172–174;
zero modes, 170–174

quantum physics, complex numbers in, 228
quark masses: in SO(10), 553; in unification

theory, 545
quarks: color number for, 556–558; in family

problem, 561; in gauge theories, 534–535;
in gauged universe, 539–540; and leptons in
single representation, 550; overview, 531–
533; skepticism of, 255; spin 1/2 carried by,
255; states of, 553–555; and SU(3), 321; and
triality, 319–320; in unification, 544–546

quarternionic groups: character tables for,
127–128; overview, 61

quarternions: description of, 33n; in Sylvester-
Pauli matrix representation, 254n

quasicrystals, 149
quotient groups, 64–65

Rabi, I. I., 532
raising operators for ladders, 205
rank 2 Lie operators, 379–380
ranks: Dynkin diagrams for, 388–389; in

general Lie algebra generators, 370; of Lie
algebras, 327–328; of mutually commuting
generators, 350–352

ray representation in quantum mechanics, 166
real characters in inverse class, 120
real conjugates in spinor representations, 415
real numbers, additive groups of, 428
real representations vs. pseudoreal, 137–138
real symmetric matrices, 21–22
reality checker: for representation, 139–141;

for SO(3) and SU(2), 275
rectangular matrices, 3–4
recursion relation in general Lie algebras,

373–375
red quarks, 532
reducibility, tests for, 106–107
reducible representations: vs. irreducible,

94–95; of SO(N), 188–190
reflections in rotations, 72
regular representation, characters of, 107–108
relative motion, 429
relative velocities, 432–433
relativistic physics for Lorentz groups. See

Lorentz groups
Renteln, Paul, 68n
repeated index summation, 5–6
representation theory for rotation group

representation, 188
representations: adjoint (see adjoint

representations); character as function
of class, 93; character orthogonality, 104;
from character tables, 117–118; characters
of regular representation, 107–108; class
algebra, 111–113; compact versus non-
compact, 97–98; complex numbers, 136;
conjugate, 136–137; from degeneracy, 163;
description of, 89–90; Dirac equation, 454–
457; equivalent, 93–94; Euclidean algebra,
296; Euclidean groups, 297–298; Frobenius
algebra and group algebra, 111; general Lie
algebras, 365; Great Orthogonality theorem,
103–104; invariant bilinear, 138–139;
irreducible (see irreducible representations);
Lie algebra of SO(3), 203–204; Lorentz
groups, 459; matrices for group elements,
90–91; multiplying, 242; orthogonal algebras
(see spinor representations of orthogonal
algebras); Poincaré algebra, 442–443;
product, 98–99; product of two squares, 143–
144; quarks and leptons together, 550; real
versus pseudoreal, 137–138; reality checker,
139–141; reducible or irreducible, 94–95;
restriction to subgroups, 95–96; rotation
group representation (see rotations and
rotation groups); row orthogonality, 110–
111; Schur’s lemma, 101–103; square roots,
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representations (continued)
141–142; sum of representation matrices of
squares, 143; test for reducibility, 106–107;
theory, 91–92; unitary, 96–97

resolving P into cycles, 56
restriction of representations to subgroups,

95–96, 197–198
Riemann, Bernhard: on distance between

manifold points, 375n; on locally curved
space, 508

right handed fields, charge conjugate of, 486
right handed neutrinos, mass of, 552–553
right handed spinors, 409–410, 462–463
right inverse: of groups, 39; of matrices, 13
right movers and noninteracting hopping

electrons, 499
root vectors in SU(3), 329–332
roots: determining, 348–349; in Dynkin

diagrams, 384–386, 398–399; for exceptional
algebras, 398–399; in general Lie algebras,
369–373; in Killing-Cartan classification,
378–379, 381–383; and orthogonal groups,
352–354; positive and simple, 352; in SO(2l)
vs. SO(2l + 1), 357–358; in SO(5), 354–356;
in SO(6), 356; in SU(4), 359–362; summary
by family, 362–363; in SU(N), 358–359; in
weight diagrams, 332–333

rotations and rotation groups: adjoint
representation and Jacobi identity, 198–199;
adjoint of SO(N), 199–201; approaches
to, 70, 75; around axes and in planes, 81;
Cartesian coordinates and trigonometry,
70–71; character of, 261–262; contraction
of indices in, 193; of crystals, 148; and
Dirac equation, 455–456; distance squared
between neighboring points, 75; dual tensors
for, 192; flying guesses for, 186; generators,
74; in higher-dimensional space, 196; inside
rotation groups, 419; invariance under linear
transformations, 71–72; invariant symbols
in, 191–192; irreducible representations
of, 186–190, 192–193; in odd-dimensional
spaces, 418–419; overview, 40–41; from
planes to higher-dimensional space, 76;
polar decomposition in, 195–196; reducible
representations, 188–190; reflections in,
72; repeated, 73–74; representation theory
in, 188; representing, 185; restriction to
subgroups, 197–198; self-dual and antiself-
dual, 197; of SO(2) tensors, 195; of SO(3),
193–195; tensors in, 187–188; tetrahedral
groups from, 289–290

Roth, Philip, 33n
row orthogonality, 110–111
Ruffini, Paolo, 45

Sakata, S., 318, 324n
Salam, Abdus, 556
scalar products, 2; in complex vector space, 22;

between roots in Lie algebra generators, 371;
with vectors, 71

scattering cross sections and isospin, 305–306
Schrödinger, E.: as artillery officer, 113n; on

opposition to group theory, 46
Schrödinger algebra in quantum Galilean

algebra, 510–513
Schrödinger equation: in de Broglie, 512–513;

in Galilean extension, 511; solution, 491; in
spin precession, 256–257; for state evolution,
161; in time reversal, 257

