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Page Line Erratum Correction
xi 30 quite easy so adapt quite easy to adapt
xii 15 cost were born cost was born
3 9 do not purposely use purposely do not use
43 6 M iM i = −M jM i for i 6= j M iM j = −M jM i for i 6= j

54 24 eΩ =
∞∑

n=1

eΩ =
∞∑

n=0

66 -8
∫ L+∆

0

∫ L+∆

L

68 12
∫ ∞

−∞
< k|x >< k|f > dk

∫ ∞

−∞
< x|k >< k|f > dk

81 8 ρ = (x2 + y)1/2 ρ = (x2 + y2)1/2

119 10 P (λ) = | < λ|ψ > |2 P (λ) ∝ | < λ|ψ > |2
131 9 vice vesa vice versa
167 21 by dotted lines in the figure. by the dotted line in Figure 5.2.
191 1 The last terms suggests The last term suggests
191 15 from the atomic physics to cosmology from atomic physics to cosmology
220 19 asuming for simplicity assuming for simplicity
252 14 X

(1)⊗(2)
2 X

(1)⊗(2)
1

255 12 the energy eigenvalues the energy eigenvectors
296 -5 which does not change with time which does change with time
317 20 n = 2 n = 1
317 -9 of charge q of mass µ and charge q
320 16 e−θ·L/h̄ e−iθ·L/h̄

336 20 linear combination of each other linear combinations of each other
337 13 Legendre Polynomial Legendre Polynomial
339 6 z cosθx + y sinθx z cosθx − y sinθx

339 10 z cosθx − y sinθx z cosθx + y sinθx

350 3 (pr cosθ)h̄ (pr cosθ)/h̄
393 -2 B <<< B0 B � B0

394 -2 M = nµk M = Nµk
399 -2 1000kG 1000kG
415 13 project operators projection operators
415 13 j = 2j1 = 1 j = 2j1 − 1
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Page Line Erratum Correction
418 24 T q

k |jm > T q
k |αjm >

419 -1 ∓(Jx ± Jy)/21/2 ∓(Jx ± iJy)/21/2

429 -1 minimun minimum
430 -8 but is utility but its utility
432 17 whose minimum lies at whose minimum lies not at
434 22 wil will
439 16 ψ∗n(X ′) ψ∗n(x′)
446 17 from nor
456 8 shifted ay shifted by
471 2

〈
λ
r3

〉 〈
λ
r2

〉
480 3 keep one only keep only the first
485 -3 we did we get
496 -1 path of least actions path of least action
502 9 appropximate approximate
507 30 coordinaters coordinates
519 6 +ε11 ε11
533 3 r0 = 1µ0 r0 = 1/µ0

539 30 ' r
(
1− 2 r·r′

r2

)1/2

+O

[(
r′

r

)2
]
r ' r

(
1− 2 r·r′

r2

)1/2

564 -7
(

mc2

h̄

)2 (
mc
h̄

)2

572 1 terms makes terms make
573 3 [P · [P, v]] [P, [P, v]]

586 13
N∑

i=1

N∑
n=1

604 11 these coordinate these coordinates
609 4 e−z∗2z2 e−z∗2z1

609 8 e−z∗2z1 e−z∗z

610 15 e−z∗z e−z′∗z

614 2 −h̄ d
dτ |ψ(t) >= H|ψ(τ) > −h̄ d

dτ |ψ(τ) >= H|ψ(τ) >

614 -8
N−1∏

0

N−1∏
1

616 15 for the case a = 1. for the case a = 1 and A = 1.
619 28 limitis limits
620 1 costs causes
620 11 < −a|U(τ)|a > < a|U(τ)| − a >
637 14 so when one usually usually so when one
662 15 pole as z pole at z
673 - Legendre polynomial 337

The items on pages 119 and 564 were submitted by Daniel Keren.
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VECTOR SPACES & LINEAR INDEPENDENCE - SOME
EXAMPLES

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
References: Shankar, R. (1994), Principles of Quantum Mechanics, Plenum

Press. Exercises 1.1.1 - 1.1.5.
Post date: 3 Nov 2016
Here are a few examples of vector space problems.
Given the axioms of a vector space, we can derive a few more properties.

I’ll use Shankar’s notation for vectors, which is essentially Dirac’s bra-ket
notation.

Theorem 1. The additive identity 0 is unique.

Proof. Proof: (by contradiction). Suppose there are two distinct additive
identities |0〉 and |0′〉. Then

∣∣0′〉= ∣∣0′〉+ |0〉 (since |0〉is an additive identity) (1)

= |0〉+
∣∣0′〉 (commutative addition) (2)

= |0〉 (since |0′〉is an additive identity) (3)

�

Theorem 2. Multiplication of any vector by the zero scalar gives the zero
vector.

Proof. We wish to show that 0 |v〉= |0〉 for all v ∈ V . We have

|0〉= (0+1) |v〉+ |−v〉 (4)

= 0 |v〉+ |v〉+ |−v〉 (5)

= 0 |v〉+ |0〉 (6)

= 0 |v〉 (7)

where the third line follows because |−v〉 is the additive inverse of |v〉
and the last line follows because |0〉 is the additive identity vector. �

Theorem 3. |−v〉=−|v〉. That is, −|v〉 is the additive inverse of |v〉.

Proof. The negative of a vector v is multiplication of v by the scalar −1, so
1
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|v〉+(−|v〉) = (1+(−1)) |v〉 (8)

= 0 |v〉 (9)

= |0〉 (10)

by theorem 2. Thus −|v〉 is an additive inverse of |v〉, so −|v〉 = |−v〉.
�

Theorem 4. The additive inverse |−v〉 is unique.

Proof. Suppose there is another vector |w〉 for which |v〉+ |w〉 = |0〉. By
theorem 1, |0〉 is unique, so we must have |v〉+ |w〉= |v〉+ |−v〉. By theo-
rem 3, this gives

|v〉− |v〉+ |w〉= |−v〉 (11)

|0〉+ |w〉= |−v〉 (12)

|w〉= |−v〉 (13)

where the third line follows because |0〉 is the additive identity. �

Example 5. Consider the set of all entities (a,b,c) where the entries are
real numbers. Addition and scalar multiplication are defined as

(a,b,c)+(d,e,f)≡ (a+d,b+ e,c+f) (14)

α (a,b,c)≡ (αa,αb,αc) (15)

The null vector is

|0〉= (0,0,0) (16)
The inverse of (a,b,c) is (−a,−b,−c). As the set is closed under addition

and scalar multiplication it is a vector space. However, a subset such as
(a,b,1) is not a vector space since it is not closed under addition or scalar
multiplication:

(a,b,1)+(d,e,1) = (a+d,b+ e,2) (17)
2(a,b,1) = (2a,2b,2) (18)

Neither of the vectors on the RHS are of the form (a,b,1) so they don’t
lie in the set.

Example 6. The set of all functions f (x) defined on an interval 0≤ x≤ L
form a vector space if we define addition as pointwise addition f + g =
f (x)+g (x) for all x, and scalar multiplication by a as af (x).
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Some subsets of this vector space are also vector spaces. For example the
set of all functions that satsify f (0) = f (L) = 0 is a vector space, because
the sum of any two such functions also satisfies (f +g)(0) = (f +g)(L) =
0, and scalar multiplication leaves the endpoints at 0 as well.

The subset of periodic functions f (0) = f (L) (not necessarily equal to
0) is also a vector space. Adding any two functions from this subset gives a
sum such that

f (0)+g (0) = f (L)+g (L) (19)
(f +g)(0) = (f +g)(L) (20)

Multiplying by a scalar gives

a(f (0)+g (0)) = a(f (L)+g (L)) (21)
a(f +g)(0) = a(f +g)(L) (22)

However, a subset such as all functions with f (0) = 4 is not a vector
space, since adding two such functions gives a sum with (f +g)(0) = 8,
and multiplying by a scalar gives a function with af (0) = 4a, neither of
which is in the subset.

Now a couple of examples of linear independence.

Example 7. We have three vectors from the vector space of real 2×2 ma-
trices:

|1〉 =

[
0 1
0 0

]
(23)

|2〉 =

[
1 1
0 1

]
(24)

|3〉 =

[
−2 −1
0 −2

]
(25)

These are not linearly independent, because |3〉= |1〉−2 |2〉.

Example 8. We have 3 row vectors

|1〉 =
[

1 1 0
]

(26)

|2〉 =
[

1 0 1
]

(27)

|3〉 =
[

3 2 1
]

(28)

These are linearly dependent, since |3〉= 2 |1〉+ |2〉.
Now we look at the 3 vectors

http://www.physicspages.com/pdf/Shankar/MIT 8.05x 03.02.02 Span and linear independence.pdf
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|1〉 =
[

1 1 0
]

(29)

|2〉 =
[

1 0 1
]

(30)

|3〉 =
[

0 1 1
]

(31)

We can show that these are linearly independent by attempting to solve
the equation

0 = a |1〉+ b |2〉+ c |3〉 (32)
Looking at each component, we have

a+ b = 0 (33)
a+ c = 0 (34)
b+ c = 0 (35)

Solving the last two equations for a and b in terms of c and substituting
into the first equation, we get

−2c = 0 (36)
c = 0 (37)

Thus we find that the only solution is a= b= c= 0, which proves linear
independence.

PINGBACKS

Pingback: Vector spaces: span, linear independence and basis

http://physicspages.com/pdf/Shankar/MIT 8.05x 03.02.02 Span and linear independence.pdf


GRAM-SCHMIDT ORTHOGONALIZATION - A COUPLE OF
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Here are a couple of examples of the Gram-Schmidt orthogonalization

procedure. The recipe for generating an orthonormal basis ei from a general
set of linearly independent vectors vi is as follows.

The first vector e1 in the orthonormal basis is defined by

e1 =
v1

|v1|
(1)

where v1 is the first vector (well, any vector, really) in the non-orthonormal
basis.

Given vector ej−1 in the orthonormal basis, we can form ej from the
formula

ej =
vj−∑

j−1
i=1 〈ei,vj〉ei∣∣∣vj−∑
j−1
i=1 〈ei,vj〉ei

∣∣∣ (2)

Example 1. Given v1 =(3,4) and v2 =(2,−6) we can form an orthonormal
basis in two ways. Starting with v1 we have

e1 =
v1

|v1|
=

(
3
5
,
4
5

)
(3)

e2 =
v2−〈e1,v2〉e1

|v2−〈e1,v2〉e1|
(4)

To evaluate e2, we have
1
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〈e1,v2〉=
6
5
− 24

5
=−18

5
(5)

v2−〈e1,v2〉e1 = (2,−6)+
18
5

(
3
5
,
4
5

)
(6)

=
1

25
(104,−78) (7)

|v2−〈e1,v2〉e1|=
130
25

(8)

e2 =
1

130
(104,−78) (9)

As a check,

〈e1, e2〉=
1

650
(312−312) = 0 (10)

〈e1, e1〉=
1

25
(9+16) = 1 (11)

〈e2, e2〉=
1

16900
(10816+6084) = 1 (12)

We could also start with v2, giving

e1 =
v2

|v2|
=

1
2
√

10
(2,−6) (13)

e2 =
v1−〈e1,v1〉e1

|v1−〈e1,v1〉e1|
(14)

〈e1,v1〉=
1

2
√

10
(6−24) =− 9√

10
(15)

v1−〈e1,v1〉e1 = (3,4)+
9
20

(2,−6) (16)

=
1

20
(78,26) (17)

|v1−〈e1,v1〉e1|=
√

6760
20

(18)

e2 =
1√

6760
(78,26) (19)

Checking, we get
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〈e1, e2〉=
1

2
√

67600
(156−156) = 0 (20)

〈e1, e1〉=
1

40
(4+36) = 1 (21)

〈e2, e2〉=
1

6760
(6084+676) = 1 (22)

Example 2. We’re now given 3 vectors in 3-d space:

v1 = (3,0,0) (23)
v2 = (0,1,2) (24)
v3 = (0,2,5) (25)

The problem is to generate linear combinations of these 3 vectors to give
the orthonormal basis

e1 = (1,0,0) (26)

e2 =
1√
5
(0,1,2) (27)

e3 =
1√
5
(0,−2,1) (28)

We could use the Gram-Schmidt procedure, but it’s probably easier to
just solve the equations. We have

e1 =
v1

3
(29)

e2 =
v2√

5
(30)

e3 = Av1 +Bv2 +Cv3 (31)

Writing out the last equation using components, we have

0 = A (32)

− 2√
5

= B+2C (33)

1√
5

= 2B+5C (34)

The solution is
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C =
5√
5
=
√

5 (35)

B = − 12√
5

(36)

Thus we have

e1 =
v1

3
(37)

e2 =
v2√

5
(38)

e3 = − 12√
5
v2 +
√

5v3 (39)



TRIANGLE INEQUALITY AS AN EQUALITY
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We’ve already proved the triangle inequality for vectors, but it’s worth

adding a note on when the inequality becomes an equality. The triangle
inequality states that for all u,v ∈ V

|u+v| ≤ |u|+ |v| (1)
To make this an equality, we need to look back at the proof. The last step

in the proof invokes the Schwarz inequality to state that

|u+v|2 ≤ |u|2 + |v|2 +2 |u| |v| (2)
Looking at the proof for the Schwarz inequality, we see that it becomes

an equality if the component w of u that is orthogonal to v is zero, that is,
if u= αv for some (possibly complex) scalar α. If that is the case, then

|u+v|= |αv+v|= |1+α| |v| (3)

|u|+ |v|= |αv|+ |v|= (1+ |α|) |v| (4)

Thus the triangle inequality becomes an equality if

|1+α|= 1+ |α| (5)
which occurs if α is real and α ≥ 0. In terms of vectors as arrows in

3-d space, this condition is equivalent to the two vectors being parallel and
pointing in the same direction (rather than in opposite directions).

To see that equality doesn’t happen if α is complex, suppose α = 1+ i.
Then

|1+α| = |2+ i|=
√

5 (6)

1+ |α| = 1+
√

2 (7)

1
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Here are a couple of theorems that arise from the subspace theorem we

proved earlier, which is:
If U is a subspace of V , then V = U ⊕U⊥. (Recall the direct sum.)

Here, the orthogonal complement U⊥ of U is the set of all vectors that are
orthogonal to all vectors u ∈ U .

First, we can show that:

Theorem 1. The dimensionality of a vector space is n⊥, the maximum num-
ber of mutually orthogonal vectors in the space.

Proof. The set of mutually orthogonal vectors is linearly independent, and
since it is the largest such set, any vector v ∈ V can be written as a linear
combination of them. Thus the dimension of the space cannot be greater
than n⊥. Since the set is linearly dependent, no member of the set can be
written as a linear combination of the remaining members of the set, so
the dimension can’t be less than n⊥. Thus the dimension must be equal to
n⊥. �

Now we look at a couple of other theorems.

Theorem 2. In a vector space V n of dimension n, the set V⊥ of all vec-
tors orthogonal to any specific vector v 6= |0〉 forms a subspace V n−1 of
dimension n−1.

Proof. From the subspace theorem above, if we take U to be the subspace
spanned by v, then U⊥ is the orthogonal subspace. Since the dimension of
U is 1 and V n = U ⊕U⊥, the dimension of U⊥ = V n−1 is n−1. �

Theorem 3. Given two subspaces V n1
1 and V n2

2 such that every vector v1 ∈
V1 is orthogonal to every vector v2 ∈ V2, the dimension of V1⊕V2 is n1+n2.

Proof. An orthonormal basis of V1 consists of n1 mutually orthogonal vec-
tors in V1, and similarly, an orthonormal basis of V2 consists of n2 mutually
orthogonal vectors in V2. These bases consist of the maximum number of
mutually orthogonal vectors in their respective spaces. In the direct sum
V1⊕ V2, we therefore have a set of n1 +n2 mutually orthogonal vectors,

1
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which is the maximum number of such vectors in V1⊕V2. This follows be-
cause a vector w ∈ V1⊕V2 must be a linear combination of a vector v1 ∈ V1
and a vector v2 ∈ V2, where vi is, in turn, a linear combination of the basis
of space Vi. Thus w= v1+v2 must be a linear combination of vectors from
the two bases combined. Hence the dimension of V1⊕V2 is n1 +n2. �
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We can represent a linear operator Ω by its matrix representation in a

given basis. If the basis ei is orthonormal then the matrix elements are
given by

Ωij = 〈ei |Ω|ej〉 (1)

The rotation operatorR
(
π
2 i
)

that rotates vectors by π
2 about the x axis can

be written in terms of the orthonormal basis consisting of the unit vectors
|1〉 , |2〉 , |3〉 along the three coordinate axes by examining the effect that it
has on each vector in the basis. It leaves |1〉 unchanged, rotates |2〉 into |3〉,
and |3〉 into −|2〉 so we have

R
(π

2
i
)
|1〉= |1〉 (2)

R
(π

2
i
)
|2〉= |3〉 (3)

R
(π

2
i
)
|3〉=−|2〉 (4)

We can work out the matrix elements by applying 1 to these three trans-
formation equations:

R
(π

2
i
)
=

 1 0 0
0 0 −1
0 1 0

 (5)

As another example, suppose we have the matrix (also in the same basis)

Ω =

 0 0 1
1 0 0
0 1 0

 (6)

This has the effects
1
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Ω |1〉 = |2〉 (7)
Ω |2〉 = |3〉 (8)
Ω |3〉 = |1〉 (9)

Thus Ω cyclically permutes the three basis vectors, which is equivalent
to a rotation by 2π

3 about the line x= y = z.

PINGBACKS

Pingback: Unitary matrices - some examples
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Here are a few more results about hermitian operators.
Suppose we are given two hermitian operators Ω and Λ. We’ll look at

some combinations of these operators.
The operator ΩΛ has the hermitian conjugate

(ΩΛ)† = Λ
†
Ω

† = ΛΩ (1)

Thus the product operator ΩΛ is hermitian only if Λ and Ω commute.
The operator ΩΛ+λΩ for some complex scalar λ has the hermitian con-

jugate

(ΩΛ+λΩ)† = Λ
†
Ω

† +λ∗Ω
† (2)

= ΛΩ+λ∗Ω (3)

This operator is therefore hermitian only if Λ and Ω commute and λ is
real.

The commutator has the hermitian conjugate

[Ω,Λ]† = (ΩΛ−ΛΩ)† (4)
= ΛΩ−ΩΛ (5)

= [Λ,Ω] (6)

=− [Ω,Λ] (7)

Thus the commutator is anti-hermitian (the hermitian conjugate is the
negative of the original operator).

Finally, what happens if we multiply the commutator by i?
1
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(i [Ω,Λ])† =−i(ΩΛ−ΛΩ)† (8)

=−i(ΛΩ−ΩΛ) (9)

=−i [Λ,Ω] (10)

= i [Ω,Λ] (11)

Thus the operator i [Ω,Λ] is hermitian.
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Here are a few more results about unitary operators.
Shankar defines a unitary operator U as one where

UU† = I (1)

From this we can derive the other condition by which they can be defined,
namely that a unitary operator preserves the norm of a vector:

|Uv|= |v| (2)

This follows, for if we define the effect of U by∣∣v′1〉= U |v1〉 (3)

then

〈
v′1
∣∣v′1 〉 = 〈Uv1 |Uv1 〉 (4)

=
〈
v1

∣∣∣U†Uv1

〉
(5)

= 〈v1 |v1 〉 (6)

Thus |v′1|
2 = |v1|2.

Theorem 1. The product of two unitary operators U1 and U2 is unitary.

Proof. Using Shankar’s definition 1, we have

(U1U2)
†U1U2 = U†

2U
†
1U1U2 (7)

= U†
2 IU2 (8)

= U†
2U2 (9)

= I (10)

�
1
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Theorem 2. The determinant of a unitary matrix U is a complex number
with unit modulus.

Proof. The determinant of a hermitian conjugate is the complex conjugate
of the determinant of the original matrix, since detU = detUT (where the
superscript T denotes the transpose) for any matrix, and the hermitian con-
jugate is the complex conjugate transpose. Therefore

det
(
UU†

)
= [detU ] [detU ]∗ = detI = 1 (11)

Therefore |detU |2 = 1 as required. �

Example 3. The rotation matrix R
(
π
2 i
)

is unitary. We have

R
(π

2
i
)
=

 1 0 0
0 0 −1
0 1 0

 (12)

By direct calculation

RR† =

 1 0 0
0 0 −1
0 1 0

 1 0 0
0 0 1
0 −1 0

 (13)

=

 1 0 0
0 1 0
0 0 1

= I (14)

Example 4. Consider the matrix

U =
1√
2

[
1 i
i 1

]
(15)

By calculating

UU† =
1
2

[
1 i
i 1

][
1 −i
−i 1

]
(16)

=
1
2

[
2 0
0 2

]
= I (17)

Thus U is unitary, but because U 6=U† it is not hermitian. Its determinant
is

detU =

(
1√
2

)2 (
1− i2

)
= 1 (18)

This is of the required form eiθ with θ = 0.
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Example 5. Consider the matrix

U =
1
2

[
1+ i 1− i
1− i 1+ i

]
(19)

UU† =
1
4

[
1+ i 1− i
1− i 1+ i

][
1− i 1+ i
1+ i 1− i

]
(20)

=
1
4

[
4 0
0 4

]
= I (21)

Thus U is unitary, but because U 6=U† it is not hermitian. Its determinant
is

detU =

(
1
2

)2 [
(1+ i)2− (1− i)2

]
(22)

= i (23)

This is of the required form eiθ with θ = π
2 .
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A unitary operator transforms one orthonormal basis to another. There-

fore if we have an operator Ω with matrix elements Ωij ({f}) = 〈fi |Ω|fj〉
in one orthonormal basis (f1, . . . ,fn), we can transform the basis to another
orthonormal basis (e1, . . . , en) by a unitary transformation U so that

|ei〉= U |fi〉 (1)

This results in a transformation of the operator Ω’s matrix elements:

Ωij ({e}) = 〈ei |Ω|ej〉 (2)

= 〈Ufi |Ω|Ufj〉 (3)

=
〈
fi

∣∣∣U†
ΩU
∣∣∣fj〉 (4)

Thus we can view the transformation as either a transformation of the
basis vectors ei = Ufi, known as an active transformation, or as a trans-
formation of the operator according to Ω→ U†ΩU , known as a passive
transformation. The matrix elements of U†ΩU in the original basis {f} are
equal to the matrix elements of the original operator Ω in the new basis {e}.

We’ve already seen a few results about the trace and determinant of prod-
ucts of matrices. We’ll list these here for reference:

• Tr(ΩΛ) = Tr(ΛΩ). That is, even if the operators don’t commute,
the trace of a product of operators doesn’t depend on the order of
the operators in the product.
• The trace of a product of 3 or more operators is invariant under

cyclic permutation. Tr(ΩΛθ) =Tr(ΛθΩ) =Tr(θΩΛ). This follows
directly from the previous result. For example, we can define A ≡
Λθ so that Tr(ΩΛθ) = Tr(ΩA) = Tr(AΩ) = Tr(ΛθΩ).
• The determinant of a unitary matrix is a complex number with mod-

ulus 1.
1
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We can use these to prove a couple of further results about unitary transfor-
mations.

The trace of an operator is invariant under a unitary transformation:

Tr
(
U†

ΩU
)
= Tr

(
UU†

Ω

)
= TrΩ (5)

since UU† = I .
Finally, the determinant of an operator is also invariant under a unitary

transformation. Since the determinant of a product is the product of the
determinants,

det
(
U†

ΩU
)
= detU† detΩdetU (6)

= e−iα detΩeiα (7)
= detΩ (8)

In the second line we used the fact that detU is a complex number with
unit modulus, and the fact that detU† = (detU)∗.
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Here are a few examples of calculating eigenvalues and eigenvectors.

Example 1. Find the eigenvalues and normalized eigenvectors of

Ω =

 1 3 1
0 2 0
0 1 4

 (1)

The eigenvalues are solutions of det(Ω−λI) = 0 which gives, calculat-
ing the determinant down the first column:

(1−λ)(2−λ)(4−λ) = 0 (2)
λ = 1,2,4 (3)

The eigenvectors vi satisfy (Ω−λiI)vi = 0vi for each eigenvalue λi. We
get, for λ1 = 1:  0 3 1

0 1 0
0 1 3

 a
b
c

=

 0
0
0

 (4)

Solving, we find

b = c= 0 (5)
a = anything (6)

Thus a normalized eigenvector is

v1 =

 1
0
0

 (7)

For λ2 = 2, we have
1
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 −1 3 1
0 0 0
0 1 2

 a
b
c

=

 0
0
0

 (8)

Solving:

b = −2c (9)
a = 3b+ c (10)

= −5c (11)

Choosing c= 1 and normalizing, we have

v2 =
1√
30

 −5
−2
1

 (12)

Finally, for λ3 = 4 we have −3 3 1
0 −2 0
0 1 0

 a
b
c

=

 0
0
0

 (13)

Solving:

b = 0 (14)
3a = 3b+ c (15)

= c (16)

Choosing a= 1 and normalizing:

v3 =
1√
10

 1
0
3

 (17)

The matrix Ω is not Hermitian since Ω† 6= Ω, and we can see by inspec-
tion that the eigenvectors are not orthogonal.

Example 2. Now we have

Ω =

 0 0 1
0 0 0
1 0 0

 (18)

It is hermitian since Ω† = ΩT = Ω. The eigenvalues are found from
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(−λ)3 +λ = 0 (19)
λ = 0,−1,1 (20)

Solving for the eigenvectors in the same way as in the last example, we
get, for λi = 0,−1,1 in that order:

v1 =

 0
1
0

 (21)

v2 =
1√
2

 −1
0
1

 (22)

v3 =
1√
2

 1
0
1

 (23)

The eigenvectors are orthogonal, as required for a hermitian matrix. We
can diagonalize Ω by means of a unitary transformationU , where the columns
of U are the eigenvectors of Ω. We have

U =

 0 − 1√
2

1√
2

1 0 0
0 1√

2
1√
2

 (24)

U† =

 0 1 0
− 1√

2
0 1√

2
1√
2

0 1√
2

 (25)

We can verify by direct matrix multiplication that

U†
ΩU =

 0 0 0
0 −1 0
0 0 1

 (26)

Note that the order of eigenvalues in the diagonal is determined by the
order in which we place the columns in U .

Example 3. We now have the hermitian matrix

Ω =
1
2

 2 0 0
0 3 −1
0 −1 3

 (27)

http://www.physicspages.com/pdf/Shankar/MIT 8.05x 06.05.01 Diagonalization of matrices.pdf
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The eigenvectors follow from

(1−λ)

[(
3
2
−λ
)2

− 1
4

]
= 0 (28)

λ = 1,1,2 (29)

Thus the eigenvalue λ = 1 is degenerate. We can find the eigenvector
corresponding to λ3 = 2 in the usual way and get

v3 =
1√
2

 0
−1
1

 (30)

The other two eigenvectors span a 2-d subspace that must be orthogonal
to v3 (since Ω is hermitian; in the more general case, the orthogonality is
not guaranteed). We can therefore find two vectors v1,v2 in the subspace by
requiring 〈v1,v3〉= 〈v2,v3〉= 0. That is, if

v1,2 =

 a
b
c

 (31)

we must have

a = anything (32)
b = c (33)

These two equations can be satisfied by a variety of v1 and v2, but if
we want 〈v1,v2〉 = 0 as well, we can choose a = 1 and b = c = 1, then
normalize, to get

v1 =

 1
0
0

 (34)

v2 =
1√
2

 0
1
1

 (35)

The 2-d subspace spanned by v1 and v2 is therefore

v = av1 + bv2 =

 a
b
b

 (36)
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Thus any normalized eigenvector of λ= 1 has the form

e=
1√

a2 +2b2

 a
b
b

 (37)

Example 4. Now let’s look at a non-hermitian matrix:

Ω =

[
4 1
−1 2

]
(38)

The eigenvalues are found from

(4−λ)(2−λ)+1 = 0 (39)

(λ−3)2 = 0 (40)
λ = 3,3 (41)

Thus there is one degenerate eigenvalue. To find the eigenvector(s), we
solve (Ω−λI)v = 0 as usual:[

1 1
−1 −1

][
a
b

]
= 0 (42)

This gives only one condition, namely a = −b. Thus there is only one
normalized eigenvector:

v =
1√
2

[
1
−1

]
(43)
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The 2-d rotation operator in matrix form relative to the basis of unit vec-

tors along the x and y axes is

Ω =

[
cosθ sinθ

−sinθ cosθ

]
(1)

In a real vector space, this matrix has no eigenvectors, since no vector in
the xy plane is left unaltered (unless θ is a multiple of 2π). However, in a
complex vector space, it does have a couple of eigenvectors, as we can see
by direct calculation. The eigenvectors are solutions of

(cosθ −λ )2 + sin2
θ = 0 (2)
λ = cosθ ± isinθ (3)

= e±iθ (4)

The eigenvectors are found from (Ω−λ I)v = 0 so we get[
∓isinθ sinθ

−sinθ ∓isinθ

][
a
b

]
=

[
0
0

]
(5)[

∓i 1
−1 ∓i

][
a
b

]
=

[
0
0

]
(6)

a = ∓ib (7)

The two normalized eigenvectors are therefore

v1 =
1√
2

[
−i
1

]
(8)

v2 =
1√
2

[
i
1

]
(9)

They are orthogonal, since 〈v1,v2〉= 0.
1
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We can form a matrix U out of the eigenvectors of Ω:

U =
1√
2

[
−i i
1 1

]
(10)

U† =
1√
2

[
i 1
−i 1

]
(11)

U is unitary, as we can verify by calculating UU† = I.
By direct calculation, we find that

U†
ΩU =

[
eiθ 0
0 e−iθ

]
(12)

[A word of caution to anyone using Maple to do matrix calculations. The
Adjoint operation in Maple’s LinearAlgebra package does NOT correspond
to the adjoint (that is, the hermitian conjugate) as used in physics. To calcu-
late the hermitian conjugate, use the Dagger operation in Maple’s Physics
package.]
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The spectral theorem for states that any normal operator Ω in a complex

vector space is unitarily diagonalizable, that is

DM =U†
ΩU (1)

where U is a unitary operator and DM is a diagonal matrix, whose diago-
nal elements are the eigenvalues ωi of Ω. We can use this to derive a couple
of relations about the trace and determinant of normal operators. Remember
that hermitian and unitary operators are both normal.

Since the determinant is invariant under a unitary transformation, we
have

detDM = det
(

U†
ΩU

)
(2)

= detU† detΩdetU (3)
= e−iα ×detΩ× eiα (4)
= detΩ (5)

where we’ve used the facts that the determinant of a product is the product
of the determinants, and the determinant of a unitary matrix is a complex
number eiα with unit modulus. Since the determinant of a diagonal matrix
is the product of its diagonal elements, we see that for a normal matrix, its
determinant is the product of its eigenvalues:

detΩ = ∏
i

ωi (6)

The trace of a product is equal to the trace of a cyclic permutation of that
product, so we have

1
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TrDM = Tr
(

U†
ΩU

)
(7)

= Tr
(

UU†
Ω

)
(8)

= TrΩ (9)

Therefore, the trace of a normal operator is the sum of its eigenvalues:

TrΩ = ∑
i

ωi (10)

We can use these two results as an alternative way to calculate the eigen-
values of a normal matrix. For example, suppose

Ω =

[
1 2
2 1

]
(11)

We have

detΩ = −3 = ω1ω2 (12)
TrΩ = 2 = ω1 +ω2 (13)

Solving these two equations gives

−3 = (2−ω2)ω2 (14)
ω = −1,3 (15)

We can also calculate them using the old determinant formula det(Ω−ωI)=
0:

(1−ω)2 −4 = 0 (16)
ω = −1,3 (17)
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Suppose we have four hermitian matrices M i for i = 1,2,3,4 that obey

the relation

M iM j +M jM i = 2δijI (1)

We can find the possible eigenvalues as follows. Suppose we choose an
orthonormal basis (such a basis always exists for a hermitian matrix) {e}in
whichM i is diagonal for one particular value of i. That is, for a basis vector
|ek〉 in this basis, we have M i |ek〉= ωi

k |ek〉, where ωi
k is the kth eigenvalue

of M i.
Then with i= j above, we have

2
(
M i

)2
= 2I (2)(

M i
)2

= I (3)

Operating on a vector e from this basis, we get

(
M i

)2 |ek〉 = |ek〉 (4)

=
(
ωi
k

)2 |ek〉 (5)

Therefore, the possible values of ωi
k are ±1. We didn’t choose any par-

ticular value for i, so this is true of all four matrices.
Now, for i 6= j we have

M iM j =−M jM i (6)

We can find the trace of M j as follows. Assuming i 6= j
1
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TrM j = Tr
(
M iM iM j

)
(7)

=−Tr
(
M iM jM i

)
(8)

=−Tr
(
M iM iM j

)
(9)

=−TrM j (10)

In line 1 we used 3, in line 2 we used 6 and in line 3 we used the cyclic
property of the trace. Thus TrM j =−TrM j = 0.

Since each M j has zero trace, the trace is the sum of the eigenvalues and
the possible eigenvalues are ±1, the eigenvalue +1 must occur the same
number of times as −1, meaning that each M j must have an even number
of eigenvalues, so the matrices must be even-dimensional.
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The angular momentum in classical mechanics of a collection of point

masses ma located at positions ra and moving with a common angular ve-
locity ωωω about a common axis is given by

L = ∑
a

ma (ra×va) (1)

where va = ωωω× ra is the linear velocity of ma. We can use the vector
identity

A× (B×C) = B(A ·C)−C(A ·B)
to write

ra×va = ra× (ωωω× ra) (2)

= r2
aωωω− ra (ra ·ωωω) (3)

In terms of components, this is

[ra×va]i = r2
aωi− (ra)i∑

j

(ra)j ωj (4)

= ∑
j

[
r2
aωjδij− (ra)i (ra)j ωj

]
(5)

= ∑
j

[
r2
aδij− (ra)i (ra)j

]
ωj (6)

We can therefore write the angular momentum as

Li = ∑
j

∑
a

ma

[
r2
aδij− (ra)i (ra)j

]
ωj (7)

≡∑
j

Mijωj (8)

where the matrix M is
1
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Mij ≡∑
a

ma

[
r2
aδij− (ra)i (ra)j

]
(9)

From the definition, we see that M is real and symmetric (interchanging
i and j shows that Mij =Mji), so M is hermitian.

In Dirac’s notation, we have the matrix equation

|L〉=M |ω〉 (10)
From this equation, we can see that L and ωωω are parallel only if ωωω is an

eigenvector of M . If the eigenvalues of M are non-degenerate, there are
therefore three directions for ωωω such that L and ωωω are parallel, and these
directions can be found by solving for the eigenvectors of M .

If some of the eigenvalues are degenerate, then there is a range of direc-
tions over which L and ωωω can be parallel. In the case of a sphere, all 3
eigenvalues of M must be the same, as all directions are axes of symmetry
of the sphere.

As an example, suppose we have only one mass m= 1 with position

r = [1,1,0] (11)
We can work out M by substituting into 9:

M =

 1 −1 0
−1 1 0
0 0 2

 (12)

The eigenvalues are 0, 2 and 2 with corresponding eigenvectors

|λ= 0〉=

 1
1
0

 (13)

|λ= 2〉=

 0
0
1

 ,
 −1

1
0

 (14)

Thus if ωωω is a linear combination of the two eigenvectors for λ = 2, it

will be parallel to L. If ωωω is parallel to

 1
1
0

, L = 0, as in this case ωωω is

parallel to r so ωωω× r = 0, and the mass is located on the axis of rotation so
has no angular momentum.
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The spectral theorem guarantees that any normal operator can be unitar-

ily diagonalized. For commuting hermitian operators we can go one step
further and show that a set of such operators can be simultaneously diago-
nalized with a single unitary transformation. The proof is a bit lengthy and
is spelled out in full both in Zwiebach’s notes (chapter 6) and in Shankar’s
book (chapter 1, theorem 13) so I won’t reproduce it in full here. To sum-
marize the main points:

We can start by considering two operators Ω and Λ and assume that at
least one of them, say Ω, is nondegenerate, that is, for each eigenvalue
there is only one eigenvector (up to multiplication by a scalar). Then for
one eigenvalue ωi of Ω we have

Ω |ωi〉= ωi |ωi〉 (1)
We also have

ΛΩ |ωi〉= ωiΛ |ωi〉 (2)
so that, provided [Λ,Ω] = 0, Λ |ωi〉 is also an eigenvector of Ω for eigen-

value ωi. However, since Ω is nondegenerate, Λ |ωi〉 must be a multiple of
|ωi〉 so that, we have

Λ |ωi〉= λi |ωi〉 (3)
so that |ωi〉 is an eigenvector of Λ for eigenvalue λi. Therefore a unitary

transformation that diagonalizes Ω will also diagonalize Λ. Note that in this
case we didn’t need to assume that Λ is nondegenerate.

If both Ω and Λ are degenerate, things are a bit more complicated, but
the basic idea is this. Suppose we find a basis that diagonalizes Ω and
arrange the basis vectors within the unitary matrix U in an order that groups
all equal eigenvalues together, so that all the eigenvectors corresponding to
eigenvalue ω1 occur first, followed by all the eigenvectors corresponding to
eigenvalue ω2 and so on, up to eigenvalue ωm where m< n is the number

1
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of distinct eigenvalues (which is less than the dimension n of the matrix Ω

because Ω is degenerate).
Each subset of eigenvectors corresponding to a single eigenvalue forms

a subspace, and we can show that the other matrix Λ, operating on a vec-
tor from that subspace transforms the vector to another vector that also lies
within the same subspace. Now, any linearly independent selection of ba-
sis vectors within the subspace will still diagonalize Ω for that eigenvalue,
so we can select such a set of basis vectors within that subspace that also
diagonalizes Λ within that subspace. The process can be repeated for each
eigenvalue of Ω resulting in a set of basis vectors that diagonalizes both
matrices.

Obviously, I’ve left out the technical details of just how this is done, but
you can refer to either Zwiebach’s notes or Shankar’s book for the details.

As an example, consider the two matrices

Ω =

 1 0 1
0 0 0
1 0 1

 (4)

Λ =

 2 1 1
1 0 −1
1 −1 2

 (5)

We can verify that they commute:

ΩΛ = ΛΩ =

 3 0 3
0 0 0
3 0 3

 (6)

We can find the eigenvalues and eigenvectors of Ω and Λ in the usual
way. For Ω we have

det(Ω−ωI) = 0 (7)

(1−ω) [(−ω (1−ω))]+ω = 0 (8)

ω
(
2ω−ω2)= 0 (9)

ω = 0,0,2 (10)

Solving the eigenvector equation, we get, for ω = 0
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(Ω−ωI)

 a
b
c

=

 0
0
0

 (11)

 1 0 1
0 0 0
1 0 1

 a
b
c

=

 0
0
0

 (12)

a=−c (13)
b= anything (14)

Thus 2 orthonormal eigenvectors are

|01〉=
1√
2

 1
0
−1

 (15)

|02〉=

 0
1
0

 (16)

For ω = 2:  −1 0 1
0 −2 0
1 0 −1

 a
b
c

=

 0
0
0

 (17)

a= c (18)
b= 0 (19)

|2〉= 1√
2

 1
0
1

 (20)

For Λ, we can go through the same procedure to find

det(Λ−λI) = 0 (21)

−λ(2−λ)2 +λ−2+λ−2−2+λ= 0 (22)

(λ−2) [λ(2−λ)+3] = 0 (23)
λ=−1,2,3 (24)

We could calculate the eigenvectors from scratch, but from the simulta-
neous diagonalization theorem, we know that the eigenvector |2〉 from Ω

must be an eigenvector of Λ, and we find by direct calculation that
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Λ |2〉= 3 |2〉 (25)
so |2〉 is the eigenvector for λ= 3.
For the other two eigenvalues of Λ, we know the eigenvectors must be

linear combinations of |01〉 and |02〉 from Ω. Such a combination must
have form

a |01〉+ b |02〉=

 a
b
−a

 (26)

so we must have

Λ

 a
b
−a

=

 a+ b
2a
−a− b

= λ

 a
b
−a

 (27)

for λ=−1,2. For λ= 2, we have

a= b (28)

|λ= 2〉= 1√
3

 1
1
−1

 (29)

For λ=−1:

b=−2a (30)

|λ=−1〉= 1√
6

 1
−2
−1

 (31)

The columns of the unitary transformation matrix are therefore given by
29, 31 and 20, so we have

U =


1√
3

1√
6

1√
2

1√
3
− 2√

6
0

− 1√
3
− 1√

6
1√
2

 (32)

U† =


1√
3

1√
3
− 1√

3
1√
6
− 2√

6
− 1√

6
1√
2

0 1√
2

 (33)
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By matrix multiplication, we can verify that this transformation diago-
nalizes both Ω and Λ:

U†
ΩU =

 0 0 0
0 0 0
0 0 2

 (34)

U†
ΛU =

 2 0 0
0 −1 0
0 0 3

 (35)

PINGBACKS

Pingback: Coupled masses on springs - properties of the propagator
Pingback: Adding two spin-1/2 systems - product and total-s bases
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http://physicspages.com/pdf/Shankar/Shankar Exercises 01.08.12.pdf
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http://physicspages.com/pdf/Greiner QFT/Greiner 03.02.03 Nonrelativistic field theory - number creation annihilation.pdf
http://physicspages.com/pdf/Greiner QFT/Greiner 03.02.03 Nonrelativistic field theory - number creation annihilation.pdf
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Here’s a practical example of how changing the basis by diagonalizing a

hermitian matrix can make a problem easier to solve. Suppose we have two
identical masses m free to slide in one dimension on a frictionless horizontal
surface. The two masses are connected to 3 springs, with the spring on the
left attached to a solid support at one end and to mass #1 at the other, the
middle spring connected between the two masses, and the spring on the
right connected to mass #2 at one end and to a solid support at the other.
The springs all have spring constant k. Define two coordinates x1 and x2 to
be the positions of the two masses, with xi= 0 corresponding to the location
at which mass i is at rest in equilibrium.

Now suppose that the two masses are displaced from their respective
equilibrium points, so that x1 and x2 are non-zero. The length of the
spring to the left of mass 1 is changed (stretched or compressed, depend-
ing on the sign of x1) by x1, so exerts a force F1 = −kx1 on mass 1.
The length of the spring in the middle is changed by x2 − x1, so it ex-
erts a force F12 = k (x2−x1) on mass 1, and an equal and opposite force
F21 =−k (x2−x1) on mass 2. Finally, the length of the spring on the right
is changed by x2 and exerts a force F2 = −kx2 on mass 2. By applying
Newton’s law F =ma, we get the set of equations of motion:

ẍ1 = −2
k

m
x1 +

k

m
x2 (1)

ẍ2 =
k

m
x1−2

k

m
x2 (2)

While it’s possible to solve such a coupled system directly, we can see
how an easier method can be found by using matrix algebra. The 2 equa-
tions above can be written as a matrix equation

|ẍ(t)〉= Ω |x(t)〉 (3)
1
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If we use the basis in which the displacement of each mass is taken to be
independent of the other, we have the two basis vectors

|1〉 =

[
1
0

]
(4)

|2〉 =

[
0
1

]
(5)

In this basis

|x(t)〉= x1 (t) |1〉+x2 (t) |2〉 (6)

Here, the xis are just numbers; the vector nature of the equation is dele-
gated to the basis vectors.