Schultz, Charles M., 569
Schur, Friedrich, 113n
Schur, Issai, lifetime dates of, 567
Schur’s lemma: description of, 101–102;

in harmonic motion, 169–170; proof of,
102–103; and quantum mechanics, 164

Schwarzschild, K., 113n
Schwinger, Julian, 510, 514n
self-dual rotation group representation, 197
self-dual tensors, 440–442
semidirect product symbols, 154
Shechtman, Dan, 149
short roots: in Dynkin diagrams, 386; in SO(5),

355
shrinking theorem for Dynkin diagrams, 392
similarity transformations, 93, 137–138
simple groups, 63–64
simple roots: description of, 352; in Dynkin

diagrams, 384–386; in Killing-Cartan
classification, 381–382; in SU(3), 331–332

simultaneously diagonalizable matrices, 25–26
SL(2, C) groups in Dirac equation, 452–454
Slater, John, 324n
slow electrons, 479
SO(1, 1) groups vs. SO(2), 266
SO(2) groups: description of, 72; flying guesses

for, 186; invariant measures for, 265–266;
vs. SO(1, 1), 266; spinor representations of
orthogonal algebras for, 410–412, 418–419,
424–425; tensors in, 195

SO(2, 1) groups, 466
SO(2, 2) groups, 465–466
SO(2l) groups: Dynkin diagrams for, 387–388;

vs. SO(2l + 1), 357–358
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SO(2n) groups: complex conjugation in, 412–
414; decomposing, 421; and fermions,
425–426; generators of, 407–408

SO(2, R) groups, 466
SO(3) groups: adjoint representation of, 198;

Casimir invariant for, 210; Clebsch-Gordan
series for, 269–270; complexification of,
457; double-valued representation of, 250;
Dynkin diagrams for, 386; flying guesses
for, 186; group manifold measures for, 267–
268; group manifold of, 271–273; irreducible
representations of, 94–95, 194–195, 209–210;
ladders for, 204–207; Legendre polynomials
and spherical harmonics in, 210–212; Lie
algebra of, 203–204; locally isomorphic
to SU(2), 245–246; multiplying, 207–209;
reality checks, 275; rotation contraction in,
507–508; specialness of, 193–194; spinor
representations of orthogonal algebras for,
425; vs. SU(2) topology, 273; tensors for,
207–209; and weak interaction, 536–537

SO(3, 1) groups: in Dirac equation, 452–455;
overview, 433–436

SO(4) groups: in Dirac equation, 452–454;
Dynkin diagrams for, 387–388; emergence
of, 493–494; in hydrogen atoms, 491–496;
Lie algebras for, 83; locally isomorphic to
SU(2), 274–275; and Lorentz group, 436;
and low energy world, 558–559; in quark and
lepton states, 554; spinor representations of
orthogonal algebras in, 410–412; symmetric
traceless tensors of, 495; weights and roots
in, 353–354, 361

SO(4, 1) groups, 509
SO(4k) groups, 415
SO(5) groups: Dynkin diagrams for, 386;

locally isomorphic to Sp(4), 424; and spinor
decomposition, 421; as SU(10) singlet
generator, 555–556; weights and roots in,
354–356

SO(6) groups: decomposing, 422–424; locally
isomorphic to SU(4), 422; and low energy
world, 558–559; in quark and lepton states,
554; weights and roots in, 356

SO(8) groups: decomposing, 422–424; Dynkin
diagrams for, 388, 396; hypercolor for,
563–564

SO(8m) groups, 415
SO(10) groups: decomposing, 421–422; and

low energy world, 558; quark and lepton
masses in, 553; in quark and lepton states,
554; spinor multiplication for, 416–417;

spinor representation of, 550; spinors for,
409; SU(5) singlet generator of, 555–556

SO(d − 1, 1)/SO(d , 1), writing out, 524–526
SO(d , 2) groups, 521
SO(N) groups: adjoint of, 199–201; adjoint

representation and Jacobi identity, 198–
199; contraction of indices in, 193; defined,
185; dual tensors for, 192; flying guesses
for, 186; in higher-dimensional space, 196;
invariant symbols for, 191–192; irreducible
representations of, 186–190, 192–193; Lie
algebra for, 81–82; polar decomposition
of, 195–196; reducible representations of,
188–190; representation theory for, 188;
restriction to subgroups, 197–198; self-dual
and antiself-dual in, 197

Sp(2l), weights and roots in, 361–362
Sp(4) groups: Dynkin diagrams for, 387–388;

locally isomorphic to SO(5), 424
space: equations of motion in, 450–452;

momentum, 490
space group of crystals, 146
spacetime: for conformal algebra, 517–519;

coordinates in relative motion, 42; and
electromagnetic field, 482; in expanding
universe, 524; Galilean to Minkowskian, 509;
in light cone coordinates, 522; and Lorentz
invariance, 452; Majorana and Weyl in, 504;
in nonrelativistic physics, 197, 285, 441;
from space and time, 436–438

special functions, 295–298
special matrices, 43, 72
spheres: as coset manifolds, 523–524; in group

theory, 273–274
spherical bastards, 85n
spherical harmonics, 210–212
spin, helicity states of, 444
spin 0 mesons, 318
spin 1/2: discovery of, 255–256; and electron

wave function, 256; fermions in gauge
theories, 534; in Jordan-Schwinger
construction, 213; Kramer’s degeneracy
for, 258–259; and Majorana equation, 487;
mystery of, 255, 259; summary, 488–489; in
unification theory, 547

spin operator in Hamiltonian, 161–162
spin precession, 256–257
spinor representations of orthogonal algebras:

binary code in, 410; Clifford algebra for,
405–407; complex conjugation in, 412–
414; conjugates, 414–415; decomposing
spinors, 421–424; double covering, 408–409;
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spinor representations of orthogonal algebras
(continued)
embedding unitary groups into orthogonal
groups in, 419–420; examples, 410–412;
generators of SO(2n), 407–408; left and
right handed, 409–410; multiplying spinors,
416–418; overview, 405; rotation groups in
odd-dimensional spaces in, 418–419; for
SO(2), 424–425; for SO(3), 425

spinors: charge conjugates of, 485; conjugate
Weyl, 464; Dirac, 468; in Dirac equation,
456–459, 468–469; fermions for describing,
425–426; and hypercolor, 563; isospin (see
isospin); for Kitaev chains, 503; left handed,
464; Majorana, 489; and pion nucleon
coupling, 309–310; right handed, 462–463;
and SO(10), 550; Weyl (see Weyl spinors)

splitting baryon mass, 341–342
splitting crystal fields: characters in, 293–294;

impurity atoms in, 292–293; SU(3) analog
for, 320–322; symmetry breaking in, 294

springs, harmonic systems of, 168–169
square character tables, 108–109, 111–112
square roots: of identity, 58; number of,

141–142
squares: and orthogonal groups, 352–354;

product of, 143–144; sum of representation
matrices, 143

stacking representations, 98–99
states of quarks and leptons, 553–555
strange quarks, 532
strong interaction: and approximate symmetry,

303; coupling strength of, 307; in gauge
theories, 535; mesons in, 304; and nucleon-
nucleon scattering, 307–308; quarks in, 532;
and SU(3), 534–535; and triality, 319

structure constants of Lie algebras: general,
366–367; overview, 78–80; for SU(N),
238–240

SU(2) groups: in Dirac equation, 453–
454; double covering in, 250; doublet
representation of, 458; Dynkin diagrams
for, 386, 388; in electromagnetism, 537–
538; and electron mass, 539; elements of,
248–249; full angles in, 249–250; group
manifold of, 272; indices for, 250–251;
integration measure for, 273; irreducible
representations of, 251; Lie algebra for,
247–248; locally isomorphic to SO(3), 245–
246; locally isomorphic to SO(4), 274–275;
and low energy world, 558; and nuclear
force symmetry, 310; overview, 244–245;
Pauli matrices for, 246–247; pseudoreal

representations of, 251–252; in quark and
lepton states, 554; and quark color, 556–
557; reality checks, 275; vs. SO(3) topology,
273; in spinor representations of orthogonal
algebras, 411; subalgebras of, 326; in
unification, 542–548; and weak interaction,
536–537

SU(3) groups: baryon mass splitting in,
341–342; breaking, 337–339; color, 563;
consequences of, 342; crystal field splitting
analog of, 320–322; in Eightfold Way,
318–319; electric charge in, 322–323; in
electromagnetism, 537–538; empirical facts
about, 331; Gell-Mann matrices for, 325–
327; harmonic oscillator in 3-dimensional
space, 323; indices for, 312–314; irreducible
representations of, 315–316, 321, 327; jungle
gyms for, 327–329; ladders for, 327–329;
and meson formula, 339–340; multiplication
rule for, 317–318; mutually commuting
generators for, 351–352; in particle physics,
312; in quark and lepton states, 554–555;
and quark color, 556–557; quarks and triality
in, 319–320; root vectors in, 329–332; and
strong interaction, 534–535; tensors for,
313–315; in unification, 542–548; and weak
interaction, 536–537; weight diagrams for,
332–335

SU(4) groups: locally isomorphic to SO(6),
422; and low energy world, 559; and quark
color, 556, 558; weights and roots in,
359–362

SU(5) groups: Higgs field in, 553; irreducible
representations of, 234; and neutrinos,
551–552; in unification, 542–548

SU(10) groups and neutrinos, 551–552
subgroups: commutator, 67; concept of, 43;

cyclic, 43, 49; derived, 62–63; invariant,
62–66; Lagrange’s theorem for, 43–44;
restriction of representation to, 95–96; in
rotation group representation, 197–198

subtraction of matrices, 19
Sugar, Robert, 53n
sum of representation matrices of squares, 143
summation, repeated index, 5–6
SU(N) groups: adjoint representation of, 240–

242; algebra for, 235–238; Lie algebra for,
238–240; multiplying, 242; overview, 227–
228; as subgroup of U(N), 229–230; tensors
in, 233–234; tenth baryonic particle, 230;
trace for, 231–232; U(N) relationships to,
252–253; weights and roots in, 358–359

superscripts for indices, 22–23
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Sylvester, James Joseph, 2, 254n
Sylvester-Pauli matrices, 254n
symmetric matrices: complex, 31–32; defined,