In this basis, Ω is the operator whose matrix form is

Ω =

[
−2 k

m
k
m

k
m −2 k

m

]
(7)

Since Ω is hermitian, it can be diagonalized by finding its eigenvalues and
normalized eigenvectors, and forming a unitary operator U whose columns
are these eigenvectors. The basis vectors are now these eigenvectors |I〉 and
|II〉 (I’m sticking to Shankar’s notation, even though it’s a bit clumsy), and
they are found from |1〉 and |2〉 by applying the unitary transformation, that
is

|I〉 = U |1〉 (8)
|II〉 = U |2〉 (9)

These transformations can be inverted:

|1〉 = U† |I〉 (10)

|2〉 = U† |II〉 (11)

Thus we can insert this into 3 and use UU† = I to get

U† |ẍ(t)〉= U†
ΩUU† |x(t)〉 (12)

and U†ΩU is the diagonalized version of Ω.
Shankar goes through the details of the calculation, with the results



COUPLED MASSES ON SPRINGS - A SOLUTION USING MATRIX DIAGONALIZATION3

|I〉= 1√
2

[
1
1

]
(13)

|II〉= 1√
2

[
1
−1

]
(14)

U =
1√
2

[
1 1
1 −1

]
(15)

U†
ΩU =

[
−ω2

1 0
0 −ω2

2

]
(16)

where

ω1 =

√
k

m
(17)

ω2 =

√
3k
m

(18)

Using |I〉 and |II〉 as the basis, the differential equations become decou-
pled, and we have

ẍi+ω2
i xi = 0 (19)

for i= I,II .
Second order ODEs require two initial conditions to be fully solved, and

here we’re assuming that both masses start off at rest, so that ẋi (t) = 0 for
i= I,II . In this case, the solutions are

xi (t) = xi (0)cosωit (20)

for i= I,II .
(A full, general solution would also have a sinωit term, but this disap-

pears because we require ẋi (t) = 0.)
The vector solution in the diagonal basis is therefore[

xI (t)
xII (t)

]
= |I〉xI (0)cosωIt+ |II〉xII (0)cosωIIt (21)

We now need to figure out what the coefficients xI (0) and xII (0) are.
Assuming we know the initial position of each mass in the original basis as
x1 (0) and x2 (0), we can find xI (0) and xII (0) by projecting x1 (0) and
x2 (0) onto the basis |I〉 and |II〉. That is, we have
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[
xI (0)
xII (0)

]
= U

[
x1 (0)
x2 (0)

]
(22)

=
1√
2

[
1 1
1 −1

][
x1 (0)
x2 (0)

]
(23)

=
1√
2

[
x1 (0)+x2 (0)
x1 (0)−x2 (0)

]
(24)

We get[
xI (t)
xII (t)

]
=

x1 (0)+x2 (0)√
2

|I〉cosωIt+
x1 (0)−x2 (0)√

2
|II〉cosωIIt

(25)[
x1 (t)
x2 (t)

]
=

1
2

 [x1 (0)+x2 (0)]cos
√

k
mt+[x1 (0)−x2 (0)]cos

√
3k
m t

[x1 (0)+x2 (0)]cos
√

k
mt− [x1 (0)−x2 (0)]cos

√
3k
m t


(26)

where in the last line we substituted using 13 to write everything in terms
of the original basis |1〉 and |2〉.

For the special case where the initial positions are given by |1〉=
[

1
0

]
,

we have x1 (0) = 1 and x2 (0) = 0, so that

[
x1 (t)
x2 (t)

]
=

1
2

 cos
√

k
mt+ cos

√
3k
m t

cos
√

k
mt− cos

√
3k
m t

 (27)

Going back to 26, we can write the solution as a matrix equation

[
x1 (t)
x2 (t)

]
=

1
2

 cos
√

k
mt+ cos

√
3k
m t cos

√
k
mt− cos

√
3k
m t

cos
√

k
mt− cos

√
3k
m t cos

√
k
mt+ cos

√
3k
m t

[ x1 (0)
x2 (0)

]
(28)

The matrix with the cosines is independent of the initial state, so that once
we know this matrix, we can work out the general solution as a function of
time for any initial state. The matrix is known as the propagator. [Although
Shankar uses the symbol U (t) to refer to the propagator, it’s not a unitary

matrix. For example, its determinant is cos
(√

k
mt

)
cos
(√

3k
m t

)
6= 1 for

t 6= 0.]
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We’ll continue our study of the system of two masses coupled by springs.

The system is described by the matrix equation of motion:

|ẍ(t)〉= Ω |x(t)〉 (1)

where

|x(t)〉= x1 (t) |1〉+x2 (t) |2〉 (2)

in the basis

|1〉 =

[
1
0

]
(3)

|2〉 =

[
0
1

]
(4)

In this basis, Ω is the operator whose matrix form is

Ω =

[
−2 k

m
k
m

k
m −2 k

m

]
(5)

We found that the solution could be written as

[
x1 (t)
x2 (t)

]
=

1
2

 cos
√

k
mt+ cos

√
3k
m t cos

√
k
mt− cos

√
3k
m t

cos
√

k
mt− cos

√
3k
m t cos

√
k
mt+ cos

√
3k
m t

[ x1 (0)
x2 (0)

]
(6)

In compact form, we can write this as

|x(t)〉= U (t) |x(0)〉 (7)

where the propagator operator is defined as
1
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U (t)≡ 1
2

 cos
√

k
mt+ cos

√
3k
m t cos

√
k
mt− cos

√
3k
m t

cos
√

k
mt− cos

√
3k
m t cos

√
k
mt+ cos

√
3k
m t

 (8)

From 1, we can operate on both sides of 7 with the operator d2

dt2 −Ω to
get

(
d2

dt2
−Ω

)
|x(t)〉=

(
d2

dt2
−Ω

)
U (t) |x(0)〉= 0 (9)

Since the initial positions |x(0)〉 are arbitrary and contains no time de-
pendence, the matrix U (t) satisfies the differential equation

d2U (t)

dt2
= ΩU (t) (10)

By direct calculation (I used Maple, but you can do it by hand using the
usual rules for matrix multiplication, although it’s quite tedious), we can
show that Ω and U commute and, since both Ω and U are hermitian, they
are simultaneously diagonalizable. We already worked out the eigenvectors
of Ω:

|I〉 =
1√
2

[
1
1

]
(11)

|II〉 =
1√
2

[
1
−1

]
(12)

Since Ω is not degenerate, these must also be the eigenvectors of U , so
the unitary matrix

D =
1√
2

[
1 1
1 −1

]
(13)

can be used to diagonalize U according to

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 01.08.10.pdf
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D†UD =
1
4

[
1 1
1 −1

] cos
√

k
mt+ cos

√
3k
m t cos

√
k
mt− cos

√
3k
m t

cos
√

k
mt− cos

√
3k
m t cos

√
k
mt+ cos

√
3k
m t

[ 1 1
1 −1

]
(14)

=
1
2

[
1 1
1 −1

] cos
√

k
mt cos

√
3k
m t

cos
√

k
mt −cos

√
3k
m t

 (15)

=

 cos
√

k
mt 0

0 cos
√

3k
m t

 (16)

This matches the diagonal form for U given as equation 1.8.43 in Shankar’s
book. The diagonal entries are the eigenvalues of U (t).

PINGBACKS

Pingback: Postulates of quantum mechanics: Schrödinger equation and
propagators

Pingback: Decoupling the two-particle Hamiltonian
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One of the most common ways to define a function of an operator is to

consider the case where the function can be expressed as a power series.
That is, given an operator Ω, a function f (Ω) can be defined as

f (Ω) =
∞

∑
n=0

anΩ
n (1)

where the coefficients an are, in general, complex scalars. This definition
can still be difficult to deal with if Ω is not diagonalizable since, in that
case, powers of Ω have no simple form, so it can be hard to tell if the series
converges.

We can avoid this problem by restricting ourselves to hermitian operators,
since such operators are always diagonalizable according to the spectral
theorem and all eigenvalues of hermitian operators are real. Then powers of
Ω are easy to calculate, since if the ith diagonal element of Ω is ωi, the ith
diagonal element of Ωn is ωn

i . The problem of finding f (Ω) is then reduced
to examining whether the series converges for each diagonal element.

Example 1. Suppose we have the simplest such power series

f (Ω) =
∞

∑
n=0

Ω
n (2)

If we look at this series in the eigenbasis (the basis of orthonormal eigen-
vectors that diagonalizes Ω), then we have

f (Ω) =


∑

∞
n=0ω

n
1

∑
∞
n=0ω

n
2

. . .
∑

∞
n=0ω

n
m

 (3)

Ω here is an m×m matrix with eigenvalues ωi, i= 1, . . . ,m (it’s possible
that some of the eigenvalues could be equal, if Ω is degenerate, but that
doesn’t affect the argument).

It’s known that the geometric series
1
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f (x) =
∞

∑
n=0

xn =
1

1−x
(4)

converges as shown, provided that |x| < 1. Thus we see that f (Ω) con-
verges provided all its eigenvalues satisfy |ωi|< 1. The function is then

f (Ω) =


1

1−ω1
1

1−ω2
. . .

1
1−ωm

 (5)

To see what operator it converges to, we consider the function

g (Ω) = (I−Ω)−1 (6)

Still working in the eigenbasis where Ω is diagonal, the matrix I −Ω

is also diagonal with diagonal elements 1−ωi. The inverse of a diagonal
matrix is another diagonal matrix with diagonal elements equal to the re-
ciprocal of the elements in the original matrix, so (I−Ω)−1 has diagonal
elements 1

1−ωi
so from 5 we see that

f (Ω) =
∞

∑
n=0

Ω
n = (I−Ω)−1 (7)

provided all the eigenvalues of Ω satisfy |ωi|< 1.

Example 2. If H is a hermitian operator, then eiH is unitary. To see this,
we again work in the eigenbasis of H . By expressing eiH as a power series
and using the same argument as in the previous example, we see that

U = eiH =


eiω1

eiω2

. . .
eiωm

 (8)

The adjoint of eiH is found by looking at the power series:
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U† =
(
eiH
)†

=

[
∞

∑
n=0

(iH)n

n!

]†

(9)

=
∞

∑
n=0

(
−iH†)n

n!
(10)

=
∞

∑
n=0

(−iH)n

n!
(11)

= e−iH (12)

where in the third line we used the hermitian property H† =H . Therefore

(
eiH
)†

= e−iH =


e−iω1

e−iω2

. . .
e−iωm

 (13)

U†U =
(
eiH
)†

eiH =


e−iω1

e−iω2

. . .
e−iωm




eiω1

eiω2

. . .
eiωm


(14)

= I (15)

Thus
(
eiH
)†

=
(
eiH
)−1 and eiH is unitary.

From 8 we can find the determinant of eiH :

detU = deteiH = exp

[
i
m

∑
i=1

ωi

]
= exp(iTrH) (16)

since the trace of a hermitian matrix is the sum of its eigenvalues.
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Although the result in this post isn’t covered in Shankar’s book, it’s a

result that is frequently used in quantum theory, so it’s worth including at
this point.

We’ve seen how to define a function of an operator if that function can be
expanded in a power series. A common operator function is the exponential:

f (Ω) = eiΩ (1)

If Ω is hermitian, the exponential eiΩ is unitary. If we try to calculate the
exponential of two operators such as eA+B , the result isn’t as simple as we
might hope if A and B don’t commute. To see the problem, we can write
this out as a power series

eA+B =
∞

∑
n=0

(A+B)n

n!
(2)

= I+A+B+
1
2
(A+B)(A+B)+ . . . (3)

= I+A+B+
1
2
(
A2 +AB+BA+B2)+ . . . (4)

The problem appears first in the fourth term in the series, since we can’t
condense the AB+BA sum into 2AB if [A,B] 6= 0. In fact, the expan-
sion of eAeB can be written entirely in terms of the commutators of A and
B with each other, nested to increasingly higher levels. This formula is
known as the Baker-Campbell-Hausdorff formula. Up to the fourth order
commutator, the BCH formula gives

eAeB = exp
[
A+B+

1
2
[A,B]+

1
12

([A, [A,B]]+ [B, [B,A]])− 1
24

[B, [A, [A,B]]]+ . . .

]
(5)

1
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There is no known closed form expression for this result. However, an
important special case that occurs frequently in quantum theory is the case
where [A,B] = cI , where c is a complex scalar and I is the usual identity
matrix. Since cI commutes with all operators, all terms from the third order
upwards are zero, and we have

eAeB = eA+B+ 1
2 [A,B] (6)

We can prove this result as follows. Start with the operator function

G(t)≡ et(A+B)e−tA (7)
where t is a scalar parameter (not necessarily time!).
From its definition,

G(0) = I (8)
The inverse is

G−1 (t) = etAe−t(A+B) (9)
and the derivative is

dG(t)

dt
= (A+B)et(A+B)e−tA− et(A+B)e−tAA (10)

Note that we have to keep the (A+B) factor to the left of the A factor
because [A,B] 6= 0. Now we multiply:

G−1dG

dt
= etAe−t(A+B)

[
(A+B)et(A+B)e−tA− et(A+B)e−tAA

]
(11)

= etA (A+B)e−tA−A (12)

= etAAe−tA+ etABe−tA−A (13)

= etABe−tA (14)

=B+ t [A,B] (15)
=B+ ctI (16)

We used Hadamard’s lemma in the penultimate line, which in this case
reduces to

etABe−tA =B+ t [A,B] (17)
because [A,B] = cI so all higher order commutators are zero.
We end up with an expression in which A has disappeared. This gives

the differential equation for G:

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 01.09.05 Exponentials of operators - Hadamard lemma.pdf
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G−1dG

dt
=B+ ctI (18)

We try a solution of the form (this apparently appears from divine inspi-
ration):

G(t) = eαtBeβct
2

(19)

From which we get

G−1 = e−αtBe−βct
2

(20)
dG

dt
= (αB+2βct)eαtBeβct

2
(21)

G−1dG

dt
= αB+2βct (22)

Comparing this to 18, we have

α = 1 (23)

β =
1
2

(24)

G(t) = etBe
1
2ct

2
(25)

Setting this equal to the original definition ofG in 7 and then taking t= 1
we have

eA+Be−A = eBec/2 (26)

eA+B = eBeAe
1
2c (27)

= eBeAe
1
2 [A,B] (28)

If we swap A with B and use the fact that A+B = B +A, and also
[A,B] =− [B,A], we have

eA+B = eAeBe−
1
2 [A,B] (29)

This is the restricted form of the BCH formula for the case where [A,B]
is a scalar.
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Although the result in this post isn’t covered in Shankar’s book, it’s a

result that is frequently used in quantum theory, so it’s worth including at
this point.

We’ve seen how to define a function of an operator if that function can be
expanded in a power series. A common operator function is the exponential:

f (Ω) = eiΩ (1)
Here we’ll look at a special function of two operators of the form

h(A,B) = eABe−A (2)
If [A,B] = 0, we can cancel the two exponentials and get the result

h(A,B) = B. However, if [A,B] 6= 0 the two exponentials must remain
separated by the middle B operator. To get a simpler form for this function,
we’ll consider the auxiliary function

f (t) = etABe−tA (3)
where t is some parameter. We’ll need the first 3 derivatives at t= 0:

f (0) =B (4)

f ′ (t) = AetABe−tA− etABe−tAA (5)

= etA [A,B]e−tA (6)

f ′ (0) = [A,B] (7)

f ′′ (t) = AetA [A,B]e−tA− etA [A,B]e−tAA (8)

= etA [A, [A,B]]e−tA (9)

f ′′ (0) = [A, [A,B]] (10)

f ′′′ (t) = etA [A, [A, [A,B]]]e−tA (11)

f ′′′ (0) = [A, [A, [A,B]]] (12)
1
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We can now write a Taylor expansion of 3 around t= 0:

etABe−tA = f (0)+ tf ′ (0)+
t2

2
f ′′ (0)+

t3

6
f ′′′ (0)+ . . . (13)

=B+[A,B] t+[A, [A,B]]
t2

2!
+[A, [A, [A,B]]]

t3

3!
+ . . . (14)

Taking t= 1 gives the required expansion

eABe−A =B+[A,B]+
1
2!

[A, [A,B]]+
1
3!

[A, [A, [A,B]]]+ . . . (15)

This is known as Hadamard’s lemma.
If we introduce the notation

adA (B) ≡ [A,B] (16)
adAadA (B) = [A, [A,B]] (17)

and in general (adA)
n (B) is the nth order commutator of A with B, then

we can write Hadamard’s lemma as

eABe−A =
∞

∑
n=0

1
n!

(adA)
n (B) (18)

= exp(adA)(B) (19)
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Although we’ve looked at position and momentum operators in quantum

mechanics before, it’s worth another look at the ways that Zwiebach and
Shankar introduce them.

First, we’ll have a look at Shankar’s treatment. He begins by considering
a string fixed at each end, at positions x = 0 and x = L, then asks how we
could convey the shape of the string to an observer who cannot see the string
directly. We could note the position at some fixed finite number of points
between 0 and L, but then the remote observer would have only a partial
knowledge of the string’s shape; the locations of those portions of the string
between the points at which it was measured are still unknown, although the
observer could probably get a reasonable picture by interpolating between
these points.

We can increase the number of points at which the position is measured
to get a better picture, but to convey the exact shape of the string, we need
to measure its position at an infinite number of points. This is possible (in
principle) but leads to a problem with the definition of the inner product.
For two vectors defined on a finite vector space with an orthonormal basis,
the inner product is given by the usual formula for the dot product:

〈f |g 〉 =
n

∑
i=1

figi (1)

〈f |f 〉 =
n

∑
i=1

f2
i (2)

where fi and gi are the components of f and g in the orthonormal basis.
If we’re taking f to be the displacement of a string and we try to increase
the accuracy of the picture by increasing the number n of points at which
measurements are taken, then the value of 〈f |f 〉 continues to increase as n
increases (provided that f 6= 0 everywhere). As n→ ∞ then 〈f |f 〉 → ∞ as

1
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well, even though the system we’re measuring (a string of finite length with
finite displacement) is certainly not infinite in any practical sense.

Shankar proposes getting around this problem by simply redefining the
inner product for a finite vector space to be

〈f |g 〉=
n

∑
i=1

f (xi)g (xi)∆ (3)

where ∆ ≡ L/(n+1). That is, ∆ now becomes the distance between
adjacent points at which measurements are taken. If we let n→ ∞ this
leads to the definition of the inner product as an integral

〈f |g 〉 =
∫ L

0
f (x)g (x) dx (4)

〈f |f 〉 =
∫ L

0
f2 (x) dx (5)

This looks familiar enough, if you’ve done any work with inner products
in quantum mechanics, but there is a subtle point which Shankar overlooks.
In going from 1 to 3, we have introduced a factor ∆ which, in the string ex-
ample at least, has the dimensions of length, so the physical interpretation
of these two equations is different. The units of 〈f |g 〉 appear to be different
in the two cases. Now in quantum theory, inner products of the continuous
type usually involve the wave function multiplied by its complex conjugate,
with possibly another operator thrown in if we’re trying to find the expec-
tation value of some observable. The square modulus of the wave function,
|Ψ|2, is taken to be a probability density, so it has units of inverse length (in
one dimension) or inverse volume (in three dimensions), which makes the
integral work out properly.

Admittedly, when we’re using f to represent the displacement of a string,
it’s not obvious what meaning the inner product of f with anything else
would actually have, so maybe the point isn’t worth worrying about. How-
ever, it does seem to be something that it would be worth Shankar including
a comment about.

From this point, Shankar continues by saying that this infinite dimen-
sional vector space is spanned by basis vectors |x〉, with one basis vector
for each value of x. We require this basis to be orthogonal, which means
that we must have, if x 6= x′

〈
x
∣∣x′ 〉= 0 (6)

We then generalize the identity operator to be
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I =
∫
|x〉〈x|dx (7)

which leads to

〈x |f 〉=
∫ 〈

x
∣∣x′ 〉〈x′ |f 〉dx′ (8)

The bra-ket 〈x |f 〉 is the projection of the vector |f〉 onto the |x〉 basis
vector, so it is just f (x). This means

f (x) =
∫ 〈

x
∣∣x′〉f (x′)dx′ (9)

which leads to the definition of the Dirac delta function as the normaliza-
tion of 〈x |x′ 〉: 〈

x
∣∣x′〉= δ

(
x−x′

)
(10)

Shankar then describes some properties of the delta function and its de-
rivative, most of which we’ve already covered. For example, we’ve seen
these two results for the delta function:

δ (ax) =
δ (x)

|a|
(11)

dθ (x−x′)
dx

= δ
(
x−x′

)
(12)

where θ is the step function

θ
(
x−x′

)
≡

{
0 x≤ x′

1 x > x′
(13)

One other result is that for a function f (x) with zeroes at a number of
points xi, we have

δ (f (x)) = ∑
i

δ (xi−x)
|df/dxi|

(14)

To see this, consider one of the xi where f (xi) = 0. Expanding in a
Taylor series about this point, we have

f (xi+(x−xi)) = f (xi)+(x−xi)
df

dxi
+ . . . (15)

= 0+(x−xi)
df

dxi
(16)

From 11 we have

http://www.physicspages.com/pdf/Mathematics/Dirac delta function.pdf
http://www.physicspages.com/pdf/Mathematics/Dirac delta function.pdf
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δ

(
(x−xi)

df

dxi

)
=
δ (xi−x)
|df/dxi|

(17)

The behaviour is the same at all points xi and since δ (xi−x) = 0 at all
other xj 6= xi where f (xj) = 0, we can just add the delta functions for each
zero of f .

Turning now to Zwiebach’s treatment, he begins with the basis states |x〉
and position operator x̂ with the eigenvalue equation

x̂ |x〉= x |x〉 (18)

and simply defines the inner product between two position states to be

〈x |y 〉= δ (x−y) (19)

With this definition, 9 follows immediately. We can therefore write a
quantum state |ψ〉 as

|ψ〉= I |ψ〉=
∫
|x〉〈x |ψ 〉dx=

∫
|x〉ψ (x)dx (20)

That is, the vector |ψ〉 is the integral of its projections ψ (x) onto the basis
vectors |x〉.

The position operator x̂ is hermitian as can be seen from

〈
x1

∣∣∣x̂†
∣∣∣x2

〉
= 〈x2 |x̂|x1〉∗ (21)

= x1 〈x2 |x1 〉∗ (22)

= x1δ (x2−x1)
∗ (23)

= x1δ (x2−x1) (24)

= x2δ (x2−x1) (25)

= 〈x1 |x̂|x2〉 (26)

The fourth line follows because the delta function is real, and the fifth
follows because δ (x2−x1) is non-zero only when x1 = x2.

Zwiebach then introduces the momentum eigenstates |p〉 which are anal-
ogous to the position states |x〉, in that
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〈
p′ |p

〉
= δ
(
p′−p

)
(27)

I =
∫
dp |p〉〈p| (28)

p̂ |p〉= p |p〉 (29)

ψ̃ (p) = 〈p |ψ 〉 (30)

By the same calculation as for |x〉, we see that p̂ is hermitian.
To get a relation between the |x〉 and |p〉 bases, we require that 〈x |p〉

is the wave function for a particle with momentum p in the x basis, which
we’ve seen is

ψ (x) =
1√
2πh̄

eipx/h̄ (31)

Zwiebach then shows that this is consistent with the equation

〈x |p̂|ψ〉= h

i

d

dx
〈x |ψ 〉= h

i

dψ (x)

dx
(32)

We can get a similar relation by switching x and p:

〈p |x̂|ψ〉=
∫
dx〈p |x〉〈x |x̂|ψ〉 (33)

=
∫
dx〈x |p〉∗x〈x |ψ 〉 (34)

From 31 we see

〈x |p〉∗ = 1√
2πh̄

e−ipx/h̄ (35)

〈x |p〉∗x= ih̄
d

dp
〈x |p〉∗ (36)∫

dx〈x |p〉∗x〈x |ψ 〉= ih̄
∫
dx

d

dp
〈x |p〉∗ 〈x |ψ 〉 (37)

= ih̄
d

dp

∫
dx 〈x |p〉∗ 〈x |ψ 〉 (38)

= ih̄
d

dp

∫
dx 〈p |x〉〈x |ψ 〉 (39)

= ih̄
dψ̃ (p)

dp
(40)

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 03.09.pdf
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In the fourth line, we took the d
dp outside the integral since p occurs in

only one term, and in the last line we used 7. Thus we have

〈p |x̂|ψ〉= ih̄
dψ̃ (p)

dp
(41)
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Here, we’ll revisit the differential operator on a continuous vector space

which we looked at earlier in its role as the momentum operator. This time
around, we’ll use the bra-ket notation and vector space results to analyze it,
hopefully putting it on a slightly more mathematical foundation.

We define the differential operator D acting on a vector |f〉 in a continu-
ous vector space as having the action

D |f〉=
∣∣∣∣ dfdx

〉
(1)

This notation means that D operating on |f〉 produces the vector (ket)∣∣∣ dfdx〉 corresponding to the function whose form in the |x〉 basis is df(x)
dx .

That is, the projection of
∣∣∣ dfdx〉 onto the basis vector |x〉 is

df (x)

dx
=

〈
x

∣∣∣∣ dfdx
〉
= 〈x |D|f〉 (2)

By a similar argument to that which we used to deduce the matrix element
〈x |x′ 〉, we can work out the matrix elements ofD in the |x〉 basis. Inserting
the unit operator, we have

〈x |D|f〉=
∫
dx′
〈
x |D|x′

〉〈
x′ |f

〉
(3)

=
∫
dx′
〈
x |D|x′

〉
f
(
x′
)

(4)

We need this to be equal to df
dx . To get this, we can introduce the derivative

of the delta function, except this time the delta function is a function of
x− x′ rather than just x on its own. To see the effect of this derivative,
consider the integral

1
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∫
dx′

dδ (x−x′)
dx

f
(
x′
)
=

d

dx

∫
dx′δ

(
x−x′

)
f
(
x′
)
=
df (x)

dx
(5)

In the second step, we could take the derivative outside the integral since
x is a constant with respect to the integration. Comparing this with 4 we
see that

〈
x |D|x′

〉
≡Dxx′ =

dδ (x−x′)
dx

= δ′
(
x−x′

)
(6)

Here the prime in δ′ means derivative with respect to x, not x′. [Note
that this is not the same formula as that quoted in the earlier post, where
we had f (x)δ′ (x) = −f ′ (x)δ (x) because in that formula it was the same
variable x that was involved in the derivative of the delta function and in the
integral.]

The operator D is not hermitian as it stands. Since the delta function is
real, we have, looking at D†

xx′ =D∗x′x in bra-ket notation, we see that

D†
x′x =

〈
x′ |D∗|x

〉
= δ′

(
x′−x

)
=−δ′

(
x−x′

)
6=Dxx′ (7)

Thus D is anti-hermitian. It is easy to fix this and create a hermitian op-
erator by multiplying by an imaginary number, such as−i (this choice is, of
course, to make the new operator consistent with the momentum operator).
Calling this new operator K ≡−iD we have

K†
x′x =

〈
x′ |K∗|x

〉
= iδ′

(
x′−x

)
=−iδ′

(
x−x′

)
=Kxx′ (8)

A curious fact about K (and thus about the momentum operator as well)
is that it is not automatically hermitian even with this correction. We’ve seen
that it satisfies the hermiticity property with respect to its matrix elements
in the position basis, but to be fully hermitian, it must satisfy

〈g |K|f〉= 〈f |K|g〉∗ (9)

for any two vectors |f〉 and |g〉. Suppose we are interested in x over some
range [a,b]. Then by inserting a couple of identity operators, we have

http://www.physicspages.com/pdf/Mathematics/Derivatives of delta function.pdf
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〈g |K|f〉=
∫ b

a

∫ b

a
〈g |x〉

〈
x |K|x′

〉〈
x′ |f

〉
dx dx′ (10)

=−i
∫ b

a
g∗ (x)

df

dx
dx (11)

=−i g∗ (x)f (x)|ba+ i
∫ b

a
f (x)

dg∗

dx
dx (12)

=−i g∗ (x)f (x)|ba+ 〈f |K|g〉
∗ (13)

The result is hermitian only if the first term in the last line is zero, which
happens only for certain choices of f and g. If the limits are infinite, so
we’re integrating over all space, and the system is bounded so that both f
and g go to zero at infinity, then we’re OK, and K is hermitian. Another
option is if g and f are periodic and the range of integration is equal to an
integral multiple of the period, then g∗f has the same value at each end and
the term becomes zero.

However, as we’ve seen, in quantum mechanics there are cases where
we deal with functions such as eikx (for k real) that oscillate indefinitely,
no matter how large x is (see the free particle, for example). There isn’t
any mathematically airtight way around such cases (as far as I know), but a
hand-wavy way of defining a limit for such oscillating functions is to con-
sider their average behaviour as x→±∞. The average defined by Shankar
is given as

lim
x→∞

eikxe−ik
′x = lim

L→∞
∆→∞

1
∆

∫ L+∆

L
ei(k−k

′)xdx (14)

This is interpreted as looking at the function very far out on the x axis (at
position L), and then considering a very long interval ∆ starting at point L.
Since the integral of ei(k−k

′)x over one period is zero (it’s just a combination
of sine and cosine functions), the integral is always bounded between 0
and the area under half a cycle, as successive half-cycles cancel each other.
Dividing by ∆, which is monotonically increasing, ensures that the limit is
zero.

This isn’t an ideal solution, but it’s just one of many cases where an infin-
itely oscillating function is called upon to do seemingly impossible things.
The theory seems to hang together fairly well in any case.
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Continuing with our study of differential operators, we’ll look now at

their eigenvalues and eigenstates. The operator we’re studying is

K =−i d
dx

(1)

The eigenvalue equation is as usual:

K |k〉= k |k〉 (2)

where |k〉is an eigenstate and k (outside the ket) is a (possibly complex)
scalar. To find |k〉, we form the matrix element with 〈x| and insert the unit
operator:

〈x |K|k〉= k 〈x |k 〉 (3)

〈x |K|k〉=
∫ 〈

x |K|x′
〉〈
x′ |k

〉
dx′ (4)

=−i
∫
δ′
(
x−x′

)
ψk

(
x′
)
dx′ (5)

=−i d
dx
ψk (x) (6)

In the third line we used the matrix element〈
x |K|x′

〉
=−iδ′

(
x−x′

)
(7)

Equating the RHS on the first and last lines gives the differential equation

− i d
dx
ψk (x) = kψk (x) (8)

which has the solution

ψk (x) = Aeikx (9)
1
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where A is a constant of integration. In order for ψk (x) to be bounded
as x→±∞, k must be real, so we’ll restrict our attention to that case. The
usual choice for A is 1/

√
2π so that

ψk (x) =
eikx√

2π
(10)

This leads to the normalization condition

〈
k
∣∣k′〉= ∫ ∞

−∞

〈k |x〉
〈
x
∣∣k′〉dx (11)

=
1

2π

∫
∞

−∞

e−i(k−k
′)xdx (12)

= δ
(
k−k′

)
(13)

where in the last line we used the traditional formula for the delta func-
tion. Thus the |k〉 basis is orthogonal, and normalized the same way as the
|x〉 basis.

To convert between the |k〉 and |x〉 bases, we can use the unit operator in
the two bases. Thus for some vector (function) |f〉 we have

f (k)= 〈k |f 〉=
∫
〈k |x〉〈x |f 〉dx=

∫
ψ∗k (x)f (x)dx=

1√
2π

∫
e−ikxf (x)

(14)
Thus f (k) is the Fourier transform of f (x). We can use the same proce-

dure to go in the reverse direction:

f (x) = 〈x |f 〉=
∫
〈x |k 〉〈k |f 〉dk =

∫
ψk (x)f (k)dk =

1√
2π

∫
eikxf (k)

(15)
The effect of the position operator X on a vector |f (x)〉 can be found by

inserting the unit operator:

〈x |X|f〉=
∫ 〈

x |X|x′
〉〈
x′ |f

〉
dx′ (16)

=
∫
x′
〈
x
∣∣x′ 〉〈x′ |f 〉dx′ (17)

=
∫
x′δ
(
x−x′

)〈
x′ |f

〉
dx′ (18)

= x〈x |f 〉 (19)

Thus X just multiplies any function of x by x itself. A similar argument
in the |k〉 basis shows that

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 02.26.pdf
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〈k |K|f (k)〉= k 〈k |f (k)〉 (20)

We can use similar calculations to find the matrix elements of K in the
|x〉 basis and of X (the position operator) in the |k〉 basis. We get

〈
k |X|k′

〉
=
∫ ∫

〈k |x〉
〈
x |X|x′

〉〈
x′
∣∣k′ 〉dx dx′ (21)

=
1

2π

∫ ∫
e−ikxx′

〈
x
∣∣x′〉eik′x′dx dx′ (22)

=
1

2π

∫ ∫
e−ikxx′δ

(
x−x′

)
eik
′x′dx dx′ (23)

=
1

2π

∫
xei(k

′−k)xdx (24)

= i
d

dk

[
1

2π

∫
ei(k

′−k)xdx

]
(25)

= iδ′
(
k−k′

)
(26)

The action of X on an arbitrary vector |g〉 in the k basis can be found
from this:

〈k |X|g (k)〉=
∫ 〈

k |X|k′
〉〈
k′ |g

〉
dk′ (27)

= i
∫
δ′
(
k−k′

)
g
(
k′
)
dk′ (28)

= i
dg (k)

dk
(29)

= i

〈
k

∣∣∣∣dg (k)dk

〉
(30)

where in the third line we’ve used the property of δ′ (k−k′) mentioned
here.

By a similar calculation, we can find the matrix elements of K in the |x〉
basis:

http://www.physicspages.com/pdf/Mathematics/Derivatives of delta function.pdf
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〈
x |K|x′

〉
=
∫ ∫

〈x |k 〉
〈
k |K|k′

〉〈
k′
∣∣x′〉dk dk′ (31)

=
1

2π

∫ ∫
eikxk′

〈
k
∣∣k′〉e−ik′x′dk dk′ (32)

=
1

2π

∫ ∫
eikxk′δ

(
k−k′

)
e−ik

′x′dk dk′ (33)

=
1

2π

∫
xei(x−x

′)kdk (34)

=−i d
dx

[
1

2π

∫
ei(x−x

′)kdk

]
(35)

=−iδ′
(
x−x′

)
(36)

Similarly, we have

〈x |K|g (x)〉=
∫ 〈

x |K|x′
〉〈
x′ |g

〉
dx′ (37)

=−i
∫
δ′
(
x−x′

)
g
(
x′
)
dx′ (38)

=−idg (x)
dx

(39)

=−i
〈
x

∣∣∣∣dg (x)dx

〉
(40)

From 30 and 40 we can work out the familiar commutator. Just for vari-
ety, we’ll do this in the |k〉 basis:

XK |f (k)〉=X [k |f (k)〉] (41)

= i
d

dk
[k |f (k)〉] (42)

= i

[
|f (k)〉+k

∣∣∣∣ dfdk
〉]

(43)

KX |f (k)〉= iK

∣∣∣∣ dfdk
〉

(44)

= ik

∣∣∣∣ dfdk
〉

(45)

Therefore

[X,K] |f (k)〉= i |f (k)〉 (46)
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or, looking just at the operators

[X,K] = iI (47)
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I’ll run through Shakar’s example 1.10.1 on a vibrating string, so we can

see an application of the theory of infinite dimensional spaces. Suppose we
have a string (for example, a violin string) that is anchored at x = 0 and
x= L. If we pluck the string at t= 0, its future position is governed by the
wave equation:

∂2ψ

∂t2
=
∂2ψ

∂x2 (1)

[For simplicity, we’re taking the wave speed to be 1, which is why there’s
no constant in this equation.] We can write this as an operator equation
using the K =−i ∂

∂x operator we introduced last time. Viewing the wave as
a vector in the |x〉 basis, we then have∣∣ψ̈ (t)〉=−K2 |ψ (t)〉 (2)

The idea is now to look at the RHS of this equation and diagonalize the
K2 operator by finding its eigenvalues and eigenvectors. Working in the |x〉
basis, we can write the eigenvalue problem as

〈
x
∣∣K2∣∣ψ〉= k2 〈x |ψ 〉 (3)

−d
2ψ (x)

dx2 = k2ψ (x) (4)

This has the general solution

ψ (x) = Acoskx+B sinkx (5)

where A and B are constants of integration, to be determined by the
boundary conditions. Since the ends of the string are fixed at ψ (0) =
ψ (L) = 0, we must have A= 0, and we then have

B sinkL= 0 (6)
1
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In order to avoid a trivial solution where ψ (x) = 0 everywhere, we have
B 6= 0, so

kL=mπ (7)
for m= 1,2,3, . . .. We therefore have the discrete set of solutions

ψm (x) =B sin
mπx

L
(8)

We can choose B =
√

2
L to normalize the solution so that∫
ψm (x)ψm′ (x)dx= δmm′ (9)

So far, this is the same as the solution to the infinite square well in quan-
tum mechanics, but now we follow a different path, since we need to satisfy
the wave equation 1, and not Schrödinger’s equation, which is first order in
time.

We now have two different orthonormal bases that can be used to repre-
sent the states of the string. The |x〉 basis is continuous, consisting of all
real values of x in the interval [0,L]. The other basis is also infinite, but it is
discrete, as it consists of the possible values of k as given by 7. Since k is
determined by the integer m, we’ll call this the |m〉 basis. In the |x〉 basis,
the state |m〉 is given by 8:

〈x |m〉=
√

2
L

sin
mπx

L
(10)

The general solution as a function of time is an abstract vector |ψ (t)〉.
We can project this onto the |x〉 basis, when we would get

〈x |ψ (t)〉= ψ (x,t) (11)
Or we can project it onto the |m〉 basis, which gives that component of

|ψ (t)〉 that is composed of a wave with index m. In the |m〉 basis, the
operator K2 is diagonal, since

K2ψm (x)=−
√

2
L

d2

dx2 sin
mπx

L
=
(mπ
L

)2
√

2
L

sin
mπx

L
=
(mπ
L

)2
ψm (x)= k2ψm (x)

(12)
We can write the projection of |ψ (t)〉 onto the |m〉 basis as 〈m |ψ (t)〉.

Going back to 2, we see that each component 〈m |ψ (t)〉 individually satis-
fies the differential equation

d2

dt2
〈m |ψ (t)〉=−

(mπ
L

)2
〈m |ψ (t)〉 (13)

http://www.physicspages.com/pdf/Griffiths QM/Infinite Square Well.pdf
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This is the same equation as 4, except now we’re dealing with a time
derivative instead of a space derivative. The solution is therefore of the
same form:

〈m |ψ (t)〉= C coskt+D sinkt (14)
To find C andD, we now use the initial conditions at t= 0. We’ll assume

that the string is held in some fixed shape and then released at t= 0, which
means that we need to specify this initial shape as 〈m |ψ (0)〉, and that the
initial velocity is zero. The latter condition means that

d

dt
〈m |ψ (0)〉=−kC sink0+kD cosk0 = 0 (15)

which gives us D = 0, so we have

〈m |ψ (t)〉= 〈m |ψ (0)〉coskt= 〈m |ψ (0)〉cos
mπt

L
(16)

The general solution is therefore found by inserting the unit operator in
the form 1 = ∑m |m〉〈m|:

|ψ (t)〉= ∑
m

|m〉〈m |ψ (t)〉 (17)

= ∑
m

|m〉cos
mπt

L
〈m |ψ (0)〉 (18)

This can be written as a propagator U (t) acting on the initial state:

|ψ (t)〉= U (t) |ψ (0)〉 (19)

U (t)≡∑
m

|m〉〈m|cos
mπt

L
(20)

Just as with our earlier example of two masses coupled by springs, all the
time dependence has been incorporated into the propagator, so all we need
to do is specify the initial shape of the spring to get the general solution.
This solution can be restored to the |x〉 basis by applying the bra 〈x| to 18
and using 10:

ψ (x,t) = 〈x |ψ (t)〉 (21)

= ∑
m

〈x |m〉cos
mπt

L
〈m |ψ (0)〉 (22)

=

√
2
L∑

m

sin
mπx

L
cos

mπt

L
〈m |ψ (0)〉 (23)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 01.08.11.pdf
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We still need to get rid of the final 〈m| bra in the last term, which we can
do by inserting a unit operator using the |x〉 basis:

ψ (x,t) =

√
2
L∑

m

sin
mπx

L
cos

mπt

L

∫ L

0

〈
m
∣∣x′〉〈x′ |ψ (0)〉dx′ (24)

=
2
L∑

m

sin
mπx

L
cos

mπt

L

∫ L

0
sin

mπx′

L
ψ
(
x′,0

)
dx′ (25)

The last line follows from 10 because 〈m |x′ 〉 = 〈x′ |m〉∗ and 〈m |x′ 〉 is
real. Thus to get the final solution, we need to do the integral in the last line,
which depends on the initial shape of the string.

For example, suppose the string is held at its midpoint a distance h away
from the x axis, and follows a straight line on either side of the midpoint.
Then the initial state is given by

ψ (x,0) =

{
2xh
L 0≤ x≤ L

2
2h
L (L−x) L

2 ≤ x≤ L
(26)

We then need to do the integral

∫ L

0
sin

mπx

L
ψ (x,0)dx=

2h
L

[∫ L/2

0
xsin

mπx

L
dx+

∫ L

L/2
(L−x)sin

mπx

L
dx

]
(27)

The integrals can be done by parts although it’s a bit tedious, so I used
Maple to get

hL

π2m2

[
−
(
mπ cos

πm

2
−2sin

πm

2

)
+
(
mπ cos

πm

2
+2sin

πm

2

)]
=

4hL
π2m2 sin

πm

2
(28)

Plugging this back into 25 we get the final answer:

ψ (x,t) =
8h
π2 ∑

m

1
m2 sin

mπx

L
cos

mπt

L
sin

πm

2
(29)

Each term in the sum is a normal mode, and we can see that the amplitude
drops off as 1/m2, so higher frequencies are less prevalent in the overall
motion of the string.

Notice that if we start the string off in a pure sine wave shape, this is
the only mode that is ever present. That is, if, for some fixed integer n and
amplitude of initial displacement h:

ψ (x,0) = hsin
nπx

L
(30)

then
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∫ L

0
sin

mπx

L
ψ (x,0)dx=

hL

2
δmn (31)

Thus the only mode present is m= n, and the string’s motion is

ψ (x,t) = hsin
nπx

L
cos

nπt

L
(32)
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Yet another form of the Dirac delta function is as the limit of a Gaussian

integral. We start with

g∆

(
x−x′

)
=

1

(π∆2)
1/2

e−(x−x
′)2/∆2

(1)

If ∆2 is real and positive, we have

1

(π∆2)
1/2

ˆ
∞

−∞

e−(x−x
′)2/∆2

dx= 1 (2)

Thus the area under the curve is always 1, for any real value of ∆2. Now
as ∆2 → 0 the exponential becomes zero except when x = x′. The factor
1/

(
π∆2)1/2 tends to infinity as ∆2 → 0, but the exponential always tends

to zero faster than any power of ∆, so g∆ (x−x′) tends to zero everywhere
except at x= x′. Thus it satisfies the requirements of a delta function: it is
zero everywhere except when x−x′ = 0 and has an integral of 1. Thus

lim
∆→0

g∆

(
x−x′

)
= δ

(
x−x′

)
(3)

However, if we plug the integral into Maple without any restrictions on
∆2, it informs us that the integral is still 1 even if ∆2 is pure imaginary,
provided that the imaginary number is positive, that is, we can write ∆2 =
iβ2 for real β. Thus it would appear that g∆ still gives a delta function in
the limit ∆2→ 0 even if ∆2 is a positive imaginary number.

Shankar provides a rationale for this in his footnote to equation 1.10.19.
In terms of β we can integrate some smooth function f (x′) multiplied by
g∆ over a region that includes x′ = x.

1

(πiβ2)
1/2

ˆ
∞

−∞

ei(x−x
′)2/β2

f
(
x′
)
dx (4)

1
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As β2→ 0, the exponent becomes a very large positive imaginary num-
ber everywhere except at x= x′, so the exponential oscillates very rapidly.
Provided that f (x′) doesn’t vary as rapidly, the integral will contain equal
positive and negative contributions everywhere except at x = x′ so in the
limit of β2 = 0, only the point x= x′ contributes, which means we can pull
f (x) out of the integral and get

lim
β2→0

1

(πiβ2)
1/2

ˆ
∞

−∞

ei(x−x
′)2/β2

f
(
x′
)
dx= f (x) (5)

Thus 3 is valid for all real ∆ and for ∆2 positive imaginary.
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The Euler-Lagrange equations of motion, derived from the principle of

least action are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1)

where qi and q̇i are the generalized coordinates and velocities, respec-
tively. Here are a couple of simple examples of how these equations can be
used to derive equations of motion.

Example 1. The harmonic oscillator. We have a mass m sliding on a fric-
tionless horizontal surface with a spring of spring constant k connected be-
tween one end of the mass and a fixed support. The horizontal displacement
of the mass from its equilibrium position is given by x, with x < 0 when the
mass moves to the left, compressing the spring, and x > 0 when it moves to
the right, stretching the spring.

For systems where the potential energy V (qi) is independent of the ve-
locities q̇i, the Lagrangian can be written as

L= T −V (2)

where T is the kinetic energy. In the case of the mass

T =
1
2
mẋ2 (3)

V =
1
2
kx2 (4)

L =
1
2
mẋ2 − 1

2
kx2 (5)

described earlier
The equation of motion is

1
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d

dt

∂L

∂q̇i
− ∂L

∂qi
=mẍ+kx= 0 (6)

mẍ=−kx (7)

which is the familiar equation for the force on the mass equal to −kx.

Example 2. We can revisit the problem of two masses coupled by three
springs, as described earlier. In this case, we have two coordinates x1 and
x2. The total kinetic energy is

T =
1
2
m
(
ẋ2

1 + ẋ2
2
)

(8)

The total potential energy is

V =
1
2
kx2

1 +
1
2
k (x2 −x1)

2 +
1
2
kx2

2 (9)

= k
(
x2

1 +x2
2 −x1x2

)
(10)

The Lagrangian and equations of motion are then

L=
1
2
m
(
ẋ2

1 + ẋ2
2
)
−k

(
x2

1 +x2
2 −x1x2

)
(11)

d

dt

∂L

∂ẋ1
− ∂L

∂x1
=mẍ1 +2kx1 −kx2 = 0 (12)

d

dt

∂L

∂ẋ2
− ∂L

∂x2
=mẍ2 +2kx2 −kx1 = 0 (13)

This gives the same equations of motion we had earlier.