19; and hermitean, 21–22
symmetric tensors: for SO(3), 207–208; for
SO(4), 495

symmetry: breaking in crystal field splitting,
294; and conservation, 180; cylindrical, 297;
degeneracy implied by, 162–163; in Dynkin
diagrams, 387–388; internal, 244; in lepton
number conservation, 487; and Majorana
equation, 487; in physics, 38, 176–179, 303–
304; in quantum field theory, 286; role of,
37; of space and time, 450–452; of structure
constants in general Lie algebras, 366–367

symplectic groups: algebras for, 280–281;
characteristic polynomial of, 281; in Dynkin
diagrams, 387–388; isomorphs of, 282;
overview, 277–280

Szilard, Leo: impact of, 53n; and Wigner
textbook, 149n

tables, character. See character tables
tau-neutrinos, 532
taus, 532–533
tautochrone problem, 181n
Taylor series, 74
Teller, Edward, 53n
tensors: contraction of indices for, 193;

defined, 202n; and invariant symbols,
191–192; Lorentz, 439–442; multiplying,
440; overview, 187–188; and pion nucleon
coupling, 309–310; and quarks, 320; in
reducible representations, 189; for rotation
group representation, 192–193; of SO(2),
195; of SO(3), 207–209; of SO(4), 495; of
SU(3), 313–315, 321–322; with upper and
lower indices, 233–234

tenth baryonic particle in SU(N), 230
termination requirement for ladders, 205–206
tests for reducibility, 106–107
tetrahedral groups: double, 299–300;

invariance, 121–122, 131; irreducible
representations of, 289–291; from rotation
groups, 289–290; weights and roots in,
359–362

theoretical physics: formalism in, 179; U(1) in,
242

Thun, R., 113n
tidal forces, 202n
time: in Lorentz groups, 436–438; symmetries

of, 450–452. See also spacetime
time reversal and antiunitary operator, 257–258

top quarks, 532
topological quantization of helicity, 447–448
topology: of group manifolds, 270–271; SU(2)

vs. SO(3), 273
totally antisymmetric symbol, 78
traceless tensors: of SO(4), 495; with upper

and lower indices, 233–234
traces of matrices, 6–7
transformations: conformal, 515–517;

description, 37; of Dirac spinors, 475–476;
Galilean, 428–432, 446–449; invariance
under, 71–72; Lorentz (see Lorentz
transformation); in physics, 38; similarity,
93, 137–138; of Weyl spinors, 457

translation in conformal algebra, 518–519
translation vectors for crystals, 147–148
transpose of matrices, 6
transpositions of finite groups, 56
tray method for character tables, 123
triality: Dynkin diagrams, 388; and quarks,

319–320
triangular molecule, 172–174
trigonometry in rotation, 70–71, 75
turning problems around, 3
two-parameter net rotation, 523
two squares, product of, 143–144

U(1) groups: in electromagnetism, 538; in
quark and lepton states, 554; and quark
color, 556–557; symmetry in quantum field
theory, 286–287; in theoretical physics, 242;
in unification, 542–548

U(2) groups in quark and lepton states, 554
U(3) groups in quark and lepton states, 554
Uhlenbeck, George, 255, 259n
U(N) groups: overview, 228–229; SU(N) as

subgroup of, 229–230; SU(N) relationships
to, 252–253

unification: clues for, 541; conservation laws
in, 548–549; constructing, 542; low energy
effective theory in, 547–548; need for, 541;
perfect fit, 542–545; protons in, 545–549;
quark and lepton masses in, 545

unitary groups: embedding into orthogonal
groups, 419–420; from orthogonal, 227–228;
representations of, 96–97

universe expanding. See expanding universe
unwanted particles, concealing, 562–563
up quarks, 531–532
upper indices, 22–23, 232–235

van der Waerden, Bartel Leendert: lifetime
dates of, 567; notation invented by, 456n
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vector mesons, 310
vector space, scalar products in, 22
vectors: for crystals, 146–148; defining, 185;

Laplace-Runge-Lenz, 492–493; and matrices,
2–3; root, 329–332; in rotation, 71–72;
weights as, 351–352

velocities: addition of, 266–267, 512; Fermi,
499; finite relative, 432; in zero mode, 171

vertical bars for matrices, 11
Voigt, W., 448n
volume of groups, 265–267
von Neumann, John: impact of, 53n; on

opposition to group theory, 46

Wang, Hao, 149n
Waring, Edward, 152
wave function, 256
weak interaction: description of, 533; and direct

product structure, 536–537; invariance of,
488; and SU(2), 536, 554, 556; and SU(3), 342

weight diagrams: for SU(3), 332–334; theorems
about, 334–335

weights: in SO(4), 353–354, 361; in SO(5),
354–355; in SO(6), 356–357; in Sp(2l), 361;
in SU(3), 351–352; in SU(4), 359–360; in
SU(N), 358–359; as vectors, 351–352

Weinberg, Steven, 539
Weissenberg, Karl, 146, 149
Weyl, Hermann: group theory book by, 149n;

lifetime dates of, 567
Weyl bases, charge conjugation in, 483–484
Weyl equation: in (1+ 1)-dimensional

spacetime, 504; alternative, 463–464;
conjugate spinors in, 464; Dirac equation
from (see Dirac equation from Weyl
equation); group theoretical approach to,
459–460; left handed spinors in, 464; and
Majorana mass term, 465; right handed
spinors in, 462–463

Weyl fields: and direct product structure, 537;
in gauge theories, 534; important points
about, 488–489; and quark color, 556; in
unification, 544–545

Weyl Lagrangian, 460–462
Weyl reflection in Killing-Cartan classification,

378
Weyl spinors, 468; conjugate, 464; in Dirac

equation, 456–457; Dirac spinor formation
from, 458–459; distinguishing, 456n;
transformations of, 457