ẍ1 = −2
k

m
x1 +

k

m
x2 (14)

ẍ2 =
k

m
x1 −2

k

m
x2 (15)
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We now consider a more general example of the Euler-Lagrange equa-

tions of motion

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1)

where qi and q̇i are the generalized coordinates and velocities, respec-
tively. For systems where the potential energy V (qi) is independent of the
velocities q̇i, the Lagrangian can be written as

L= T −V (2)

where T is the kinetic energy.
Suppose we consider a system in three dimensions and use spherical co-

ordinates to represent the position of a particle of massm. We’ll restrict our-
selves to potential energy functions that depend only on the radial distance
r from the origin, so that V (r,θ,φ) = V (r). To write down the Lagrangian,
we need an expression for the kinetic energy T .

An infinitesimal line element in spherical coordinates has a length ds
given by

ds2 = dr2 + r2 dθ2 + r2 sin2 θ dφ2 (3)

The square of the velocity is then given by dividing this expression through
by dt2, and using a dot above a symbol to indicate the derivative with re-
spect to time t. We have

v2 =

(
ds

dt

)2

= ṙ2 + r2θ̇2 + r2 sin2 θφ̇2 (4)

The Lagrangian is then
1
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L= T −V (5)

=
1
2
m
[
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2]−V (r) (6)

We now get three equations of motion by applying 1 to each coordinate
in turn. For r:

d

dt

∂L

∂ṙ
=
∂L

∂r
(7)

r̈ = rθ̇2 + r sin2 θφ̇2 − 1
m

dV

dr
(8)

For θ:

d

dt

∂L

∂θ̇
=
∂L

∂θ
(9)

d

dt

(
mr2θ̇

)
=mr2 sinθ cosθφ̇2 (10)

2rṙθ̇+ r2θ̈ = r2 sinθ cosθφ̇2 (11)

θ̈ =−2
r
ṙθ̇+ sinθ cosθφ̇2 (12)

For φ:

d

dt

∂L

∂φ̇
=
∂L

∂φ
(13)

d

dt

(
mr2 sin2 θ φ̇

)
= 0 (14)

2rṙ sin2 θφ̇+2r2 sinθ cosθθ̇φ̇+ r2 sin2 θφ̈= 0 (15)

φ̈=−2
r
ṙφ̇−2cotθθ̇φ̇ (16)

Although the only equation in which the potential energy V has a direct
effect is the one for r, these three equations constitute a system of non-linear
coupled differential equations so in the general case, they can be difficult to
solve.

One important special case is that of a path that lies in the plane θ = π
2 ,

such as the orbit of a planet around the sun. In that case θ̇= 0, sinθ= 1 and
cosθ = 0, so the equations simplify to
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r̈ = rφ̇2 − 1
m

dV

dr
(17)

θ̈ = 0 (18)

φ̈ = −2
r
ṙφ̇ (19)
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The Euler-Lagrange equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1)

where qi and q̇i are the generalized coordinates and velocities, respec-
tively. For systems where the potential energy V (qi) is independent of the
velocities q̇i, the Lagrangian can be written as

L= T −V (2)

where T is the kinetic energy. However, there is one important area in
classical physics where the potential does depend on velocity, and that is
electromagnetism.

The relation between the electric scalar potential φ, the magnetic vec-
tor potential A and the electric and magnetic fields E and B is given by
Maxwell’s equations in terms of potentials:

E = −∇φ− 1
c

∂A
∂t

(3)

B = ∇×A (4)

[These are the forms used by Shankar, which are in Gaussian units. All
my earlier posts on electromagnetism are taken from Griffiths’s book, which
uses the MKS system of units, so various constants will be different in the
two systems.]

The force on a charge q due to electric and magnetic fields E and B is
given by

F = q
(

E+
v
c
×B

)
(5)

Shankar merely states that the correct force can be derived from 1 if we
use the Lagrangian

1
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L=
1
2
mv ·v− qφ+ q

c
v ·A (6)

It appears from a bit of googling that this Lagrangian is obtained more or
less by trial and error, rather than by some rigorous derivation, so it seems
we just need to accept it “because it works”. The velocity v in rectangular
coordinates is

v = [ẋ1, ẋ2, ẋ3] (7)

v ·v =
3

∑
i=1

ẋ2
i (8)

v ·A =
3

∑
i=1

ẋiAi (9)

Both φ and A are functions of position, so depend on xi.
Thus from 1, we have

d

dt

(
mẋi+

q

c
Ai

)
=−q ∂φ

∂xi
+
q

c

∂ (v ·A)

∂xi
(10)

The three equations represented here can be combined into a single vector
equation by noticing that ∂

∂xi
are the components of the gradient.

d

dt

(
mv+

q

c
A
)
=−q∇φ+ q

c
∇(v ·A) (11)

The LHS contains the total time derivative dA
dt which is composed of two

contributions. First, A itself can be time varying, in the sense that if we
stayed at the same location, the value of A at that location can vary in time.
The second contribution comes from the motion of the charge so that, even
if A is constant in time, the charge will perceive a change in A as it moves
because A can vary over space. That is, the total derivative of the first
component A1 is

dA1

dt
=
∂A1

∂t
+

3

∑
i=1

∂A1

∂xi

dxi
dt

(12)

=
∂A1

∂t
+(v ·∇)A1 (13)

The derivative of A can thus be written as

dA
dt

=
∂A
∂t

+(v ·∇)A (14)
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Plugging this into 11 and rearranging, we get

d

dt
(mv) =−q∇φ− q

c

∂A
∂t

+
q

c
[∇(v ·A)− (v ·∇)A] (15)

F =−q∇φ− q

c

∂A
∂t

+
q

c
(v× (∇×A)) (16)

F = q

(
E+

1
c

v×B
)

(17)

In the second line, we used a standard vector identity:

v× (∇×A) = ∇(v ·A)− (v ·∇)A (18)
Thus the Lagrangian 6 does indeed give the correct force law. The La-

grangian is not of the form T −V because the term qφ− q
cv ·A isn’t a poten-

tial energy. In electrostatics, qφ is indeed potential energy, but because the
magnetic force always acts perpendicular to the velocity, it does no work,
so we can’t interpret −q

cv ·A as some form of ’magnetic potential energy’.
The work done when moving a charge through an electromagnetic field in
general depends on the path taken, so is not conservative, and we can’t write
the force as the gradient of some potential.
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A fundamental problem in classical physics is the two-body problem, in

which two masses interact via a potential V (r1− r2) that depends only on
the relative positions of the two masses. In such a case, the Lagrangian can
be decoupled so that the problem gets reduced to a one-body problem.

The Euler-Lagrange equations are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1)

where qi and q̇i are the generalized coordinates and velocities, respec-
tively. For systems where the potential energy V (qi) is independent of the
velocities q̇i, the Lagrangian can be written as

L= T −V (2)

where T is the kinetic energy. In terms of the absolute positions and
velocities, we have

L=
1
2
m1 |ṙ1|2 +

1
2
m2 |ṙ2|2−V (r1− r2) (3)

To decouple this equation, we define two new position vectors:

r ≡ r1− r2 (4)

rCM ≡ m1r1 +m2r2

m1 +m2
(5)

Here r is the relative position, and rCM is the position of the centre of
mass.

We can invert these equations to get
1
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r1 = r+ r2 (6)

(m1 +m2)rCM =m1r+(m1 +m2)r2 (7)

r2 = rCM −
m1

m1 +m2
r (8)

r1 = rCM −
m2

m1 +m2
r (9)

To decouple the Lagrangian, we insert these last two equations into 3.

m1 |ṙ1|2 =m1

[
ṙCM −

m2

m1 +m2
ṙ
]
·
[

ṙCM −
m2

m1 +m2
ṙ
]
(10)

=m1 |ṙCM |2−2
m1m2

m1 +m2
ṙCM · ṙ+m1

(
m2

m1 +m2

)2

|ṙ|2

(11)

m2 |ṙ2|2 =m2

[
ṙCM +

m1

m1 +m2
ṙ
]
·
[

ṙCM +
m1

m1 +m2
ṙ
]
(12)

=m2 |ṙCM |2 +2
m1m2

m1 +m2
ṙCM · ṙ+m2

(
m1

m1 +m2

)2

|ṙ|2

(13)

1
2
m1 |ṙ1|2 +

1
2
m2 |ṙ2|2 =

1
2
(m1 +m2) |ṙCM |2 +

1
2
m1m

2
2 +m2m

2
1

(m1 +m2)
2 |ṙ|2

(14)

=
1
2
(m1 +m2) |ṙCM |2 +

1
2

m1m2

m1 +m2
|ṙ|2 (15)

The Lagrangian 3 thus becomes

L=
1
2
(m1 +m2) |ṙCM |2 +

1
2

m1m2

m1 +m2
|ṙ|2−V (r) (16)

≡ LCM +Lr (17)

with

LCM ≡
1
2
(m1 +m2) |ṙCM |2 (18)

Lr ≡
1
2

m1m2

m1 +m2
|ṙ|2−V (r) (19)
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Thus L decouples into two Lagrangians, one of which depends only on
ṙCM and the other of which depends only on r and ṙ. The absence of rCM

means that, from 1

d

dt

∂L

∂ṙi,CM
=

d

dt

∂LCM

∂ṙi,CM
=

m1 +m2

2
dṙi,CM

dt
= 0 (20)

ṙi,CM = constant (21)

which is separately true for each component of ṙCM , which shows that
the velocity of the centre of mass is a constant, as we’d expect for an isolated
two-body system with no external force.

From the other Lagrangian, we get

m1m2

m1 +m2
r̈ =−∇V (r) (22)

which is the equation of motion of a single particle of mass m1m2
m1+m2

, called
the reduced mass. Viewed from the centre of mass frame, where ṙCM = 0,
r becomes the absolute position of the reduced mass. We can transform the
result back to the ’absolute’ frame by using 4.

PINGBACKS
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The Lagrangian formulation of classical mechanics is one of two princi-

pal formalisms used to obtain equations of motion for a system. The other
method is the Hamiltonian formalism. The main difference between the
two methods is that the Lagrangian treats the generalized coordinates qi
and their respective velocities q̇i as the independent variables, while in the
Hamiltonian formalism, the coordinates and their associated momenta are
the independent variables. The momentum pi corresponding to a coordinate
qi is defined by

pi ≡
dL

dq̇i
(1)

The Lagrangian is replaced by a function H (q,p) (where we’re using
unsubscripted variables q and p to represent the sets of coordinates and
momenta) with the property that

q̇i =
∂H

∂pi
(2)

The method for transforming from the Lagrangian picture to the Hamil-
tonian picture is known as a Legendre transformation and works as follows.
Suppose we start with a function f (x1,x2, . . . ,xn) (here, the xi can be any
independent variables; we’re not considering coordinates explicitly yet) and
we want to replace a subset {xi, i= 1 . . . , j} with different variables ui,
where

ui ≡
∂f

∂xi
(3)

We now construct the function

g (u1, . . . ,uj ,xj+1, . . . ,xn)≡
j

∑
i=1

uixi−f (x1, . . . ,xn) (4)

1
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We’re assuming that all the xi in the set {xi, i= 1 . . . , j} can be written
as functions of

{
u1, . . . ,uj ,xj+1, . . . ,xn

}
. In other words, when written out

in full, 4 contains only the variables
{
u1, . . . ,uj ,xj+1, . . . ,xn

}
. We can now

take the derivative:

∂g

∂ui
= xi+

j

∑
k=1

[
uk
∂xk
∂ui
− ∂f

∂xk

∂xk
∂ui

]
(5)

= xi+
j

∑
k=1

[
uk
∂xk
∂ui
−uk

∂xk
∂ui

]
(6)

= xi (7)

where the second line follows from the definition 3.
To move from the Lagrangian formalism to the Hamiltonian formalism,

the Lagrangian plays the role of f , the generalized velocities q̇i are the
variables {xi, i= 1 . . . , j} to be replaced, and the Hamiltonian is the new
function g. That is, we have

H (q,p) =
n

∑
i=1

piq̇i−L(q, q̇) (8)

There are a total of n momenta pi and n coordinates qi, for a total of
2n independent coordinates. In 8, it is assumed that we can express all the
velocities q̇i as functions of qi and pi. With these definitions, we can see by
following through the derivation of 7 that 2 is satisfied.

We can get another equation by considering the derivative

∂H

∂qi
=

n

∑
j=1

pj
∂q̇j
∂qi
− ∂L

∂qi
−

n

∑
j=1

∂L

∂q̇j

∂q̇j
∂qi

(9)

=
n

∑
j=1

[
pj
∂q̇j
∂qi
− ∂L

∂q̇j

∂q̇j
∂qi

]
− ∂L

∂qi
(10)

=
n

∑
j=1

[
pj
∂q̇j
∂qi
−pj

∂q̇j
∂qi

]
− ∂L

∂qi
(11)

=−∂L
∂qi

(12)

=− d

dt

∂L

∂q̇i
(13)

=−ṗi (14)



HAMILTONIAN FORMALISM AND LEGENDRE TRANSFORMATIONS 3

In the third line, we used 1, in the fifth line we used the Euler-Lagrange
equation

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (15)

and in the last line, we used 1 again. We thus get Hamilton’s canonical
equations:

∂H

∂pi
= q̇i (16)

−∂H
∂qi

= ṗi (17)

[As an aside at this point, I was (and still am) unsure exactly what the
term ’canonical’ means in this, or in almost any other, context. Google is
not very helpful in this respect, as it appears that nobody else really knows
where the term came from. According to Wikepedia, the term ’canonical’
is used to describe equations in several areas of mathematics, physics and
even computer science, but ultimately the term appears to originate in reli-
gion, as in ’canon law’, which is a system of laws created by the Catholic
church. Presumably the term in physics is used to describe some equation
or principle which is widely applicable and general. Any other thoughts are
welcome in the comments.]

In cases where the potential energy doesn’t depend on velocity, the La-
grangian is T − V , where T is the kinetic energy. The Hamiltonian (as
you’ve probably guessed) can be interpreted as the total energy of such a
system, as we can see as follows.

Using rectangular coordinates, where each mass mi has a kinetic energy
Ti =

1
2miẋ

2
i (this is true in one dimension; to extend to 3 dimensions, we

write Ti = 1
2mi

(
ẋ2
i + ẏ

2
i + ż

2
i

)
and the same argument follows). Thus the

momentum is

pi =
∂L

∂ẋi
=
∂T

∂ẋi
=miẋi (18)

Thus the first term in 8 is

n

∑
i=1

piq̇i =
n

∑
i=1

miẋ
2
i = 2T (19)

and the Hamiltonian is

H = 2T −L= 2T −T +V = T +V (20)
Now consider a more general kinetic energy defined as

https://en.wikipedia.org/wiki/Canonical
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T = ∑
i

∑
j

Tij (q) q̇iq̇j (21)

That is, T is a matrix that depends on the positions of the various masses.
We have

pk =
∂L

∂q̇k
=
∂T

∂q̇k
(22)

= ∑
i

∑
j

Tij (q)
∂q̇i
∂q̇k

q̇j +∑
i

∑
j

Tij (q) q̇i
∂q̇j
∂q̇k

(23)

= ∑
i

∑
j

Tij (q)δikq̇j +∑
i

∑
j

Tij (q) q̇iδjk (24)

= ∑
j

Tkj (q) q̇j +∑
i

Tik (q) q̇i (25)

= ∑
j

(
Tkj +Tjk

)
q̇j (26)

The first term in 8 now becomes

∑
k

pkq̇k = ∑
k

∑
j

(
Tkj +Tjk

)
q̇j q̇k (27)

= 2T (28)

where the last line follows because the RHS of the first line is symmetric
under the exchange of j and k.
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Here are a couple of examples of equations of motion using the Hamil-

tonian formalism. First, we look at the simple harmonic oscillator, in which
we have a mass m sliding on a frictionless horizontal surface. The mass
is connected to a spring with constant k, with the other end of the spring
connected to a fixed support.

The Hamiltonian is given by

H (q,p) = ∑
i

piq̇i−L(q, q̇) (1)

where the velocities q̇i are expressed in terms of the positions qi and mo-
menta pi. In this case, we have, using the coordinate x as the displacement
from equilibrium

L(x, ẋ) =
1
2
mẋ2 − 1

2
kx2 (2)

p=
∂L

∂ẋ
=mẋ (3)

ẋ=
p

m
(4)

L(x, ẋ(x,p)) =
p2

2m
− 1

2
kx2 (5)

H =
p2

m
−
(

p2

2m
− 1

2
kx2

)
(6)

=
p2

2m
+

1
2
kx2 (7)

We can now apply Hamilton’s canonical equations:

∂H

∂p
= ẋ (8)

−∂H

∂x
= ṗ (9)

1
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We get

∂H

∂p
=

p

m
= ẋ (10)

−∂H

∂x
= −kx= ṗ (11)

We thus get a pair of first order ODEs which can be solved in the usual
way, given x(0) and p(0). The second order ODE that we got by using the
Lagrangian method can be obtained by differentiating the first equation and
plugging it into the second:

ẍ =
ṗ

m
(12)

= − k

m
x (13)

From 7 we see that, since in the absence of external force, the total energy
H = T +V = E is a constant,

p2

2m
+

1
2
kx2 = E = constant (14)

This can be written as the equation of an ellipse:

p2

b2 +
x2

a2 = 1 (15)

where

a2 =
2E
k

(16)

b2 = 2mE (17)

We can use the Hamiltonian formalism to get the equations of motion of
the coupled harmonic oscillator. From our Lagrangian treatment, we had

L=
1
2
m
(
ẋ2

1 + ẋ2
2
)
−k

(
x2

1 +x2
2 −x1x2

)
(18)

Converting to coordinates and momenta, we have

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.01.01 - 02.01.02.pdf
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pi =
∂L

∂ẋi
=mẋi (19)

ẋi =
pi
m

(20)

H = ∑
i

piẋi−L(x, ẋ) (21)

=
1
m

(
p2

1 +p2
2
)
−
[

1
2m

m
(
p2

1 +p2
2
)
−k

(
x2

1 +x2
2 −x1x2

)]
(22)

=
1

2m
(
p2

1 +p2
2
)
+k

(
x2

1 +x2
2 −x1x2

)
(23)

Applying the canonical equations gives

∂H

∂pi
=

pi
m

= ẋi (24)

−∂H

∂x1
=−2kx1 +kx2 = ṗ1 (25)

−∂H

∂x2
=−2kx2 +kx1 = ṗ2 (26)

Again, by taking the derivative of the first line and substituting into the
last two lines, we get back the previous equations of motion:

ẍ1 = −2
k

m
x1 +

k

m
x2 (27)

ẍ2 =
k

m
x1 −2

k

m
x2 (28)
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Here we derive the equations of motion of the two-body problem using

the Hamiltonian formalism.
The Hamiltonian is given by

H (q,p) = ∑
i

piq̇i−L(q, q̇) (1)

where the velocities q̇i are expressed in terms of the positions qi and
momenta pi. In this case, we start with the Lagrangian in terms of the
centre of mass position rCM and the relative position r of mass 2 to mass 1.

L=
1
2
(m1 +m2) |ṙCM |2 +

1
2
m1m2

m1 +m2
|ṙ|2−V (r) (2)

=
M

2
|ṙCM |2 +

µ

2
|ṙ|2−V (r) (3)

where M = m1 +m2 is the total mass and µ = m1m2
m1+m2

is the reduced
mass.

There are potentially 6 velocity components and 6 coordinate compo-
nents in the Lagrangian, but the 3 components of rCM do not appear, which
simplifies things a bit. To convert to a Hamiltonian, we need the momenta

pi =
∂L

∂q̇i
(4)

The x component of momentum of the centre of mass is

pCM,x =
∂L

∂ṙCM,x
=MṙCM,x (5)

The other two components of the centre of mass velocity, and of the rel-
ative velocity, have a similar form, and in general we can write

pCM,i = MṙCM,i (6)
pi = µṙi (7)

1
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In vector notation, this becomes

ṙCM =
pCM

M
(8)

ṙ =
p
µ

(9)

|ṙCM |2 =
|pCM |2

M2 (10)

|ṙ|2 =
|p|2

µ2 (11)

The Lagrangian thus becomes

L=
|pCM |2

2M
+
|p|2

2µ
−V (r) (12)

The Hamiltonian is

H = p · ṙ+pCM · ṙCM −L (13)

=
|p|2

µ
+
|pCM |2

M
−

[
|pCM |2

2M
+
|p|2

2µ
−V (r)

]
(14)

=
|pCM |2

2M
+
|p|2

2µ
+V (r) (15)

Once we’ve got the Hamiltonian, we can apply Hamilton’s canonical
equations to get the equations of motion.

∂H

∂pi
= ṙi (16)

−∂H
∂ri

= ṗi (17)

Since rCM does not appear in the Hamiltonian, we have

ṗCM = 0 (18)
pCM = constant (19)

so the momentum of the centre of mass does not change, as expected.
For r, we have
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∂H

∂pi
=

pi
µ

= ṙi (20)

∂H

∂ri
=

∂V

∂ri
=−ṗi (21)

The first equation tells us nothing new, while the second is just Newton’s
law for a central force: ṗ =−∇V .
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Here we derive the equations of motion for the electromagnetic force

using the Hamiltonian formalism.
The Hamiltonian is given by

H (q,p) = ∑
i

piq̇i−L(q, q̇) (1)

where the velocities q̇i are expressed in terms of the positions qi and
momenta pi. The electromagnetic Lagrangian is

L=
1
2
mv ·v− qφ+ q

c
v ·A (2)

where φ is the electric potential and A is the magnetic potential, with v
the velocity of the charge q with mass m. To convert to the Hamiltonian,
we need the momentum, defined as

pi =
∂L

∂q̇i
In this case, the generalized velocity is given by

q̇i = vi (3)

so we have

pi =mvi+
q

c
Ai (4)

or, in vector notation

p = mv+
q

c
A (5)

v =
p
m
− q

mc
A (6)

The Lagrangian is therefore
1
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L=
|p− qA/c|2

2m
− qφ+ q

c

( p
m
− q

mc
A
)
·A (7)

The first sum in the Hamiltonian is

∑
i

piq̇i = p ·v = p ·
( p
m
− q

mc
A
)

(8)

The Hamiltonian is then

H = p ·
( p
m
− q

mc
A
)
− |p− qA/c|

2

2m
+ qφ− q

c

( p
m
− q

mc
A
)
·A (9)

=
( p
m
− q

mc
A
)(

p− q
c

A
)
− |p− qA/c|

2

2m
+ qφ (10)

=
|p− qA/c|2

2m
+ qφ (11)
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Hamilton’s canonical equations are:

∂H

∂pi
= q̇i (1)

−∂H
∂qi

= ṗi (2)

If a coordinate qi is missing in the Hamiltonian (that is, H is indepedent
of qi), then

ṗi =−
∂H

∂qi
= 0 (3)

Thus the conjugate momentum pi is conserved. Such a missing coordi-
nate qi is known as a cyclic coordinate. [I’m not sure of the origin of this
term. Again Google doesn’t provide a definitive answer.]

There is a general method for calculating the rate of change of some func-
tion ω (p,q) that depends on the momenta and coordinates, but not explicitly
on the time (ω is allowed to depend implicitly on time since p and/or q can
depend on time). The time derivative can then be written using the chain
rule:

dω

dt
= ∑

i

(
∂ω

∂qi
q̇i+

∂ω

∂pi
ṗi

)
(4)

= ∑
i

(
∂ω

∂qi

∂H

∂pi
− ∂ω

∂pi

∂H

∂qi

)
(5)

≡ {ω,H} (6)

where in the second line we used Hamilton’s equations 1 and 2. The last
line defines the Poisson bracket of the function ω with the Hamiltonian H .
We can see that if {ω,H}= 0, the function ω is conserved.

Since {H,H} = 0 automatically, the total energy (represented by the
Hamiltonian) is conserved, provided there is no explicit time dependence.

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.05.01.pdf


CYCLIC COORDINATES AND POISSON BRACKETS 2

Such a time dependence can arise if the system is subject to some external
force, for example.

From the definition 5 we can derive a few fundamental properties of Pois-
son brackets. We’ll consider a general Poisson bracket between two arbi-
trary functions ω (p,q) and λ(p,q). Then

{ω,λ}= ∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
(7)

=−∑
i

(
∂ω

∂pi

∂λ

∂qi
− ∂ω

∂qi

∂λ

∂pi

)
(8)

=−∑
i

(
∂λ

∂qi

∂ω

∂pi
− ∂λ

∂pi

∂ω

∂qi

)
(9)

=−{λ,ω} (10)

A Poisson bracket is distributive, in the sense that

{ω,λ+σ}= ∑
i

(
∂ω

∂qi

∂ (λ+σ)

∂pi
− ∂ω

∂pi

∂ (λ+σ)

∂qi

)
(11)

= ∑
i

(
∂ω

∂qi

[
∂λ

∂pi
+
∂σ

∂pi

]
− ∂ω

∂pi

[
∂λ

∂qi
+
∂σ

∂qi

])
(12)

= ∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
+∑

i

(
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

)
(13)

= {ω,λ}+{ω,σ} (14)

One more identity is useful, which we can derive using the product rule:

{ω,λσ}= ∑
i

(
∂ω

∂qi

∂ (λσ)

∂pi
− ∂ω

∂pi

∂ (λσ)

∂qi

)
(15)

= ∑
i

σ

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
+∑

i

λ

(
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

)
(16)

= {ω,λ}σ+{ω,σ}λ (17)

The Poisson brackets involving the coordinates qi and momenta pi turn
up frequently, so it’s worth deriving them in detail. We have

{qi, qj}= ∑
k

(
∂qi
∂qk

∂qj
∂pk
− ∂qi
∂pk

∂qj
∂qk

)
= 0 (18)
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This follows because, in the Hamiltonian formalism, the qis and pis are
independent variables, so ∂qj

∂pk
=

∂pj
∂qk

= 0 for all j and k. For the same reason,
we have

{pi,pj}= ∑
k

(
∂pi
∂qk

∂pj
∂pk
− ∂pi
∂pk

∂pj
∂qk

)
= 0 (19)

The mixed Poisson bracket is a different story, however:

{qi,pj}= ∑
k

(
∂qi
∂qk

∂pj
∂pk
− ∂qi
∂pk

∂pj
∂qk

)
(20)

= ∑
k

δikδjk−0 (21)

= δij (22)

Hamilton’s equations 1 and 2 can be written using Poisson brackets by
setting ω equal to qi and pi respectively in 6:

q̇i = {qi,H} (23)
ṗi = {pi,H} (24)

Example. In two dimensions, we have a Hamiltonian:

H = p2
x+p

2
y+ax

2 + by2 (25)

If a= b, then in polar coordiantes, the only coordinate appearing in H is
the radial distance from the origin r=

√
x2 +y2, which means that the polar

angle θ is a cyclic coordinate. This means that the conjugate momentum pθ
must be conserved. That is,

ṗθ = {pθ,H}= 0 (26)

However, pθ is the angular momentum `z, so this just says that angular
momentum is conserved.

To see this explicitly, it’s easier to convert to polar coordinates. From
Hamilton’s equations
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ẋ =
∂H

∂px
= 2px (27)

ẏ = 2py (28)

p2
x+p

2
y =

1
4
(
ẋ2 + ẏ2) (29)

=
v2

4
(30)

=
1
4
(
ṙ2 + r2θ̇2) (31)

where in the fourth line, v is the linear velocity and in the fifth line we
converted this to polar coordinates. Thus the Hamiltonian becomes, in the
case where a= b:

H =
1
4
(
ṙ2 + r2θ̇2)+ar2 (32)

To find the conjugate momenta in polar coordinates, we can write out the
Lagrangian. We use pxẋ= ẋ2

2 and pyẏ =
ẏ2

2 and get

L= ∑
i

piq̇i−H (33)

=
1
2
(
ẋ2 + ẏ2)− 1

4
(
ṙ2 + r2θ̇2)−ar2 (34)

=
1
4
(
ṙ2 + r2θ̇2)−ar2 (35)

The conjugate momenta are thus

pθ =
∂L

∂θ̇
=

1
2
r2θ̇ (36)

pr =
∂L

∂ṙ
=
ṙ

2
(37)

From this we can see that pθ is indeed angular momentum as it’s pro-
portional to the product of r and the tangential velocity vθ = rθ̇. (’Real’
momentum and angular momentum must, of course, also contain a factor
of a mass, but from the definition of the Hamiltonian above, we see that the
mass has been incorporated into the momentum parameters.)

Plugging these back into 32 we get

H = p2
r+p

2
θ+ar

2 (38)
We can now calculate the Poisson brackets easily:
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{pθ,H}= ∑
i

(
∂pθ
∂qi

∂H

∂pi
− ∂pθ
∂pi

∂H

∂qi

)
(39)

= 0− ∂pθ
∂pθ

∂H

∂θ
= 0 (40)

{pr,H}= ∑
i

(
∂pr
∂qi

∂H

∂pi
− ∂pr
∂pi

∂H

∂qi

)
(41)

= 0− ∂pr
∂pr

∂H

∂r
(42)

=−2ar (43)

Thus pθ (the angular momentum) is conserved, while pr < 0, so that the
object is always being pulled in towards the origin.
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We’ve seen that the Euler-Lagrange equations are invariant under canon-

ical transformations, but in the Hamiltonian formalism where the system
moves in a 2n-dimensional phase space with n coordinates q and n mo-
menta p, more general transformations are possible:

qi = qi (q,p) (1)
pi = pi (q,p) (2)

In order for such a transformation to be canonical, we require that the
new variables q and p satisfy Hamilton’s equations, that is

∂H

∂pi
= q̇i (3)

−∂H
∂qi

= ṗi (4)

In principle, then, we could check the Hamiltonian in the new coordinates
to see if these equations are valid, but it would seem that whether or not a
set of coordinates and momenta is canonical should be determinable from
the variables themselves, and not depend on the specific Hamiltonian. Here
we derive a set of conditions on the q and p that determine whether or not
the transformation is canonical.

The time derivative of any function ω can be written as a Poisson bracket:

ω̇ = {ω,H} (5)

For the transformed velocities, we have

q̇j =
{
qj ,H

}
(6)

= ∑
i

(
∂qj
∂qi

∂H

∂pi
−
∂qj
∂pi

∂H

∂qi

)
(7)

1
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Here, H is written as a function H (q,p) of the original variables. If
we write it as a function of the transformed variables, we can find the two
derivatives of H in 7 by using the chain rule:

∂H (q,p)

∂pi
= ∑

k

(
∂H

∂qk

∂qk
∂pi

+
∂H

∂pk

∂pk
∂pi

)
(8)

∂H (q,p)

∂qi
= ∑

k

(
∂H

∂qk

∂qk
∂qi

+
∂H

∂pk

∂pk
∂qi

)
(9)

Inserting these into 7 we get

q̇j = ∑
i

∑
k

[
∂qj
∂qi

(
∂H

∂qk

∂qk
∂pi

+
∂H

∂pk

∂pk
∂pi

)
−
∂qj
∂pi

(
∂H

∂qk

∂qk
∂qi

+
∂H

∂pk

∂pk
∂qi

)]
(10)

= ∑
k

∂H

∂qk
∑
i

(
∂qj
∂qi

∂qk
∂pi
−
∂qj
∂pi

∂qk
∂qi

)
+∑

k

∂H

∂pk
∑
i

(
∂qj
∂qi

∂pk
∂pi
−
∂qj
∂pi

∂pk
∂qi

)
(11)

= ∑
k

∂H

∂qk

{
qj , qk

}
+∑

k

∂H

∂pk

{
qj ,pk

}
(12)

In order for this result to satisfy 3, we must have

{
qj , qk

}
= 0 (13){

qj ,pk
}

= δjk (14)

We can repeat the calculation for ṗi:

ṗj =
{
pj ,H

}
(15)

= ∑
i

(
∂pj
∂qi

∂H

∂pi
−
∂pj
∂pi

∂H

∂qi

)
(16)

= ∑
i

∑
k

[
∂pj
∂qi

(
∂H

∂qk

∂qk
∂pi

+
∂H

∂pk

∂pk
∂pi

)
−
∂pj
∂pi

(
∂H

∂qk

∂qk
∂qi

+
∂H

∂pk

∂pk
∂qi

)]
(17)

= ∑
k

∂H

∂qk
∑
i

(
∂pj
∂qi

∂qk
∂pi
−
∂pj
∂pi

∂qk
∂qi

)
+∑

k

∂H

∂pk
∑
i

(
∂pj
∂qi

∂pk
∂pi
−
∂pj
∂pi

∂pk
∂qi

)
(18)

= ∑
k

∂H

∂qk

{
pj , qk

}
+∑

k

∂H

∂pk

{
pj ,pk

}
(19)
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Requiring this to satsify 4, we have

{
pj ,pk

}
= 0 (20){

pj , qk
}

= −δjk (21)

The last equation is equivalent to{
qj ,pk

}
= δjk (22)

which agrees with 14. Thus in order for the transformation to be canoni-
cal, the conditions are

{
qj , qk

}
=

{
pj ,pk

}
= 0 (23){

qj ,pk
}

= δjk (24)

Note that these Poisson brackets require calculating the derivatives of the
new variables q and p with respect to the original ones q and p, but they
don’t involve any particular Hamiltonian. Thus it’s possible to determine
whether or not a transformation is canonical entirely from the transforma-
tion equations 1 and 2.
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Here are a couple of examples of canonical variable transformations.

Example 1. We rotate the 2-d rectangular coordinates through an angle θ,
giving the transformations

x= xcosθ−y sinθ (1)
y = xsinθ+y cosθ (2)
px = px cosθ−py sinθ (3)
py = px sinθ+py cosθ (4)

To show this is a canonical transformation, we must evaluate the Poisson
brackets. Here, q1 = x and q2 = y. Remember that θ is a constant in these
derivatives.

{x,y} = ∑
i

(
∂x

∂qi

∂y

∂pi
− ∂x

∂pi

∂y

∂qi

)
(5)

= 0 (6)

since neither coordinate depends on any momentum. Similarly
{
px,py

}
=

0 since this Poisson bracket contains derivatives of pi with respect to qi and
these are all zero. The remaining Poisson bracket are of the form

{
qi,pj

}
.

There are four of these, but we’ll work out only a couple. The other two
have similar forms.
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{x,px}= ∑
i

(
∂x

∂qi

∂px
∂pi
− ∂x

∂pi

∂px
∂qi

)
(7)

=
∂x

∂x

∂px
∂px

+
∂x

∂y

∂px
∂py

(8)

= cos2 θ+ sin2 θ (9)
= 1 (10){

x,py
}
= ∑

i

(
∂x

∂qi

∂py
∂pi
− ∂x

∂pi

∂py
∂qi

)
(11)

=
∂x

∂x

∂py
∂px

+
∂x

∂y

∂py
∂py

(12)

= sinθ cosθ− sinθ cosθ (13)
= 0 (14)

Similarly

{y,px} = 0 (15){
y,py

}
= 1 (16)

Example 2. The transformation from 2-d rectangular to polar coordinates
is given by

ρ =
√
x2 +y2 (17)

φ = arctan
y

x
(18)

pρ =
xpx+ypy√
x2 +y2

(19)

pφ = xpy−ypx (20)

For the Poisson brackets we have

{ρ,φ}= ∑
i

(
∂ρ

∂qi

∂φ

∂pi
− ∂ρ

∂pi

∂φ

∂qi

)
(21)

= 0 (22)

because, again, the coordinates don’t depend on the momenta.
In this case, however, the new momenta do depend on the old coordinates,

so we need to actually do some calculation.
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{
pρ,pφ

}
= ∑

i

(
∂pρ
∂qi

∂pφ
∂pi
−
∂pρ
∂pi

∂pφ
∂qi

)
(23)

=

(
−
x(xpx+ypy)

(x2 +y2)
3/2

+
px√
x2 +y2

)
(−y)− x√

x2 +y2
py+(

−
y (xpx+ypy)

(x2 +y2)
3/2

+
py√
x2 +y2

)
x− y√

x2 +y2
(−px) (24)

=−
y2 (ypx−xpy)
(x2 +y2)

3/2
− x√

x2 +y2
py−

x2 (ypx−xpy)
(x2 +y2)

3/2
+

y√
x2 +y2

px

(25)

=−
y3px+x

3py

(x2 +y2)
3/2

+
y3px+x

3py

(x2 +y2)
3/2

(26)

= 0 (27)

Finally, we need to work out the mixed brackets.



CANONICAL TRANSFORMATIONS IN 2-D: ROTATIONS AND POLAR COORDINATES 4

{ρ,pρ}= ∑
i

(
∂ρ

∂qi

∂pρ
∂pi
− ∂ρ

∂pi

∂pρ
∂qi

)
(28)

=
x2

x2 +y2 −0+
y2

x2 +y2 −0 (29)

= 1 (30){
ρ,pφ

}
= ∑

i

(
∂ρ

∂qi

∂pφ
∂pi
− ∂ρ

∂pi

∂pφ
∂qi

)
(31)

=− xy√
x2 +y2

−0+
xy√
x2 +y2

−0 (32)

= 0 (33)

{φ,pρ}= ∑
i

(
∂φ

∂qi

∂pρ
∂pi
− ∂φ

∂pi

∂pρ
∂qi

)
(34)

=− y

x
(

1+ y2

x2

)√
x2 +y2

−0+
y

x
(

1+ y2

x2

)√
x2 +y2

−0 (35)

= 0 (36){
φ,pφ

}
= ∑

i

(
∂φ

∂qi

∂pφ
∂pi
− ∂φ

∂pi

∂pφ
∂qi

)
(37)

=
y2

x2
(

1+ y2

x2

) −0+
1

1+ y2

x2

−0 (38)

=
y2

x2 +y2 +
x2

x2 +y2 (39)

= 1 (40)

Thus all the Poisson brackets are correct, so the transformation is canon-
ical.

PINGBACKS

Pingback: Infinitesimal rotations in canonical and noncanonical transfor-
mations
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Here are a few more examples of canonical variable transformations.

Example 1. First, we revisit the two-body problem, in which we simplified
the problem by transforming from the coordinates r1 and r2 of the masses
m1 and m2 to two new position vectors:

r ≡ r1− r2 (1)

rCM ≡ m1r1 +m2r2

M
(2)

Here M ≡m1 +m2 is the total mass, r is the relative position, and rCM

is the position of the centre of mass. The conjugate momenta in the original
system are

pi =mṙi (3)
The conjugate momenta transform according to

pCM =MrCM = p1 +p2 (4)
p = µṙ (5)

=
m2p1−m1p2

M
(6)

where µ=m1m2/M is the reduced mass.
To check that this is a canonical transformation, we need to calculate the

Poisson brackets. To make things easier, note that the new coordinates de-
pend only on the old coordinates (and not on the momenta), and conversely,
the new momenta depend only on the old momenta (and not on the coor-
dinates). Since the Poisson brackets

{
qi, qj

}
and

{
pi,pj

}
all involve taking

derivatives of coordinates with respect to momenta (in the first case) or mo-
menta with respect to coordinates (in the second case), all these brackets
are zero. We need, therefore, to check only the mixed brackets between
coordinates and momenta.

1
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Because we’re dealing with 3-d vector equations, there are 3 components
to each vector and to be thorough, we need to calculate all possible brackets
between all pairs of components. However, if we do the x component of
each, it should be obvious that the y and z components behave in the same
way.

First, consider

{rx,px}= ∑
i

(
∂rx
∂qi

∂px
∂pi
− ∂rx
∂pi

∂px
∂qi

)
(7)

In the RHS, the term qi stands for all 6 components of the original posi-
tion vectors, that is qi =

{
r1x, r1y, . . . , r2z

}
and the term pi in the denomi-

nators refers to all 6 components of the original momentum vectors. The px
in the numerators refers to the x component of p in 6. Hopefully this won’t
cause too much confusion.

The second term on the RHS is zero because it involves derivatives of
coordinates with respect to momenta (and vice versa). In the first term, rx
depends only the x components of r1 and r2, and px depends only on the x
components of p1and p2, so we have

{rx,px}=
∂rx
∂r1x

∂px
∂p1x

+
∂rx
∂r2x

∂px
∂p2x

(8)

= (1)
m2

M
+(−1)

(
−m1

M

)
(9)

=
m1 +m2

M
(10)

= 1 (11)

The same result is obtained for the y and z components. If we look at
mixing two different components, we have, for example

{rx,py}=
∂rx
∂r1x

∂py
∂p1x

+
∂rx
∂r2x

∂py
∂p2x

+
∂rx
∂r1y

∂py
∂p1y

+
∂rx
∂r2y

∂py
∂p2y

= 0 (12)

This is zero because each term in the sum contains a derivative of an x
component with respect to a y component (or vice versa), all of which are
zero.

For the centre of mass components, we have
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{rCMx,pCMx}=
∂rCMx

∂r1x

∂pCMx

∂p1x
+
∂rCMx

∂r2x

∂pCMx

∂p2x
(13)

=
m1

M
(1)+

m2

M
(1) (14)

= 1 (15){
rCMx,pCMy

}
=
∂rCMx

∂r1x

∂pCMy

∂p1x
+
∂rCMx

∂r2x

∂pCMy

∂p2x
+
∂rCMx

∂r1y

∂pCMy

∂p1y
+
∂rCMx

∂r2y

∂pCMy

∂p2y
(16)

= 0 (17)

where the last bracket is zero for the same reason as {rx,py}: we’re
mixing x and y in the derivatives. Again, it should be obvious that the
brackets for the other combinations of x, y and z components work out the
same way. We can also verify that the Poisson brackets between relative
and centre of mass coordinates are zero by the same method. That is

{rCMi,pj}=
{
ri,pCMj

}
= 0 (18)

where i and j take on the values x, y and z.

Example 2. A bizarre transformation of variables in one dimension is given
by

q = ln
sinp
q

= lnsinp− lnq (19)

p = q cotp (20)

To show this is canonical, we need calculate only {q,p} (since the Pois-
son bracket of a function with itself is always zero, we have {q,q}= {p,p}=
0). We need one rather obscure derivative of a trig function.

d

dp
cotp =

d

dp

(
cosp
sinp

)
(21)

=
−sin2 p− cos2 p

sin2 p
(22)

= −1− cot2 p (23)

We get
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{q,p}= ∂q

∂q

∂p

∂p
− ∂q
∂p

∂p

∂q
(24)

=

(
−1
q

)(
q
(
−1− cot2 p

))
− cosp

sinp
cotp (25)

= 1+ cot2 p− cot2 p (26)
= 1 (27)

Thus the transformation is canonical.

Example 3. Finally, we return to the point transformation, which is given
in general by

qi = qi (q1, . . . , qn) (28)

pi = ∑
j

∂qj
∂qi

pj (29)

In this case, the coordinate transformation to q is completely arbitrary, but
the momentum transformation must follow the formula given. The deriva-
tives ∂qi

∂qj
in the formula for pi are taken at constant q. As in the earlier ex-

amples, since the coordinate formulas depend only on the old coordinates,
and the momentum formulas depend only on the old momenta, the Poisson
brackets satisfy {

qi, qj
}
=
{
pi,pj

}
= 0 (30)

For the mixed brackets, we have

{
qi,pj

}
= ∑

k

(
∂qi
∂qk

∂pj
∂pk
− ∂qi
∂pk

∂pj
∂qk

)
(31)

= ∑
k

∂qi
∂qk

∂qk
∂qj

(32)

=
∂qi
∂qj

(33)

= δij (34)

The second term in the first line is zero (mixed derivatives again). We
used 29 to calculate the derivative ∂pj

∂pk
and get the second line and then

notice that the sum is an expansion of the chain rule for the derivative in
line 3. Since qi and qj are independent variables, the result is that given in
the last line. Thus a point transformation is a canonical transformation.
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Here we’ll investigate how the Euler-Lagrange equations and Hamilton’s

canonical equations are affected by a change in coordinates of the form

qi→ qi (q1, . . . , qn) (1)

Note that the new coordinates q depend only on the old coordinates and
not on the velocities q̇i. We also assume that the transformation is invertible,
so it’s possible to find the qi as functions of the qi.

First, we need to show that the Euler-Lagrange equations are invariant
under such a transformation. Starting with the inverse equations

qi = qi (q) (2)

(we’re using unsubscripted variables to refer to the entire set, so that
q = (q1, . . . , qn)), we have

q̇i = ∑
j

∂qi
∂qj

q̇j (3)

Since the velocities q̇j are independent variables, this implies that, if we
hold the coordinates q constant,(

∂q̇i
∂q̇j

)
q

=
∂qi
∂qj

(4)

since the derivative just picks out the one term containing q̇j in the sum 3.
Now consider the Euler-Lagrange equations in the new coordinates. To do
this, we write the Lagrangian in terms of the new coordinates and velocities,
so that

L= L
(
q, q̇
)

(5)

Taking derivatives, we have
1
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∂L

∂qi
= ∑

j

[
∂L

∂qj

∂qj
∂qi

+
∂L

∂q̇j

∂q̇j
∂qi

]
(6)

The second term on the RHS is zero since the velocities don’t depend on
the coordinates (and vice versa), so we’re left with

∂L

∂qi
= ∑

j

∂L

∂qj

∂qj
∂qi

(7)

Now for the other derivative

∂L

∂q̇i
= ∑

j

[
∂L

∂qj

∂qj
∂q̇i

+
∂L

∂q̇j

∂q̇j
∂q̇i

]
(8)

The first term on the RHS is zero (same reason as in the previous equa-
tion), and we can apply 4 to the second term to get

∂L

∂q̇i
= ∑

j

∂L

∂q̇j

∂qj
∂qi

(9)

We can now take the derivative with respect to time and apply the Euler-
Lagrange equation (which we know to be valid for the q coordinates). We’re
also assuming that the coordinates have no explicit time dependence. Thus

d

dt

(
∂L

∂q̇i

)
= ∑

j

d

dt

(
∂L

∂q̇j

)
∂qj
∂qi

(10)

= ∑
j

∂L

∂qj

∂qj
∂qi

(11)

Comparing this with 7 we see that

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
(12)

That is, the Euler-Lagrange equations are valid for the q coordinates as
well.

We can use the Lagrangian to see how the momenta pi transform under
the coordinate change. The definition of the canonical momentum is

pi =
∂L

∂q̇i
(13)

If we write the Lagrangian in terms of the q coordinates and velocities as
in 5, then the momenta in the new coordinate system are
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pi =
∂L
(
q, q̇
)

∂q̇i
(14)

At this point, it’s worth noting that although L
(
q, q̇
)

and L(q, q̇) are dif-
ferent functions, they have the same value at each point in the configuration
space. That is, if we choose some point that has the coordinates (q, q̇) in the
q system and coordinates

(
q, q̇
)

in the q system, then, numerically at that
one point, we must have L

(
q, q̇
)
= L(q, q̇). Because of this, we can write

pi =

(
∂L
(
q, q̇
)

∂q̇i

)
q

=

(
∂L(q, q̇)

∂q̇i

)
q

(15)

That is, if we’re keeping q constant, the derivative of L with respect to q̇i
must be the same (numerically) no matter what coordinates we’re using to
write L. Therefore, we can use the latter form and then use the chain rule
to write out the derivative:

pi =

(
∂L(q, q̇)

∂q̇i

)
q

= ∑
j

[
∂L

∂qj

∂qj
∂q̇i

+
∂L

∂q̇j

∂q̇j
∂q̇i

]
(16)

Because the coordinates q don’t depend on the velocities q̇, the first term
on the RHS is zero. We can use 4 in the second term, and we have

pi = ∑
j

∂L

∂q̇j

∂qj
∂qi

(17)

= ∑
j

∂qj
∂qi

pj (18)

where we used the definition of pj = ∂L/∂q̇j in the last line.
If we review the derivation of Hamilton’s equations, we see that nowhere

did we make any assumptions about the particular coordinate system that
was being used in the Lagrangian. All that is required for Hamilton’s equa-
tions to be valid is that the momenta are defined as in 14, and that the Euler-
Lagrange equations are satisfied. Therefore, in any such system, Hamilton’s
equations are valid:

∂H

∂pi
= q̇i (19)

−∂H

∂qi
= ṗi (20)

A transformation of the form 1 and 18, that is, that obeys

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.05.01.pdf
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qi = qi (q1, . . . , qn) (21)

pi = ∑
j

∂qj
∂qi

pj (22)

is called a point transformation.
In the 2n-dimensional phase space of the Hamiltonian formalism, where

q and p are the variables rather than the q and q̇ used in the Lagrangian, we
can envision a more general transformation in which

qi = qi (q,p) (23)
pi = pi (q,p) (24)

In such a general transformation, there’s no guarantee that 18 is satis-
fied, so such transformations need not be point transformations (though they
could be). There’s also no guarantee that the momenta are related to the La-
grangian by 14, and thus Hamilton’s equations may not be satisfied.

However, a set of coordinates (q,p) that does satisfy Hamilton’s equa-
tions 19 and 20 is known as a canonical transformation.

PINGBACKS

Pingback: Conditions for a transformation to be canonical
Pingback: Canonical transformations: a few more examples
Pingback: Poisson brackets are invariant under a canonical transforma-

tion
Pingback: Passive, regular and active transformations.
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The Poisson bracket of two functions is defined as

{ω,σ}= ∑
i

(
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂qi

)
(1)

Calculating the Poisson bracket requires knowing ω and σ as functions
of the coordinates qi and momenta pi in the particular coordinate system
we’re using. However, we’ve seen that the Euler-Lagrange and Hamilton’s
equations are invariant under a canonical transformation and since the Pois-
son bracket is a fundamental quantity in classical mechanics, in particular
because the time derivative of a function ω is the Poisson bracket {ω,H}
with the Hamiltonian, it’s natural to ask how the Poisson bracket of two
functions transforms under a canonical transformation.

The simplest way of finding out (although not the most elegant) is to
write the canonical transformation as

q̄i = q̄i (q,p) (2)
p̄i = p̄(q,p) (3)

We can then write the Poisson bracket in the new coordinates as

{ω,σ}q̄,p̄ = ∑
j

(
∂ω

∂q̄j

∂σ

∂p̄j
− ∂ω

∂p̄j

∂σ

∂q̄j

)
(4)

Assuming the transformation is invertible, we can use the chain rule to
calculate the derivatives with respect to the barred coordinates. This gives
the following (we’ve used the summation convention in which any index
repeated twice in a product is summed; thus in the following, there are
implied sums over i, j and k):

1
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{ω,σ}q̄,p̄ =
(
∂ω

∂qi

∂qi
∂q̄j

+
∂ω

∂pi

∂pi
∂q̄j

)(
∂σ

∂qk

∂qk
∂p̄j

+
∂σ

∂pk

∂pk
∂p̄j

)
−(

∂ω

∂qi

∂qi
∂p̄j

+
∂ω

∂pi

∂pi
∂p̄j

)(
∂σ

∂qk

∂qk
∂q̄j

+
∂σ

∂pk

∂pk
∂q̄j

)
(5)

=
∂ω

∂qi

∂σ

∂pk

(
∂qi
∂q̄j

∂pk
∂p̄j
− ∂qi
∂p̄j

∂pk
∂q̄j

)
+

∂ω

∂pi

∂σ

∂qk

(
∂pi
∂q̄j

∂qk
∂p̄j
− ∂pi
∂p̄j

∂qk
∂q̄j

)
+

∂ω

∂qi

∂σ

∂qk

(
∂qi
∂q̄j

∂qk
∂p̄j
− ∂qi
∂p̄j

∂qk
∂q̄j

)
+

∂ω

∂pi

∂σ

∂pk

(
∂pi
∂q̄j

∂pk
∂p̄j
− ∂pi
∂p̄j

∂pk
∂q̄j

)
(6)

=
∂ω

∂qi

∂σ

∂pk
{qi,pk}+

∂ω

∂pi

∂σ

∂qk
{pi, qk}+

∂ω

∂qi

∂σ

∂qk
{qi, qk}+

∂ω

∂pi

∂σ

∂pk
{pi,pk} (7)

For a canonical transformation, the Poisson brackets in the last equation
satisfy

{qi,pk} = −{pi, qk}= δik (8)
{qi, qk} = {pi,pk}= 0 (9)

[Actually, we had worked out these conditions for the barred coordinates
in terms of the original coordinates, but since the transformation is invertible
and both sets of coordinates are canonical, the Poisson brackets work either
way.] Applying these conditions to the above, we find

{ω,σ}q̄,p̄ =
(
∂ω

∂qi

∂σ

∂pk
− ∂ω

∂pi

∂σ

∂pk

)
δik (10)

=
∂ω

∂qi

∂σ

∂pi
− ∂ω

∂pi

∂σ

∂pi
(11)

= {ω,σ}q,p (12)

Thus the Poisson bracket is invariant under a canonical transformation.
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The canonical transformations we’ve considered so far are of the form

qi = qi (q,p) (1)
pi = pi (q,p) (2)

The interpretation of these transformations is that we are using a new set
of coordinates and momenta to describe the same point in phase space. For
example, in 2-d we can describe the point one unit along the y axis by the
coordinates x= 0,y = 1 if we use rectangular coordinates, or by r = 1, θ =
π
2 if we use polar coordinates. The numerical values of the coordinates are
different in the two systems, but the geometric point being described is the
same. Such a transformation is called a passive transformation. In a passive
transformation, any function ω always has the same value at a given point
in phase space no matter which coordinate system we’re using, so we can
say that

ω (q,p) = ω (q̄, p̄) (3)

where it is understood that (q,p) and (q̄, p̄) both refer to the same point,
but in different representations.

One characteristic of a passive transformation is that the ranges of the
variables used to represent a point in phase space need not be the same in
the two systems. For example, in 2-d rectangular coordinates, both x and y
can range from −∞ to +∞, while in polar coordinates r ranges between 0
and +∞ while the angle θ runs between 0 and 2π.

A special type of transformation is a regular transformation, in which
the variables in the two systems have the same ranges. For example, if we
translate a 2-d system by 1 unit along the x axis, the new coordinates are
related to the old ones by

1
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x̄ = x−1 (4)
ȳ = y (5)

Both the original and barred systems have the same range (−∞ to +∞).
Although we can interpret a regular transformation as a passive transfor-

mation, we can also think of it in a different way. We can image that instead
of just providing a different label for the same point that the transformed
coordinate has actually shifted the system to a new location in phase space.
In the above example, this would mean that we have physically moved the
system by 1 unit along the x axis. This interpretation is known as an active
transformation.

If a function ω is invariant under an active transformation, then it satisfies
the condition

ω (q,p) = ω (q̄, p̄) (6)

Although mathematically this is the same as 3, physically it means some-
thing quite different, since now the points (q,p) and (q̄, p̄) refer to different
points in phase space, so we’re saying that the function ω does not change
when we move the physical system in the way specified by the active trans-
formation.

We now restrict ourselves to talking about regular canonical transforma-
tions. Consider some dynamical variable (it could be momentum or angular
momentum, for example) g (q,p) and suppose we define the transformations

q̄i = qi+ ε
∂g

∂pi
≡ qi+ δqi (7)

p̄i = pi− ε
∂g

∂qi
≡ pi+ δpi (8)

where ε is some infinitesimal quantity.
First, we need to show that, to first order in ε, this is a canonical transfor-

mation. The required conditions for this are

{
qi, qj

}
=

{
pi,pj

}
= 0 (9){

qi,pj
}

= δij (10)

Consider first (we’ll use the summation convention, so the index k is
summed in what follows):
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{
qi,pj

}
=

∂

∂qk

(
qi+ ε

∂g

∂pi

)
∂

∂pk

(
pj− ε

∂g

∂qj

)
−

∂

∂pk

(
qi+ ε

∂g

∂pi

)
∂

∂qk

(
pj− ε

∂g

∂qj

)
(11)

=

(
δik+ ε

∂2g

∂piqk

)(
δjk− ε

∂2g

∂pkqj

)
−(

0+ ε
∂2g

∂pipk

)(
0− ε ∂

2g

∂qjqk

)
(12)

The zeroes in the last line follow from the fact that qk and pk are inde-
pendent variables. We can now keep terms only up to first order in ε to
get

{
qi,pj

}
= δikδjk+ ε

(
∂2g

∂piqk
δjk−

∂2g

∂pkqj
δik

)
(13)

= δij+ ε

(
∂2g

∂piqj
− ∂2g

∂piqj

)
(14)

= δij (15)

The other two brackets work out similarly:

{
qi, qj

}
=

∂

∂qk

(
qi+ ε

∂g

∂pi

)
∂

∂pk

(
qj+ ε

∂g

∂pj

)
−

∂

∂pk

(
qi+ ε

∂g

∂pi

)
∂

∂qk

(
qj+ ε

∂g

∂pj

)
(16)

=

(
δik+ ε

∂2g

∂piqk

)(
0+ ε

∂2g

∂pkpj

)
−(

0+ ε
∂2g

∂pipk

)(
δjk+ ε

∂2g

∂pjqk

)
(17)

= δikε
∂2g

∂pkpj
− δjkε

∂2g

∂pipk
(18)

= ε

(
∂2g

∂pipj
− ∂2g

∂pipj

)
(19)

= 0 (20)
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{
pi,pj

}
=

∂

∂qk

(
pi− ε

∂g

∂qi

)
∂

∂pk

(
pj− ε

∂g

∂qj

)
−

∂

∂pk

(
pi− ε

∂g

∂qi

)
∂

∂qk

(
pj− ε

∂g

∂qj

)
(21)

=

(
0− ε ∂

2g

∂qiqk

)(
δjk− ε

∂2g

∂pkqj

)
−(

δik− ε
∂2g

∂qipk

)(
0− ε ∂

2g

∂qjqk

)
(22)

=−δjkε
∂2g

∂qiqk
+ δikε

∂2g

∂qkqj
(23)

=−ε
(
∂2g

∂qiqj
− ∂2g

∂qiqj

)
(24)

= 0 (25)

Thus all the brackets check out, so the transformation is canonical.
The point of all this is that, if the Hamiltonian is invariant under the

transformations 7 and 8 then the variable g is conserved (that is, doesn’t
change with time). g is called the generator of the transformation. We can
verify this by using the chain rule to calculate the variation in H:

δH =
∂H

∂qi
δqi+

∂H

∂pi
δpi (26)

= ε

[
∂H

∂qi

∂g

∂pi
− ∂H
∂pi

∂g

∂qi

]
(27)

= ε{H,g} (28)

Since H is invariant, we must have δH = 0, so

{H,g}= 0 (29)

However, this is the condition for g to be conserved. QED.

Example. Suppose we have a two particle system moving in one dimen-
sion, with positions q1, q2 and momenta p1,p2. If we take

g = p1 +p2 (30)

we get
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δqi = ε
∂g

∂pi
= ε (31)

δpi = −ε ∂g
∂qi

= 0 (32)

That is, each particle gets shifted by the same amount ε but the momen-
tum of each particle remains unchanged. Thus the total momentum is the
generator of infinitesimal translations. The physical interpretation of this
is that, since the momentum of each particle is conserved, the total kinetic
energy

T =
p2

1
2m1

+
p2

2
2m2

(33)

remains unchanged. Since the total energy is invariant, the total potential
energy of the system is unaffected by a translation, which means that there
is no external force on the system.

PINGBACKS

Pingback: Infinitesimal rotations in canonical and noncanonical transfor-
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Here are a couple of examples of transformations of variables and their

consequences with regard to conservation laws.
First, we look at the 2-d harmonic oscillator where the Hamiltonian is

H =
1

2m
(
p2
x+p

2
y

)
+

1
2
mω2 (x2 +y2) (1)

If we rotate the system so that both the coordinates and momenta get
rotated, then

x̄ = xcosθ−y sinθ (2)
ȳ = xsinθ+y cosθ (3)
p̄x = px cosθ−py sinθ (4)
p̄y = px sinθ+py cosθ (5)

We can show by direct calculation that H is invariant under this transfor-
mation, and we can verify that this is a canonical transformation. Shankar
shows in his equation 2.8.8 that the generator of this transformation is the
angular momentum `z = xpy−ypx.

However, if we rotate only the coordinates and not the momenta, we get
the transformation:

x̄ = xcosθ−y sinθ (6)
ȳ = xsinθ+y cosθ (7)
p̄x = px (8)
p̄y = py (9)

Again, we can show by direct calculation that

x̄2 + ȳ2 = x2 +y2 (10)
1
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so H is also invariant under this transformation. However, this transfor-
mation is noncanonical, as we can see by calculating one of the Poisson
brackets:

{x̄, p̄x}= ∑
i

(
∂x

∂qi

∂p̄x
∂pi
− ∂x

∂pi

∂p̄x
∂qi

)
(11)

= cosθ 6= 1 (12)

The other mixed brackets (with a coordinate and a momentum) are also
not either 0 or 1 as would be required if the transformation were to be canon-
ical.

In order for this transformation to give rise to a conservation law, we
would need to find a generator g that satisfied, for an infinitesimal rotation
ε:

q̄i = qi+ ε
∂g

∂pi
≡ qi+ δqi (13)

p̄i = pi− ε
∂g

∂qi
≡ pi+ δpi (14)

For an infinitesimal rotation, the transformation 6 becomes

x̄ = x− εy (15)
ȳ = y+ εx (16)
p̄x = px (17)
p̄y = py (18)

Therefore, the generator would have to satisfy

∂g

∂px
= −y (19)

∂g

∂py
= x (20)

∂g

∂x
= 0 (21)

∂g

∂y
= 0 (22)

The last two conditions state that g cannot depend on x or y, but integrat-
ing the first two conditions, we get

g =−ypx+xpy+f (x,y) (23)
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where f is a function that depends only on x and/or y. Thus there is no
g that satisfies all four conditions, so there is no conservation law associ-
ated with a rotation of the coordinates only, even though the Hamiltonian
is invariant under this transformation. Only canonical transformations that
leave H invariant give rise to conservation laws.

As another example, suppose he have the one-dimensional system with

H =
1
2
(
p2 +x2) (24)

and perform a rotation in phase space, that is, in the x−p plane:

x̄ = xcosθ−psinθ (25)
p̄ = xsinθ+pcosθ (26)

The Hamiltonian is invariant:

p̄2 + x̄2 = x2 sin2 θ+2xpsinθ cosθ+p2 cos2 θ+ (27)

x2 cos2 θ−2xpsinθ cosθ+p2 sin2 θ (28)

= x2 +p2 (29)

The transformation is canonical as we can verify by calculating the Pois-
son bracket

{x̄, p̄}= ∂x

∂x

∂p̄

∂p
− ∂x
∂p

∂p̄

∂x
(30)

= cos2 θ−
(
−sin2 θ

)
(31)

= 1 (32)

An infinitesimal rotation gives the transformation

x̄ = x− εp (33)
p̄ = p+ εx (34)

To find the generator, we need to solve 13 and 14:

∂g

∂p
= −p (35)

∂g

∂x
= −x (36)

These can be integrated to give
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g (x,p) =−1
2
(
p2 +x2)+C (37)

where C is a constant of integration. Thus the quantity that is conserved
is (apart from the minus sign, which we could eliminate by rotating through
−θ instead of θ) is just the original Hamiltonian, or total energy.

PINGBACKS

Pingback: Hamilton’s equations of motion under a regular canonical
transformation
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If the Hamiltonian is invariant under a regular canonical transformation

and we can find a generator g such that an infinitesimal version of this trans-
formation is given by

q̄i = qi+ ε
∂g

∂pi
≡ qi+ δqi (1)

p̄i = pi− ε
∂g

∂qi
≡ pi+ δpi (2)

then g is conserved.
If we are dealing with a finite regular canonical transformation where we

go from (q,p)→ (q̄, p̄), and the Hamiltonian is invariant under this transfor-
mation, then it turns out that if a trajectory (q (t) ,p(t)) satisfies Hamilton’s
equations of motion:

∂H

∂pi
= q̇i (3)

−∂H
∂qi

= ṗi (4)

then the trajectory obtained by transforming every point in the original
trajectory (q (t) ,p(t)) to the barred system (q̄ (t) , p̄(t)) is also a solution of
Hamilton’s equations in the sense that

∂H

∂p̄i
= ˙̄qi (5)

−∂H
∂q̄i

= ˙̄pi (6)

The proof of this is a bit subtle, but goes as follows. To begin, re-
view the derivation of the conditions for a transformation to be canonical.
This derivation applied to a passive transformation, in which the two sets

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.08.01 - 02.08.02.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.05.01.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.05.01.pdf
http://www.physicspages.com/2016/12/05/conditions-for-a-transformation-to-be-canonical/
http://www.physicspages.com/2016/12/05/conditions-for-a-transformation-to-be-canonical/
http://www.physicspages.com/2016/12/11/passive-regular-and-active-transformations-invariance-of-the-hamiltonian-and-generators-of-transformations/
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of parameters (q,p)→ (q̄, p̄) refer to the same point in phase space. The
transformation we’re considering here is an active transformation, in which
(q,p)→ (q̄, p̄) actually moves the point in phase space. The original deriva-
tion (for passive transformations) relied on the fact that the numerical value
of the Hamiltonian is the same in both coordinate systems, since both (q,p)
and (q̄, p̄) refer to the same point in phase space. However, for our active
transformation, we’re assuming that the Hamiltonian is invariant under the
transformation, that is H (q̄, p̄) =H (q,p), where (q,p) and (q̄, p̄) now refer
to different points in phase space. Since the assumption that the Hamilton-
ian satisfies H (q̄, p̄) =H (q,p) was all that we used in the original deriva-
tion, the same derivation works both for passive transformations (always)
and for active transformations (if the Hamiltonian is invariant under the ac-
tive transformation). We therefore end up with the equations

q̇j = ∑
k

∂H

∂qk

{
qj , qk

}
+∑

k

∂H

∂pk

{
qj ,pk

}
(7)

ṗj = ∑
k

∂H

∂qk

{
pj , qk

}
+∑

k

∂H

∂pk

{
pj ,pk

}
(8)

Since the transformation is specified to be canonical, the conditions on
the Poisson brackets apply here:

{
qj , qk

}
=

{
pj ,pk

}
= 0 (9){

qj ,pk
}

= δjk (10)

The result is that the transformed trajectory also satisfies Hamilton’s
equations 5 and 6.

We can now revisit the 2-d harmonic oscillator to show that a noncanon-
ical transformation violates these results. The Hamiltonian is

H =
1

2m
(
p2
x+p

2
y

)
+

1
2
mω2 (x2 +y2) (11)

and we consider the transformation where we rotate the coordinates but
not the momenta. The transformation is

x̄ = xcosθ−y sinθ (12)
ȳ = xsinθ+y cosθ (13)
p̄x = px (14)
p̄y = py (15)
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As we’ve seen, this is a noncanonical transformation. To see what hap-
pens, we’ll consider the initial conditions

x(0) = a (16)
px (0) = b (17)
y (0) = py (0) = 0 (18)

The mass is started off at a point on the x axis with a momentum only
in the x direction. In this case, the mass behaves like a one-dimensional
harmonic oscillator, moving along the x axis only. To be precise, we can
work out Hamilton’s equations of motion:

ṗx = −∂H
∂x

=−mω2x (19)

ẋ =
∂H

∂px
=
px
m

(20)

The equations for y and py are the same, with x replaced by y everywhere.
We can solve these ODEs in the usual way, by differentiating the first one
and substituting the second one into the first to get

p̈x =−mω2ẋ=−ω2px (21)
This has the general solution

px (t) = Acosωt+B sinωt (22)
We can do the same for x and get

x(t) = C cosωt+D sinωt (23)
Applying the initial conditions, we get

px (0) = A= b (24)
x(0) = C = a (25)

Plugging these into the equations of motion 19 and 20 and solving for B
and D we get the final solution

px (t) = bcosωt−mωasinωt (26)

x(t) = acosωt+
b

mω
sinωt (27)

y (t) = py (t) = 0 (28)
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Now suppose we start off with x(0)= 0, y (0)= a, px (0)= b and py (0)=
0. That is, we have rotated the coordinates through π

2 , but not the momenta.
We now begin with the mass on the y axis, but moving in the x direction,
so as time progresses, it will have components of momentum in both the x
and y directions. Although it’s fairly obvious that this motion will not be
simply the motion in the first case rotated through π

2 , let’s go through the
equations. By the same technique as above, we can solve the equations to
get

px (t) = bcosωt (29)
py (t) = −mωasinωt (30)

x(t) =
b

mω
sinωt (31)

y (t) = acosωt (32)

If we look at the system at, say, t = π
2ω , then cosωt = 0 and sinωt = 1.

The mass that started off on the x axis will be at position (x,y) =
(
b
mω ,0

)
and so will the mass that started off on the y axis. Since the two masses are
in the same place, obviously one is not the rotated version of the other.

Another, probably easier, way to see this is that since the first mass moves
only along the x axis, if the rotated version of the trajectory was also to be
a solution, the rotated trajectory would have to lie entirely along the y axis,
which is certainly not true for the mass that starts off on the y axis, but with
a momentum px 6= 0.

In the general case, if the transformation is noncanonical, then the Pois-
son brackets in 7 and 8 don’t satisfy the conditions 9 and 10, with the result
that Hamilton’s equations aren’t satisfied in the (q̄, p̄) coordinates. (There
may be a deeper, physical interpretation that I’ve missed, but from a math-
ematical point of view, that’s what goes wrong.)
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Here we’ll examine an interesting relation between the action S and the

total energy of a system, as given by the Hamiltonian H . Suppose a single
particle moving in one dimension follows a classical path given by xcl (t),
and moves from an initial position at time ti of xcl (ti) = xi to a final posi-
tion at time tf of xcl

(
tf
)
= xf . The action Scl of this classical path is given

by the integral of the Lagrangian

Scl =
∫ tf

ti
L(x, ẋ)dt (1)

What can we say about the rate of change of the action with respect to
the final time tf? That is, we want to calculate ∂Scl/∂tf , where all other
parameters ti,xiand xf are held constant. The situation can be illustrated
as shown:

Since the only thing that is changing is tf , the particle starts at the same
initial time (which we’ve taken to be ti = 0 in the diagram) and moves to
the same location xf , but at a different time (in the diagram, later time).

1

http://physicspages.com
https://physicspagescomments.wordpress.com


RELATION BETWEEN ACTION AND ENERGY 2

This means that the particle must follow a different path, possibly over its
entire trajectory. This path, which we’ll call x(t), is related to the original
path xcl (t) by perturbing the original path by an amount η (t):

x(t) = xcl (t)+η (t) (2)

In the diagram, the original path xcl is shown in red and the perturbed
path x in blue. The amount η is seen to be the vertical distance between
these two curves at each time, and in the case of the paths shown in the
diagram, η (t)< 0.

The difference in the action between the two paths is due to two contribu-
tions: first, there is the contribution due to the extra time, from tf to tf +∆t,
that the particle takes to complete its path. Second, there is the difference in
the two actions over the path from ti to tf . The first contribution is entirely
new and, for an infinitesimal extra time ∆t, it is given by

δS1 = L
(
tf
)

∆t (3)

where L
(
tf
)

is the Lagrangian evaluated at time tf . The other contri-
bution can be obtained by varying the action over the path from ti = 0 to
tf :

δS2 =
∫ tf

0
δL dt (4)

Since L depends on x and ẋ, we have

δL=
∂L

∂x
δx+

∂L

∂ẋ
δẋ (5)

For infinitesimally different trajectories, we can see from the diagram
above that δx= η (t) at each point on the curve, so δẋ= η̇ (t), so we get

δS2 =
∫ tf

0

[
∂L

∂x
η (t)+

∂L

∂ẋ
η̇ (t)

]
dt (6)

=
∫ tf

0

[
− d

dt

∂L

∂ẋ
+
∂L

∂x

]
η (t)dt+

∫ tf

0

d

dt

(
∂L

∂ẋ
η (t)

)
dt (7)

= 0+
∂L

∂ẋ
η (t)

∣∣∣∣
tf

(8)

In these equations, the derivatives of L are evaluated on the original curve
xcl. To verify the second line, use the product rule on the second integrand
and cancel terms to get the first line. The second term in the last is evaluated
at t= tf only since we’re assuming that η (0) = 0.
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The quantity in brackets in the first integral is zero, because of the Euler-
Lagrange equations which are valid on the original curve xcl:

d

dt

∂L

∂ẋ
− ∂L

∂x
= 0 (9)

Putting everything together, we get for the total variation in the action:

δScl = δS1 + δS2 (10)

=

[
∂L

∂ẋ
η (t)+L∆t

]
tf

(11)

Looking at the diagram above, the slope of the blue curve x
(
tf
)

at the
time tf is given by

ẋ
(
tf
)
=

∣∣η (tf)∣∣
∆t

(12)

From the definition 2 of η we see that η
(
tf
)
< 0, so

η
(
tf
)
=−ẋ

(
tf
)

∆t (13)

This gives the final equation for the variation of the action:

δScl =

[
−∂L
∂ẋ

ẋ+L

]
tf

∆t (14)

= (−pẋ+L)∆t (15)
= −H∆t (16)

where the second line follows from the definition of the canonical mo-
mentum p= ∂L/∂ẋ.

The required derivative is

∂Scl
∂tf

=−H
(
tf
)

(17)

Using a similar technique, we can work out ∂Scl/∂xf . In this case, the
situation is as shown in this diagram:
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The two trajectories now take the same time, but in the modified trajec-
tory, the particle moves a distance ∆x further. Since both paths take the
same time, there is no extra contribution L∆t. In this case η (t) > 0, since
the new (blue) curve x(t) is above the old (red) one xcl (t). The derivation
is the same as above up to 8, and the total variation in the action is now

δScl =
∂L

∂ẋ
η (t)

∣∣∣∣
tf

(18)

At t= tf , η
(
tf
)
= ∆x, so we get

δScl =
∂L

∂ẋ

∣∣∣∣
tf

∆x (19)

∂Scl
∂xf

=
∂L

∂ẋ

∣∣∣∣
tf

= p
(
tf
)

(20)

Example. We can verify 17 for the case of the one-dimensional harmonic
oscillator. The general solution for the position is given by

x(t) = Acosωt+B sinωt (21)
ẋ(t) = −Aω sinωt+Bω cosωt (22)

The total energy is given by
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E =
1
2
mẋ2 +

1
2
mω2x2 (23)

=
m

2

(
(−Aω sinωt+Bω cosωt)2 +ω2 (Acosωt+B sinωt)2

)
(24)

=
mω2

2
(
A2 +B2) (25)

where we just multiplied out the second line, cancelled terms and used
cos2x+ sin2x= 1.

To get the action, we need the Lagrangian:

L= T −V (26)

=
1
2
mẋ2 − 1

2
mω2x2 (27)

=
m

2

(
(−Aω sinωt+Bω cosωt)2 −ω2 (Acosωt+B sinωt)2

)
(28)

=
mω2

2
[
A2 (sin2ωt− cos2ωt

)
+B2 (cos2ωt− sin2ωt

)
−4AB sinωtcosωt

]
(29)

=
mω2

2
((
B2 −A2)cos2ωt−2AB sin2ωt

)
(30)

The action for a trajectory from t= 0 to t= T is then

S =
∫ T

0
Ldt (31)

=
mω

4
[(
B2 −A2)sin2ωt+2AB cos2ωt

]T
0 (32)

=
mω

4
[(
B2 −A2)sin2ωT +2AB (cos2ωT −1)

]
(33)

=
mω

2
[(
B2 −A2)sinωT cosωT +AB

(
cos2ωT − sin2ωT −1

)]
(34)

=
mω

2
[(
B2 −A2)sinωT cosωT −2AB sin2ωT

]
(35)

To proceed further, we need to specify A and B, since these depend on
the boundary conditions (that is, on where we require the mass to be at t= 0
and t= T ). If we require x(0) = x1 and x(T ) = x2, then
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A= x1 (36)
x1 cosωT +B sinωT = x2 (37)

B =
x2 −x1 cosωT

sinωT
(38)

Plugging these into 25 gives the energy as

E =
mω2

2

(
x2

1 +

(
x2 −x1 cosωT

sinωT

)2
)

(39)

=
mω2

2sin2ωT

(
x2

1 +x
2
2 −2x1x2 cosωT

)
(40)

Plugging A and B into 35, we get (using c ≡ cosωT and s ≡ sinωT , so
that s2 + c2 = 1):

S =
mω

2s

[
(x2 −x1c)

2 c−x1s
2c−2x1s

2 (x2 −x1c)
]

(41)

=
mω

2s
[(
x2

2 −2x1x2c+x
2
1c

2)c−x2
1s

2c−2x1x2s
2 +2x1s

2c
]

(42)

=
mω

2s
[(
x2

1 +x
2
2
)
c−2x1x2

]
(43)

=
mω

2sinωT
[(
x2

1 +x
2
2
)

cosωT −2x1x2
]

(44)

Taking the derivative, we get

∂S

∂T
=
mω

2s2

[
−ω
(
x2

1 +x
2
2
)
s2 −

((
x2

1 +x
2
2
)
c−2x1x2

)
ωc
]

(45)

=
mω2

2s2

[
−
(
x2

1 +x
2
2
)
+2x1x2c

]
(46)

=− mω2

2sin2ωT

(
x2

1 +x
2
2 −2x1x2 cosωT

)
(47)

=−E (48)

Thus the result is verified for the harmonic oscillator.
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[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

The standard probabilistic interpretation of quantum mechanical wave
functions is that if you have a collection of a large number of systems all
prepared in the same state, then we can calculate expectation values for the
various observable quantities such as energy, spin and so on. In practice,
most systems consist of a collection of various states. We can treat the
statistics of such systems using a density matrix.

Suppose we have an ensemble ofN sysytems, where there are ni systems
in state |i〉, so that

∑
i

ni =N (1)

We’re assuming that the collection of |i〉 states form an orthonormal ba-
sis.

The density matrix is defined as

ρ≡∑
i

pi |i〉〈i| (2)

where pi is the probability of a single system being state |i〉. We can
calculate a few properties of ρ as follows.

First, the most important property is probably the ensemble average of
some observable quantity represented by an operator Ω. Within a single
state, the expectation value of Ω is

〈Ω〉= 〈i |Ω| i〉 (3)
Thus over the ensemble of systems described above, the expectation

value is 〈
Ω̄
〉
= ∑

i

pi 〈i |Ω| i〉 (4)

1
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The angle bracket plus overbar notation indicates that two averages are
occurring - an average over each individual state, represented by 3, and an
ensemble average over the whole collection of systems.

This ensemble average can be expressed in terms of the density matrix,
as follows.

Tr(Ωρ) = ∑
j

〈j |Ωρ|j〉 (5)

= ∑
j

∑
i

〈j |Ω| i〉pi 〈i |j 〉 (6)

= ∑
j

∑
i

〈j |Ω| i〉piδij (7)

= ∑
i

pi 〈i |Ω| i〉 (8)

=
〈
Ω̄
〉

(9)

If we want the probability of obtaining a particular eigenvalue ω of the
operator Ω, then we first project out the component of the ensemble along
the eigenvector |ω〉, which we do with the projection operator Pω. Thus the
probability of obtaining the value ω is

P (ω) = Tr(Pωρ) (10)
A few other properties can be derived.

(1) From 2, we have ρ† = [∑i pi |i〉〈i|]† = ∑i p
∗
i |i〉〈i|= ∑i pi |i〉〈i|= ρ,

since pi, being a probability, is a real number.
(2) Trρ= ∑j ∑i pi 〈j |i〉〈i |j 〉= ∑j ∑i piδjiδij = ∑i pi = 1, since proba-

bilities must add up to 1.
(3) For a pure ensemble, there is only one state, say |i〉, in the ensemble,

so ρ= |i〉〈i| and in this case ρ2 = |i〉〈i |i〉〈i|= |i〉〈i|= ρ.
(4) If the ensemble is uniformly distributed over k states, then pi = 1

k

for all states in the ensemble, and ρ= 1
k ∑i |i〉〈i|= 1

kI .
(5) Trρ2 =Tr∑j ∑i pjpi |j〉〈j |i〉〈i|=Tr∑j ∑i pjpi |j〉δij 〈i|=Tr∑i p

2
i |i〉〈i|=

∑k ∑i p
2
i 〈k |i〉〈i |k 〉= ∑i p

2
i . Since 0≤ pi ≤ 1 and squaring a num-

ber in this range either makes it smaller (if 0 < pi < 1) or leaves it
unchanged (if pi = 0 or pi = 1), and since ∑i pi = 1, we must have
∑i p

2
i ≤ 1, with equality only for a pure ensemble.
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DENSITY MATRIX 3

Pingback: Thermal average of a harmonic oscillator

https://physicspages.com/pdf/Lancaster QFT/Lancaster Problems 21.01.pdf


POSTULATES OF QUANTUM MECHANICS: STATES AND
MEASUREMENTS

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
References: Shankar, R. (1994), Principles of Quantum Mechanics, Plenum

Press. Sections 4.1 - 4.2; Exercise 4.2.1.
Post date: 19 Dec 2016
Although we’ve covered the basics of nonrelativistic quantum mechanics

before, the approach taken by Shankar in his Chapter 4 provides a new way
of looking at it, so it’s worth a summary.

Quantum mechanics is based on four postulates, the first three of which
describe the quantum state at a fixed instant in time, and the fourth which
describes its time evolution via the Schrödinger equation. We’ll summarize
the first three postulates here, and compare each with its classical analogue.

First, in classical mechanics, the path of a particle is, in the Hamiltonian
formalism, described by specifying its position x(t) and momentum p(t) as
functions of time. Both the position and momentum are specified precisely
at all times. In quantum mechanics, the state of a particle is specified by a
vector (ket) |ψ (t)〉 in a Hilbert space.

Second, in classical mechanics, any dynamical variable ω is a function
of the two phase-space coordinates x and p: ω = ω (x,p). In quantum me-
chanics, the spatial coordinate x is replaced by the Hermitian operator X
and the momentum p is replaced by the differential operator P = h̄K which
we discussed earlier. The matrix elements of X and P in position space are

〈
x |X|x′

〉
= xδ

(
x−x′

)
(1)〈

x |P |x′
〉

= −ih̄δ′
(
x−x′

)
(2)

The classical dynamical variable ω (x,p) becomes a Hermitian operator
Ω(X,P ), where x and p in ω (x,p) are replaced by their corresponding
operators X and P .

The third postulate states how measurements work in quantum mechan-
ics. In classical mechanics, it is assumed that (in principle) any dynamical
variable ω may be measured with arbitrary precision without changing the
state of the particle. In quantum mechanics, if we wish to measure the value
of a variable represented by the operator Ω, we must determine the eigenval-
ues ωi and corresponding eigenvectors |ωi〉 of Ω, then express the state |ψ〉
as a linear combination of the |ωi〉. Then the best we can do is to state that

1
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the particular eigenvalue ωi will be measured with probability |〈ωi |ψ 〉|2.
After the measurement, the state |ψ〉 ’collapses’ to become the state |ωi〉.
The only possible outcomes of a measurement of Ω are its eigenvalues; no
intermediate values are possible.

To illustrate these postulates, suppose we have the following three oper-
ators on a complex 3-d Hilbert space (essentially these are the spin-1 oper-
ators without the h̄)

Lx =
1√
2

 0 1 0
1 0 1
0 1 0

 (3)

Ly =
1√
2

 0 −i 0
i 0 −i
0 i 0

 (4)

Lz =

 1 0 0
0 0 0
0 0 −1

 (5)

Since Lz is diagonal, its eigenvalues can be read off from the diagonal
elements as 0,±1, so these are the possible values of Lz that could be ob-
tained in a measurement. Also because Lz is diagonal, its eigenvectors are

|Lz =+1〉=

 1
0
0

 (6)

|Lz = 0〉=

 0
1
0

 (7)

|Lz =−1〉=

 0
0
1

 (8)

Suppose we start with the state |Lz =+1〉 in which Lz = +1, and we
want to measure Lx in this state. To find the expectation values 〈Lx〉 and〈
L2
x

〉
in this state, we calculate

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.31.pdf
http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.31.pdf
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〈Lx〉= 〈Lz =+1 |Lx|Lz =+1〉 (9)

=
[

1 0 0
] 1√

2

 0 1 0
1 0 1
0 1 0

 1
0
0

 (10)

=
1√
2

[
1 0 0

] 0
1
0

 (11)

= 0 (12)

To get
〈
L2
x

〉
we first find the operator

L2
x =

1
2

 1 0 1
0 2 0
1 0 1

 (13)

Now we have

〈
L2
x

〉
=
[

1 0 0
] 1

2

 1 0 1
0 2 0
1 0 1

 1
0
0

 (14)

=
1
2
[

1 0 0
] 1

0
1

 (15)

=
1
2

(16)

The uncertainty, or variance, is

∆Lx =

√
〈L2

x〉−〈Lx〉
2 =

1√
2

(17)

To find the possible values of Lx and their probabilities, we need to find
the eigenvalues and eigenvectors of Lx, which we can do in the Lz basis,
since this basis is given by the three vectors in 6. The eigenvalues are found
in the usual way from the determinant:
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∣∣∣∣∣∣∣
−λ 1√

2
0

1√
2
−λ 1√

2
0 1√

2
−λ

∣∣∣∣∣∣∣=−λ
(
λ2− 1

2

)
− 1√

2

(
−λ√

2

)
(18)

=−λ3 +λ= 0 (19)
λ= 0,±1 (20)

The eigenvectors can be found in the usual way, by solving

(Lx−λI) |Lx = λ〉= 0 (21)

where the ket takes on the three possible values of λ successively. We let

|Lx = λ〉=

 a
b
c

 (22)

For λ=+1 we have

−a+ b√
2

= 0 (23)

1√
2

(
a−
√

2b+ c
)

= 0 (24)

b√
2
− c = 0 (25)

Only two of these three equations are independent, so we can set a = 1
and solve for b and c to get

a = 1 (26)

b =
√

2 (27)
c = 1 (28)

Normalizing the eigenvector gives

|Lx =+1〉= 1
2

 1√
2

1

 (29)

The other two eigenvectors can be found the same way, with the result
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|Lx = 0〉= 1√
2

 1
0
−1

 (30)

|Lx =−1〉= 1
2

 1
−
√

2
1

 (31)

Note that these eigenvectors are orthonormal.
Now that we have the eigenvectors of Lx we can answer the following

question. If we start with the state |Lz =−1〉 and measure Lx, what are the
possible outcomes and the probability of each?

First, we need to express |Lz =−1〉 in terms of the eigenvectors of Lx
which we can do by solving three simultaneous linear equations, and we
find

|Lz =−1〉=

 0
0
1

=
1
2
(|Lx =+1〉+ |Lx =−1〉)− 1√

2
|Lx = 0〉 (32)

(You can verify this by direct substitution.) Thus all 3 possible values of
Lx can result from a measurement, and the probability of each is
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P (Lx =+1) = |〈Lx =+1 |Lz =−1〉|2 (33)

=

1
2
[

1
√

2 1
] 0

0
1

2

(34)

=
1
4

(35)

P (Lx = 0) = |〈Lx = 0 |Lz =−1〉|2 (36)

=

 1√
2

[
1 0 −1

] 0
0
1

2

(37)

=
1
2

(38)

P (Lx =−1) = |〈Lx =−1 |Lz =−1〉|2 (39)

=

1
2
[

1 −
√

2 1
] 0

0
1

2

(40)

=
1
4

(41)

Now suppose we start with the state, written in the Lz basis:

|ψ〉=

 1
2
1
2
1√
2

 (42)

We take a measurement of L2
z and obtain +1. The operator L2

z is given
by squaring 5:

L2
z =

 1 0 0
0 0 0
0 0 1

 (43)

This has a degenerate eigenvalue λ = +1, so the most we can say about
the state |ψ〉 after the measurement is that it is projected onto the subspace

a

 1
0
0

+ b
 0

0
1

. That is, the state after the measurement is given by
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|ψ〉after = PLz=±1 |ψ〉before (44)

= [|Lz =+1〉〈Lz =+1|+ |Lz =−1〉〈Lz =−1|]

 1
2
1
2
1√
2

 (45)

=

 1
0
0

[ 1 0 0
]
+

 0
0
1

[ 0 0 1
] 1

2
1
2
1√
2

 (46)

=

 1
2
0
1√
2

 (47)

We can normalize this state to get

|ψ〉after =
2√
3

 1
2
0
1√
2

 (48)

Thus if we measure Lz immediately after the measurement of L2
z above,

we get Lz =+1 with probability 1
3 and Lz =−1 with probability 2

3 .
Finally, suppose we have a state |ψ〉 with the probabilities of measure-

ments of Lz given as P (Lz = 1) = 1
4 , P (Lz = 0) = 1

2 and P (Lz =−1) =
1
4 . Since these probabilities are given by |〈Lz = λ |ψ 〉|2 for each of the
three possible values of λ, and the vectors |Lz = λ〉 are orthonormal, the
most general form for |ψ〉 is

|ψ〉= eiδ1

2
|Lz = 1〉+ eiδ2

√
2
|Lz = 0〉+ eiδ3

2
|Lz =−1〉 (49)

where the δi are real numbers. For example

|〈Lz = 1 |ψ 〉|2 =
∣∣∣∣eiδ1

2

∣∣∣∣2 = 1
4

(50)

While the presence of a phase factor in a solitary state doesn’t affect
the physics of that state, if we have a sum of states, each with its own
(different) phase factor, we can’t ignore these phase factors. For example,
if we measure Lx in this state and want the probability that Lx= 0, we have,
using 30
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P (Lx = 0) = |〈Lx = 0 |ψ 〉|2 (51)

=

∣∣∣∣ 1√
2

[
1 0 −1

](eiδ1

2
|Lz = 1〉+ eiδ2

√
2
|Lz = 0〉+ eiδ3

2
|Lz =−1〉

)∣∣∣∣2
(52)

=

∣∣∣∣∣∣ 1√
2

[
1 0 −1

]eiδ1

2

 1
0
0

+ eiδ2
√

2

 0
1
0

+ eiδ3

2

 0
0
1

∣∣∣∣∣∣
2

(53)

=
1
8

∣∣∣eiδ1− eiδ3
∣∣∣2 (54)

=
1
8

∣∣∣1− ei(δ3−δ1)
∣∣∣2 (55)

The last line will have a different result for different values of the phase
factors δ1 and δ3, so they can’t be ignored.