Weyl unitarian trick, 467n
Wigner, Eugene: on isospin, 310; job search by,

146; lifetime dates of, 567; limerick about,
166n; on mathematics in physics, 161; on
opposition to group theory, 46; and quantum
physics, 149; quote on representation, 89;
on representational theory, 99–100; reversed
conventions by, 53n; textbook by, 149n; and
time reversal, 257–258

Wigner-Eckart theorem, 224–225
Wilson, John, 152
Wilson, Ken, 150
Wilson’s theorem, 150, 152

Yang, C. N.: gauge theories of, 533; parity
violation proposal by, 459; spin proposal by,
324n

Yang-Mills theory, 241n
yellow quarks, 532
Young tableaux, 193
Yukawa, Hideki: and mesons in strong

interaction, 304; and nucleon-nucleon
scattering, 308

zero modes, 170–174
Zweig, George: and “27”, 337, 340, 342; quark

notion proposed by, 319n
Zwicky, Fritz, 85n



Collection of Formulas

The following is a loosely organized list of formulas used in this text, compiled here for
the convenience of some readers.

Part I

Presentations

Dn = 〈R , r|Rn = I , r2= I , Rr = rR−1〉

〈a1, a2, . . . , ak|(ai)2= I , (aiaj)
nij = I , nij ≥ 2, with i , j = 1, 2, . . . , k〉

〈a , b〉 ≡ a−1b−1ab = (ba)−1(ab)

SO(3)

[Ji , Jj ]= iεijkJk
SO(N)

[J(mn), J(pq)]= i(δmpJ(nq) + δnqJ(mp) − δnpJ(mq) − δmqJ(np))

SO(4)

[Ji , Jj ]= iεijkJk

[Ji , Kj ]= iεijkKk

[Ki , Kj ]= iεijkJk
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Part II

Great Orthogonality theorem∑
g

D(r)†(g)i
j
D(s)(g)k

l
= N(G)

dr
δrsδi

l
δk
j

Character orthogonality∑
c

nc(χ
(r)(c))∗χ(s)(c)=N(G)δrs

Decomposing a reducible representation∑
c

ncχ
∗(c)χ(c)=N(G)

∑
r

(nr)
2

∑
c

ncχ
∗(r)(c)χ(c)=N(G)nr

Dimensions of the irreducible representations∑
r

d 2
r
=N(G)

Column orthogonality∑
c

nc(χ
(r)(c))∗χ(s)(c)=N(G)δrs

Row orthogonality∑
r

χ(r)(c)∗χ(r)(c′)= N(G)
nc

δcc
′

The character table is square

N(C)=N(R)

Reality check

∑
g∈G

χ(r)(g2)= η(r)N(G), with η(r) =

⎧⎪⎪⎨⎪⎪⎩
1 if real,

−1 if pseudoreal,

0 if complex

Square roots

g2= f : σf =
∑
r

η(r)χ(r)(f )

g2= I : σI =
∑
r

η(r)dr =
∑
r=real

dr −
∑

r=pseudoreal

dr

∑
g

D(r)(g2)=N(G)(η(r)/dr)I
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f 2g2= h2: τh =N(G)
∑
r

(η(r))2χ(r)(h)/dr

f 2g2= I : τI =N(G)
∑
r

(η(r))2=N(G)
∑

r=real or
pseudoreal

1

Part III

G�⇒ degeneracy and G⇐� degeneracy

d = degrees of degeneracy= dimension of irreducible representation

Euler-Lagrange equation

d

dt

(
δL

δ
dq
dt

)
− δL
δq
= 0

Hamiltonian

H(p , q)= pq̇ − L(q̇ , q)

q̇ = ∂H
∂p

, ṗ =−∂H
∂q

Part IV

S and O

OTO = 1

det O = 1

Raising and lowering

J± ≡ Jx ± iJy

[Jz , J±]=±J±, [J+, J−]= 2Jz

J+ |m〉 = cm+1 |m+ 1〉 =√(j + 1+m)(j −m) |m+ 1〉

J− |m〉 = c∗m |m− 1〉 =√(j + 1−m)(j +m) |m− 1〉

J 2 |j , m〉 =
(

1
2 (J+J− + J−J+)+ J 2

z

)
|j , m〉 = j (j + 1) |j , m〉

j = 1
2 : J+

∣∣∣− 1
2

〉
=
∣∣∣ 1

2

〉
, J−

∣∣∣ 1
2

〉
=
∣∣∣− 1

2

〉
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j = 1:

J+ |−1〉 = √2 |0〉 , J+ |0〉 =
√

2 |0〉

J− |1〉 =
√

2 |0〉 , J− |0〉 =
√

2 |−1〉
j = 2:

J+ |−2〉 = 2 |−1〉 , J+ |−1〉 = √6 |0〉 , J+ |0〉 =
√

6 |1〉 , J+ |1〉 = 2 |2〉

J− |2〉 = 2 |1〉 , J− |1〉 =
√

6 |0〉 , J− |0〉 =
√

6 |−1〉 , J− |−1〉 = 2 |−2〉
Clebach-Gordon decomposition

j ⊗ j ′ = (j + j ′)⊕ (j + j ′ − 1)⊕ (j + j ′ − 2)⊕ . . .⊕ (|j − j ′| + 1)⊕ |j − j ′|

Angular momentum

Lx = i
(
z
∂

∂y
− y ∂

∂z

)
, Ly = i

(
x
∂

∂z
− z ∂

∂x

)
, Lz = i

(
y
∂

∂x
− x ∂

∂y

)