PINGBACKS

Pingback: Postulates of quantum mechanics: momentum
Pingback: Postulates of quantum mechanics: Schrödinger equation and

propagators
Pingback: Poisson brackets to commutators: classical to quantum

http://physicspages.com/pdf/Shankar/Shankar Exercises 04.02.02 - 04.02.03.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 04.03.01 Schrodinger equation & propagators.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 04.03.01 Schrodinger equation & propagators.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 07.04.07.pdf


POSTULATES OF QUANTUM MECHANICS: MOMENTUM

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
References: Shankar, R. (1994), Principles of Quantum Mechanics, Plenum

Press. Sections 4.1 - 4.2; Exercises 4.2.2 - 4.2.3.
Post date: 25 Dec 2016
One of the postulates of quantum mechanics is that the momentum oper-

ator P in position space is given by〈
x |P |x′

〉
=−ih̄δ′

(
x−x′

)
(1)

By using the properties of the derivative of the delta function, we can find
the eigenfunctions of P . We have

〈x |P |ψ〉=
∫ 〈

x |P |x′
〉〈
x′ |ψ

〉
dx′ (2)

=−ih̄
∫
δ′
(
x−x′

)〈
x′ |ψ

〉
dx′ (3)

=−ih̄ d
dx
〈x |ψ 〉 (4)

=−ih̄dψ (x)
dx

(5)

The eigenvector of P is |p〉 and has the property that

P |p〉= p |p〉 (6)

If we project this onto position space and use 5 we get

〈x |P |ψ〉 = p〈x |p〉 (7)

−ih̄
dψp (x)

dx
= pψp (x) (8)

where

ψp (x)≡ 〈x |p〉 (9)

Solving this differential equation and normalizing so that 〈p′ |p〉= δ (p−p′)
we get

1
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ψp (x) =
1√
2πh̄

eipx/h̄ (10)

For an arbitrary wave function |ψ〉, if we know its position-space form,
we can find its momentum-space version as follows:

〈p |ψ 〉=
∫
〈p |x〉〈x |ψ 〉dx (11)

=
∫
ψ∗p (x)〈x |ψ 〉dx (12)

=
1√
2πh̄

∫
e−ipx/h̄ψ (x)dx (13)

This has an interesting consequence if the position-space function ψ (x)
is real. The probability density for finding a particle in a state with momen-
tum p is |〈p |ψ 〉|2, which we can write as

|〈p |ψ 〉|2 = 〈p |ψ 〉∗ 〈p |ψ 〉 (14)

=
1

2πh̄

∫ ∫
eip(x−x

′)/h̄ψ (x)ψ
(
x′
)
dx dx′ (15)

=
1

2πh̄

∫ ∫
e−ip(x

′−x)/h̄ψ (x)ψ
(
x′
)
dx dx′ (16)

=
1

2πh̄

∫ ∫
e−ip(x−x

′)/h̄ψ
(
x′
)
ψ (x)dx dx′ (17)

= |〈−p |ψ 〉|2 (18)

In the fourth line, since x and x′ are dummy integration variables, both of
which are integrated over the same range, we can simply swap them without
changing anything. Note that the derivation relies on ψ (x) being real, since
if it were complex we would have

|〈p |ψ 〉|2 = 〈p |ψ 〉∗ 〈p |ψ 〉 (19)

=
1

2πh̄

∫ ∫
eip(x−x

′)/h̄ψ (x)ψ∗
(
x′
)
dx dx′ (20)

=
1

2πh̄

∫ ∫
e−ip(x

′−x)/h̄ψ (x)ψ∗
(
x′
)
dx dx′ (21)

=
1

2πh̄

∫ ∫
e−ip(x−x

′)/h̄ψ
(
x′
)
ψ∗ (x)dx dx′ (22)

6= |〈−p |ψ 〉|2 (23)

since
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|〈−p |ψ 〉|2 = 1
2πh̄

∫ ∫
e−ip(x−x

′)/h̄ψ (x)ψ∗
(
x′
)
dx dx′ (24)

That is, for |〈−p |ψ 〉|2 the position x′ that is the argument of the ψ∗ (x′)
factor appears as the positive term ipx′ in the exponential, but in 22 the
argument of the complex conjugate wave function is x, which appears as
the negative term −ipx in the exponential.

Thus for any real wave function, the probability of the particle having
momentum +p is equal to the probability of it having −p, so for such wave
functions, the mean momentum is always 〈P 〉= 0.

As another example, suppose we have a wave function ψ (x) with a mean
momentum p̄, so that

〈ψ |P |ψ〉= p̄ (25)
If we now multiply ψ by eip0x/h̄ where p0 is a constant momentum, we

can calculate the new mean momentum using 5:

〈P 〉=
〈
eip0x/h̄ψ |P |eip0x/h̄ψ

〉
(26)

=−ih̄
∫
e−ip0x/h̄ψ∗ (x)

d

dx

(
eip0x/h̄ψ (x)

)
dx (27)

=−ih̄
∫
e−ip0x/h̄ψ∗

[
ip0

h̄
eip0x/h̄ψ (x)+ eip0x/h̄

d

dx
ψ (x)

]
dx (28)

=
∫
p0ψ

∗ψdx− ih̄
∫
ψ∗ (x)

d

dx
ψ (x)dx (29)

= p0 + p̄ (30)

The first integral in the fourth line uses the fact that p0 is constant and ψ
is normalized so that ∫

ψ∗ψdx= 1 (31)
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The first three postulates of quantum mechanics concern the properties of

a quantum state. The fourth postulate concerns how states evolve with time.
The postulate simply states that in non-relativistic quantum mechanics, a
state satisfies the Schrödinger equation:

ih̄
∂

∂t
|ψ〉=H |ψ〉 (1)

where H is the Hamiltonian, which is obtained from the classical Hamil-
tonian by means of the other postulates of quantum mechanics, namely that
we replace all references to the position x by the quantum position operator
X with matrix elements (in the x basis) of〈

x′ |X|x
〉
= δ
(
x−x′

)
(2)

and all references to classical momentum p by the momentum operator
P with matrix elements〈

x′ |P |x
〉
=−ih̄δ′

(
x−x′

)
(3)

Although we’ve posted many articles based on Griffiths’s book in which
we solved the Schrödinger equation, the approach taken by Shankar is a bit
different and, in some ways, a lot more elegant. We begin with a Hamil-
tonian that does not depend explicitly on time, and then by observing that,
since the Schrödinger equation contains only the first derivative with re-
spect to time, The time evolution of a state can be uniquely determined
if we specify only the initial state |ψ (0)〉. [A differential equation that is
second order in time, such as the wave equation, requires both the initial
position and initial velocity to be specified.]

The solution of the Schrödinger equation is then found in analogy to the
approach we used in solving the coupled masses problem earlier. We find
the eigenvalues and eigenvectors of the Hamiltonian in some basis and use
these to construct the propagator U (t). We can then write the solution as

1
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|ψ (t)〉= U (t) |ψ (0)〉 (4)

For the case of a time-independent Hamiltonian, we can actually con-
struct U (t) in terms of the eigenvectors of H . The eigenvalue equation is

H |E〉= E |E〉 (5)

where E is an eigenvalue of H and |E〉 is its corresponding eigenvec-
tor. Since the eigenvectors form a vector space, we can expand the wave
function in terms of them in the usual way

|ψ (t)〉 = ∑ |E〉〈E |ψ (t)〉 (6)

≡ ∑aE (t) |E〉 (7)

The coefficient aE (t) is the component of |ψ (t)〉 along the |E〉 vector as
a function of time. We can now apply the Schrödinger equation 1 to get (a
dot over a symbol indicates a time derivative):

ih̄
∂

∂t
|ψ (t)〉 = ih̄∑ ȧE (t) |E〉 (8)

= H |ψ (t)〉 (9)
= ∑aE (t)H |E〉 (10)

= ∑aE (t)E |E〉 (11)

Since the eigenvectors |E〉 are linearly independent (as they form a basis
for the vector space), each term in the sum in the first line must be equal to
the corresponding term in the sum in the last line, so we have

ih̄ȧE (t) = aE (t)E (12)

The solution is

aE (t) = aE (0)e−iEt/h̄ (13)

= e−iEt/h̄ 〈E |ψ (0)〉 (14)

The general solution 7 is therefore

|ψ (t)〉= ∑e−iEt/h̄ |E〉〈E |ψ (0)〉 (15)

from which we can read off the propagator:

U (t) = ∑e−iEt/h̄ |E〉〈E| (16)
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Thus if we can determine the eigenvalues and eigenvectors of H , we can
write the propagator in terms of them and get the general solution. We can
see from this that U (t) is unitary:

U†U = ∑
E′

∑
E

e−i(E−E
′)t/h̄ |E〉

〈
E
∣∣E′ 〉〈E′∣∣ (17)

= ∑
E′

∑
E

e−i(E−E
′)t/h̄ |E〉δEE′

〈
E′
∣∣ (18)

= ∑
E

|E〉〈E| (19)

= 1 (20)

This derivation uses the fact that the eigenvectors are orthonormal and
form a complete set, so that 〈E |E′ 〉 = δEE′ and ∑E |E〉〈E| = 1. Since a
unitary operator doesn’t change the norm of a vector, we see from 4 that if
|ψ (0)〉 is normalized, then so is |ψ (t)〉 for all times t. Further, the proba-
bility that the state will be measured to be in eigenstate |E〉 is constant over
time, since this probability is given by

|aE (t)|2 =
∣∣∣e−iEt/h̄ 〈E |ψ (0)〉∣∣∣2 = |〈E |ψ (0)〉|2 (21)

This derivation assumed that the spectrum of H was discrete and non-
degenerate. If the possible eigenvalues E are continuous, then the sum is
replaced by an integral

U (t) =
∫
e−iEt/h̄ |E〉〈E|dE (22)

If the spectrum is discrete and degenerate, then we need to find an or-
thonormal set of eigenvectors that spans each degenerate subspace, and sum
over these sets. For example, ifE1 is degenerate, then we find a set of eigen-
vectors |E1,α〉 that spans the subspace for which E1 is the eigenvalue. The
index α runs from 1 up to the degree of degeneracy of E1, and the propaga-
tor is then

U (t) = ∑
α

∑
Ei

e−iEit/h̄ |Ei,α〉〈Ei,α| (23)

The sum over Ei runs over all the distinct eigenvalues, and the sum over
α runs over the eigenvectors for each different Ei.

Another form of the propagator can be written directly in terms of the
time-independent Hamiltonian as

U (t) = e−iHt/h̄ (24)
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This relies on the concept of the function of an operator, so that e−iHt/h̄

is a matrix whose elements are power series of the exponent − iHth̄ . The
power series must, of course, converge for this solution to be valid. Since
H is Hermitian, U (t) is unitary. We can verify that the solution using this
form of U (t) satisfies the Schrödinger equation:

|ψ (t)〉= U (t) |ψ (0)〉 (25)

= e−iHt/h̄ |ψ (0)〉 (26)

ih̄
∣∣ψ̇ (t)〉= ih̄

d

dt

(
e−iHt/h̄

)
|ψ (0)〉 (27)

= ih̄

(
− i
h̄

)
He−iHt/h̄ |ψ (0)〉 (28)

=He−iHt/h̄ |ψ (0)〉 (29)

=H |ψ (t)〉 (30)

The derivative of U (t) can be calculated from the derivatives of its matrix
elements, which are all power series.
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The first three postulates of quantum mechanics concern the properties of

a quantum state. The fourth postulate concerns how states evolve with time.
The postulate simply states that in non-relativistic quantum mechanics, a
state satisfies the Schrödinger equation:

ih̄
∂

∂t
|ψ〉=H |ψ〉 (1)

where H is the Hamiltonian, which is obtained from the classical Hamil-
tonian by means of the other postulates of quantum mechanics, namely that
we replace all references to the position x by the quantum position operator
X with matrix elements (in the x basis) of〈

x′ |X|x
〉
= δ
(
x−x′

)
(2)

and all references to classical momentum p by the momentum operator
P with matrix elements〈

x′ |P |x
〉
=−ih̄δ′

(
x−x′

)
(3)

Although we’ve posted many articles based on Griffiths’s book in which
we solved the Schrödinger equation, the approach taken by Shankar is a bit
different and, in some ways, a lot more elegant. We begin with a Hamil-
tonian that does not depend explicitly on time, and then by observing that,
since the Schrödinger equation contains only the first derivative with re-
spect to time, The time evolution of a state can be uniquely determined
if we specify only the initial state |ψ (0)〉. [A differential equation that is
second order in time, such as the wave equation, requires both the initial
position and initial velocity to be specified.]

The solution of the Schrödinger equation is then found in analogy to the
approach we used in solving the coupled masses problem earlier. We find
the eigenvalues and eigenvectors of the Hamiltonian in some basis and use
these to construct the propagator U (t). We can then write the solution as

1
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|ψ (t)〉= U (t) |ψ (0)〉 (4)

For the case of a time-independent Hamiltonian, we can actually con-
struct U (t) in terms of the eigenvectors of H . The eigenvalue equation is

H |E〉= E |E〉 (5)

where E is an eigenvalue of H and |E〉 is its corresponding eigenvec-
tor. Since the eigenvectors form a vector space, we can expand the wave
function in terms of them in the usual way

|ψ (t)〉 = ∑ |E〉〈E |ψ (t)〉 (6)

≡ ∑aE (t) |E〉 (7)

The coefficient aE (t) is the component of |ψ (t)〉 along the |E〉 vector as
a function of time. We can now apply the Schrödinger equation 1 to get (a
dot over a symbol indicates a time derivative):

ih̄
∂

∂t
|ψ (t)〉 = ih̄∑ ȧE (t) |E〉 (8)

= H |ψ (t)〉 (9)
= ∑aE (t)H |E〉 (10)

= ∑aE (t)E |E〉 (11)

Since the eigenvectors |E〉 are linearly independent (as they form a basis
for the vector space), each term in the sum in the first line must be equal to
the corresponding term in the sum in the last line, so we have

ih̄ȧE (t) = aE (t)E (12)

The solution is

aE (t) = aE (0)e−iEt/h̄ (13)

= e−iEt/h̄ 〈E |ψ (0)〉 (14)

The general solution 7 is therefore

|ψ (t)〉= ∑e−iEt/h̄ |E〉〈E |ψ (0)〉 (15)

from which we can read off the propagator:

U (t) = ∑e−iEt/h̄ |E〉〈E| (16)
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Thus if we can determine the eigenvalues and eigenvectors of H , we can
write the propagator in terms of them and get the general solution. We can
see from this that U (t) is unitary:

U†U = ∑
E′

∑
E

e−i(E−E
′)t/h̄ |E〉

〈
E
∣∣E′ 〉〈E′∣∣ (17)

= ∑
E′

∑
E

e−i(E−E
′)t/h̄ |E〉δEE′

〈
E′
∣∣ (18)

= ∑
E

|E〉〈E| (19)

= 1 (20)

This derivation uses the fact that the eigenvectors are orthonormal and
form a complete set, so that 〈E |E′ 〉 = δEE′ and ∑E |E〉〈E| = 1. Since a
unitary operator doesn’t change the norm of a vector, we see from 4 that if
|ψ (0)〉 is normalized, then so is |ψ (t)〉 for all times t. Further, the proba-
bility that the state will be measured to be in eigenstate |E〉 is constant over
time, since this probability is given by

|aE (t)|2 =
∣∣∣e−iEt/h̄ 〈E |ψ (0)〉∣∣∣2 = |〈E |ψ (0)〉|2 (21)

This derivation assumed that the spectrum of H was discrete and non-
degenerate. If the possible eigenvalues E are continuous, then the sum is
replaced by an integral

U (t) =
∫
e−iEt/h̄ |E〉〈E|dE (22)

If the spectrum is discrete and degenerate, then we need to find an or-
thonormal set of eigenvectors that spans each degenerate subspace, and sum
over these sets. For example, ifE1 is degenerate, then we find a set of eigen-
vectors |E1,α〉 that spans the subspace for which E1 is the eigenvalue. The
index α runs from 1 up to the degree of degeneracy of E1, and the propaga-
tor is then

U (t) = ∑
α

∑
Ei

e−iEit/h̄ |Ei,α〉〈Ei,α| (23)

The sum over Ei runs over all the distinct eigenvalues, and the sum over
α runs over the eigenvectors for each different Ei.

Another form of the propagator can be written directly in terms of the
time-independent Hamiltonian as

U (t) = e−iHt/h̄ (24)
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This relies on the concept of the function of an operator, so that e−iHt/h̄

is a matrix whose elements are power series of the exponent − iHth̄ . The
power series must, of course, converge for this solution to be valid. Since
H is Hermitian, U (t) is unitary. We can verify that the solution using this
form of U (t) satisfies the Schrödinger equation:

|ψ (t)〉= U (t) |ψ (0)〉 (25)

= e−iHt/h̄ |ψ (0)〉 (26)

ih̄
∣∣ψ̇ (t)〉= ih̄

d

dt

(
e−iHt/h̄

)
|ψ (0)〉 (27)

= ih̄

(
− i
h̄

)
He−iHt/h̄ |ψ (0)〉 (28)

=He−iHt/h̄ |ψ (0)〉 (29)

=H |ψ (t)〉 (30)

The derivative of U (t) can be calculated from the derivatives of its matrix
elements, which are all power series.
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The fourth postulate of non-relativistic quantum mechanics concerns how

states evolve with time. The postulate simply states that in non-relativistic
quantum mechanics, a state satisfies the Schrödinger equation:

ih̄
∂

∂t
|ψ〉=H |ψ〉 (1)

where H is the Hamiltonian, which is obtained from the classical Hamil-
tonian by means of the other postulates of quantum mechanics, namely that
we replace all references to the position x by the quantum position operator
X with matrix elements (in the x basis) of〈

x′ |X|x
〉
= δ
(
x−x′

)
(2)

and all references to classical momentum p by the momentum operator
P with matrix elements〈

x′ |P |x
〉
=−ih̄δ′

(
x−x′

)
(3)

In our earlier examination of the Schrödinger equation, we assumed that
the Hamiltonian is independent of time, which allowed us to obtain an ex-
plicit expression for the propagator

U (t) = e−iHt/h̄ (4)

The propagator is applied to the initial state |ψ (0)〉 to obtain the state at
any future time t:

|ψ (t)〉= U (t) |ψ (0)〉 (5)

What happens if H =H (t), that is, there is an explicit time dependence
in the Hamiltonian? The approach taken by Shankar is a bit hand-wavy, but
goes as follows. We divide the time interval [0, t] into N small increments
∆ = t/N . To first order in ∆, we can integrate 1 by taking the first order
term in a Taylor expansion:

1
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|ψ (∆)〉= |ψ (0)〉+∆
d

dt
|ψ (t)〉

∣∣∣∣
t=0

+O
(
∆

2) (6)

= |ψ (0)〉+−i∆
h̄
H (0) |ψ (0)〉+O

(
∆

2) (7)

=

(
1− i∆

h̄
H (0)

)
|ψ (0)〉+O

(
∆

2) (8)

So far, we’ve been fairly precise, but now the hand-waving starts. We
note that the term multiplying |ψ (0)〉 consists of the first two terms in the
expansion of e−i∆H(0)/h̄, so we state that to evolve from t= 0 to t= ∆, we
multiply the initial state |ψ (0)〉 by e−i∆H(0)/h̄. That is, we propose that

|ψ (∆)〉= e−i∆H(0)/h̄ |ψ (0)〉 (9)

[The reason this is hand-waving is that there are many functions whose
first order Taylor expansion matches

(
1− i∆

h̄H (0)
)
, so it seems arbitrary

to choose the exponential. I imagine the motivation is that in the time-
independent case, the result reduces to 4.]

In any case, if we accept this, then we can iterate the process to evolve to
later times. To get to t= 2∆, we have

|ψ (2∆)〉= e−i∆H(∆)/h̄ |ψ (∆)〉 (10)

= e−i∆H(∆)/h̄e−i∆H(0)/h̄ |ψ (0)〉 (11)

The snag here is that we can’t, in general, combine the two exponentials
into a single exponential by adding the exponents. This is because H (∆)
and H (0) will not, in general, commute, as the Baker-Campbell-Hausdorff
formula tells us. For example, the time dependence of H (t) might be such
that at t = 0, H (0) is a function of the position operator X only, while at
t= ∆, H (∆) becomes a function of the momentum operator P only. Since
X and P don’t commute, [H (0) ,H (∆)] 6= 0, so e−i∆H(∆)/h̄e−i∆H(0)/h̄ 6=
e−i∆[H(0)+H(∆)]/h̄.

This means that the best we can usually do is to write

|ψ (t)〉 = |ψ (N∆)〉 (12)

=
N−1

∏
n=0

e−i∆H(n∆)/h̄ |ψ (0)〉 (13)

The propagator then becomes, in the limit
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http://www.physicspages.com/pdf/Shankar/Shankar Exercises 01.09.04 Exponentials of operators - Baker-Campbell-Hausdorff.pdf
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U (t) = lim
N→∞

N−1

∏
n=0

e−i∆H(n∆)/h̄ (14)

This limit is known as a time-ordered integral and is written as

T

{
exp
[
− i
h̄

∫ t

0
H
(
t′
)
dt′
]}
≡ lim

N→∞

N−1

∏
n=0

e−i∆H(n∆)/h̄ (15)

One final note about the propagators. Since each term in the product
is the exponential of i times a Hermitian operator, each term is a unitary
operator. Further, since the product of two unitary operators is still unitary,
the propagator in the time-dependent case is a unitary operator.

We’ve defined a propagator as a unitary operator that carries a state from
t= 0 to some later time t, but we can generalize the notation so thatU (t2, t1)
is a propagator that carries a state from t= t1 to t= t2, that is

|ψ (t2)〉= U (t2, t1) |ψ (t1)〉 (16)
We can chain propagators together to get

|ψ (t3)〉= U (t3, t2) |ψ (t2)〉 (17)

= U (t3, t2)U (t2, t1) |ψ (t1)〉 (18)

= U (t3, t1) |ψ (t1)〉 (19)

Therefore

U (t3, t1) = U (t3, t2)U (t2, t1) (20)
Since the Hermitian conjugate of a unitary operator is its inverse, we have

U† (t2, t1) = U−1 (t2, t1) (21)
We can combine this with 20 to get

|ψ (t1)〉= I |ψ (t1)〉 (22)

= U−1 (t2, t1)U (t2, t1) |ψ (t1)〉 (23)

= U† (t2, t1)U (t2, t1) |ψ (t1)〉 (24)

Therefore

U† (t2, t1)U (t2, t1) = U (t1, t1) = I (25)

U† (t2, t1) = U (t1, t2) (26)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 01.09.01 - 01.09.03.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 01.09.01 - 01.09.03.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 01.06.03 - 01.06.06.pdf
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That is, the Hermitian conjugate (or inverse) of a propagator carries a
state ’backwards in time’ to its starting point.

PINGBACKS

Pingback: Translational invariance and conservation of momentum
Pingback: Time translation and conservation of energy

http://physicspages.com/pdf/Shankar/Shankar Exercises 11.02 Translational invariance and conservation of momentum.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 11.03 Time Translation.pdf
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Having reviewed the background mathematics and postulates of quantum

mechanics as set out by Shankar, we can now revisit some of the classic
problems in non-relativistic quantum mechanics using Shankar’s approach,
as opposed to that of Griffiths that we’ve already studied.

The first problem we’ll look it is that of the free particle. Following the
fourth postulate, we write down the classical Hamiltonian for a free particle,
which is

H =
p2

2m
(1)

where p is the momentum (we’re working in one dimension) andm is the
mass. To get the quantum version, we replace p by the momentum operator
P and insert the result into the Schrödinger equation:

ih̄
∣∣ψ̇〉 = H |ψ〉 (2)

=
P 2

2m
|ψ〉 (3)

Since H is time-independent, the solution can be written using a propa-
gator:

|ψ (t)〉= U (t) |ψ (0)〉 (4)
To find U , we need to solve the eigenvalue equation for the stationary

states

P 2

2m
|E〉= E |E〉 (5)

where E is an eigenvalue representing the allowable energies. Since the
Hamiltonian is P 2/2m, and an eigenstate of P with eigenvalue p is also an
eigenstate of P 2 with eigenvalue p2, we can write this equation in terms of
the momentum eigenstates |p〉:

1
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P 2

2m
|p〉= E |p〉 (6)

Using P 2 |p〉= p2 |p〉 this gives(
p2

2m
−E

)
|p〉= 0 (7)

Assuming that |p〉 is not a null vector gives the relation between momen-
tum and energy:

p=±
√

2mE (8)
Thus each allowable energyE has two possible momenta. Once we spec-

ify the momentum, we also specify the energy and since each energy state
is two-fold degenerate, we can eliminate the ambiguity by specifying only
the momentum. Therefore the propagator can be written as

U (t) =
∫

∞

−∞

e−ip
2t/2mh̄ |p〉〈p|dp (9)

We can convert this to an integral over the energy by using 8 to change
variables, and by splittling the integral into two parts. For p > 0 we have

dp=

√
m

2E
dE (10)

and for p < 0 we have

dp=−
√

m

2E
dE (11)

Therefore, we get

U (t) =
∫

∞

0
e−iEt/h̄ |E,+〉〈E,+|

√
m

2E
dE+

∫ 0

∞

e−iEt/h̄ |E,−〉〈E,−|
(
−
√

m

2E

)
dE

(12)

=
∫

∞

0
e−iEt/h̄ |E,+〉〈E,+|

√
m

2E
dE+

∫
∞

0
e−iEt/h̄ |E,−〉〈E,−|

√
m

2E
dE

(13)

= ∑
α=±

∫
∞

0

m√
2mE

e−iEt/h̄ |E,α〉〈E,α|dE (14)

Here, |E,+〉 is the state with energyE and momentum p=+
√

2mE and
similarly for |E,−〉. In the first line, the first integral is for p > 0 and corre-
sponds to the

∫
∞

0 part of 9. The second integral is for p < 0 and corresponds
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to the
∫ 0
−∞

part of 9, which is why the limits on the second integral have ∞

at the bottom and 0 at the top. Reversing the order of integration cancels out
the minus sign in −

√
m
2E , which allows us to add the two integrals together

to get the final answer.

PINGBACKS

Pingback: Free particle in the position basis
Pingback: Propagator for a Gaussian wave packet for the free particle
Pingback: Path integral formulation of quantum mechanics: free particle

propagator
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In quantum mechanics, the free particle has degenerate energy eigen-

states for each energy

E =
p2

2m
(1)

where p is the momentum. The degeneracy arises because the momentum
can be either positive (for a particle moving to the right) or negative (to the
left):

p=±
√

2mE (2)
Thus the most general energy eigenstate is a linear combination of the

two momentum states:

|E〉= β
∣∣∣p=√2mE

〉
+γ

∣∣∣p=−√2mE
〉

(3)

This bizarre feature of quantum mechanics means that a particle in such a
state could be moving either left or right, and if we make a measurement of
the momentum we force the particle into one or other of the two momentum
states.

We obtained this solution by working in the momentum basis, but we
can also find the solution in the position basis. In that basis, the momentum
operator has the form

P =−ih̄ d
dx

(4)

The matrix elements of this operator in the position basis are〈
x |P |x′

〉
=−ih̄δ′

(
x−x′

)
(5)

where δ′ (x−x′) is the derivative of the delta function with respect to the
x, not the x′. We can use the properties of this derivative to get a solution in
the X basis. To be completely formal about it, the derivation of the matrix
elements of P 2 in the X basis is:

1
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〈
x
∣∣P 2∣∣ψ〉= ∫ ∫ 〈x |P |x′〉〈x′ |P |x′′〉〈x′′ |ψ〉dx′dx′′ (6)

=
∫ ∫ 〈

x |P |x′
〉(
−ih̄δ′

(
x′−x′′

))
ψ
(
x′′
)
dx′dx′′ (7)

=−ih̄
∫ 〈

x |P |x′
〉 dψ (x′)

dx′
dx′ (8)

=−ih̄
∫ ∫ (

−ih̄δ′
(
x−x′

)) dψ (x′)
dx′

dx′ (9)

=−h̄2 d
2

dx2ψ (x) (10)

In this basis, the Schrödinger equation is therefore the familiar one:

P 2

2m
|ψ〉= E |ψ〉 (11)〈

x

∣∣∣∣P 2

2m

∣∣∣∣ψ〉= Eψ (x) (12)

− h̄2

2m
d2

dx2ψ (x) = Eψ (x) (13)

d2

dx2ψ (x) =−
2mE
h̄2 ψ (x) (14)

This has the general solution

ψ (x) = βeix
√

2mE/h̄+γe−ix
√

2mE/h̄ (15)
[Shankar extracts a factor of 1/

√
2πh̄ but as he notes, this is arbitrary and

can be absorbed into the constants β and γ as we’ve done here.]
In this derivation we’ve implicitly assumed that E > 0, since there is no

potential so a free particle can’t really have a negative energy. However, if
you follow through the derivation, you’ll see that it works even if E < 0. In
that case, we’d get

ψ (x) = βe−x
√

2m|E|/h̄+γex
√

2m|E|/h̄ (16)
That is, the exponents in both terms are now real instead of imaginary.

The problem with this is that the first term blows up for x→−∞ while the
second blows up for x→+∞. Thus this function is not normalizable, even
to a delta function (as was the case when E > 0), so functions such as these
when E < 0 are not in the Hilbert space.
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The propagator for the free particle is

U (t) =
∫

∞

−∞

e−ip
2t/2mh̄ |p〉〈p|dp (1)

We can find its matrix elements in position space by using the position
space form of the momentum

〈x |p〉= 1√
2πh̄

eipx/h̄ (2)

Taking the matrix element of 1 we have

U
(
x,t;x′

)
=
〈
x |U (t)|x′

〉
(3)

=
∫
〈x |p〉

〈
p
∣∣x′〉e−ip2t/2mh̄dp (4)

=
1

2πh̄

∫
eip(x−x

′)/h̄e−ip
2t/2mh̄dp (5)

=

√
m

2πh̄it
eim(x−x′)2/2h̄t (6)

The final integral can be done by combining the exponents in the third
line, completing the square and using the standard formula for Gaussian
integrals. We won’t go through that here, as our main goal is to explore the
evolution of an initial wave packet using the propagator. Given 6, we can
in principle find the wave function for all future times given an initial wave
function, by using the propagator:

ψ (x,t) =
∫
U
(
x,t;x′

)
ψ
(
x′,0

)
dx′ (7)

Here, we’re assuming that the initial time is t = 0. Shankar uses the
standard example where the initial wave packet is a Gaussian:

1
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ψ
(
x′,0

)
= eip0x

′/h̄ e
−x′2/2∆2

(π∆2)
1/4

(8)

This is a wave packet distributed symmetrically about the origin, so that
〈X〉 = 0, and with mean momentum given by 〈P 〉 = p0. By plugging this
and 6 into 7, we can work out the time-dependent version of the wave
packet, which Shankar gives as

ψ (x,t)=

[√
π

(
∆+

ih̄t

m∆

)]−1/2

exp

[
−(x−p0t/m)2

2∆2 (1+ ih̄t/m∆2)

]
exp
[
ip0

h̄

(
x− p0t

2m

)]
(9)

Again, we won’t go through the derivation of this result as it involves
a messy calculation with Gaussian integrals again. The main problem we
want to solve here is to use our alternative form of the propagator in terms
of the Hamiltonian:

U (t) = e−iHt/h̄ (10)
For the free particle

H =− h̄2

2m
d2

dx2 (11)

so if we expand U (t) as a power series, we have

U (t) =
∞

∑
s=0

1
s!

(
ih̄t

2m

)s d2s

dx2s (12)

To see how we can use this form to generate the time-dependent wave
function, we’ll consider a special case of 8 with p0 = 0 and ∆ = 1, so that

ψ0 (x) =
e−x

2/2

π1/4
(13)

=
1
π1/4

∞

∑
n=0

(−1)nx2n

2nn!
(14)

We therefore need to apply one power series 12 to the other 14. This is
best done by examining a few specific terms and then generalizing to the
main result. To save writing, we’ll work with the following

α ≡ ih̄t

m
(15)

ψπ (x) ≡ π1/4ψ0 (x) (16)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 04.03.01 Schrodinger equation & propagators.pdf
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The s = 0 term in 12 is just 1, so we’ll look at the s = 1 term and apply
it to 14:

α

2
d2

dx2

[
∞

∑
n=0

(−1)nx2n

2nn!

]
=
α

2

∞

∑
n=1

(−1)n (2n)(2n−1)x2n−2

2nn!
(17)

=
α

2

∞

∑
n=1

(−1)n (2n)!x2n−2

2nn!(2n−2)!
(18)

We can simplify this by using an identity involving factorials:

(2n)!
n!

=
(2n)(2n−1)(2n−2)(2n−3) . . .(2)(1)

n(n−1)(n−2) . . .(2)(1)
(19)

=
2n [n(n−1)(n−2) . . .(2)(1)] [(2n−1)(2n−3) . . .(3)(1)]

n!
(20)

=
2nn!(2n−1)!!

n!
(21)

= 2n (2n−1)!! (22)

The ’double factorial’ notation is defined as

(2n−1)!!≡ (2n−1)(2n−3) . . .(3)(1) (23)
That is, it’s the product of every other term from n down to 1. Using this

result, we can write 18 as

α

2

∞

∑
n=1

(−1)n (2n)!x2n−2

2nn!(2n−2)!
= α

∞

∑
n=1

(−1)n (2n−1)!!x2n−2

2(2n−2)!
(24)

Now look at the s= 2 term from 12.

1
2!
α2

22
d4

dx4

[
∞

∑
n=0

(−1)nx2n

2nn!

]
=

1
2!
α2

22

∞

∑
n=2

(−1)n (2n)(2n−1)(2n−2)(2n−3)x2n−4

2nn!
(25)

=
1
2!
α2

22

∞

∑
n=2

(−1)n (2n)!x2n−4

2nn!(2n−4)!
(26)

=
α2

222!

∞

∑
n=2

(−1)n (2n−1)!!x2n−4

(2n−4)!
(27)

We can see the pattern for the general term for arbitrary s from 12 (we
could prove it by induction, but hopefully the pattern is fairly obvious):
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1
s!
αs

2s
d2s

dx2s

[
∞

∑
n=0

(−1)nx2n

2nn!

]
=

1
s!
αs

2s
∞

∑
n=s

(−1)n (2n)!x2n−2s

2nn!(2n−2s)!
(28)

=
αs

2ss!

∞

∑
n=s

(−1)n (2n−1)!!x2n−2s

(2n−2s)!
(29)

Now we can collect terms for each power of x. The constant term (for
x0) is the first term from each series for each value of s, so we have, using
the general term 29 and taking the first term where n= s:

∞

∑
s=0

(−1)sαs (2s−1)!!
2ss!

= 1− α
2
+
α2

2!
3
2

1
2
− α

3

3!
5
2

3
2

1
2
+ . . . (30)

[The (2s−1)!! factor is 1 when s= 0 as we can see from the result 22.]
The series on the RHS is the Taylor expansion of (1+α)−1/2, as can be
verified using tables.

In general, to get the coefficient of x2r (only even powers of x occur in
the series), we take the term where n= s+ r from 29 and sum over s. This
gives

∞

∑
s=0

αs

2ss!
(−1)s+r (2s+2r−1)!!

(2r)!
=

(−1)r

2rr!

∞

∑
s=0

αs

2ss!
(−1)s (2s+2r−1)!!

(2r−1)!!
(31)

where we used 22 to get the RHS. Expanding the sum gives

∞

∑
s=0

αs

2ss!
(−1)s (2s+2r−1)!!

(2r−1)!!
= 1−α2r+1

2
+
α2

2!

(
2r+3

2

)(
2r+1

2

)
− . . .

(32)

= 1−α
(
r+

1
2

)
+
α2

2!

(
r+

3
2

)(
r+

1
2

)
− . . .

(33)

= (1+α)−r−
1
2 (34)

where again we’ve used a standard series from tables (given by Shankar
in the problem) to get the last line. Combining this with 31, we see that the
coefficient of x2r is

(−1)r

2rr!
(1+α)−r−

1
2 (35)

Thus the time-dependent wave function can be written as a single series
as:
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ψ (x,t) = U (t)ψ (x,0) (36)

= e−iHt/h̄ψ (x,0) (37)

=
1
π1/4

∞

∑
r=0

(−1)r

2rr!
(1+α)−r−

1
2 x2r (38)

=
1

π1/4
√

1+α

∞

∑
r=0

(−1)r

2r (1+α)r r!
x2r (39)

=
1

π1/4
√

1+α
exp
[
−x2

2(1+α)

]
(40)

=
1

π1/4
√

1+ ih̄t/m
exp
[

−x2

2(1+ ih̄t/m)

]
(41)

This agrees with 9 when p0 = 0 and ∆ = 1, though it does take a fair bit
of work!
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Shankar’s treatment of the infinite square well is similar to that of Grif-

fiths, which we’ve already covered, so we won’t go through the details
again. The main difference is that Shankar places the potential walls at
x = ±L2 while Griffiths places them at x = 0 and x = a. As a result, the
stationary states found by Shankar are shifted to the left, with the result

ψn (x) =


√

2
L cos nπxL n= 1,3,5,7, . . .√
2
L sin nπx

L n= 2,4,6, . . .
(1)

These results can be obtained from the form given by Griffiths (where we
take the width of the well to be L rather than a):

ψn (x) =

√
2
L

sin
nπ
(
x+ L

2

)
L

(2)

=

√
2
L

[
sin

nπx

L
cos

nπ

2
+ cos

nπx

L
sin

nπ

2

]
(3)

Choosing n to be even or odd gives the results in 1.
The specific problem we’re solving here involves a particle that starts off

in the ground state (n = 1) of a square well of width L. The well then
suddenly expands to a width of 2L symmetrically, that is, it now extends
from x=−L to x=+L. We are to find the probability that the particle will
be found in the ground state of the new well.

We solved a similar problem before, but in that case the well expanded
by moving its right-hand wall to the right while keeping the left-hand wall
fixed, so that the particle found itself in the left half of the new, expanded
well. In the present problem, the particle finds itself centred in the new
expanded well. You might think that this shouldn’t matter, but it turns out
to make quite a difference. To calculate this probability, we need to express
the original wave function in terms of the stationary states of the expanded
well, which we’ll refer to as φn (x). That is

1
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ψ1 (x) =
∞

∑
n=1

cnφn (x) (4)

Working with Shankar’s functions 1 we find φn by replacing L by 2L:

φn (x) =

{
1√
L

cos nπx2L n= 1,3,5,7, . . .
1√
L

sin nπx
2L n= 2,4,6, . . .

(5)

Using the orthonormality of the wave functions, we have

c1 =
∫ L

−L
ψ1 (x)φ1 (x)dx (6)

=
∫ L/2

−L/2

√
2
L

cos
πx

L

1√
L

cos
πx

2L
dx (7)

=

√
2
L

∫ L/2

−L/2
cos

πx

L
cos

πx

2L
dx (8)

=

√
2
L

∫ L/2

−L/2

(
1−2sin2 πx

2L

)
cos

πx

2L
dx (9)

=
8

3π
(10)

The limits of integration are reduced in the second line since ψ1 (x) = 0
if x >

∣∣L
2

∣∣.
Thus the probability of finding the particle in the new ground state is

|c1|2 =
64

9π2 (11)

Note that in the earlier problem where the well expanded to the right, the
probability was 32

9π2 , so the new probability is twice as much when the wave
function remains centred in the new well.

We could have also done the calculation using Griffiths’s well which ex-
tended from x = 0 to x = L. If this well expands symmetrically, it now
runs from x=−L2 to x= 3L

2 , and the stationary states of this new well are
obtained by replacing L→ 2L and x→ x+ L

2 , so we have

φn (x) =
1√
L

sin
nπ
(
x+ L

2

)
2L

(12)

We then get
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c1 =
∫ 3L/2

−L/2
ψ1 (x)φ1 (x)dx (13)

=

√
2
L

∫ L

0
sin

πx

L
sin

π
(
x+ L

2

)
2L

dx (14)

=
8

3π
(15)

The integral can be done by expanding the second sine using the sine
addition formula. (I just used Maple.)
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One way of comparing the classical and quantum pictures of a particle in

an infinite square well is to calculate the force exerted on the walls by the
particle. If a particle is in state |n〉, its energy is

En =
(nπh̄)2

2mL2 (1)

If the particle remains in this state as the walls are slowly pushed in, so
that L slowly decreases, then its energyEn will increase, meaning that work
is done on the system. The force is the change in energy per unit distance,
so the force required is

F =−∂En

∂L
=

(nπh̄)2

mL3 (2)

If we treat the system classically, then a particle with energy En between
the walls is effectively a free particle in this region (since the potential V = 0
there), so all its energy is kinetic. That is

En =
1
2
mv2 (3)

v =

√
2En

m
(4)

=
nπh̄

mL
(5)

The classical particle bounces elastically between the two walls, which
means its velocity is exactly reversed at each collision. The momentum
transfer in such a collision is

∆p= 2mv =
2nπh̄
L

(6)

The time between successive collisions on the same wall is
1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://www.physicspages.com/pdf/Griffiths QM/Infinite Square Well.pdf


INFINITE SQUARE WELL - FORCE TO DECREASE WELL WIDTH 2

∆t=
2L
v

=
2mL2

nπh̄
(7)

Thus the average force exerted on one wall is

F̄ =
∆p

∆t
=

(nπh̄)2

mL3 (8)

Comparing with 2, we see that the quantum and classical forces in this
case are the same.
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Shakar’s derivation of the probability current in 3-d is similar to the one

we reviewed earlier, so we don’t need to repeat it here. We can, however,
look at a slight variant where the potential has a constant imaginary part, so
that

V (r) = Vr (r)− iVi (1)
where Vr (r) is a real function of position and Vi is a real constant. A

Hamiltonian containing such a complex potential is not Hermitian.
To see what effect this has on the total probability of finding a particle in

all space, we can repeat the derivation of the probability current. From the
Schrödinger equation and its complex conjugate, we have

ih̄
∂ψ

∂t
=− h̄2

2m
∇

2ψ+Vrψ− iViψ (2)

−ih̄∂ψ
∗

∂t
=− h̄2

2m
∇

2ψ∗+Vrψ
∗+ iViψ

∗ (3)

Multiply the first equation by ψ∗ and the second by ψ and subtract to get

ih̄
∂

∂t
(ψψ∗) =− h̄2

2m
(
ψ∗

∇
2ψ−ψ∇

2ψ∗)−2iViψψ∗ (4)

As in the case with a real potential, the first term on the RHS can be
written as the divergence of a vector:

J =
h̄

2mi
(Ψ∗

∇Ψ−Ψ∇Ψ
∗) (5)

∇ ·J =
h̄

2mi
(
ψ∗

∇
2ψ−ψ∇

2ψ∗) (6)

∂

∂t
(ψψ∗) =−∇ ·J− 2Vi

h̄
ψψ∗ (7)

If we define the total probability of finding the particle anywhere in space
as

1
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P ≡
∫
ψ∗ψd3r (8)

then we can integrate 4 over all space and use Gauss’s theorem to convert
the volume integral of a divergence into a surface integral:

∂

∂t

(∫
ψψ∗d3r

)
=−

∫
∇ ·Jd3r− 2Vi

h̄

∫
ψψ∗d3r (9)

∂P

∂t
=−

∫
S

J ·da− 2Vi
h̄
P (10)

We make the usual assumption that the probability current J tends to zero
at infinity fast enough for the first integral on the RHS to be zero, and we
get

∂P

∂t
=−2Vi

h̄
P (11)

This has the solution

P (t) = P (0)e−2Vit/h̄ (12)
That is, the probability of the particle existing decays exponentially. Al-

though Shankar says that such a potential can be used to model a system
where particles are absorbed, it’s not clear how realistic it is since the
Hamiltonian isn’t hermitian, so technically the energies in such a system
are not observables.
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Here are a few examples of probability current.

Example 1. Suppose the wave function has the form

ψ (r, t) = cψ̃ (r, t) (1)
where c is a complex constant and ψ̃ (r, t) is a real function of position

and time. Then the probability current is

j =
h̄

2mi
(ψ∗∇ψ−ψ∇ψ∗) (2)

=
h̄

2mi
(
cc∗

(
ψ̃∇ψ̃

)
− ψ̃∇ψ̃

)
(3)

= 0 (4)

In particular, ifψ itself is real, the probability current is always zero, so all
the stationary states of systems like the harmonic oscillator and hydrogen
atom that we’ve studied show no flow of probability, which is what we’d
expect since they are, after all, stationary states.

Example 2. Now the wave function is

ψp =
1

(2πh̄)3/2
eip·r/h̄ (5)

where the momentum p is constant. In this case we have

∇ψp =
i

(2πh̄)3/2 h̄
eip·r/h̄p (6)

∇ψ∗p =
−i

(2πh̄)3/2 h̄
e−ip·r/h̄p (7)

ψ∗p =
1

(2πh̄)3/2
e−ip·r/h̄ (8)

1
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This gives a probability current of

j =
h̄

2mi
(ψ∗p∇ψp−ψp∇ψ∗p) (9)

=
1

(2πh̄)3 2m
(p+p) (10)

=
1

(2πh̄)3m
p (11)

The probability density is

P = ψ∗pψp =
1

(2πh̄)3 (12)

Thus the current can be written as

j =
P

m
p (13)

Classically, the momentum is p =mv, so the current has the same form
as j = Pv. This is similar to the electromagnetic case where the electric
current density J = ρv where ρ is the charge density and v is the velocity of
that charge. The probability density can be viewed as “probability” moving
with velocity v.

Example 3. Now consider a one-dimensional problem where the wave
function consists of two oppositely-moving plane waves:

ψ = Aeipx/h̄+Be−ipx/h̄ (14)
In this case, we have

2mi
h̄
j = ψ∗∇ψ−ψ∇ψ∗ (15)

=
(
A∗e−ipx/h̄+B∗eipx/h̄

) ip
h̄

(
Aeipx/h̄+Be−ipx/h̄

)
−(

Aeipx/h̄+Be−ipx/h̄
) ip
h̄

(
−A∗e−ipx/h̄+B∗eipx/h̄

)
(16)

=
2ip
h̄

(
|A|2−|B|2

)
(17)

j =
p

m

(
|A|2−|B|2

)
(18)

The probability current separates into two terms, one for each direction
of momentum.
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While analyzing the free particle, we saw that we could construct a nor-

malizable combination of stationary states by writing

Ψ(x,t) =
1√
2π

ˆ +∞

−∞

φ(k)eikxe−ih̄k
2t/2mdk (1)

Given the initial wave function, we can find φ(k) via Plancherel’s theo-
rem:

φ(k) =
1√
2π

ˆ +∞

−∞

Ψ(x,0)e−ikxdx (2)

The integral 1 cannot usually be done in closed form, but one case where
it can is if the initial wave function is a Gaussian, of the form

Ψ(x,0) = Ae−ax
2

(3)
To find A, we normalize:

A2
ˆ

∞

−∞

e−2ax2
dx= 1 (4)

The integral comes out to
√
π/2a from which we get

A=

(
2a
π

)1/4

(5)

Finding Ψ(x,t) requires finding φ(k) via equation 2. So we get (using
Maple to do the integral):

φ(k) =
1√
2π

(
2a
π

)1/4ˆ ∞

−∞

e−ax
2−ikxdx (6)

=

(
1

2πa

)1/4

e−k
2/4a (7)

We can now use 1 again using Maple to do the integral:
1
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Ψ(x,t) =
1√
2π

ˆ
∞

−∞

φ(k)eikxe−ih̄k
2t/2mdk (8)

=
1√
2π

(
1

2πa

)1/4ˆ ∞

−∞

e−k
2/4aeikxe−ih̄k

2t/2mdk (9)

=

(
2a
π

)1/4 e−ax
2/(1+2ih̄at/m)√

1+2ih̄at/m
(10)

where Maple was used for the integral.
Calculating |Ψ(x,t)|2 can be done using Maple, but it seems to require a

bit of help. First we write out the complex conjugate:

Ψ
∗(x,t) =

(
2a
π

)1/4 e−ax
2/(1−2ih̄at/m)√

1−2ih̄at/m
(11)

Then we calculate Ψ∗Ψ using the Maple command simplify(evalc(Ψ∗Ψ))
assuming positive and we get

|Ψ(x,t)|2 =

√
2a
π

e−2ax2/[1+(2h̄at/m)2]√
1+(2h̄at/m)2

(12)

=

√
2
π
we−2w2x2

(13)

with

w ≡
(

a

1+(2h̄at/m)2

)1/2

(14)

At t = 0, w =
√
a, so |Ψ(x,t)|2 =

√
2a/πe−2ax2

which is correct. The
wave packet at t= 0 is therefore a Gaussian centred at x= 0. As t increases,
w gets smaller but the centre of the Gaussian does not move from x= 0 so
the packet spreads out. A couple of plots show this behaviour. We’ve set
a= 1 in both plots. In the red plot t= 0 so w = 1 and in the green plot t is
larger, at a value such that w = 0.1.



FREE PARTICLE: GAUSSIAN WAVE PACKET 3

We can get the mean values of position and momentum by integration,
although it takes a bit of work. By symmetry, 〈x〉 = 〈p〉 = 0. To get the
other two average values, we use integration with Maple.

〈x2〉 =

ˆ
∞

−∞

x2|Ψ(x,t)|2dx (15)

=
1

4w2 (16)

=
1+(2h̄at/m)2

4a
(17)

This shows that the wave function spreads out with time. At t= 0
〈
x2〉=

1/4a, but it then increases quadratically with t.
Calculating 〈p2〉 starts with:

〈p2〉 = −h̄2
ˆ

∞

−∞

Ψ
∗ ∂

2

∂x2 Ψdx (18)
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This can be evaluated with the Maple command simplify(evalc(int(-h^2*simplify(evalc(psixtconj*(diff(psixt,
x$2)))), x = -infinity .. infinity))) assuming positive where psixtconj and
psixt are the Maple expressions for Ψ∗ and Ψ respectively. The result is:

〈p2〉= ah̄2 (19)
The uncertainty principle thus becomes

σxσp =
√
〈x2〉〈p2〉 (20)

=
h̄

2

√
1+(2h̄at/m)2 (21)

The system has the least uncertainty at t= 0. Uncertainty increases with
time as the wave packet spreads out.
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Section 5.2, Exercise 5.2.6.
To complete our analysis of the finite square well, we’ll have a look at the

solutions where the spatial wave function ψ(x) is an odd function. In our
analysis of the problem where ψ(x) was even, we began with the potential:

V (x) =


0 x <−a
−V0 −a≤ x≤ a
0 x > a

(1)

where V0 is a positive constant energy, and a is a constant location on the x
axis.

For bound states, we have −V0 < E < 0, (the total energy has to be
greater than the minimum value of the potential, as we proved before) which
results in bound states in which we would expect ψ(x) to oscillate within
the well and decay exponentially outside the well.

Following the same procedure as in the even function case, we divide the
solution into separate regions and try to solve for the various constants that
pop up by applying boundary conditions. The equation to be solved can be
split into three regions:

− h̄2

2m
d2ψ

dx2 = Eψ (x <−a) (2)

− h̄2

2m
d2ψ

dx2 −V0ψ = Eψ (−a≤ x≤ a) (3)

− h̄2

2m
d2ψ

dx2 = Eψ (x > a) (4)

The general solutions in these three regions are easy enough to write
down. We get

1
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ψ(x) =


Ae−κx+Beκx x <−a
C sin(µx)+D cos(µx) −a≤ x≤ a
Fe−κx+Geκx x > a

(5)

where as usual we’ve introduced some convenience parameters:

κ ≡
√
−2mE
h̄

(6)

µ ≡
√

2m(E+V0)

h̄
(7)

Note that both these parameters are real and can be taken as positive,
since −V0 < E < 0 for bound states. Note that we’ve also expressed the
solution in the middle section in terms of sin and cos rather than in terms
of eiµx and e−iµx. The latter is also valid, but as we’ll see in the next
paragraph, using sin and cos is easier.

So now we have six constants to deal with. First, we can use the theorem
that says that if the potential function is even (as this one is: V (−x) =
V (x)), then ψ(x) is even or odd. We now require ψ(x) to be odd, so that
ψ(−x) =−ψ(x). Since the cosine is an even function, we must haveD= 0.
In the outer regions, the requirement of an odd function means thatA=−G
and B =−F .

Next, we can impose the requirement that ψ(x)→ 0 at±∞, so this means
that A=G= 0. We therefore get

ψ(x) =


Beκx x <−a
C sin(µx) −a≤ x≤ a
−Be−κx x > a

(8)

Now we can apply the boundary conditions. Since there are no infinite
energies involved (the potential is finite everywhere), we apply Born’s con-
ditions and require that both ψ and ψ′ are continuous at both boundaries.
Because of the symmetry of the wave function, we can consider only one
boundary; the other one won’t give us anything new. Therefore these two
conditions give us (using the fact that sine is odd and cosine is even):

Be−κa = −C sin(µa) (9)
κBe−κa = µC cos(µa) (10)

Dividing these two equations together, we can get rid of B and C:
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1
κ
=−1

µ
tan(µa) (11)

This is actually a condition that will give us the allowed energies, since
both κ and µ are functions of E. Unfortunately, this equation cannot be
solved explicitly for E (it’s what is known as transcendental, which means
that the variable we’re trying to solve for occurs both inside and outside of
a function such as the tan). The only way such equations can be solved is
numerically, but we can get an idea of the solutions by plotting the two sides
of the equation on the same graph and seeing where these plots intersect.

We can rewrite this equation as

tan(µa) = −µ
κ

(12)

From the definitions of κ and µwe can eliminate κ as follows:

κ2 +µ2 = 2mV0/h̄
2 (13)

κ =

√
2mV0/h̄

2−µ2 (14)

µ

κ
=

1√
2mV0/µ2h̄2−1

(15)

tan(µa) = − 1√
2mV0/µ2h̄2−1

(16)

= − 1√
2ma2V0/(µa)2h̄2−1

(17)

Defining the variable z ≡ µa, we can now write this equation as a tran-
scendental equation in the single variable z:

tanz =−

(
2ma2V0/h̄

2

z2 −1

)−1/2

(18)

To solve this equation graphically or numerically for a given particle,
we clearly need to specify values for a and V0. However, we can treat the
combination of parameters as a single parameter z0:

z2
0 ≡

2ma2V0

h̄2 (19)

so we have the equation
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tanz =−
(
z2

0
z2 −1

)−1/2

(20)

We can plot both sides of this equation on the same graph for various
values of z0 to get an idea of what happens.
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In these plots, we show what happens for three different values of z0. The

green curves show the plot of tanz; the red curves that of −
(
z2

0
z2 −1

)−1/2
.

In the first graph, with z0 = 2, we get only one intersection between the
two plots, around z = 2. Thus for z0 = 2, there is only one bound state,

with an energy that can be worked out from z = µa=

√
2m(E+V0)a

h̄ ≈ 2. A
more accurate value can be obtained by numerical solution of the equation,
but this requires a computer (well, actually, the graphs were drawn on a
computer too, but never mind).

The second and third graphs show what happens as we increase z0 to 5
and then 8. In each case we pick up an extra intersection between the two
graphs, so we add an extra bound state.

In this case, we see that if we reduce z0 to a value less than π/2, there
will be no bound states, since the tangent is asymptotic to the line z = π/2.
We can see the situation in the following plot, in which z0 = 1.4 < π/2:
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The curve −
(
z2

0
z2 −1

)−1/2
is here asymptotic to the line z = 1.4, so it

will never intersect the tangent curve.
At the other extreme, as V0 → ∞, we would expect to get the infinite

square well states. To see this, note that the graph of −
(
z2

0
z2 −1

)−1/2
is

asymptotic to the line z = z0, so as V0 → ∞, z0 → ∞ and the asymptote
gets further and further along the axis, so the number of intersections with
branches of the tangent gets larger. Thus the number of energy states gets
larger and larger, eventually becoming infinite. As to the locations of these
intersections, we can notice that for any fixed, finite value of z, the quantity

−
(
z2

0
z2 −1

)−1/2
tends to zero as z0→∞, so that means that the entire curve

approaches the horizontal axis, so the intersections with the tangent curve
will occur very near those locations where the tangent curve meets the hori-
zontal axis, that is, where tanz = 0. These points are at z = nπ. This means
that
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z2 =
2ma2(E+V0)

h̄2 (21)

≈ n2π2 (22)

E+V0 ≈
n2π2h̄2

2ma2 (23)

=
(2n)2π2h̄2

2m(2a)2 (24)

Since E + V0 is the height of the bound state above the bottom of the
well, we can see that this formula does indeed give us the expected energy
levels for an infinite square well of width 2a, for even quantum numbers
2n. The other ones, for odd n came from a solution where we assume ψ(x)
is an even function.
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Section 5.4, Exercise 5.4.2 (a).
We’ve analyzed the scattering problem in the finite square well, and we

can use similar techniques to analyze a finite square barrier, which has the
potential

V (x) =


0 x <−a
V0 −a≤ x≤ a
0 x > a

(1)

where V0 is a positive constant energy, and a is a constant location on the x
axis.

There are three distinct cases here:
(1) Energy below the barrier: 0≤ E < V0
(2) Energy exactly equal to the barrier: E = V0
(3) Energy greater than the barrier: E > V0

In all three cases, the wave function away from the barrier on either side has
the same form; it is only within the barrier that the three cases differ. We’ll
consider first the case where 0≤ E < V0.

In this case, the Schrödinger equation within the barrier is

− h̄2

2m
ψ′′+V0ψ = Eψ (2)

ψ′′ = µ2ψ (3)

where

µ=

√
2m(V0−E)

h̄
(4)

This has solution
1
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ψ(x) = Ceµx+De−µx (5)

Outside the barrier, the Schrödinger equation is

ψ′′ = Eψ (6)

Outside the barrier on the left, the solution is the sum of travelling waves
(assuming particles are incident from the left only), while to the right we
have right propagating waves only. Thus

ψ(x) =

{
Aeikx+Be−ikx x <−a
Feikx x > a

(7)

where

k =

√
2mE
h̄

(8)

Since the potential is finite everywhere, both ψ and ψ′ are continuous
everywhere, which gives us four boundary conditions.

At x=−a we have

Ae−ika+Beika = Ce−µa+Deµa (9)

ik
(
Ae−ika−Beika

)
= µ

(
Ce−µa−Deµa

)
(10)

At x= a:

Ceµa+De−µa = Feika (11)
µ
(
Ceµa−De−µa

)
= ikFeika (12)

We can solve these linear equations to get the other four constants in
terms of A. The results are
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B =
e−2ika (k2 +µ2)(e2µa− e−2µa)

2ikµ(e2µa+ e−2µa)+(k2−µ2)(e2µa− e−2µa)
A (13)

=
e−2ika (k2 +µ2)sinh(2µa)

2ikµcosh(2µa)+(k2−µ2)sinh(2µa)
A (14)

C =
e−aµ−iak

(
−k2 +kµi

)
2ikµcosh(2µa)+(k2−µ2)sinh(2µa)

A (15)

D =
e−aµ−iak

(
k2 +kµi

)
2ikµcosh(2µa)+(k2−µ2)sinh(2µa)

A (16)

F =
2e−2ikakµi

2ikµcosh(2µa)+(k2−µ2)sinh(2µa)
A (17)

From here we can get the transmission coefficient as

T =
|F |2

|A|2
(18)

=
4µ2k2

[µ4 +2µ2k2 +k4]sinh2 (2µa)+4µ2k2
(19)

=
1

(µ2 +k2)
2 sinh2 (2µa)/4µ2k2 +1

(20)

The reciprocal of T is then, substituting to get the physical quantities
back:

T−1 = 1+

(
µ2 +k2)2 sinh2 (2µa)

4µ2k2 (21)

= 1+
V 2

0
4E (V0−E)

sinh2
(

2a
h̄

√
2m(V0−E)

)
(22)

The second case is where E = V0. In this case, the outer two solutions
are the same as before, but in the barrier region we have

ψ′′ = 0 (23)

which has the solution

ψ = Cx+D (24)
Applying the boundary conditions we have, at x=−a
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Ae−ika+Beika = −Ca+D (25)

ik
(
Ae−ika−Beika

)
= C (26)

At x= a we have

Ca+D = Feika (27)
C = ikFeika (28)

Solving these equations we get

B =
kae−2ika

ka+ i
A (29)

C =
ke−ika

−ka− i
A (30)

D = e−ikaA (31)

F =
e−2ika

1− ika
A (32)

In this case the transmission coefficient is

T =
|F |2

|A|2
(33)

=
1

1+k2a2 (34)

=
1

1+2mEa2/h̄2 (35)

Finally, for E > V0 the Schrödinger equation within the barrier is

− h̄2

2m
ψ′′ = (E−V0)ψ (36)

ψ′′ = −2m(E−V0)

h̄2 ψ (37)

= −λ2ψ (38)

where

λ=

√
2m(E−V0)

h̄
(39)
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The solution within the barrier is thus

ψ(x) = Ceiλx+De−iλx (40)

Boundary conditions give at x=−a

Ae−ika+Beika = Ce−iλa+Deiλa (41)

ik
(
Ae−ika−Beika

)
= iλ

(
Ce−iλa−Deiλa

)
(42)

At x= a:

Ceiλa+De−iλa = Feika (43)

iλ
(
Ceiλa−De−iλa

)
= ikFeika (44)

Solving these four equations gives

B =
e−2ika (k2−λ2)sin(2λa)

(k2 +λ2)sin(2λa)+2iλk cos(2λa)
A (45)

C =
e−ia(λ+k) (λ+k)k

−i(k2 +λ2)sin(2λa)+2λk cos(2λa)
A (46)

D =
e−ia(k−λ) (k−λ)k

i(k2 +λ2)sin(2λa)−2λk cos(2λa)
A (47)

F =
2kλe−2ika

−i(k2 +λ2)sin(2λa)+2λk cos(2λa)
A (48)

The transmission coefficient is

T =
|F |2

|A|2
(49)

=
4λ2k2

(λ4−2λ2k2 +k4)sin2 (2λa)+4λ2k2
(50)

=
1

1+(λ2−k2)
2 sin2 (2λa)/4λ2k2

(51)

The reciprocal is
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T−1 = 1+

(
λ2−k2)2 sin2 (2λa)

4λ2k2 (52)

= 1+
V 2

0
4E (E−V0)

sin2
(

2a
h̄

√
2m(E−V0)

)
(53)
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Section 5.2, Exercise 5.2.2a.
We’ve used the calculus of variations to derive the geodesic equation in

general relativity, but a similar approach can be used in quantum mechanics
to get an upper bound on the ground state energy for a given hamiltonian.
The technique rests on the following theorem:

Theorem. If ψ is any normalized function and H is a hamiltonian, then the
ground state energy E0 of this hamiltonian has an upper bound given by

E0 ≤ 〈ψ |H|ψ〉 ≡ 〈H〉 (1)

Although we don’t know the eigenfunctions or eigenvalues of H , we do
know that the eigenfunctions satisfy Hψn = Enψn and form a complete
orthonormal set, so we can expand ψ in terms of them:

ψ = ∑
n

cnψn (2)

Therefore

〈ψ |H|ψ〉= ∑
n,m

c∗mcn 〈ψm |H|ψn〉 (3)

= ∑
n,m

c∗mcnEn 〈ψm|ψn〉 (4)

= ∑
n

|cn|2En (5)

Since En ≥ E0 for all n, we get

〈ψ |H|ψ〉 ≥ E0 ∑
n

|cn|2 = E0 (6)

This theorem is usually applied by choosing the function ψ such that it
depends on one or more parameters which can then be varied to find the
minimum value for 〈H〉.

1
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Example 1. We’ll use a Gaussian trial function to get an upper bound on
the ground state energy for the potential

V (x) = α |x| (7)
The trial function is

ψ = Ae−bx
2

(8)
The parameter A is determined by normalization:

|A|2
ˆ

∞

−∞

e−2bx2
dx = 1 (9)

A =

(
2b
π

)1/4

(10)

We get

〈H〉=
√

2b
π

ˆ
∞

−∞

[
− h̄2

2m
e−bx

2 d2

dx2

(
e−bx

2
)
+ e−2bx2

α |x|
]
dx (11)

The integrand is an even function of x, so this is equivalent to

〈H〉= 2

√
2b
π

ˆ
∞

0

[
− h̄2

2m
e−bx

2 d2

dx2

(
e−bx

2
)
+ e−2bx2

αx

]
dx (12)

=
1

2
√

2πm

(
h̄2b
√

2π+
2αm√
b

)
(13)

where we did the integral using Maple.
We want to vary the parameter b to find the minimum of this expression,

so we take the derivative and set it to zero:

d〈H〉
db

=
1

2
√

2πm

(
h̄2
√

2π− αm

b3/2

)
= 0 (14)

b=
(αm)2/3

(2π)1/3 h̄4/3
(15)

This gives the upper bound on E0 as

E0 ≤
3(2αh̄)2/3

4(πm)1/3
(16)
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—-

Example 2. Now we’ll use the potential

V (x) = αx4 (17)
Doing the calculations yields (since the potential is again an even func-

tion):

〈H〉= 2

√
2b
π

ˆ
∞

0

[
− h̄2

2m
e−bx

2 d2

dx2

(
e−bx

2
)
+ e−2bx2

αx4

]
dx (18)

=
1

16
8h̄2b3 +3αm

b2m
(19)

=
h̄2b

2m
+

3α
16b2 (20)

Finding the parameter value that minimizes 〈H〉 we get

d〈H〉
db

=
h̄2

2m
− 3α

8b3 = 0 (21)

b =
(6αm)1/3

2h̄2/3
(22)

E0 ≤
3
8

(
6h̄4α

m2

)1/3

(23)
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Section 5.2, Exercise 5.2.3.
If the potential function in the Schrödinger equation goes to infinity at

infinite distance (as is the case in the infinite square well and the harmonic
oscillator), then the only allowed energies of a particle in such a system are
discrete, quantized energy states. A particle moving in such a potential can
exist only in a bound state, where the probability of finding the particle tends
to zero beyond some finite distance. In the infinite square well, the particle
is bounded by the infinitely high walls, and the probability of finding it
outside these walls is rigorously zero. In the harmonic oscillator, where the
potential tends to infinity gradually, the particle can exist at greater distances
if its energy is higher (just as in classical physics, a mass with higher energy
will have a larger range of oscillation on a spring), but for any given energy
state, the probability of finding the particle in any region where the potential
is greater than the energy drops rapidly to zero.

Such potentials offer insurmountable barriers to the particle, so the no-
tions of scattering from, or transmission through a region do not arise (in
a scattering experiment, the particle is assumed to travel in from infinity in
one direction and scatter back to infinity in the opposite direction; with an
infinite potential, this is not possible). The only way we can talk about scat-
tering or transmission of particles is to deal with cases where the particle
has the possibility of travelling arbitrarily far. In such cases, infinitely high
barriers cannot appear.

Unfortunately, the mathematics for such cases tends to get a bit more
complicated than in those cases with infinite barriers (and as we’ve seen
in the case of the harmonic oscillator, the mathematics is adquately hard
even there!). One case that is often analyzed as an introduction to scattering
and transmission is that of the delta-function well. The Dirac delta-function
δ(x) is a mathematical curiosity in that it is zero everywhere except at x= 0,
is infinite at that one point, and has an integral equal to 1 provided that the
interval of integration includes the point x = 0 (the integral is zero other-
wise).

1
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Clearly the delta-function doesn’t describe any real physical situation,
since no known potential function is a delta-function. However, the function
does have its uses as an approximation in many areas of physics, notably
electrodynamics (where in fact the representation of an electron as a point
charge just might actually be realistic - electrons have what appears to be
zero size, or something very close to it). The delta-function does allow
one of the simpler analyses of scattering and transmission, however, so it’s
useful to have a look at it before tackling more realistic cases.

The potential we’ll consider is

V (x) =−αδ(x) (1)

where α is a positive constant, so this represents a potential well of infinite
depth at the origin, but with infinitestimally small width. Note that, from
the properties of the delta-function, this is the same as writing

V (x) =−δ(x/α) (2)

Since δ(x) is infinite at x = 0, no matter what the value of α, α does
not measure the depth of the well; rather it might be thought of more as
measuring the ’strength’ of the potential in some sense. As we’ll see, α
does turn up in the energy levels and in the probabilities of scattering and
transmission, so it’s not an irrelevant parameter.

Since δ(x) = 0 everywhere except x = 0, the Schrödinger equation at
these points reduces to

− h̄2

2m
d2ψ

dx2 = Eψ (3)

We’ll consider bound states here and leave the scattering states to another
post. For bound states, the energy E has to be negative, since it has to be
less than the potential on either side of the (infinitesimally narrow) well,
which has its top at V (x) = 0. So we can rewrite this as

d2ψ

dx2 = κ2ψ (4)

where

κ≡
√
−2mE
h̄

(5)

Since E is negative, κ is real and can be assumed positive.
Now we have to be careful here. The general solution of 4 is quite simple:
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ψ(x) = Ae−κx+Beκx (6)

as can be checked by direct substitution. The constants A and B, one might
think, can be determined by some boundary conditions or by normalization.
But we have in fact two distinct regions in which we have to find the solu-
tion: x < 0 and x > 0 (we’ll get to what happens at x = 0 in a moment).
Clearly if we want the solution to be normalizable, we can’t use the same
solution in both regions, since for x < 0, the Ae−κx term tends to infinity
for large negative x, and for x > 0, the other term Beκx tends to infinity for
large positive x. So we need a separate solution in each area. If we take 6 as
the solution for x < 0, then we can propose another function with different
constants as the solution for x > 0:

ψ−(x) = Ae−κx+Beκx (7)
ψ+(x) = Ce−κx+Deκx (8)

We can dispose of two of the constants immediately by requiring the
wave functions tend to zero at infinity. This gives us A = 0 and D = 0, so
we have

ψ−(x) = Beκx (9)
ψ+(x) = Ce−κx (10)

Somehow we have to join up these functions across x= 0. We can refer to
Born’s conditions on the wave function and note that if the wave function is
continuous at x= 0, then we must have B = C, so we’re now down to

ψ−(x) = Beκx (11)
ψ+(x) = Be−κx (12)

However, since the potential is infinite at x = 0, we can’t require that the
derivative of the wave function be continuous.

So what can we say about B? The trick here is to try integrating the
Schrödinger equation across the boundary. Putting the delta-function po-
tential into the Schrödinger equation we get

− h̄2

2m
d2ψ

dx2 −αδ(x)ψ = Eψ (13)

Now if we integrate this equation term by term across the boundary, we
get, for some value of ε:

http://physicspages.com/pdf/Griffiths QM/Born conditions.pdf
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− h̄2

2m

ˆ ε

−ε

d2ψ

dx2 dx−α
ˆ ε

−ε
δ(x)ψdx = E

ˆ ε

−ε
ψdx (14)

− h̄2

2m
dψ

dx

∣∣∣ε
−ε
−αψ(0) = E

ˆ ε

−ε
ψdx (15)

If we take the limit as ε→ 0, the integral on the right tends to zero, since it
is the integral of a continuous function over an infinitesimally small interval.
The first term on the left, however, will not be zero, since derivative of the
wave function is not continuous when the potential is infinite. However, it
does give us a relation which ends up determining the bound state energy.
So if we take the limit as ε→ 0, we get

− h̄2

2m

[
dψ

dx

∣∣∣
ε↓0
− dψ
dx

∣∣∣
−ε↑0

]
= αB (16)

h̄2

m
Bκ = αB (17)

κ =
mα

h̄2 (18)

E = − h̄
2κ2

2m
(19)

= −mα
2

2h̄2 (20)

Just as in the infinite square well, our analysis ends up giving a condition
on the energyE rather than on the constantB. B is in fact easily determined
by normalizing the wave function:

ˆ
∞

−∞

|ψ(x)|2dx = |B|2
(ˆ 0

−∞

e2κxdx+

ˆ
∞

0
e−2κxdx

)
(21)

=
1
κ
|B|2 = 1 (22)

B =
√
κ (23)

=

√
mα

h̄
(24)

Thus a delta-function well has precisely one bound state, and the energy
does depend on the parameter α: the larger α is, the lower (more negative)
the energy E is. This is why it makes sense to consider α as the strength of
the potential; it regulates how deeply bound the particle in a stationary state
is within the well.
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The wave function for the bound state looks like this (here we’ve taken
κ= 1 but it’s just the general shape of the curve that’s important):

The probability of finding the particle is maximum at x= 0 and falls off
exponentially on either side. Since the exponent is ±κx and κ =mα/h̄2,
the rate of exponential fall-off depends on the strength of the delta-function.
This behaviour is consistent with other bound states. The infinite square
well is essentially a well with infinite strength, so the fall off at the bound-
aries is absolute - there is no exponential decay. With the harmonic os-
cillator, the wave function oscillates (in space) within the well (although
mathematically, the oscillation is due to Legendre polynomials rather than
trigonometric functions), but in the regions where the potential is greater
than the energy, there is again an exponential decay. In the case of a delta
function, since the well itself is infinitesimally narrow, there is no region
where the wave nature of the particle is displayed - the exponential fall-off
starts immediately either side of the well.
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Section 5.4, Exercise 5.4.2 (b).
The delta-function well always has exactly one bound state, where the en-

ergy of the particle is less than zero. If we consider states where the energy
is greater than zero, we can investigate the phenomenon of scattering.

The potential function we are using is

V (x) =−αδ(x) (1)

where α is a positive constant that gives the strength of the well. In this
case, the Schrödinger equation is

− h̄2

2m
d2ψ

dx2 −αδ(x)ψ = Eψ (2)

At all points except x= 0 this equation becomes

− h̄2

2m
d2ψ

dx2 = Eψ (3)

With E > 0, we can write this as

d2ψ

dx2 =−k2ψ (4)

where

k ≡
√

2mE
h̄

(5)

Since E > 0, k is real and can be taken to be positive. As in the case
of the bound state, because of the singularity at x = 0 we need to consider
solutions on either side of this point separately.

The general solution of 4 is
1
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ψ(x) = Aeikx+Be−ikx (6)
so we can take this as the solution for x < 0 and call it ψ−(x):

ψ−(x) = Aeikx+Be−ikx (7)
For x > 0, we can write

ψ+(x) = Ceikx+De−ikx (8)
Because the potential is zero in these two regions, the solutions are those

of the free particle and, as we saw when we considered that case, these so-
lutions are not normalizable so cannot, on their own, represent a physically
realizable state. However, because any linear combination of solutions is
also a solution, we found in the case of the free particle that we could create
a wave packet and that such a packet, although not itself a stationary state,
was normalizable and represented a particle travelling through space.

Unfortunately, we also saw that the mathematics rapidly becomes pretty
horrible when we attempt to work with wave packets, so much of what is
known about them is derived through computer simulations. When dealing
with scattering problems, the same problems arise, and realistic problems
(that is, ones involving wave packets rather than single, non-normalizable
functions) can be solved only by simulation.

We will work through the problem using stationary states to see how
scattering problems are handled, but it should always be kept in mind that
this is not a physically realizable situation. The problem is that we will be
doing the analysis for only a single value of k (and hence, of E), whereas
a wave packet consists of contributions from many different values of k,
and thus from many different energies. As we will see, the probabilities of
reflection from the potential and of transmission through it both depend on
k, so each value of k behaves differently. A proper wave packet therefore
scatters in quite a complex manner, and it’s a non-trivial problem to work
this out in detail.

With that warning, let’s see how we solve a scattering problem for a sin-
gle value of k. The idea behind a scattering experiment is that we imagine a
particle coming in from one direction (say, coming in from the left, so mov-
ing towards the positive x direction). When this particle hits the potential
well, it may bounce back towards −x, or it may go through the x= 0 point
and emerge on the other side, still travelling in the direction of +x.

Remember that the full solution of the Schrödinger equation in this case
is

Ψ(x,t) = ψ(x)e−iEt/h̄ (9)
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For x < 0, this becomes

Ψ−(x,t) = Aei(kx−Et/h̄)+Bei(−kx−Et/h̄) (10)

and for x > 0:

Ψ+(x,t) = Cei(kx−Et/h̄)+Dei(−kx−Et/h̄) (11)

In each of these functions, the first term represents a wave travelling to
the right, and the second term a wave travelling to the left. (A reminder of
how to see this: consider the motion of a fixed point on the wave, where the
exponent is a constant, and consider how x must change as t increases to
see which way the wave is moving. If kx−Et/h̄ =constant, then x must
increase as t increases; just the opposite is true if −kx−Et/h̄=constant.)

Therefore, to represent the experiment we described above, with a par-
ticle coming in from the left and possibly reflecting back from or passing
through the potential well, we need to include terms with waves travelling in
both directions for x < 0 and only one direction (travelling to the right) for
x > 0. Therefore, we can say that D = 0 since there are no waves travelling
to the left when x > 0.

Requiring the wave function to be continuous at x= 0 gives us one more
condition:

A+B = C (12)

We can get another condition by using the same integration technique
that we applied in the case of the bound state. Integrating the Schrödinger
equation across the origin we get:

− h̄2

2m

ˆ ε

−ε

d2ψ

dx2 dx−α
ˆ ε

−ε
δ(x)ψdx = E

ˆ ε

−ε
ψdx (13)

− h̄2

2m
dψ

dx

∣∣∣ε
−ε
−αψ(0) = E

ˆ ε

−ε
ψdx (14)

Taking the limit as ε→ 0 gives us

− h̄
2ik

2m
(C−A+B)−αC = 0 (15)

We can now use 12 and 15 to eliminate two of the three constants, and
we can express C and B in terms of A:
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B =
iβ

1− iβ
A (16)

C =
1

1− iβ
A (17)

β ≡ mα

h̄2k
(18)

It might look as though we’re stuck at this point, since we can’t normal-
ize the wave function, so we can’t determine A. However, what we really
want is the probability that the particle will be reflected or transmitted, and
we can get that by comparing B and C with A. Remember that the term
Aei(kx−Et/h̄) represents the incoming particle, Bei(−kx−Et/h̄) the reflected
particle and Cei(kx−Et/h̄) the transmitted particle. For the region x < 0, the
probability that the particle is travelling to the left relative to the probability
that it is travelling to the right should give the probability that it has been
reflected. Comparing the probability that the particle is found in the region
x > 0 to the probability that it is travelling to the right in the region x < 0
should give the probability that it has been transmitted.

At this point, you might be thinking there is something wrong with the
logic here. After all, the particle can’t be both travelling to the right and to
the left at the same time in the region x < 0, nor can it be on both sides
of the origin at the same time. Not only that, but we are analyzing an
explicitly time-dependent problem using only stationary states, and these
states are just waves of constant amplitude that extend out to infinity, rather
than wave packets describing real particles. There is no honest way around
this problem; essentially we are fudging the answer since we are analyzing
a non-physical system anyway. One way of thinking about it that might
make you feel a bit better is, instead of imagining a single particle trav-
elling in and either bouncing off or passing through the well, imagine a
steady stream of particles being beamed at the well from the left. In that
case, we would reach a steady state in which a certain fraction of particles
would get reflected and the remainder would get transmitted. This situation
at least gets rid of any explicit time dependence, although the problem of
non-normalizability of the wave function is still there.

In the final analysis, the only honest way of analyzing this problem is by
constructing a wave packet out of multiple values of k, doing the normal-
ization properly and then working out the probabilities. However, as you
might imagine, that is far from easy.

In the meantime, we can get expressions for our steady state reflection
and transmission probabilities R and T by finding the appropriate ratios:
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R =
|B|2

|A|2
(19)

=
β2

1+β2 (20)

=
1

1+2h̄2E/mα2
(21)

T =
|C|2

|A|2
(22)

=
1

1+β2 (23)

=
1

1+mα2/2h̄2E
(24)

after substituting for β and then for k in terms of E. Note that R+T = 1
so the particle must be either reflected or transmitted.

The derivation of R and T is also valid for a delta function barrier if we
set α < 0, since nothing in the derivation relied on α being positive, and the
final values of R and T depend only on α2.
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Section 5.2, Exercise 5.2.2b.
An interesting application of the variational principle in quantum mechances

is the following theorem:

Theorem. Every 1-dimensional attractive potential has at least one bound
state.

To prove this, we need first to define what we mean by an attractive po-
tential V (x). V (x) must satisfy the following conditions:

• V (x)→ 0 as x→±∞.
• V (x)< 0 everywhere.
• V (x) is piecewise continuous. This means that it may have a finite

number of jump discontinuities.

One possible form for V (x) is as shown:
1
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This is a particularly simple potential that satisfies the above conditions.
We could introduce a few step functions, multiple local maxima and min-
ima, and so on, provided we don’t violate any of the 3 conditions above.

Since V (x)< 0 everywhere, we can write it as

V (x) =−|V (x)| (1)

What we would like to prove is that for any hamiltonian of the form

H =− h̄2

2m
d2

dx2 −|V (x)| (2)

the ground state E0 is a bound state, that is

E0 < 0 (3)

We can apply the variational principle, which states
If ψ is any normalized function and H is a hamiltonian, then the ground

state energy E0 of this hamiltonian has an upper bound given by

E0 ≤ 〈ψ |H|ψ〉 ≡ 〈H〉 (4)

The use of the variational principle to prove the above theorem involves a
bit of a convoluted argument, but the mathematics involved is fairly simple.
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Our goal is to find some wave function ψα (where α is some parameter that
we can vary) so that

E0 ≤ 〈ψα |H|ψα〉= 〈H〉ψα
< 0 (5)

From 2 we have

〈
Ĥ
〉
ψα

=

ˆ
dx ψα (x)Ĥψα (x) (6)

= 〈T 〉ψα
−〈|V (x)|〉ψα

(7)

where

〈T 〉ψα
=−
ˆ
dx ψα (x)

h̄2

2m
d2

dx2ψα (x) (8)

〈|V (x)|〉ψα
=

ˆ
dx ψα (x) |V (x)|ψα (x) (9)

We can integrate 8 by parts once to get

〈T 〉ψα
=−
ˆ
dx ψα (x)

h̄2

2m
d2

dx2ψα (x) (10)

=− h̄2

2m
ψα (x)

d

dx
ψα (x)

∣∣∣∣∣
∞

−∞

+
h̄2

2m

ˆ
dx

(
d

dx
ψα (x)

)2

(11)

=
h̄2

2m

ˆ
∞

−∞

dx

(
d

dx
ψα (x)

)2

(12)

where we invoke the usual requirement that ψα and its first derivative
vanish at infinity.

We therefore see that since the integrand in the last line is always positive
(we’re assuming that ψα is not zero everywhere), that 〈T 〉ψα

> 0. Likewise,
from 9, 〈|V (x)|〉ψα

> 0. Thus in order that 〈H〉ψα
< 0, we must have

〈T 〉ψα
< 〈|V (x)|〉ψα

(13)

To get any further, we need to choose a test function ψα (x). We’ll pick
(because it works!)

ψα =
(α
π

)1/4
e−

1
2αx

2
(14)

The factor of
(
α
π

)1/4 is required so that ψα is normalized. The integral in
12 can be done using standard methods; I’ll just use Maple, and we find
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〈T 〉ψα
=
h̄2α

4m
(15)

The integral 9 of course can’t be done exactly if we don’t know what V
is, so we have just

〈|V (x)|〉ψα
=

ˆ
dx ψ2

α (x) |V (x)| (16)

(No need for modulus signs around ψα since the function 14 is real.) To
progress further, we need to start invoking some inequalities to get where
we want to go. The argument consists of several steps, so watch carefully
as we go along.

From 13 through 15 we have to show that we can satisfy the condition

〈|V (x)|〉ψα

〈T 〉ψα

=
4m
h̄2√π

1√
α

ˆ
∞

−∞

e−αx
2 |V (x)|dx > 1 (17)

Since V is arbitrary subject to the 3 conditions above, the only thing we
can legitimately fiddle with is the value of α. We can see that if we choose α
small enough, we should be able to satisfy this inequality, since for small α,
the 1/

√
α term gets large, while the e−αx

2
term in the integrand is bounded

between 0 and 1. We need to find some upper limit for α.
In what follows, you’ll need to refer to the following diagram:
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First, we choose some point x0 at which V (x0) is continuous (that is,
we ensure that x0 isn’t at one of the points where V (x) has a discontinuity,
or jump). The value of V (x0) is defined as −2v0 where v0 > 0. Because
V → 0 at x→±∞, there must be points x1 and x2 on either side of x0 where
V has the value −v0 (actually, I’m not sure this is strictly true, because, as
V is allowed a few jumps, it might jump over the point where it’s equal to
−v0. However, as the number of jumps is required to be finite, there must
be some points x1 and x2 on either side of x0 where V attains a value that
is between −2v0 and 0, and I think the argument below still works if we
choose those points instead.)

Now for the first inequality. We know that, because the integrand is pos-
itive

ˆ
∞

−∞

e−αx
2 |V (x)|dx >

ˆ x2

x1

e−αx
2 |V (x)|dx (18)

Second inequality: in the interval x1 to x2, |V (x)| > v0 (see the dia-
gram!), so we have

ˆ x2

x1

e−αx
2 |V (x)|dx > v0

ˆ x2

x1

e−αx
2
dx (19)
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The last integral has no closed form solution, but we know that in the
interval x1 to x2

e−αx
2
> e−αmax(x2

1,x
2
2) (20)

Therefore

v0

ˆ x2

x1

e−αx
2
dx > v0

ˆ x2

x1

e−αmax(x2
1,x

2
2)dx (21)

= v0 (x2−x1)e
−αmax(x2

1,x
2
2) (22)

Now suppose we choose α to be

α <
1

max
(
x2

1,x
2
2
) (23)

Then

e−αmax(x2
1,x

2
2) > e−1 (24)

We can now summarize as follows:
ˆ

∞

−∞

e−αx
2 |V (x)|dx > v0 (x2−x1)e

−1 (25)

provided we choose α according to 23. Plugging this back into 17 we
have

〈|V (x)|〉ψα

〈T 〉ψα

>
4m
h̄2√π

v0 (x2−x1)

e

1√
α

(26)

This expression will now be greater than 1 provided that

√
α <

4m
h̄2√π

v0 (x2−x1)

e
(27)

α <

[
4m
h̄2√π

v0 (x2−x1)

e

]2

(28)

Comparing 23 and 28, we see that we can satisfy both conditions if we
take

α < min

{
1

max
(
x2

1,x
2
2
) ,[ 4m

h̄2√π
v0 (x2−x1)

e

]2
}

(29)

This condition depends on x1 and x2 but that doesn’t matter, since both
quantities in the RHS of 29 are positive, so there is always some positive
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value of α that satisfies the condition. In other words, going right back to
17 and then to 7, we can always find a value of α so that 〈H〉 < 0 which
means that the ground state of H must be negative, which makes it a bound
state.
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Section 5.2, Exercise 5.2.6.
A general rule when solving the Schrödinger equation in one dimension

is that in those regions where the total energy E is less than the potential
V the spatial part of the wave function ψ(x) decays exponentially, while
if E > V , the wave function ψ(x) oscillates in some fashion. In the case
of the infinite square well, ψ is zero outside the well since the potential is
infinite there, so there is zero chance of finding the particle outside the well.
Within the well, the oscillation follows the pattern of a sine wave, which
must be zero at the boundaries. This boundary condition is responsible for
the quantization of the energy levels.

For the delta-function well, ψ(x) peaks at x = 0 (the only place where
δ(x) 6= 0), and decays exponentially on either side. A kind of hybrid of these
two extreme examples (the delta-function and the infinite square well) is the
finite square well, in which the potential follows the rule

V (x) =


0 x <−a
−V0 −a≤ x≤ a
0 x > a

(1)

where V0 is a positive constant energy, and a is a constant location on the x
axis.

With such a potential, we have two main possibilities. First, −V0 < E <
0, (the total energy has to be greater than the minimum value of the poten-
tial, as we proved before) which results in bound states in which we would
expect ψ(x) to oscillate within the well and decay exponentially outside
the well. Second, E > 0, in which we would expect ψ(x) to oscillate every-
where. In the first case, we also expect the energy levels to be quantized due
to the boundary conditions within the well, so we can try to find the allowed
states. In the second case, as with the delta-function, we can study the be-
haviour of an incoming beam of particles as it hits the barrier, and calculate

1
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the reflection and transmission coefficients (while keeping in mind that any
real particle is composed of a combination of pure waves in the form of a
wave packet, so that calculations with single energy states are at best an
approximation).

The mathematics for the bound state case of the finite square well turns
out to be more complicated than in the case of the delta-function, and in
fact we can’t get an exact formula for the allowed energies. However, the
process of solving the Schrödinger equation is fairly straightforward, if a
bit messy.