�L2= 1
2
(L+L− + L−L+)+ L2

z
=−

(
1

sin θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

)
�L2Ym

l
(θ , ϕ)= l(l + 1)Ym

l
(θ , ϕ)

LzY
m
l
(θ , ϕ)=mYm

l
(θ , ϕ)

Ym
l
(θ , ϕ)=Nm

l
eimϕPm

l
(cos θ), Pl(cos θ)≡ Pm=0

l
(cos θ)

Heisenberg and Dirac algebras

[q , p]= i: a = 1√
2
(q + ip) and a†= 1√

2
(q − ip)

[a , a†]= 1

a |n〉 = √n |n− 1〉 and a† |n〉 = √n+ 1 |n+ 1〉

H = 1
2
a†a + 1

2
= 1

2
(p2+ q2)=−1

2
d2

dx2
+ 1

2
x2

Jz↔ 1
2
(a†a − b†b), J+ ↔ a†b, J− ↔ b†a

|j , m〉 = 1√
(j +m)!(j −m)!(a

†)j+m(b†)j−m |0〉

Jz = 1
2
(|+〉 〈+| − |−〉 〈−|), J+ = |+〉 〈−| , J− = |−〉 〈+|

|J , M〉 in terms of
∣∣m, m′

〉
:

|J , M〉 =
j∑

m=−j

j ′∑
m′=−j ′

∣∣j , j ′, m, m′
〉 〈j , j ′, m, m′|J , M〉
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1
2
⊗ 1

2
= 1⊕ 0

|1, 1〉 =
∣∣∣ 1

2 , 1
2

〉
|1, 0〉 = 1√

2

( ∣∣∣− 1
2 , 1

2

〉
+
∣∣∣ 1

2 , − 1
2

〉 )
; |1, 0〉 = 1√

2

( ∣∣∣− 1
2 , 1

2

〉
−
∣∣∣ 1

2 , − 1
2

〉 )
|1, −1〉 =

∣∣∣− 1
2 , − 1

2

〉
1⊗ 1= 2⊕ 1⊕ 0

J = 2:

|2, 2〉 = |1, 1〉

|2, 1〉 = 1√
2
(|0, 1〉 + |1, 0〉)

|2, 0〉 = 1√
6
(|−1, 1〉 + 2 |0, 0〉 + |1, −1〉)

|2, −1〉 = 1√
2
(|0, −1〉 + |−1, 0〉)

|2, −2〉 = |−1, −1〉
J = 1:

|1, 1〉 = 1√
2
(|0, 1〉 − |1, 0〉)

|1, 0〉 = 1√
2
(|−1, 1〉 − |1, −1〉)

|1, −1〉 = 1√
2
(|−1, 0〉 − |0, −1〉)

J = 0:

|0, 0〉 = 1√
3
(|−1, 1〉 − |0, 0〉 + |1, −1〉)

S and U

U†U = I

det U = 1

U = eiH

ψi→ ψ ′i = Ui
j
ψj

ψi→ ψ ′
i
= ψj(U†)

j

i

ψi ≡ ψi∗
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εi1i2...iNU
i1
j1
U
i2
j2

. . . UiNjN = εj1j2...jN
ϕ→ ϕ′ = UϕU†

(SU(2)⊗ SU(2))/Z2= SO(4)

Pauli matrices

σ1=
(

0 1

1 0

)
, σ2=

(
0 −i
i 0

)
, σ3=

(
1 0

0 −1

)

σaσb = δabI + iεabcσc

{σa , σb} = 2δab[
σa

2
,
σb

2

]
= iεabc σc2

U = ei �ϕ.�σ/2= cos
ϕ

2
I + iϕ̂ . �σ sin

ϕ

2

σ2σ
∗
a
σ2= σ2σ

T
a
σ2=−σa

σ2(e
i �ϕ �σ )∗σ2= ei �ϕ �σ

U(N)=
(
SU(N)/ZN

)
× U(1)

ψ→ ei(2π)σ3/2ψ =
(
eiπ 0

0 e−iπ

)
ψ =−ψ

Kramer’s degeneracy

KU†�σUK = η∗ηKσ2�σσ2K =−�σ

T 2= ησ2Kησ2K = ησ2η
∗σ ∗2KK =−1

Integration over group manifolds

χ(j , ψ)= sin(j + 1
2 )ψ

sin ψ
2∫

SO(3)
dμ(g)F (g)=

∫ π

0
dψ(sin2 ψ

2
)F (ψ)

χ(j)= (ζ j+1− ζ−j )/(ζ − 1)

χ(k)χ(j)= χ(j + k)+ χ(j + k − 1)+ . . .+ χ(j − k)

S2= SO(3)/SO(2)

SO(4): W = t + i �x . �σ ; t2+ �x2= 1, W → U†WV
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Symplectic algebra

Sp(2n, R): RT JR = J , J =
⎛⎝ 0 I

−I 0

⎞⎠
USp(2n)= U(2n) ∩ Sp(2n, C): UT JU = J

J = I ⊗ iσ2: iA⊗ I , S1⊗ σ1, S2⊗ σ2, S3⊗ σ3

Euclidean algebra

E(2): [J , Pi]= iεijPj , i = 1, 2, [P1, P2]= 0

P 2 |pm〉 = p2 |pm〉 , J |pm〉 =m |pm〉
〈
pm′

∣∣ e−iaP1 |pm〉 = Jm−m′(pa)