As usual, we divide the solution into separate regions and try to solve
for the various constants that pop up by applying boundary conditions. The
equation to be solved can be split into three regions:

− h̄2

2m
d2ψ

dx2 = Eψ (x <−a) (2)

− h̄2

2m
d2ψ

dx2 −V0ψ = Eψ (−a≤ x≤ a) (3)

− h̄2

2m
d2ψ

dx2 = Eψ (x > a) (4)

The general solutions in these three regions are easy enough to write
down. We get

ψ(x) =


Ae−κx+Beκx x <−a
C sin(µx)+D cos(µx) −a≤ x≤ a
Fe−κx+Geκx x > a

(5)

where as usual we’ve introduced some convenience parameters:

κ ≡
√
−2mE
h̄

(6)

µ ≡
√

2m(E+V0)

h̄
(7)

Note that both these parameters are real and can be taken as positive,
since −V0 < E < 0 for bound states. Note that we’ve also expressed the
solution in the middle section in terms of sin and cos rather than in terms
of eiµx and e−iµx. The latter is also valid, but as we’ll see in the next
paragraph, using sin and cos is easier.

So now we have six constants to deal with. First, we can use the theorem
that says that if the potential function is even (as this one is: V (−x) =
V (x)), then ψ(x) is even or odd. Unfortunately, we need to work out these

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 01.07.pdf
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two cases separately, but in each case, it does allow us to eliminate three
of the constants. We’ll deal with the even solutions first, so that we require
ψ(−x) = ψ(x). (We deal with the odd functions in another post.) Since
the sine is an odd function, we must have C = 0. In the outer regions, the
requirement of an even function means that A=G and B = F .

Next, we can impose the requirement that ψ(x)→ 0 at±∞, so this means
that A=G= 0. We therefore get

ψ(x) =


Beκx x <−a
D cos(µx) −a≤ x≤ a
Be−κx x > a

(8)

Now we can apply the boundary conditions. Since there are no infinite
energies involved (the potential is finite everywhere), we apply Born’s con-
ditions and require that both ψ and ψ′ are continuous at both boundaries.
Because of the symmetry of the wave function, we can consider only one
boundary; the other one won’t give us anything new. Therefore these two
conditions give us (using the fact that cos is even):

Be−κa = D cos(µa) (9)
−κBe−κa = −µD sin(µa) (10)

Dividing these two equations together, we can get rid of B and D:

κ= µ tan(µa) (11)

This is actually a condition that will give us the allowed energies, since
both κ and µ are functions of E. Unfortunately, this equation cannot be
solved explicitly for E (it’s what is known as transcendental, which means
that the variable we’re trying to solve for occurs both inside and outside of
a function such as the tan). The only way such equations can be solved is
numerically, but we can get an idea of the solutions by plotting the two sides
of the equation on the same graph and seeing where these plots intersect.

We can rewrite this equation as

tan(µa) =
κ

µ
(12)

From the definitions of κ and µwe can eliminate κ as follows:
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κ2 +µ2 = 2mV0/h̄
2 (13)

κ =

√
2mV0/h̄

2−µ2 (14)

κ

µ
=

√
2mV0/µ2h̄2−1 (15)

tan(µa) =

√
2mV0/µ2h̄2−1 (16)

=

√
2ma2V0/(µa)2h̄2−1 (17)

Defining the variable z ≡ µa, we can now write this equation as a tran-
scendental equation in the single variable z:

tanz =

√
2ma2V0/h̄

2

z2 −1 (18)

To solve this equation graphically or numerically for a given particle,
we clearly need to specify values for a and V0. However, we can treat the
combination of parameters as a single parameter z0:

z2
0 ≡

2ma2V0

h̄2 (19)

so we have the equation

tanz =

√
z2

0
z2 −1 (20)

We can plot both sides of this equation on the same graph for various
values of z0 to get an idea of what happens.
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In these plots, we show what happens for three different values of z0.

The green curves show the plot of tanz; the red curves that of
√

z2
0
z2 −1.

In the first graph, with z0 = 2, we get only one intersection between the
two plots, around z = 1. Thus for z0 = 2, there is only one bound state,

with an energy that can be worked out from z = µa=

√
2m(E+V0)a

h̄ ≈ 1. A
more accurate value can be obtained by numerical solution of the equation,
but this requires a computer (well, actually, the graphs were drawn on a
computer too, but never mind).

The second and third graphs show what happens as we increase z0 to 5
and then 8. In each case we pick up an extra intersection between the two
graphs, so we add an extra bound state.

In this case, we can see that no matter how small we make z0, we will
always have at least one bound state (since the tanz graph starts off from
the origin). As V0→ 0, we would expect the situation to tend to that of the
free particle, so the presence of this bound state might be a bit worrying.

However, if V0 = 0 exactly, then the quantity
√

z2
0
z2 −1 has no values of z

which give a real value, so there are no intersections on the graph, thus there
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are no bound states. However, if there is any potential well at all, no matter
how shallow, there will be at least one bound state.

At the other extreme, as V0 → ∞, we would expect to get the infinite

square well states. To see this, note that the graph of
√

z2
0
z2 −1 intersects the

horizontal axis at z = z0, so as V0→ ∞, z0→ ∞ and the intersection point
gets further and further along the axis, so the number of intersections with
branches of the tangent gets larger. Thus the number of energy states gets
larger and larger, eventually becoming infinite. As to the locations of these
intersections, we can notice that for any fixed, finite value of z, the quantity√

z2
0
z2 −1 tends to infinity as z0 → ∞, so that means that the entire curve

gets higher, so the intersections with the tangent curve will occur at higher
locations. The tangent is asymptotic to the vertical lines nπ/2 for odd n,
so we would expect the intersection points to eventually become z = nπ/2.
This means that

z2 =
2ma2(E+V0)

h̄2 (21)

≈ n2π2

4
(22)

E+V0 ≈
n2π2h̄2

2m(2a)2 (23)

Since E + V0 is the height of the bound state above the bottom of the
well, we can see that this formula does indeed give us the expected energy
levels for an infinite square well of width 2a, or at least those corresponding
to odd n. The other ones, for even n come from a solution where we assume
ψ(x) is an odd function.
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Section 5.2, Exercise 5.2.5.
Post date: 26 Jan 2011.
To get the feel of how to solve the time-independent Schrödinger equa-

tion in one dimension, the most commonly used example is that of the infi-
nite square well, sometimes known as the ’particle in a box’ problem. First,
recall the Schrödinger equation itself:

− h̄2

2m
∂2Ψ

∂x2 +V (x)Ψ = ih̄
∂Ψ

∂t
(1)

Remember that the ’time-independent’ bit refers to the potential function
V which is taken to be a function of position only; the wave function itself,
which is the solution of the equation, will in general be time-dependent.

The infinite square well is defined by a potential function as follows:

V (x) =

{
0 0 < x < a

∞ otherwise
(2)

An area with an infinite potential means simply that the particle is not
allowed to exist there. In classical physics, you can think of an infinite po-
tential as an infinitely high wall, which no matter how much kinetic energy
a particle has, it can never leap over. Although examples from classical
physics frequently break down when applied to quantum mechanics, in this
case, the comparison is still valid: an infinitely high potential barrier is an
absolute barrier to a particle in both cases.

We saw in our study of the time independent Schrödinger equation that
separation of variables reduces the problem to solving the spatial part of the
equation, which is

− h̄2

2m
d2ψ

dx2 +V (x)ψ = Eψ (3)
1
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where the constant E represents the possible energies that the system can
have. It is important to note that both E and V (x) are unknown before we
solve the equation. In classical physics, we would be allowed to specify E
since it is just the kinetic energy that the particle has inside the well. Clas-
sically, E can be any positive quantity, and the particle would just bounce
around inside the well without ever changing its speed (assuming the walls
were perfectly elastic and there was no friction). In quantum physics, as we
will see, E can have only certain discrete values, and these values arise in
the course of solving the equation.

In an infinite square well, the infinite value that the potential has outside
the well means that there is zero chance that the particle can ever be found
in that region. Since the probability density for finding the particle at a
given location is |Ψ|2, this condition can be represented in the mathematics
by requiring ψ(x) = 0 if x < 0 or x > a. This condition is forced from
the Schrödinger equation since if V (x) = ∞, any non-zero value for ψ(x)
would result in an infinite term in the equation. However, it is certainly not
rigorous mathematics, since multiplying infinity by zero can be done prop-
erly only by using a limiting procedure, which we haven’t done here. A
proper treatment of the infinite square well is as a limiting case of the finite
square well, where V (x) can have a large but finite value outside the well.
However, the mathematics for solving the finite square well is considerably
more complicated and tends to obscure the physics. Readers who are wor-
ried, however, can be reassured that the energy levels in the finite square
well do become those in the infinite square well when the proper limit is
taken.

Inside the well, V (x) = 0 so the Schrödinger equation becomes

− h̄2

2m
d2ψ

dx2 = Eψ (4)

d2ψ

dx2 = −k2ψ (5)

with k ≡
√

2mE
h̄

(6)

This differential equation has the general solution

ψ(x) = Asin(kx)+B cos(kx) (7)

for unspecified (yet) constants A and B. If you don’t believe this, just
substitute the solution back into the equation.

http://physicspages.com/pdf/Griffiths QM/Wave function as probability.pdf
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How can we determine A and B? To do this, we need to appeal to Born’s
conditions on the wave function. Born’s first condition is clearly satisfied
here: ψ is single-valued. The second condition of ψ being square integrable
we’ll leave for a minute. The third condition is that ψ must be continuous.
We have argued above that ψ = 0 outside the well, so in particular, this
means that at the boundaries x = 0 and x = a we must have ψ = 0. If we
impose that condition on our general solution above, we get:

ψ(0) = 0 (8)
Asin(0)+B cos(0) = 0 (9)

B = 0 (10)
ψ(a) = 0 (11)

Asin(ka) = 0 (12)
ka = nπ (13)√

2mE
h̄

=
nπ

a
(14)

E =
n2π2h̄2

2ma2 (15)

where n is an integer. The useful values of n are just the positive integers.
To see this, note that if n = 0, then ψ(x) = 0 everywhere which besides
being very boring, is also no good as a probability density since its square
modulus cannot integrate to 1. Negative integers don’t really give new so-
lutions, since sin(−x) = −sinx, so the negative sign can be absorbed into
the (still undetermined) constant A. Also, the energies depend only on the
square of n so the sign of n doesn’t matter physically.

We can now return to the square-integrable condition and use it to deter-
mine A. Remember that the integral is over all space in which the particle
can be found, so in this case we are interested in 0≤ x≤ a.

http://physicspages.com/pdf/Griffiths QM/Born conditions.pdf
http://physicspages.com/pdf/Griffiths QM/Born conditions.pdf
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ˆ a

0
|ψ|2dx = 1 (16)

A2
ˆ a

0
sin2kx = 1 (17)

= A2 1
2

ˆ a

0
[1− cos(2kx)]dx (18)

=
A2

2

[
x− 1

2k
sin(2kx)

]a
0

(19)

= A2a

2
(20)

A = ±
√

2
a

(21)

where we used 13 in 19 to eliminate the sine term.
Since it is only the square modulus of the wave function that has physical

significance, we can ignore the negative root and take the final form of the
wave function as

ψ(x) =

√
2
a

sin
nπx

a
(22)

Notice what has happened here. Applying the first boundary condition
at x = 0 allowed us to eliminate B. But the other boundary condition at
x = a ended up giving us a condition on E rather than A. (Well, ok, we
could have used the second boundary condition to set A = 0 but then we
would have ψ(x) = 0 everywhere again.) Not only that, but the energy
levels are discrete; thus the infinite square well is the first case in which the
Schrödinger equation has actually predicted quantization in a system.

So the boundary conditions on the differential equation have put restric-
tions on the allowable energies. The acceptable solutions for ψ are deter-
mined by the condition ka = nπ and so the various ψ functions are just
lobes of the sine function. The lowest energy, called the ground state, oc-
curs when n = 1 and ψ is half a sine wave, consisting of the bit between
x = 0 and x = π. The next state at n = 2 corresponds to a single complete
cycle of the sine wave; n= 3 contains 1.5 cycles and so on.

Eagle-eyed readers will have noticed that in all the excitement over dis-
covering quantization, we have neglected to look at Born’s fourth condition:
that of continuous first derivatives. Clearly this condition is violated, since
the derivative of ψ outside the well is 0 (since ψ = 0 outside the well), but
inside the derivative is kAcos(kx),which is kA at x= 0 and ±kA at x= a
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(the sign depends on whether n is odd or even). Neither of these derivatives
is zero.

The reason is, of course, because of the infinite potential function which
is not physically realistic. In fact, what happens in the (real-world) finite
square well is that the wave function inside the potential barrier (that is, just
off the ends of the well) is not zero, but a decaying exponential which tends
to zero the further into the barrier you go. In that case, it is possible to make
both the wave function and its first derivative continuous at both ends of
the well (and it is precisely that condition which makes the mathematics so
much more complicated in the finite square well).

In fact, this effect happens in any potential where the energy of the par-
ticle is less than that of a (finite) potential barrier: the particle’s wave func-
tion extends into the barrier region. So does that mean that the particle has
a probability of appearing inside a barrier? Technically yes, but in practice
it usually doesn’t do the particle much good, since the probability of being
outside the barrier is usually a lot greater. However, there is one case where
this barrier penetration effect does occur, and that is if the barrier is thin
enough for the wave function to have a significant magnitude on the other
side of the barrier. That is, if we have a particle in a finite well, but the wall
of the well is fairly thin and there is another well (or just open space) on the
other side of the barrier, then the wave function starts off with a respectable
magnitude inside the main well, extends into the barrier (but gets attentu-
ated exponentially in doing so), but before the attenuation gets so severe
that the wave function becomes very small, it bursts through to the other
side of the barrier. That means that, yes, there is a definite probability that
the particle can spontaneously appear outside the well without having to
jump over the barrier. In effect, it tunnels through the barrier and escapes.
The effect, not surprisingly, is known as quantum tunneling and is one of
the main causes of some forms of radioactive decay. But that’s a topic for
another post.
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Chapter 6.
Post date: 16 Jan 2017
We’ve met Ehrenfest’s theorem while studying Griffiths’s book, where

the theorem had the form

∂〈p〉
∂t

=−
〈
∂V

∂x

〉
(1)

This says that, in one dimension, the rate of change of the mean momen-
tum equals the negative of the mean of the derivative of the potential V ,
which is assumed to depend on x only. In this case, the behaviour of the
means of the quantum variables reduces to the corresponding classical rela-
tion, in this case, Newton’s law F = dp

dt , where the force is defined in terms
of the gradient of the potential: F =−dV

dx .
Shankar treats Ehrenfest’s theorem a bit more generally. For an operator

Ω we can use the product rule to state that

d

dt
〈Ω〉= d

dt
〈ψ |Ω|ψ〉 (2)

=
〈
ψ̇ |Ω|ψ

〉
+
〈
ψ |Ω| ψ̇

〉
+
〈
ψ
∣∣Ω̇∣∣ψ〉 (3)

where a dot indicates a time derivative. If Ω does not depend explicitly
on time, we have

d

dt
〈Ω〉=

〈
ψ̇ |Ω|ψ

〉
+
〈
ψ |Ω| ψ̇

〉
(4)

The time derivative of ψ can be found from the Schrödinger equation:

∣∣ψ̇〉 = − i
h̄
H |ψ〉 (5)〈

ψ̇
∣∣ =

i

h̄
〈ψ|H (6)

The second equation follows since H is hermitian, so H† =H . Plugging
these into 4 we have

1
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d

dt
〈Ω〉= i

h̄
[〈ψ |HΩ|ψ〉−〈ψ |ΩH|ψ〉] (7)

=− i
h̄
〈ψ |[Ω,H]|ψ〉 (8)

=− i
h̄
〈[Ω,H]〉 (9)

That is, the rate of change of the mean of an operator can be found from
its commutator with the Hamiltonian. It is this result that Shankar refers to
as Ehrenfest’s theorem. This relation is similar to that from classical me-
chanics, where the rate of change of a dynamical variable ω is equal to its
Poisson bracket with the classical Hamiltonian. In the Hamiltonian formu-
lation of classical mechanics, dynamical variables depend on generalized
coordinates qi and their corresponding momenta pi, so we have:

dω

dt
= ∑

i

(
∂ω

∂qi
q̇i+

∂ω

∂pi
ṗi

)
(10)

= ∑
i

(
∂ω

∂qi

∂H

∂pi
− ∂ω

∂pi

∂H

∂qi

)
(11)

≡ {ω,H} (12)

We can work out 9 for the particular cases where Ω = X , the position
operator and Ω = P , the momentum operator. For a Hamiltonian of the
form

H =
P 2

2m
+V (x) (13)

and using the commutation relation

[X,P ] = ih̄ (14)
we have

d〈X〉
dt

= − i
h̄
〈[X,H]〉 (15)

= − i

2mh̄
〈[
X,P 2]〉 (16)

We can evaluate this commutator using the theorem

[AB,C] = A [B,C]+ [A,C]B (17)
In this case, A=B = P and C =X , so we have

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.07.01 - 02.07.02.pdf
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[
P 2,X

]
= P [P,X]+ [P,X]P (18)
= −2ih̄P (19)[

X,P 2] = 2ih̄P (20)
d〈X〉
dt

=
〈P 〉
m

(21)

This is equivalent to the classical relation p=mv for velocity v. We can
write this result in terms of the Hamiltonian, provided that it’s legal to take
the derivative of the Hamiltonian with respect to an operator (which works
if we can expand the Hamiltonian as a power series):

d〈X〉
dt

=
〈P 〉
m

=

〈
∂H

∂P

〉
(22)

This looks a lot like one of Hamilton’s canonical equations in classical
mechanics:

q̇i =
∂H

∂pi
(23)

The main difference between the quantum and classical forms is that the
quantum version is a relation between mean values, while the classical ver-
sion is exact. We can make the correspondence exact provided that it’s legal
to take the averaging operation inside the derivative and apply it to each oc-
currence of X and P . That is, is it legal to say that〈

∂H

∂P

〉
=

〈
∂H (P,X)

∂P

〉
=
∂H (〈P 〉 ,〈X〉)

∂ 〈P 〉
(24)

This depends on the precise functional form of H . In the case 13 we’re
considering here, we have〈

∂H

∂P

〉
=

〈
P

m

〉
=
〈P 〉
m

=
∂

∂ 〈P 〉

(
〈P 〉2

2m
+V (〈X〉)

)
(25)

So in this case it works. In general, if H depends on P either linearly or
quadratically, then its derivative with respect to P will be either constant or
linear, and we can take the averaging operation inside the function without
changing anything. However, if, say, H = P 3 (unlikely, but just for the sake
of argument), then〈

∂H

∂P

〉
=
〈
3P 2〉 6= 3〈P 〉2 = ∂H (〈P 〉 ,〈X〉)

∂ 〈P 〉
(26)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.05.01.pdf
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since, in general, the mean of the square of a value is not the same as the
square of the mean.

Shankar goes through a similar argument for Ṗ . We have

〈
Ṗ
〉
=− i

h̄
〈[P,H]〉 (27)

In this case, we can use the position basis form of P which is

P =−ih̄ d
dx

(28)

and the position space version of the potential V (x) to get

[P,H]ψ = −ih̄
(
d(V ψ)

dx
−V dψ

dx

)
(29)

= −ih̄ψdV
dx

(30)

Using this in 27 we have

〈
Ṗ
〉
=−

〈
dV

dx

〉
(31)

Writing this in terms of the Hamiltonian, we have

〈
Ṗ
〉
=−

〈
∂H

∂x

〉
(32)

Again, this looks similar to the second of Hamilton’s canonical equations
from classical mechanics:

ṗi =−
∂H

∂qi
(33)

and again, we’re allowed to make the correspondence exact provided we
can take the averaging operation inside the derivative on the RHS of 32.
This works provided that V is either linear or quadratic in x (such as in
the harmonic oscillator). Other potentials such as the 1

r potential in the
hydrogen atom do not allow an exact correspondence between the quantum
average and the classical Hamilton equation, but this shouldn’t worry us too
much since the hydrogen atom is quintessentially quantum anyway, and any
attempt to describe it classically will not work.

Shankar provides a lengthly discussion on when the reduction to classi-
cal mechanics is valid, and shows that in any practical experiment that we
could do with a classical particle, the difference between the average quan-
tum behaviour and the classical measurements should be so small as to be
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undetectable. It is only when we deal with systems that are small enough
that quantum effects dominate that we need to abandon classical mechanics.

PINGBACKS

Pingback: Correspondence between classical and quantum transforma-
tions

Pingback: Translation operator from passive transformations
Pingback: Translational invariance and conservation of momentum
Pingback: Translational invariance in quantum mechanics
Pingback: Time translation and conservation of energy
Pingback: Parity transformations
Pingback: Average rate of change of angular momentum in magnetic

field
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Section 7.3, Exercise 7.3.1.
Post date: 17 Jan 2017
Shankar’s derivation of the eigenfunctions of the harmonic oscillator in

the position basis is essentially the same as that in Griffiths, which we’ve
covered before. The reader may wish to refresh their knowledge of this
before reading the rest of this post.

To make the comparison we note that ε in Griffiths is 2ε in Shankar:

ε≡ E

h̄ω
(1)

The analysis begins with the Schrödinger equation for the harmonic os-
cillator, which is

− h̄2

2m
d2ψ

dx2 +
1
2
mω2x2ψ = Eψ (2)

Making the substitution

y ≡
√
mω

h̄
x (3)

we convert the equation to

ψ′′+
(
2ε−y2)ψ = 0 (4)

where a prime indicates a derivative with respect to y.
As explained in the earlier post, we further convert this equation by defin-

ing another function u(y) (Griffiths calls this function f (y)) as

ψ(y) = e−y
2/2u(y) (5)

This results in a simpler differential equation for f :

d2u

dy2 −2y
du

dy
+(2ε−1)u= 0 (6)

We can solve this by proposing that u is a power series in y:
1
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u(y) =
∞

∑
n=0

Cny
n (7)

This leads to the recursion relation for the coefficients Cn:

Cn+2 = Cn
2n+1−2ε

(n+1)(n+2)
(8)

In order that u is finite for large y, this series must terminate, which leads
to the quantization condition for the energy:

En = h̄ω

(
n+

1
2

)
(9)

Shankar poses as an exercise the question as to why we didn’t just try a
series solution of 4, that is, we propose

ψ (y) =
∞

∑
n=0

Any
n (10)

for some other coefficients An. If we try this, there are three terms with
different exponents for y that result from plugging this into 4.

ψ′′ =
∞

∑
n=0

Ann(n−1)yn−2 (11)

2εψ = 2ε
∞

∑
n=0

Any
n (12)

−y2ψ = −
∞

∑
n=0

Any
n+2 (13)

To compare the coefficients we reassign the summation ranges so that the
powers of y are the same in all three terms.

ψ′′ =
∞

∑
n=2

Ann(n−1)yn−2 =
∞

∑
n=0

An+2 (n+2)(n+1)yn (14)

2εψ = 2ε
∞

∑
n=0

Any
n (15)

−y2ψ =−
∞

∑
n=0

Any
n+2 =−

∞

∑
n=2

An−2y
n (16)

Note that the top two sums start at n= 0 while the last sum starts at n= 2.
To satisfy 4, the coefficient of each power of y must be zero, that is
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An+2 (n+2)(n+1)+2εAn−An−2 = 0 (17)
There are two separate conditions here; one for even n and the other

for odd n. To get either sequence started, we need to specify the first two
terms. For example, in the even sequence, we need to specify A0 and A2
which then allows calculation of A4 (when n= 2). We can then use A2 and
A4 to get A6 and so on. The general formula is

An+2 =
An−2−2εAn

(n+2)(n+1)
(18)

PINGBACKS

Pingback: Harmonic oscillator - eigenfunctions in momentum space
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Section 7.3, Exercises 7.3.2 - 7.3.3.
Post date: 17 Jan 2017
The eigenfunctions of the harmonic oscillator are given by

ψn(x) =
(mω
πh̄

)1/4 1√
2nn!

Hn

(√
mω

h̄
x

)
e−mωx2/2h̄ (1)

where Hn (u) is a Hermite polynomial. The Hermite polynomials obey
the recursion relation

Hn+1(x) = 2xHn(x)−2nHn−1(x) (2)
The first few Hermite polynomials are given in Shankar’s equation 7.3.21,

and we may use these to verify this relation for a couple of cases. Taking
n= 2 we have

H3 (x) = 2xH2 (x)−4H1 (x) (3)

= 2x
[
−2
(
1−2x2)]−4(2x) (4)

=−12x+8x3 (5)

The last line agrees with H3 as given in Shankar.
For n= 3 we have

H4 (x) = 2xH3 (x)−6H2 (x) (6)

= 2x
[
−12x+8x3]−6

[
−2
(
1−2x2)] (7)

= 12−48x2 +16y4 (8)

which again agrees with Shankar’s equation.
When deriving the solution in terms of Hermite polynomials, we fol-

lowed Griffiths and found that we could write the polynomials in the form

Hn (y) =
n

∑
j=0

ajy
j (9)

1
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where the coefficients aj obey the recursion relation

aj+2 =
2j+1− ε

(j+1)(j+2)
aj (10)

The ε used by Griffiths is equivalent to 2ε in Shankar, so using Shankar’s
notation, we see that this recursion relation is the same as Shankar’s equa-
tion 7.3.15:

Cn+2 = Cn
2n+1−2ε

(n+1)(n+2)
(11)

Here, we have

ε=
E

h̄ω
(12)

where E is the energy of the oscillator state.
Looking at the polynomials in Shankar’s equation 7.3.21, we have

H3 (y) =−12
(
y− 2

3
y3
)

(13)

so

C1 = −12 (14)
C3 = 8 (15)

With n= 1, we get from 11

C3 =−12
3−2ε

6
(16)

However, for this state,E =
(
3+ 1

2

)
h̄ω so 2ε= 7 andC3 = 8 as required.

For H4 we have

H4 (y) = 12
(

1−4y2 +
4
3
y4
)

(17)

This means

C0 = 12 (18)
C2 = −48 (19)
C4 = 16 (20)

Here E =
(
4+ 1

2

)
h̄ω, so 2ε= 9 and
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C2 = 12
(−8)

2
=−48 (21)

C4 = −48
5−9

12
= 16 (22)

We can see from the relation 2 that, given that H0 = 1 and H1 = 2x,
all Hermite polynomials of even index contain only even powers of x, and
all polynomials of odd index contain only odd powers of x. This means
that all even Hermite polynomials are even functions of x, in the sense that
H2n (−x) =H2n (x), and all odd Hermite polynomials are odd functions of
x, so that H2n+1 (−x) =−H2n+1 (x).

If ψ (x) is even and φ(x) is odd, then

ψ (−x)φ(−x) =−ψ (x)φ(x) (23)

That is, the product ψ (x)φ(x) is an odd function. Since the integral of
any odd function over an interval symmetric about x= 0 is zero, we have∫

∞

−∞

ψ (x)φ(x)dx= 0 (24)

Looking at the eigenfunctions 1, we see that the exponential factor is a
Gaussian centred at x = 0 and is therefore even, so that ψn will be even or
odd depending on whether n is even or odd. In particular, the integral of
any even ψn multiplied by any odd ψn over all x will be zero.

To show that pairs of even functions are also orthogonal is a bit trickier,
but we can do it in the simplest case, where we consider the functions ψ0
and ψ2.

∫
∞

−∞

ψ0 (x)ψ2 (x)dx=

√
mω

πh̄

1√
8

∫
∞

−∞

H0

(√
mω

h̄
x

)
H2

(√
mω

h̄
x

)
e−mωx2/h̄dx

(25)

=

√
mω

πh̄

1√
8

∫
∞

−∞

(1)
[
−2
(

1−2
mω

h̄
x2
)]
e−mωx2/h̄dx

(26)

=−
√
mω

πh̄

1√
2

[√
πh̄

mω
−
√

πh̄

mω

]
(27)

= 0 (28)

The two Gaussian integrals can be done using standard formulas as given
in Shankar’s Appendix A.2. (I used Maple.)
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Section 7.3, Exercise 7.3.4.
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Earlier, we found the matrix elements of X and P of the harmonic os-

cillator using the raising and lowering operators. We can also find these
matrix elements using the recursion relations and orthogonality of Hermite
polynomials. The required relations are also given as Shankar’s equations
7.3.24 - 7.3.26.

H ′n (y) = 2nHn−1 (y) (1)

Hn+1 (y) = 2yHn (y)−2nHn−1 (y) (2)∫
∞

−∞

Hn (y)Hn′ (y)e
−y2

dy =
√
π2nn!δnn′ (3)

The energy eigenfunctions of the harmonic oscillator are

ψn(y) =
(mω
πh̄

)1/4 1√
2nn!

Hn(y)e
−y2/2 (4)

where

y ≡
√
mω

h̄
x (5)

The matrix elements of x are therefore

〈
n′ |X|n

〉
=
∫

∞

−∞

ψn′ (x)xψn (x)dx (6)

where we’ve used the fact that ψn′ (x) is real, so its complex conjugate is
the same as the original. Converting to the variable y using 5 we have

1
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〈
n′ |X|n

〉
=

h̄

mω

∫
∞

−∞

ψn′ (y)yψn (y)dy (7)

=
h̄

mω

√
mω

πh̄

1√
2n′2nn′!n!

∫
∞

−∞

Hn (y)yHn′ (y)e
−y2

dy (8)

=

√
h̄

πmω

1√
2n′2nn′!n!

∫
∞

−∞

1
2
[Hn+1 +2nHn−1]Hn′e

−y2
dy

(9)

=

√
h̄

mω

2n
′
n′!

2
√

2n′2nn′!n!

[
δn′,n+1 +2nδn′,n−1

]
(10)

=

√
h̄

mω

[
2n+1 (n+1)!

2
√

22n+1 (n+1)!n!
δn′,n+1 +

2nn(n−1)!

2
√

22n−1 (n−1)!n!
δn′,n−1

]
(11)

=

√
h̄

2mω

 (n+1)n!√
(n+1)(n!)2

δn′,n+1 +
n(n−1)!√
n [(n−1)!]2

δn′,n−1


(12)

=

√
h̄

2mω

[√
n+1δn′,n+1 +

√
nδn′,n−1

]
(13)

We used 2 to get the third line and 3 to do the integrals.
For the matrix elements of P we use

P =−ih̄ d
dx

=−i
√
h̄mω

d

dy
(14)

Pψn (y) =−i
√
h̄mω

(mω
πh̄

)1/4 1√
2nn!

e−y
2/2 [H ′n (y)−yHn (y)

]
(15)

=−i
√
h̄mω

(mω
πh̄

)1/4 1√
2nn!

e−y
2/2
[

2nHn−1−
1
2
(Hn+1 +2nHn−1)

]
(16)

=−i
√
h̄mω

(mω
πh̄

)1/4 1√
2nn!

e−y
2/2
[
nHn−1−

1
2
Hn+1

]
(17)

We used 2 to get the third line.
We get, using dx=

√
h̄/mωdy from 5
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〈
n′ |P |n

〉
=−i

√
h̄mω

√
mω

πh̄

√
h̄

mω

1√
2n′n′!2nn!

∫
∞

−∞

Hn′

[
nHn−1−

1
2
Hn+1

]
e−y

2
dy

(18)

=−i
√
h̄mω

[
2n
′
n′!n√

2n′n′!2nn!
δn′,n−1−

2n
′−1n′!√

2n′n′!2nn!
δn′,n+1

]
(19)

=−i
√
h̄mω

[
2n−1 (n−1)!n√
2n−1 (n−1)!2nn!

δn′,n−1−
2n (n+1)!√

2n+1 (n+1)!2nn!
δn′,n+1

]
(20)

= i

√
h̄mω

2

[√
n+1δn′,n+1−

√
nδn′,n−1

]
(21)

PINGBACKS

Pingback: Harmonic oscillator - mean position and momentum
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Section 7.3, Exercise 7.3.5.
Post date: 21 Jan 2017
The energy eigenfunctions of the harmonic oscillator are

ψn(y) =
(mω
πh̄

)1/4 1√
2nn!

Hn(y)e
−y2/2 (1)

where

y ≡
√
mω

h̄
x (2)

and Hn is the Hermite polynomial of order n. Since an even (odd) Her-
mite polynomial is an even (odd) function, ψn is even (odd) if n is even
(odd), so we can use this fact to show that

〈n |X|n〉=
∫

∞

−∞

xψ2
n (x) dx= 0 (3)

This follows because the square of either an even or odd function gives an
even function, and x itself is odd, so the integrand is the product of an odd
and even function, which is odd. The integral over any interval symmetric
about x = 0 of an odd function is odd. Thus the mean position 〈X〉 of a
particle in any of the harmonic oscillator’s energy eigenstates is zero.

For the momentum P , we have

〈n |P |n〉=−ih̄
∫

∞

−∞

ψn
dψn
dx

dx (4)

As we showed earlier

− ih̄dψn
dx

= i
√
h̄mω

(mω
πh̄

)1/4 1√
2nn!

e−y
2/2
[
nHn−1−

1
2
Hn+1

]
(5)

If n is even (odd), then nHn−1− 1
2Hn+1 is odd (even), so the product

ψn
dψn
dx is always the product of one odd and one even function, making it

odd. Thus
1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://www.physicspages.com/pdf/Griffiths QM/Harmonic oscillator - Hermite polynomials.pdf
http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 02.17bcd.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 07.03.02-03.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 07.03.02-03.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 07.03.04.pdf


HARMONIC OSCILLATOR - MEAN POSITION AND MOMENTUM 2

〈n |P |n〉= 0 (6)

Thus the mean momentum 〈P 〉= 0 in all energy eigenstates.
This means that the uncertainties in position and momentum are deter-

mined entirely by the mean square values:

(∆X)2 =
〈
X2〉−〈X〉2 = 〈X2〉 (7)

(∆P )2 =
〈
P 2〉 (8)

We can work out these values for a couple of specific states. For n = 1
we have

〈
1
∣∣X2∣∣1〉= ∫ ∞

−∞

x2ψ2
1 (x) dx (9)

=
1
2

√
mω

πh̄

∫
∞

−∞

x2H2
1 (y)e

−y2
dx (10)

=
1
2

h̄√
πmω

∫
∞

−∞

y2H2
1 (y)e

−y2
dy (11)

=
2h̄√
πmω

∫
∞

−∞

y4e−y
2
dy (12)

=
2h̄√
πmω

3
√
π

4
(13)

=
3h̄

2mω
(14)

We’ve used

H1 (y) = 2y (15)

and formula just before A.2.3 from the appendix in Shankar, which gives

I4 (α) =
∫

∞

−∞

x4e−αx
2
dx (16)

=
∂2

∂α2

∫
∞

−∞

e−αx
2
dx (17)

=
∂2

∂α2 I0 (α) (18)

From formula A.2.2
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I4 (α) =
∂2

∂α2

√
π

α
(19)

=
3
√
π

4α5/2
(20)

Setting α= 1 gives

∫
∞

−∞

y4e−y
2
dy =

3
√
π

4
(21)

For P , we have

〈
1
∣∣P 2∣∣1〉=−h̄2

∫
∞

−∞

ψ1
d2

dx2ψ1 dx (22)

The derivative is

d2

dx2ψ1 =
d2ψ1

dy2

(
dy

dx

)2

(23)

=
1√
2

(mω
πh̄

)1/4 mω

h̄

d2

dy2

[
H1(y)e

−y2/2
]

(24)

=
1√
2

(mω
πh̄

)1/4 mω

h̄

d2

dy2

[
2ye−y

2/2
]

(25)

=
(mω

4πh̄

)1/4 mω

h̄
e−y

2/2 [2y3−6y
]

(26)

We can now evaluate 22:

−h̄2
∫

∞

−∞

ψ1
d2

dx2ψ1 dx=−h̄2
√
mω

4πh̄
mω

h̄

√
h̄

mω

∫
∞

−∞

2ye−y
2
2
[
y3−3y

]
dy

(27)

=−2mωh̄√
π

∫
∞

−∞

e−y
2 [
y4−3y2]dy (28)

=−2mωh̄√
π

[
3
√
π

4
− 3
√
π

2

]
(29)

=
3
2
mωh̄ (30)

Thus for the n= 1 state
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∆X =

√
3h̄

2mω
(31)

∆P =

√
3
2
mωh̄ (32)

∆X∆P =
3
2
h̄ >

h̄

2
(33)

For the n= 0 (ground) state, we can use H0 = 1 to get

〈
X2〉= ∫ ∞

−∞

x2ψ2
0 (x) dx (34)

=

√
mω

πh̄

∫
∞

−∞

x2H2
0 (y)e

−y2
dx (35)

=
h̄√
πmω

∫
∞

−∞

y2e−y
2
dy (36)

=
h̄

2mω
(37)

For P :

d2

dx2ψ0 =
d2ψ0

dy2

(
dy

dx

)2

(38)

=
(mω
πh̄

)1/4 mω

h̄
e−y

2/2 (y2−1
)

(39)

〈
P 2〉=−h̄2

∫
∞

−∞

ψ0
d2

dx2ψ0 dx=−h̄2
√
mω

πh̄

mω

h̄

√
h̄

mω

∫
∞

−∞

e−y
2 (
y2−1

)
dy

(40)

=−mωh̄√
π

[√
π

2
−
√
π

]
(41)

=
1
2
mωh̄ (42)

The uncertainty principle in this case gives

∆X∆P =
h̄

2
(43)

so it saturates the condition ∆X∆P ≥ h̄
2 .
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UNCERTAINTY PRINCIPLE
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Section 7.3.
Post date: 22 Jan 2017
There is a nice result derived in Shankar’s section 7.3 in which he shows

that we can actually derive the ground state energy and wave function for the
harmonic oscillator from the uncertainty principle. Classically, the energy
of a harmonic oscillator is

H =
p2

2m
+

1
2
mω2x2 (1)

where both p and x are continuous variables that can, in principle, take on
any values. Thus classically it is possible for an oscillator to have x= p= 0
giving a ground state with zero energy. In quantum mechanics, because X
and P don’t commute, the position and momentum cannot both have precise
values, which means that the ground state must have an energy greater than
zero. This so-called zero-point energy is (as found by Solving Schrödinger’s
equation)

E0 =
h̄ω

2
(2)

To derive this without needing to solve Schrödinger’s equation, we first
recall that a state in which the position-momentum uncertainty is a mini-
mum must be a gaussian of form

Ψ(x) = Ae−a(x−〈x〉)
2/2h̄ei〈p〉x/h̄ (3)

where a is a positive real constant, A is the normalization constant, 〈x〉 is
the mean position and 〈p〉 is the mean momentum. For a harmonic oscillator
centred at x = 0, we have that both 〈x〉 = 〈p〉 = 0, so we know that the
ground state wave function has the form

ψ (x) = Ae−ax
2/2h̄ (4)

To normalize this we require (assuming A is real)
1
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∫
∞

−∞

ψ2 (x)dx= 1 (5)

Using the standard result for a gaussian integral (see Appendix 2 in Shankar
or use Google)

∫
∞

−∞

ψ2 (x)dx = A2
∫

∞

−∞

e−ax
2/h̄dx (6)

= A2

√
πh̄

a
(7)

Therefore

A=
( a

πh̄

)1/4
(8)

We need to find a such that ∆X∆P is minimized. The harmonic oscillator
hamiltonian is

H =
P 2

2m
+

1
2
mω2X2 (9)

Since 〈X〉= 〈P 〉= 0, the uncertainties become

(∆X)2 =
〈
X2〉−〈X〉2 = 〈X2〉 (10)

(∆P )2 =
〈
P 2〉−〈P 〉2 = 〈P 2〉 (11)

Averaging 9 we get

〈H〉 =

〈
P 2〉
2m

+
1
2
mω2 〈X2〉 (12)

=
(∆P )2

2m
+

1
2
mω2 (∆X)2 (13)

At minimum uncertainty

∆X∆P =
h̄

2
(14)

so we have

∆P =
h̄

2∆X
(15)

〈H〉= h̄2

8m(∆X)2 +
1
2
mω2 (∆X)2 (16)



HARMONIC OSCILLATOR - ZERO-POINT ENERGY FROM UNCERTAINTY PRINCIPLE3

The minimum energy can now be found by finding the value of (∆X)2

that minimizes this function. Treating (∆X)2 (not just ∆X) as the indepen-
dent variable, we have

∂ 〈H〉
∂ (∆X)2 =− h̄2

8m
[
(∆X)2

]2 +
1
2
mω2 (17)

=− h̄2

8m(∆X)4 +
1
2
mω2 = 0 (18)

(∆X)2 =
h̄

2mω
(19)

This gives a minimum value for the mean energy of

〈H〉min =
h̄ω

2
(20)

To complete the derivation, we need to find the gaussian 4 that gives the
correct value 19 for (∆X)2. That is, we need to find a such that

(∆X)2 =
〈
X2〉= h̄

2mω
(21)

This requires doing another gaussian integral:

〈
X2〉 =

∫
∞

−∞

x2ψ2 (x)dx (22)

=

√
a

πh̄

∫
∞

−∞

x2e−ax
2/h̄dx (23)

=

√
a

πh̄

√
πh̄

a

h

2a
(24)

=
h̄

2a
(25)

We therefore get

h̄

2a
=

h̄

2mω
(26)

a = mω (27)

which gives a normalized minimum energy wave function

ψmin (x) =
(mω
πh̄

)1/4
e−mωx2/2h̄ (28)
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This is the lowest possible value for the energy, but is it actually the
ground state energy? What we have shown so far is that

〈ψmin |H|ψmin〉 ≤ 〈ψ0 |H|ψ0〉= E0 (29)
where |ψ0〉 is the ground state energy. However, we can invoke the vari-

ational principle which states that if ψ is any normalized function, then the
ground state energy E0 of any hamiltonian H satisfies

E0 ≤ 〈ψ |H|ψ〉 (30)
Using ψ = ψmin we therefore have

E0 ≤ 〈ψmin |H|ψmin〉 (31)
Combining 29 and 31 we have

〈ψmin |H|ψmin〉 ≤ E0 ≤ 〈ψmin |H|ψmin〉 (32)
which means that

E0 = 〈ψmin |H|ψmin〉 (33)
and therefore that |ψ0〉 = |ψmin〉, that is, 28 is actually the ground state

wave function.
Although this clever little derivation gives us the ground state energy and

wave function, it doesn’t say anything about the higher energy states, or tell
us that they are all equally spaced with a spacing of h̄ω. Nevertheless, it’s a
pleasant exercise.

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 07.01.pdf
http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 07.01.pdf


HARMONIC OSCILLATOR - EIGENFUNCTIONS IN
MOMENTUM SPACE

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 7.3, Exercise 7.3.7.
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We’ve seen how to solve the Schrödinger equation for the harmonic oscil-

lator in the position basis, where the independent variable is x. It’s actually
fairly easy to adapt this solution to find the wave functions in momentum
space. (We’ve also found these functions by using the Fourier transform of
the position functions, but the present post shows an easier way.)