Part V

Gell-Mann matrices

λ1=

⎛⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎠ , λ2=

⎛⎜⎜⎝
0 −i 0

i 0 0

0 0 0

⎞⎟⎟⎠ , λ3=

⎛⎜⎜⎝
1 0 0

0 −1 0

0 0 0

⎞⎟⎟⎠ ,

λ4 =

⎛⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎠ , λ5=

⎛⎜⎜⎝
0 0 −i
0 0 0

i 0 0

⎞⎟⎟⎠ , λ6 =

⎛⎜⎜⎝
0 0 0

0 0 1

0 1 0

⎞⎟⎟⎠ ,

λ7 =

⎛⎜⎜⎝
0 0 0

0 0 −i
0 i 0

⎞⎟⎟⎠ , λ8 =

⎛⎜⎜⎝
1 0 0

0 1 0

0 0 −2

⎞⎟⎟⎠
SU(3)

3⊗ 3∗ = 8⊕ 1

3⊗ 3= 6⊕ 3∗

3⊗ 6= 10⊕ 8

3⊗ 3⊗ 3= (6⊕ 3∗)⊗ 3= (6⊗ 3)⊕ (3∗ ⊗ 3)= 10⊕ 8⊕ 8⊕ 1

8⊗ 8= 27⊕ 10⊕ 10∗ ⊕ 8⊕ 8⊕ 1

dim(m, n)= 1
2
(m+ 1)(n+ 1)(m+ n+ 2)

f 123= 1
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f 147 =−f 156 = f 246 = f 257 = f 345=−f 367 = 1
2

f 458 = f 678 =
√

3
2

Part VI

Math Physics Number of generators Roots Simple roots

Al−1 SU(l) l2− 1 ei − ej ei − ei+1

Bl SO(2l + 1) l(2l + 1) ±ei ± ej , ±ei ei−1− ei , el
Cl Sp(2l) l(2l + 1) ±ei ± ej , ±2ei ei−1− ei , 2el

Dl SO(2l) l(2l − 1) ±ei ± ej ei−1− ei , el−1+ el

[Hi , Hj ]= 0

[Hi , Eα]= αiEα

[Eα , Eβ ]=Nα ,βEα+β

[Eα , E−α]= αiH i

2
(�α , �β)
(�α , �α) = q − p ≡ n

2
(�α , �β)
( �β , �β) = q

′ − p′ ≡m

cos2 θαβ = (�α , �β)2
(�α , �α)( �β , �β) =

mn

4

Weyl reflection

�β ′ = �β − 2 cos θαβ|β|α̂

m n
(�α , �α)
( �β , �β) cos2 θαβ θαβ

1 1 1 1
4 60◦

2 1 2 1
2 45◦

3 1 3 3
4 30◦

θαβ = 90◦ implies that (�α , �β)= 0 and ραβ is indeterminate.

Cartan matrix

Aij ≡ 2
(αi , αj)

(αi , αi)



Collection of Formulas | 609

Part VII

Clifford algebra

{γi , γj} = 2δijI

γ
(n+1)
j = γ (n)j ⊗ τ3, j = 1, 2, . . . , 2n

γ
(n+1)
2n+1 = I ⊗ τ1

γ
(n+1)
2n+2 = I ⊗ τ2

Generating rotations

σ
(n+1)
ij =−iγ (n+1)

i γ
(n+1)
j = σ (n)ij ⊗ 1

σ
(n+1)
i , 2n+1= γ (n)i ⊗ τ2

σ
(n+1)
i , 2n+2=−γ (n)i ⊗ τ1

σ
(n+1)
2n+1, 2n+2= 1⊗ τ3

γF = (−i)nγ1γ2 . . . γ2n

γFγi =−γiγF for all i

ψL→ (e
i
4ωijσijP−)ψL = e

i
4ωijσijψL and ψR→ (e

i
4ωijσijP+)ψR = e

i
4ωijσijψR

Conjugation

C−1
n
γ
(n) T
i Cn = (−1)nγ (n)i

C−1σT
ij
C =−σij = C−1σ ∗

ij
C

C−1
n
γFCn = (−1)nγF

CT
n
= (−1)

1
2n(n+1)Cn

γ
(n)
i Cn = (−1)n+i+1Cnγ

(n)
i

SO(4k + 2) Complex

SO(8m) Real

SO(8m+ 4) Pseudoreal

Spinor decomposition

2n+m−1
+ → (2n−1

+ , 2m−1
+ )⊕ (2n−1

− , 2m−1
− )

2n+m−1
− → (2n−1

+ , 2m−1
− )⊕ (2n−1

− , 2m−1
+ )
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Lorentz transformations

Jz = i
(
y
∂

∂x
− x ∂

∂y

)
, iKx = t ∂

∂x
+ x ∂

∂t

[Ji , Jj ]= iεijkJk

[Ji , Kj ]= iεijkKk

[Ki , Kj ]=−iεijkJk

J±, i = 1
2
(Ji ± iKi)

xμ→ x′μ = Lμ
ν
xν , ημνL

μ
σ
Lν
ρ
= ησρ

SL(2, C)/Z2= SO(3, 1)

xμ = (t , �x), xμ = (t , −�x)

∂μx
ν = ∂x

ν

∂xμ
= δν

μ

∂μxν = ημν

Jμν = i(xμ∂ν − xν∂μ)

Poincaré algebra

[Jμν , Jρσ ]=−i(ημρJνσ + ηνσJμρ − ηνρJμσ − ημσJνρ)

[Jμν , Pρ]=−i(ημρPν − ηνρPμ)

[Pμ, Pν]= 0

Wσ ≡−1
2
εμνρσJ

μνP ρ

[Wμ, Wν]= iεμνρσWρP σ

[Ji , Jj ]= iεijkJk , [Ji , Pj ]= iεijkPk , [Ji , Kj ]= iεijkKk
[Pi , H ]= 0, [Ji , H ]= 0, [Pi , Pj ]= 0

[Ki , H ]= iPi , [Ki , Pj ]= 0, [Ki , Kj ]= 0

(j+, j−)→ (j+ + j−)⊕ (j+ + j− − 1)⊕ (j+ + j− − 2)⊕ . . .⊕ |j+ − j−|

Weyl spinors

u→ ei(
�θ−i �ϕ). �σ2 u= ei�ξ . �σ2 u

L= iu†
(
∂

∂t
+ �σ . �∇

)
u
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σμ = (I , �σ)= (I , σ1, σ2, σ3)

σμ∂μu= 0 and σμpμu= 0

ũ≡ iσ2u
∗: ũ→ ei(

�θ+i �ϕ). �σ2 ũ

v→ ei(
�θ+i �ϕ). �σ2 v = ei �ξ∗. �σ2 v

L= iv†
(
∂

∂t
− �σ . �∇

)
v

σ̄μ ≡ (I , −�σ)

σ̄μ∂μv = 0 or σ̄ μpμv = 0

L= iu†
(
∂

∂t
+ �σ . �∇

)
u− 1

2
(muT σ2u+m∗u†σ2u

∗)

i

(
∂

∂t
+ �σ . �∇

)
u=m∗σ2u

∗

Dirac spinors

γ μ ≡
(

0 σμ

σμ 0

)

(γ μpμ −m)ψ(p)= 0

(iγ μ∂μ −m)ψ(x)= 0

σμν ≡ i
2

[γ μ, γ ν]

ψ̄ ≡ ψ†γ 0

L= ψ̄(i � ∂ −m)ψ

γ 0 = I ⊗ τ1=
(

0 I

I 0

)
Weyl, or γ 0 = I ⊗ τ3=

(
I 0

0 −I

)
Dirac

γ i = σi ⊗ iτ2=
(

0 −σi
σi 0

)
Weyl and Dirac

γ5= I ⊗ τ3=
(
I 0

0 −I

)
Weyl, or γ5=−I ⊗ τ1=−

(
0 I

I 0

)
Dirac

Charge conjugation

ψc ≡ Cγ 0ψ∗

C = γ 2γ 0
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C =−σ2⊗ τ3=
(−σ2 0

0 σ2

)
Weyl, or C = σ2⊗ τ1=

(
0 σ2

σ2 0

)
Dirac

C = C−1=−C∗ = −CT = C†

ψc ≡ Cγ 0ψ∗ = (ψ∗)T (Cγ 0)T = ψ†γ 0CT =−ψ̄C

ψ =
(
u

v

)
and ψc =

( −σ2v
∗

σ2u
∗

)

Majorana

i � ∂ψ =mψc

L= iu†σμ∂μu− 1
2
m(uT σ2u+ u†σ2u

∗)

L= ψ̄iγ μ∂μψ − 1
2
m(ψTCψ + h.c.)

ψ =
(

u

−σ2u
∗

)

Part VIII

Central extension

[Ki , Pj ]= iMδij

Kx =−it ∂
∂x
−Mx

Conformal algebra

g′
ρσ
(x′)=�2(x′)gρσ (x′)

∂ρξσ + ∂σξρ = 2
d
ηρσ∂ . ξ

[Pμ, P ν]= 0, [Kμ, Kν]= 0

[D , Pμ]=−Pμ, [D , Jμν]= 0, [D , Kμ]=+Kμ

[Jμν , Pλ]=−ημλP ν + ηνλPμ, [Jμν , Kλ]=−ημλKν + ηνλKμ

[Jμν , J λρ]=−ημλJ νρ − ηνρJμλ + ηνλJμρ + ημρJ νλ

[Kμ, P ν]= 2(Jμν + ημνD)

SO(2, 2): ∂±, x±∂±, and − (x±)2∂±
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Expanding universe

X = (gX∗)= ei �P .�xeiDt(0, �0, 1)=
(

sinh t + 1
2
et �x2, et �x , cosh t − 1

2
et �x2

)
ds2= ηMNdXMdXN =−dt2+ e2td �x2

Part IX

ur, ug, uy, ucr, ucg, ucy, dr, dg, dy, dcr, dcg, dcy, e−, e+, νe

(3, 2, 1
6 )⊕ (3∗, 1, − 2

3)⊕ (3∗, 1, 1
3)⊕ (1, 2, − 1

2 )⊕ (1, 1, 1)

16+→ [0]⊕ [2]⊕ [4]= 1⊕ 10⊕ 5∗

16+ ⊗ 16+ = 10⊕ 120⊕ 126

SU(2) doublets

ν = | − +−−−〉
e− = | + −−−−〉
u= | − +++−〉, | − + +−+〉, and | − + −++〉
d = | + −++−〉, | + − +−+〉, and | + − −++〉

SU(2) singlets

νc = | + ++++〉
e+ = | − −+++〉
uc = | + ++−−〉, | + + −+−〉, and | + + −−+〉
dc = | − −+−−〉, | − − −+−〉, and | − − −−+〉
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