The Schrödinger equation for the stationary states of the harmonic oscil-
lator is, in operator form:

P 2

2m
ψ+

1
2
mω2X2ψ = Eψ (1)

To work in momentum space, we use the results

P = p (2)

X = ih̄
∂

∂p
(3)

This gives

p2

2m
ψ− 1

2
h̄2mω2d

2ψ

dp2 = Eψ (4)

Dividing through by (mω)2 we get

− h̄2

2m
ψ′′+

p2

2m3ω2 =
E

(mω)2ψ (5)

where a prime on ψ indicates a derivative with respect to p.
This is similar to the Schrödinger equation in position space:

− h̄2

2m
ψ′′+

1
2
mω2x2ψ = Eψ (6)

(where a prime here indicates a derivative with respect to x). When we
solved the position space equation, we introduced a dimensionless variable

1
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y ≡
√
mω

h̄
x (7)

Using this technique to solve 5, we try a definition for y of

y ≡ p√
h̄mω

(8)

(You can check the units of
√
h̄mω to see they are the units of momen-

tum, so y is indeed dimensionless here.) Making this substitution, we get

d2ψ

dp2 =
1

h̄mω

d2ψ

dy2 (9)

p2

2m3ω2 =
h̄y2

2m2ω
(10)

Thus 5 becomes

− h̄2

2m
1

h̄mω

d2ψ

dy2 +
h̄y2

2m2ω
ψ =

E

(mω)2ψ (11)

h̄2

2m

[
−d

2ψ

dy2 +y2ψ

]
=
h̄E

ω
ψ (12)

We can now use the same dimensionless parameter we used in the earlier
derivation:

ε≡ E

h̄ω
(13)

This results in the differential equation

ψ′′+
(
2ε−y2)ψ = 0 (14)

where a prime now indicates a derivative with respect to y. This is exactly
the same differential equation that we got for the position basis, except that
the independent variable y is now defined in terms of p by 8 instead of x.
We can solve it in the same way, which results in the same quantization con-
dition on the allowable energies of En =

(
n+ 1

2

)
h̄ω. The eigenfunctions

look the same when expressed in terms of y:

ψn(y) = A
1√

2nn!
Hn(y)e

−y2/2 (15)

where A is a normalization constant with the value in the position basis
of

http://www.physicspages.com/pdf/Griffiths QM/Harmonic oscillator - Hermite polynomials.pdf
http://www.physicspages.com/pdf/Griffiths QM/Harmonic oscillator - Hermite polynomials.pdf
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A=
(mω
πh̄

)1/4
(16)

and Hn is a Hermite polynomial. We can get the eigenfunctions in mo-
mentum space by replacing y by 8. We can see that this amounts to replac-
ing x→ p and mω→ 1

mω , so we get

ψn(p) =
1

(πh̄mω)1/4
1√

2nn!
Hn

(
p√
h̄mω

)
e−p

2/2h̄mω (17)

In particular, the ground state is

ψ0 (p) =
1

(πh̄mω)1/4
e−p

2/2h̄mω (18)
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Section 7.4, Exercise 7.4.3.
Post date: 27 Jan 2017
We’ve seen the virial theorem in quantum mechanics, but this theorem

was originally devised in classical mechanics. For a single particle, we
consider the quantity

G= r ·p (1)

that is, the product of position and momentum. Taking the time deriva-
tive, we have

dG

dt
= p · dr

dt
+ r · dp

dt
(2)

= mv2 + r ·F (3)

where v = dr/dt is the velocity of the particle, p = mv and F = dp/dt
is the force acting on the particle. If the force is a central force (that is,
it depends only on the particle’s distance from some centre point r = 0,
then the force can be written as the negative gradient of a potential V that
depends only on r. In the case where V depends only on a power of r, we
have

V = ark (4)

F = −dV

dr
=−kark−1r̂ (5)

In that case, we have

dG

dt
= mv2− r ·kark−1r̂ (6)

= 2T −kark (7)
= 2T −kV (8)

1
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where T is the kinetic energy T = 1
2mv2. If the particle is moving in a

circular orbit then its average position and average momentum (averaged
over one orbit) do not change with time, so dG

dt = 0 and we get

2〈T 〉−k 〈V 〉 = 0 (9)

〈T 〉 =
k

2
〈V 〉 (10)

Another way of seeing this is that, in a circular orbit at constant orbital
speed, the only force acting is the centripetal force holding the particle in
its orbit, which is

Fcen =−mv2

r
(11)

where the minus sign indicates that the force acts in the opposite direction
to the outward pointing radius vector.

This force is provided by the gradient of the potential, so we have

Fcen =−dV

dr
=−kark−1 (12)

We therefore have

mv2

r
= kark−1 (13)

mv2 = 2T = kark = kV (14)

〈T 〉 =
k

2
〈V 〉 (15)

For the case of a harmonic oscillator, V = 1
2mω2x2 so the exponent is k=

2 and we have T = V . We can verify this by calculating the mean kinetic
and potential energies explicitly, using earlier results. In the oscillator state
|n〉 we have

〈
x2〉 =

h̄

mω

(
n+

1
2

)
(16)

〈
p2〉 = h̄mω

(
n+

1
2

)
(17)

The energies are

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 02.12.pdf
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〈T 〉 =

〈
p2〉
2m

=
h̄ω

2

(
n+

1
2

)
(18)

〈V 〉 =
1
2
mω2 〈x2〉= h̄ω

2

(
n+

1
2

)
(19)

Therefore 〈T 〉= 〈V 〉 as required.



HARMONIC OSCILLATOR - MIXED INITIAL STATE AND
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We’ve already done an example of a harmonic oscillator in a mixed initial

state, but it’s useful to do this other example from Shankar so we can see
how the modified Ehrenfest’s theorem fits in. In this case, we start with a
particle in the mixed initial state

|ψ (0)〉= 1√
2
[|0〉+ |1〉] (1)

The time-dependent solution is therefore

|ψ (t)〉 =
1√
2

[
e−iE0h̄t |0〉+ e−iE1t |1〉

]
(2)

=
1√
2

[
e−iωt/2 |0〉+ e−3iωt/2 |1〉

]
(3)

since the first two energies are E0 = h̄ω/2 and E1 = 3h̄ω/2.
The position and momentum operators can be written in terms of the

raising and lowering operators

X =

√
h̄

2mω

(
a† +a

)
(4)

P = i

√
h̄mω

2

(
a†−a

)
(5)

To find the mean position and momentum, we can use these equations:

〈X (0)〉= 〈ψ (0) |X|ψ (0)〉 (6)

=
1
2

√
h̄

2mω
[〈0|+ 〈1|]

(
a† +a

)
[|0〉+ |1〉] (7)

To work out the last line, remember that the stationary states are orthog-
onal so that 〈0 |1〉= 0, and that

1
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a† |n〉 =
√
n+1 |n+1〉 (8)

a |n〉 =
√
n |n−1〉 (9)

We therefore get

〈X (0)〉= 1
2

√
h̄

2mω
(1+1) =

√
h̄

2mω
(10)

Doing a similar analysis for the momentum, we have

〈P (0)〉= 〈ψ (0) |P |ψ (0)〉 (11)

=
i

2

√
h̄mω

2
[〈0|+ 〈1|]

(
a†−a

)
[|0〉+ |1〉] (12)

=

√
h̄mω

2
1
2i

[〈0|+ 〈1|]
(
a−a†

)
[|0〉+ |1〉] (13)

=

√
h̄mω

2
1
2i

(1−1) (14)

= 0 (15)

We can expand these equations to give the averages of position and mo-
mentum at all times by plugging in 3:

〈X (t)〉= 〈ψ (t) |X|ψ (t)〉 (16)

=
1
2

√
h̄

2mω

[
〈0|eiωt/2 + 〈1|e3iωt/2

](
a† +a

)[
e−iωt/2 |0〉+ e−3iωt/2 |1〉

]
(17)

=
1
2

√
h̄

2mω
(
e−iωt+ eiωt

)
(18)

=

√
h̄

2mω
cosωt (19)
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〈P (t)〉= 〈ψ (t) |P |ψ (t)〉 (20)

=
i

2

√
h̄mω

2

[
〈0|eiωt/2 + 〈1|e3iωt/2

](
a†−a

)[
e−iωt/2 |0〉+ e−3iωt/2 |1〉

]
(21)

=

√
h̄mω

2
1
2i

[
〈0|eiωt/2 + 〈1|e3iωt/2

](
a−a†

)[
e−iωt/2 |0〉+ e−3iωt/2 |1〉

]
(22)

=

√
h̄mω

2
1
2i
(
e−iωt− eiωt

)
(23)

=−
√
h̄mω

2
sinωt (24)

Although we can calculate
〈
Ẋ (t)

〉
and

〈
Ṗ (t)

〉
directly by taking the

time derivative, we can also do it by using Ehrenfest’s theorem in the form

d〈Ω〉
dt

=− i
h̄
〈[Ω,H]〉 (25)

for some operator Ω.
Since the energy of the oscillator in state |n〉 is

(
n+ 1

2

)
h̄ω, we can write

the hamiltonian as

H = h̄ω

(
a†a+

1
2

)
(26)

We also have the commutator[
a,a†

]
= 1 (27)

To use this for X and P we need the commutators [a,H] and
[
a†,H

]
,

which amounts to finding[
a,a†a

]
= aa†a−a†aa (28)

=
(

1+a†a
)
a−a†aa (29)

= a (30)[
a†,a†a

]
= a†a†a−a†aa† (31)

= a†a†a−a†
(

1+a†a†a
)

(32)

= −a† (33)
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Therefore we have

[a,H] = h̄ωa (34)[
a†,H

]
= −h̄ωa† (35)

Finally we get

〈
Ẋ (t)

〉
= − i

h̄
〈[X,H]〉 (36)

= − i
h̄

〈[
a+a†,H

]〉
(37)

= − i
h̄
h̄ω

√
h̄

2mω

〈
a−a†

〉
(38)

= iω

√
h̄

2mω

√
2

h̄mω

1
i
〈P (t)〉 (39)

= −ω
√

h̄

2mω
sinωt (40)

where we used 5 in the fourth line and 24 in the last line. The last line
is indeed the time derivative of 19, so fortunately Ehrenfest’s theorem gives
the correct answer.

For the momentum, we have

〈
Ṗ (t)

〉
= − i

h̄
〈[P,H]〉 (41)

= − i
h̄

〈[
a†−a,H

]〉
(42)

= − i
h̄
h̄ω

√
h̄mω

2
i
〈
−a†−a

〉
(43)

= ω

√
h̄mω

2

√
h̄

2mω

√
2mω
h̄
〈−X (t)〉 (44)

= −ω
√
h̄mω

2
cosωt (45)

which is the correct derivative of 24.
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We’ll consider here the problem of finding the averages of the raising and

lowering operators (from the harmonic oscillator) as functions of time, that
is, we want to find 〈a(t)〉 and

〈
a† (t)

〉
. At first glance we might think they

are both zero, since they are defined in terms of position and momentum as

a† =
1√

2h̄mω
[−iP +mωX] (1)

a =
1√

2h̄mω
[iP +mωX] (2)

and the averages of P and X in any of the energy eigenstates of the
harmonic oscillator are all zero. However, suppose we have a mixed state
|ψ〉 which can be written as a sum over the eigenstates as

ψ (t) =
∞

∑
n=0

cne
−iEnt/h̄ |n〉 (3)

=
∞

∑
n=0

cne
−i(2n+1)ωt/2 |n〉 (4)

where in the second line we used the energies of the oscillator as

En = h̄ω

(
n+

1
2

)
(5)

We now have
1
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〈a(t)〉 = 〈ψ |a|ψ〉 (6)

=
∞

∑
n=0

∞

∑
m=0

c∗me
i(2m+1)ωt/2cne

−i(2n+1)ωt/2 〈m |a|n〉 (7)

=
∞

∑
n=0

∞

∑
m=0

c∗mcne
i(m−n)ωt 〈m |a|n〉 (8)

We can now use the formula

a |n〉=
√
n |n−1〉 (9)

This gives

〈a(t)〉=
∞

∑
n=0

∞

∑
m=0

c∗mcne
i(m−n)ωt√n〈m |n−1〉 (10)

=
∞

∑
n=0

∞

∑
m=0

c∗mcne
i(m−n)ωt√nδm,n−1 (11)

= e−iωt
∞

∑
n=0

c∗n−1cn
√
n (12)

= e−iωt 〈a(0)〉 (13)

Note that if |ψ〉 is an eigenstate, then only one of the coefficients cn is
non-zero, so 〈a(0)〉= 0 as we’d expect.

The derivation for
〈
a† (t)

〉
is similar:

〈
a† (t)

〉
=
〈
ψ
∣∣∣a†
∣∣∣ψ〉 (14)

=
∞

∑
n=0

∞

∑
m=0

c∗me
i(2m+1)ωt/2cne

−i(2n+1)ωt/2
〈
m
∣∣∣a†
∣∣∣n〉 (15)

=
∞

∑
n=0

∞

∑
m=0

c∗mcne
i(m−n)ωt

〈
m
∣∣∣a†
∣∣∣n〉 (16)

We can now use the formula

a† |n〉=
√
n+1 |n+1〉 (17)

This gives

http://www.physicspages.com/pdf/Griffiths QM/Harmonic oscillator - algebraic normalization.pdf
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〈
a† (t)

〉
=

∞

∑
n=0

∞

∑
m=0

c∗mcne
i(m−n)ωt√n+1〈m |n+1〉 (18)

=
∞

∑
n=0

∞

∑
m=0

c∗mcne
i(m−n)ωt√n+1δm,n+1 (19)

= eiωt
∞

∑
n=0

c∗n+1cn
√
n+1 (20)

= eiωt
〈
a† (0)

〉
(21)



POISSON BRACKETS TO COMMUTATORS: CLASSICAL TO
QUANTUM

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 7.4, Exercise 7.4.7.
Post date: 31 Jan 2017
The postulates of quantum mechanics that we described earlierincluded

specifications for the matrix elements of position X and momentum P in
position space:

〈
x |X|x′

〉
= xδ

(
x−x′

)
(1)〈

x |P |x′
〉

= −ih̄δ′
(
x−x′

)
(2)

A more fundamental form of this postulate is to specify the commutation
relation between X and P , which is independent of the basis and is

[X,P ] = ih̄ (3)
This allows the construction of explicit forms of the operators in other

bases, such as the momentum basis, where

X = ih̄
d

dp
(4)

P = p (5)

We can verify this by calculating the commutator by applying it to a
function f (p):

[X,P ]f = ih̄
d

dp
(pf (p))− ih̄p d

dp
f (p) (6)

= ih̄f (p)+ ih̄p
d

dp
f (p)− ih̄p d

dp
f (p) (7)

= ih̄f (p) (8)

Thus 3 is satisfied in the momentum basis as well.
The standard recipe for converting a classical system to a quantum one

is to first calculate the Poisson bracketfor two physical quantities in the
classical system, which gives

1
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{ω,λ}= ∑
i

(
∂ω

∂qi

∂λ

∂pi
− ∂ω

∂pi

∂λ

∂qi

)
(9)

where qi and pi are the canonical coordinates and momenta. To convert to
a quantum commutator, we replace the classical quantities by their quantum
operator equivalents and the Poisson bracket by ih̄ times the corresponding
commutator. That is

[Ω,Λ] = ih̄{ω,λ} (10)
For the case of X and P , we have, in classical mechanics in one dimen-

sion

{x,p}= ∂x

∂x

∂p

∂p
− ∂x
∂p

∂p

∂x
= 1 (11)

so the quantum commutator is given by 3.
For other quantities, we can use the theorems on the Poisson bracketsto

reduce them:

{ω,λ} = −{λ,ω} (12)
{ω,λ+σ} = {ω,λ}+{ω,σ} (13)
{ω,λσ} = {ω,λ}σ+{ω,σ}λ (14)

Quantum commutators obey similar rules

[Ω,Λ] = − [Λ,Ω] (15)
[Ω,Λ+Γ] = [Ω,Λ]+ [Ω,Γ] (16)

[ΩΛ,Γ] = Ω [Λ,Γ]+ [Ω,Γ]Λ (17)

The main difference between Poisson brackets and commutators is that,
for the latter, the order of the operators in the last equation can make a
difference. That is, in 14 we could also have written

{ω,λσ}= σ{ω,λ}+λ{ω,σ} (18)
since all three quantities are numerical (not operators), so multiplication

commutes. In 17 it is not true in general that, for example

Ω [Λ,Γ]+ [Ω,Γ]Λ = [Λ,Γ]Ω+[Ω,Γ]Λ (19)
The conversion from classical to quantum mechanics can then be achieved

in general by replacing

{ω (x,p) ,λ(x,p)}= γ (x,p) (20)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.07.01 - 02.07.02.pdf
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by

[Ω(X,P ) ,Λ(X,P )] = ih̄Γ(X,P ) (21)

where each of the operators in the last equation is obtained by replacing
x in the first equation by X and p by P . We do need to be careful with the
ordering of the operators in the quantum version, however.

As an example, suppose we have

Ω = X (22)
Λ = X2 +P 2 (23)

In the classical version, we calculate the Poisson bracket

{ω,λ} =
{
x,x2 +p2} (24)

=
{
x,x2}+{

x,p2} (25)
= 0+2{x,p}p (26)
= 2p (27)

Thus, by our rule above, the quantum version should be

[Ω,Λ] = 2ih̄P (28)

We can verify this using 17

[
X,X2 +P 2] =

[
X,X2]+ [

X,P 2] (29)

= 0−
[
P 2,X

]
(30)

= −P [P,X]− [P,X]P (31)
= −P (−ih̄)− (−ih̄)P (32)
= 2ih̄P (33)

In this case, there is no ordering ambiguity in the quantum version, since
[X,P ] = ih̄ is just a number.

For a second example, suppose we have

Ω = X2 (34)
Λ = P 2 (35)

The classical version gives us, using the relations 14, 11 and 27
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{
x2,p2} = −

{
p2,x2} (36)

= −2
{
p2,x

}
x (37)

= 2
{
x,p2}x (38)

= 4px (39)

In the classical case, this result is the same as 4xp, but because X and
P don’t commute in the quantum form, we need to be careful about the
ordering.

We can do the calculation:[
X2,P 2]=X

[
X,P 2]+ [

X,P 2]X (40)
From 33 we have [

X,P 2]= 2ih̄P (41)
so we get [

X2,P 2]= 2ih̄(XP +PX) (42)
Thus if the Poisson bracket involves a product of p and x, this should be

replaced by

xp or px→ 1
2
(XP +PX) (43)

in the quantum version.

PINGBACKS

Pingback: Angular momentum - Poisson bracket to commutator
Pingback: Hamiltonian in non-rectangular coordinates
Pingback: Harmonic oscillator: momentum space functions and Hermite

polynomial recursion
Pingback: Direct product of two vector spaces
Pingback: Nonrelativistic field theory - Schrödinger equation

http://physicspages.com/pdf/Shankar/Shankar Exercises 07.04.08.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 07.04.10.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 07.05.01 - 07.05.03.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 07.05.01 - 07.05.03.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 10.01.01.pdf
http://physicspages.com/pdf/Greiner QFT/Greiner 03.02.01 Nonrelativistic field theory.pdf


ANGULAR MOMENTUM - POISSON BRACKET TO
COMMUTATOR

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 7.4, Exercise 7.4.8.
Post date: 31 Jan 2017
The classical angular momentum components are

`x = ypz− zpy (1)
`y = zpx−xpz (2)
`z = xpy−ypx (3)

In the position basis, we can replace each coordinate by its quantum op-
erator x→X , y→ Y and z→ Z, and each momentum component by the
derivative pi→−ih̄∂/∂qi, where qi is the ith coordinate. This gives

Lx = −ih̄
(
y
∂

∂z
− z ∂

∂y

)
(4)

Ly = −ih̄
(
z
∂

∂x
−x ∂

∂z

)
(5)

Lz = −ih̄
(
x
∂

∂y
−y ∂

∂x

)
(6)

Because coordinates always commute with momentum components of
other coordinates (x commutes with py and pz, etc), there is no ordering
ambiguity in making the transition from classical to quantum mechanics.
That is, we could place the coordinate on either side of the momentum in
each term for all components Li.

Classically, we can calculate the Poisson brackets for the angular mo-
mentum components. For example

1
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{`x, `y}= ∑
i

(
∂`x
∂qi

∂`y
∂pi
− ∂`x
∂pi

∂`y
∂qi

)
(7)

=−py (−x)−ypz (8)
= xpy−ypz (9)
= `z (10)

According to the rule for converting classical Poisson brackets to quan-
tum commutators, we should get (since there is no ordering ambiguity)

[Lx,Ly] = ih̄Lz (11)
As we’ve seen earlier, this is verified by direct calculation using the

position-momentum commutator

[qi,pj ] = ih̄δij (12)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 07.04.07.pdf
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CHANGING THE POSITION BASIS WITH A UNITARY
TRANSFORMATION

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 7.4, Exercise 7.4.9.
Post date: 30 Jan 2017
The standard representation of the position and momentum operators in

the position basis is

X → x (1)

P → −ih̄ d
dx

(2)

It turns out it’s possible to modify this definition by adding some arbitrary
function of position f (x) to P so we have

X ′ → x (3)

P ′ → −ih̄ d
dx

+f (x) (4)

Since any function of x commutes with X , the commutation relations
remain unchanged, so we have[

X ′,P ′
]
= ih̄ (5)

Another way of interpreting this change in operators is by using the uni-
tary transformation of the X basis, in the form

|x〉 → |x̃〉= eig(X)/h̄ |x〉= eig(x)/h̄ |x〉 (6)

where

g (x)≡
∫ x

f
(
x′
)
dx′ (7)

The last equality in 6 comes from the fact that operating on |x〉 with any
function of the X operator (provided the function can be expanded in a
power series) results in multiplying |x〉 by the same function, but with the
operator X replaced by the numeric position value.

1
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To verify this works, we can calcuate the matrix elements of the old X
and P operators in the new basis. We have

〈
x̃ |X| x̃′

〉
=
〈
x
∣∣∣e−ig(x)/h̄Xeig(x′)/h̄∣∣∣x′〉 (8)

At this stage, since the two exponentials are numerical functions and not
operators, we can take them outside the bracket to

〈
x̃ |X| x̃′

〉
= e−ig(x)/h̄eig(x

′)/h̄ 〈x |X|x′〉 (9)

= e−ig(x)/h̄eig(x
′)/h̄x′δ

(
x−x′

)
(10)

= xδ
(
x−x′

)
(11)

The exponentials cancel in the last line since the delta function is non-
zero only when x= x′.

The above result can also be obtained by inserting a couple of identity
operators into 8:

〈
x
∣∣∣e−ig(x)/h̄Xeig(x′)/h̄∣∣∣x′〉=

∫ ∫ 〈
x
∣∣∣e−ig(x)/h̄∣∣∣y〉〈y |X|z〉〈z ∣∣∣eig(x′)/h̄∣∣∣x′〉dy dz

(12)

=
∫ ∫ 〈

x
∣∣∣e−ig(x)/h̄∣∣∣y〉zδ (y− z)〈z ∣∣∣eig(x′)/h̄∣∣∣x′〉dy dz

(13)

=
∫ 〈

x
∣∣∣e−ig(x)/h̄∣∣∣z〉z〈z ∣∣∣eig(x′)/h̄∣∣∣x′〉dz

(14)

=
∫
ei[g(x

′)−g(x)]/h̄ 〈x |z 〉z
〈
z
∣∣x′〉dz (15)

=
∫
ei[g(x

′)−g(x)]/h̄δ (x− z)zδ
(
z−x′

)
dz

(16)

= ei[g(x
′)−g(x)]/h̄x′δ

(
x−x′

)
(17)

= xδ
(
x−x′

)
(18)

The momentum operator works as follows. Using the original definition
2 on the modified basis we have
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〈
x̃ |P | x̃′

〉
=−ih̄

〈
x

∣∣∣∣e−ig(x)/h̄ d

dx′
eig(x

′)/h̄

∣∣∣∣x′〉 (19)

=−ih̄
〈
x

∣∣∣∣e−ig(x)/h̄ ih̄eig(x′)/h̄dg (x′)dx′

∣∣∣∣x′〉− (20)

ih̄

〈
x

∣∣∣∣e−ig(x)/h̄eig(x′)/h̄ d

dx′

∣∣∣∣x′〉 (21)

From 7 we have

dg (x)

dx
=

d

dx

∫ x

f
(
x′
)
dx′ = f (x) (22)

This gives

〈
x̃ |P | x̃′

〉
=

〈
x

∣∣∣∣ei[g(x′)−g(x)]/h̄[f (x′)− ih̄ d

dx′

]∣∣∣∣x′〉 (23)

= ei[g(x
′)−g(x)]/h̄

[
f
(
x′
)
− ih̄ d

dx′

]〈
x
∣∣x′〉 (24)

= ei[g(x
′)−g(x)]/h̄

[
f
(
x′
)
− ih̄ d

dx′

]
δ
(
x−x′

)
(25)

=

[
f (x)− ih̄ d

dx

]
δ
(
x−x′

)
(26)

This shows that by a unitary change of X basis 6, we transform the po-
sition and momentum operators (well, just the momentum operator, really)
according to 3. We’ve multiplied the original |x〉 states by a phase factor
which depends on some function f (x). This doesn’t change the matrix
elements of X , but it does add f (x) to the matrix elements of P . The
commonly used definition of P is thus with f (x) = 0.
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Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 7.4, Exercise 7.4.10.
Post date: 1 Feb 2017
The standard procedure for quantizing a classical hamiltonian is to write

the classical hamiltonian in terms of position and momentum variables in
rectangular coordinates and then convert the position and momentum vari-
ables to operators satisfying the usual commutation relations. However, in
some cases, another coordinate system makes solving the differential equa-
tion resulting from the Schrödinger equation easier (as, for example, with
the hydrogen atom, where the system has spherical symmetry).

As a 2-d example, suppose we have the classical hamiltonian

H =
p2
x+p

2
y

2m
+a
√
x2 +y2 (1)

for some constant a. Since the system has radial symmetry, polar coordi-
nates should make things easier. That is, we’d like to transform to

ρ =
√
x2 +y2 (2)

φ = arctan
y

x
(3)

In the rectangular position basis, the quantized operators are

Px = −ih̄ ∂
∂x

(4)

Py = −ih̄ ∂
∂y

(5)

X = x (6)
Y = y (7)

so the quantum hamiltonian is

H =− h̄2

2m

(
∂2

∂x2 +
∂2

∂y2

)
+a
√
x2 +y2 (8)

1
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The first term contains the Laplacian derivative operator, which can be
written in polar coordinates as

∂2

∂x2 +
∂2

∂y2 =
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2 (9)

Thus the quantum hamiltonian in polar coordinates is

H =− h̄2

2m

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
+aρ (10)

The question is: can we instead convert the hamiltonian 1 to polar coor-
dinates and then quantize the result, rather than converting the rectangular
coordinates after the hamiltonian is written? The answer turns out to be sur-
prisingly complicated, and I’m not sure I follow everything Shankar says,
but here’s the argument anyway. Comments, as usual, are welcome.

We first convert the rectangular momentum coordinates to polar momen-
tum coordinates by means of the substitutions

pρ = r̂ ·p =
xpx+ypy√
x2 +y2

(11)

pφ = `z = xpy−ypx (12)

Note that the two components of polar momentum have different units:
pρ has the dimensions of linear momentum while pφ is actually the angular
momentum about the z axis `z. In terms of these new momenta, the classical
hamiltonian 1 becomes

H =
p2
ρ

2m
+

p2
φ

2mρ2 +aρ (13)

This can be verified either by inverting equations 11 and 12 to get px and
py in terms of pρ and pφ and then plugging these into 1 (very messy), or
else just starting with 13 and showing it reduces to 1. We’ll do the latter.

p2
ρ+

p2
φ

ρ2 =

[
xpx+ypy√
x2 +y2

]2

+
(xpy−ypx)2

x2 +y2 (14)

=
1
ρ2

(
x2p2

x+y
2p2
y+2xypxpy+x2p2

y+y
2p2
x−2xypxpy

)
(15)

=
1
ρ2

(
x2 +y2)(p2

x+p
2
y

)
(16)

= p2
x+p

2
y (17)

https://en.wikipedia.org/wiki/Laplace_operator#Two_dimensions
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We can now try quantizing 13 by creating a couple of quantum momen-
tum operators according to the standard rule:

Pρ = −ih̄ ∂
∂ρ

(18)

Pφ = −ih̄ ∂
∂φ

(19)

These operators satisfy the usual commutation rule, in the sense that

[ρ,Pρ] =
[
φ,Pφ

]
= ih̄ (20)

However, substituting them into 13 gives

H =− h̄2

2m

(
∂2

∂ρ2 +
1
ρ2

∂2

∂φ2

)
+aρ (21)

Comparing with 10 we see that the middle term with the first order de-
rivative is missing. The problem is due to the fact that 18 is actually not a
hermitian operator, which we can see by calculating the bracket as follows:

〈ψ1 |Pρ|ψ2〉=−ih̄
∫ 2π

0

∫
∞

0
ψ∗1
∂ψ2

∂ρ
ρ dρ dφ (22)

We can do the ρ integral by parts and, assuming that ρψ∗1ψ2→ 0 at both
ρ→ 0 and ρ→ ∞, we have

∫
∞

0
ψ∗1
∂ψ2

∂ρ
ρ dρ= ρψ∗1ψ2|∞0 −

∫
∞

0
ψ2
∂ (ρψ∗1)

∂ρ
dρ (23)

=−
∫

∞

0
ψ2
∂ψ∗1
∂ρ

ρ dρ−
∫

∞

0
ψ∗1ψ2dρ (24)

Substituting back into 22 we get

〈ψ1 |Pρ|ψ2〉= ih̄
∫ 2π

0

∫
∞

0

[
ψ2
∂ψ∗1
∂ρ

ρ+ψ∗1ψ2

]
dρ dφ (25)

If Pρ is to be hermitian, we need to satisfy

〈ψ1 |Pρ|ψ2〉= 〈Pρψ1 |ψ2 〉 (26)

= ih̄
∫ 2π

0

∫
∞

0
ψ2
∂ψ∗1
∂ρ

ρ dρ dφ (27)

We can see that the presence of the second term in the integrand of 25
messes things up. This term arises from the presence of the extra factor of
ρ that is present in a polar area integral.
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We can, in fact, attempt to fix this by defining the radial momentum op-
erator to be, instead of 18:

Pρ =−ih̄
(
∂

∂ρ
+

1
2ρ

)
(28)

We first verify that this is hermitian:

〈ψ1 |Pρ|ψ2〉=−ih̄
∫ 2π

0

∫
∞

0
ψ∗1

[
∂ψ2

∂ρ
ρ+

ψ2

2

]
dρ dφ (29)

= ih̄
∫ 2π

0

∫
∞

0

[
ψ2
∂ψ∗1
∂ρ

ρ+ψ∗1ψ2−
1
2
ψ∗1ψ2

]
dρ dφ (30)

= ih̄
∫ 2π

0

∫
∞

0

[
ψ2
∂ψ∗1
∂ρ

ρ+
1
2
ψ∗1ψ2

]
dρ dφ (31)

= 〈Pρψ1 |ψ2 〉 (32)

In the second line we did the same integration by parts on the first term
and used the result in 24. Thus this new Pρ is indeed hermitian. If we now
insert this along with the old Pφ from 19 into 13 we get

H =− h̄2

2m

(
∂

∂ρ
+

1
2ρ

)2

+aρ (33)

To work out the differential part of the hamiltonian we can apply it to a
test function.

(
∂

∂ρ
+

1
2ρ

)2

ψ =

(
∂

∂ρ
+

1
2ρ

)(
∂ψ

∂ρ
+
ψ

2ρ

)
(34)

=
∂2ψ

∂ρ2 +
1

2ρ
∂ψ

∂ρ
− ψ

2ρ2 +
1

2ρ
∂ψ

∂ρ
+

ψ

4ρ2 (35)

=
∂2ψ

∂ρ2 +
1
ρ

∂ψ

∂ρ
− ψ

4ρ2 (36)

The hamiltonian then becomes

H =− h̄2

2m

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
− 1

4ρ2 +
1
ρ2

∂2

∂φ2

)
+aρ (37)

Comparing this with 10 we see that now we have an extra term − 1
4ρ2 .

Shankar doesn’t really explain in detail what the problem is, except to state
that when converting from a classical to a quantum hamiltonian, terms of or-
der h̄ or higher may be present in the quantum version that are absent in the
classical version. Presumably he means terms of order h̄ that don’t involve
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derivatives, since the entire momentum-dependent part of the hamiltonian
is multiplied by a factor of h̄2. In any case, we’ll have to leave it at that.
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Earlier, we found the position space energy eigenfunctions of the har-

monic oscillator to be

ψn(y) =
(mω
πh̄

)1/4 1√
2nn!

Hn(y)e
−y2/2 (1)

ψn(x) =
(mω
πh̄

)1/4 1√
2nn!

Hn

(√
mω

h̄
x

)
e−mωx2/2h̄ (2)

where y in the first equation is shorthand for

y =

√
mω

h̄
x (3)

It turns out that an alternative method for deriving these functions uses
the lowering operator a. Shankar gives the derivation of ψn (x) in his sec-
tion 7.5, but we can use the same technique to derive the momentum space
functions. We start with the ground state and use

a |0〉= 0 (4)
In terms of X and P , we have

a=

√
mω

2h̄
X+ i

1√
2mωh̄

P (5)

To find the momentum space functions, we need to express X and P in
terms of p:

X = ih̄
d

dp
(6)

P = p (7)

We thus have
1
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[
ih̄

√
mω

2h̄
d

dp
+ i

1√
2mωh̄

p

]
ψ0 (p) = 0 (8)

If we define the auxiliary variable

z ≡ p√
h̄mω

(9)

we get (
d

dz
+ z

)
ψ0 (z) = 0 (10)

This has the solution

ψ0 (z) = Ae−z
2/2 (11)

for some normalization constant A. Thus in terms of p we have

ψ0 (p) = Ae−p
2/2h̄mω (12)

Normalizing in the usual way, making use of the Gaussian integral, we
have

∫
∞

−∞

ψ2
0 (p)dp = A2

∫
∞

−∞

e−p
2/h̄mωdp= 1 (13)

A =
1

(πh̄mω)1/4
(14)

This agrees with the earlier result which was obtained by solving a second-
order differential equation.

We can also use a and a† to verify a couple of recursion relations for
Hermite polynomials. Reverting back to position space we have

X = x (15)

P = −ih̄ d
dx

(16)

so 5 becomes

a=

√
mω

2h̄
x+

h̄√
2mωh̄

d

dx
(17)

Also from 5 we have, since X and P are both hermitian operators
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a† =

√
mω

2h̄
X− i 1√

2mωh̄
P (18)

=

√
mω

2h̄
x− h̄√

2mωh̄
d

dx
(19)

Defining

y ≡
√
mω

h̄
x (20)

we have

a =
1√
2

(
y+

d

dy

)
(21)

a† =
1√
2

(
y− d

dy

)
(22)

We also recall the normalization conditions on the raising and lowering
operators:

a |n〉 =
√
n |n−1〉 (23)

a† |n〉 =
√
n+1 |n+1〉 (24)

Applying 23 to 1 we have, after cancelling common factors from each
side:

1√
2

1√
2nn!

(
y+

d

dy

)[
Hn(y)e

−y2/2
]
=

√
n√

2n−1 (n−1)!
Hn−1 (y)e

−y2/2

(25)

1
2
√
n

1√
2n−1 (n−1)!

e−y
2/2
[
yHn (y)−yHn (y)+

dHn

dy

]
=

√
n√

2n−1 (n−1)!
Hn−1 (y)e

−y2/2

(26)

yHn (y)−yHn (y)+
dHn

dy
= 2nHn−1 (y)

(27)

H ′n (y) = 2nHn−1 (y)
(28)

Another recursion relation for Hermite polynomials can be found as fol-
lows. We start with 22 to get
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a+a† =
√

2y (29)
We now apply 23 and 24 to 1. We can cancel common factors, including

e−y
2/2, from both sides to get(

a+a†
)
ψn =

√
2yψn (30)

√
2y√

2nn!
Hn(y) =

√
n√

2n−1 (n−1)!
Hn−1(y)+

√
n+1√

2n+1 (n+1)!
Hn+1(y)

(31)

y√
2n−1n(n−1)!

Hn(y) =

√
n√

2n−1 (n−1)!
Hn−1(y)+

1

2
√

2n−1n(n−1)!
Hn+1(y)

(32)

yHn (y) = nHn−1 (y)+
1
2
Hn+1 (y) (33)

Hn+1 (y) = 2yHn (y)−2nHn−1 (y) (34)
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One application of harmonic oscillator theory is in the behaviour of crys-

tals as a function of temperature. A reasonable model of a crystal is of a
number of atoms that vibrate as harmonic oscillators. From statistical me-
chanics, the probability P (i) of finding a system in a state i is given by the
Boltzmann formula

P (i) =
e−βE(i)

Z
(1)

where β = 1/kT , with k being Boltzmann’s constant and T the absolute
temperature, and Z is the partition function

Z = ∑
i

e−βE(i) (2)

The thermal average energy of the system is then

Ē = ∑
i

E (i)P (i) (3)

=
∑iE (i)e−βE(i)

Z
(4)

= −∂ (lnZ)
∂β

(5)

For a classical harmonic oscillator, the energy is a continuous function of
the position x and momentum p:

Ecl =
p2

2m
+

1
2
mω2x2 (6)

The classical partition function is then
1
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Zcl =
∫

∞

−∞

∫
∞

−∞

e−βp
2/2me−βmω

2x2/2dp dx (7)

=
∫

∞

−∞

e−βp
2/2mdp

∫
∞

−∞

e−βmω
2x2/2dx (8)

=

√
2πm
β

√
2π

βmω2 (9)

=
2π
ωβ

(10)

Where we used the standard formula for Gaussian integrals to get the
third line. The average classical energy is, from 5

Ēcl =−
∂ (lnZcl)
∂β

=
1
β
= kT (11)

The average energy of a classical oscillator thus depends only on the
temperature, and not on the frequency ω.

For a quantum oscillator, the energies are quantized with values of

E (n) = h̄ω

(
n+

1
2

)
(12)

The quantum partition function is therefore

Zqu = e−βh̄ω/2
∞

∑
n=0

e−βh̄ωn (13)

The sum is a geometric series, so we can use the standard result for |x|<
1:

∞

∑
n=0

xn =
1

1−x
(14)

This gives

Zqu =
e−βh̄ω/2

1− e−βh̄ω
(15)

The mean quantum energy is again found from 5, although this time the
derivative is a bit messier, so is most easily done using Maple. However, by
hand, you’d get

http://www.physicspages.com/pdf/Mathematics/Gaussian integral.pdf
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Ēqu =−
∂ (lnZqu)

∂β
(16)

=
1− e−βh̄ω

e−βh̄ω/2

[
−1

2
h̄ωe−βh̄ω/2

1− e−βh̄ω
− h̄ωe

−βh̄ω/2e−βh̄ω(
1− e−βh̄ω

)2

]
(17)

=
h̄ω

2

(
1+ e−βh̄ω

1− e−βh̄ω

)
(18)

=
h̄ω

2

(
1− e−βh̄ω+2e−βh̄ω

1− e−βh̄ω

)
(19)

= h̄ω

(
1
2
+

1
eβh̄ω−1

)
(20)

The average energy is the ground state energy h̄ω/2 plus a quantity that
increases with increasing temperature (decreasing β). For small β we have

Ēqu → h̄ω

(
1
2
+

1
1+βh̄ω−1

)
(21)

=
h̄ω

2
+

1
β

(22)

→ kT (23)

since as β→ 0, 1
β �

h̄ω
2 . Thus the quantum energy reduces to the clas-

sical energy 11 for high temperatures. The ’high temperature’ condition is
that

1
β
� h̄ω

2
(24)

T � h̄ω

2k
(25)

So far, we’ve considered the average behaviour of only one oscillator.
Suppose we now have a 3-d crystal with N0 atoms. Assuming small os-
cillations we can approximate its behaviour by a system of 3N0 decoupled
oscillators. In the classical case, the average energy is found from 11:

Ēcl = 3N0Ēcl = 3N0kT (26)

The heat capacity per atom is the amount of heat (energy) ∆E required
to raise the temperature by ∆T , so
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Ccl =
1
N0

∂Ēcl
∂T

= 3k (27)

For the quantum system, we have from 20

Ēqu = 3N0Ēqu (28)

= 3N0h̄ω

(
1
2
+

1
eβh̄ω−1

)
(29)

The quantum heat capacity is therefore

Cqu =
1
N0

∂Ēqu
∂T

(30)

= 3h̄ω
∂

∂β

(
1

eβh̄ω−1

)
dβ

dT
(31)

= 3
h̄2ω2

kT 2
eh̄ω/kT(
eβh̄ω−1

)2 (32)

We can define the Einstein temperature as

θE ≡
h̄ω

k
(33)

which gives the heat capacity as

Cqu = 3k
θ2
E

T 2
eθE/T(

eθE/T −1
)2 (34)

For large temperatures, the exponent θE/T becomes small, so we have

Cqu −→
T�θE

3k
θ2
E

T 2
1+ θE/T

(1+ θE/T −1)2 (35)

→ 3k (36)

For low temperatures eθE/T � 1 so we have

Cqu −→
T�θE

3k
θ2
E

T 2
eθE/T

e2θE/T
(37)

= 3k
θ2
E

T 2 e
−θE/T (38)

The heat capacity again reduces to the classical value for high temper-
atures. The observed behaviour at low temperatures is that Cqu → T 3, so
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this simple model fails for very low temperatures. However, as is shown by
Shankar’s figure 7.3 Einstein’s quantum model is actually quite good for all
but the lowest temperatures.
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Section 7.4, Exercise 7.4.2.
In the study of the harmonic oscillator, we can express x and p in terms

of the raising and lowering operators:

x =

√
h̄

2mω
(a++a−) (1)

p = i

√
h̄mω

2
(a+−a−) (2)

We now have

〈x〉 =

√
h̄

2mω

∫
ψ∗n(a++a−)ψndx (3)

= 0 (4)

The reason this is zero is that, as we saw when working out the normaliza-
tion of the stationary states,

a+ψn =
√
n+1ψn+1 (5)

a−ψn =
√
nψn−1 (6)

a+a−ψn = nψn (7)
a−a+ψn = (n+1)ψn (8)

and since the wave functions are orthogonal, we get∫
ψ∗nψn+1dx=

∫
ψ∗nψn−1dx= 0 (9)

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Griffiths QM/Harmonic oscillator - algebraic 1.pdf


HARMONIC OSCILLATOR - RAISING AND LOWERING OPERATOR CALCULATIONS 2

Similarly:

〈p〉 = i

√
h̄mω

2

∫
ψ∗n(a+−a−)ψndx (10)

= 0 (11)

for the same reason.
For the mean squares:

〈x2〉 =

(
h̄

2mω

)∫
ψ∗n(a++a−)(a++a−)ψndx (12)

=

(
h̄

2mω

)∫
ψ∗n(a+a−+a−a+)ψndx (13)

=

(
h̄

2mω

)
(2n+1) (14)

=
h̄

mω

(
n+

1
2

)
(15)

In going from the first to the second line, we’ve thrown out terms where we
integrate two orthogonal functions. For example,

∫
ψ∗na+a+ψndx =

∫
ψ∗n
√
(n+1)(n+2)ψn+2dx (16)

= 0 (17)

We have used the relations above and the fact that ψn is normalized to
get the third line.

Similarly:

〈p2〉 = − h̄mω
2

∫
ψ∗n(−a+a−−a−a+)ψndx (18)

= h̄mω

(
n+

1
2

)
(19)

The uncertainty principle then becomes

σpσx =
√
〈x2〉〈p2〉 (20)

= h̄

(
n+

1
2

)
(21)
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and the kinetic energy is

〈T 〉= 〈p
2〉

2m
=

1
2
h̄ω

(
n+

1
2

)
(22)

which is half the total energy, as it should be.
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Section 7.3, Exercise 7.3.6.
Suppose we modify the harmonic oscillator potential so that it becomes

a half-harmonic oscillator. That is

V (x) =

{
∞ x < 0
1
2mω

2x2 x > 0
(1)

A physical interpretation of this could be a spring that can be stretched
from its equilibrium position but not compressed.

We can find the allowed energies of this potential by considering its dif-
ference from the ordinary harmonic oscillator. In the ordinary case, there
were no boundary conditions, and we found that the stationary states could
be expressed in terms of the Hermite polynomials

ψn(x) =
(mω
πh̄

)1/4 1√
2nn!

Hn

(√
mω

h̄
x

)
e−mωx2/2h̄ (2)

The Hermite polynomials are even if n is even and odd if n is odd. Since
all the even Hermite polynomials have a non-zero constant term, Hn(0) 6= 0
if n is even. Similarly, since all odd Hermite polynomials have no constant
term, H(0) = 0 if n is odd.

From continuity of the wave function at x = 0 we must have ψ(0) = 0
(since the wave function is zero for x < 0). The solution above still ap-
plies for x > 0, but due to the boundary condition, we are allowed only the
odd Hermite polynomial solutions for x > 0, which in turn means that the
allowed energies are

En =

(
n+

1
2

)
h̄ω (3)

for n odd only.

1
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Section 7.4, Exercise 7.4.1.
In analyzing the harmonic oscillator, we used the raising and lowering

operators to calculate 〈x〉 and 〈p〉, finding that they are both zero for all
stationary states. These quantities are really the diagonal elements of the
matrices X and P. That is

〈x〉nn = 〈n|x|n〉 (1)
= Xnn (2)

We can use the same technique to calculate the off-diagonal elements.
We review the equations involving the raising and lowering operators

first:

x =

√
h̄

2mω
(a++a−) (3)

p = i

√
h̄mω

2
(a+−a−) (4)

a+ψn =
√
n+1ψn+1 (5)

a−ψn =
√
nψn−1 (6)

The general matrix elements for the operator x can then be calculated:

〈n|x|n′〉 =

√
h̄

2mω
(
√
n′+1〈n|n′+1〉+

√
n′〈n|n′−1〉) (7)

=

√
h̄

2mω
(
√
n′+1δn,n′+1 +

√
n′δn,n′−1) (8)

By similar reasoning we get the matrix elements for p:
1
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〈n|p|n′〉= i

√
h̄mω

2
(
√
n′+1δn,n′+1−

√
n′δn,n′−1) (9)

These results agree with those found by doing the integrals involving
Hermite polynomials.

We now have all the matrix elements of X and P so it would be interesting
to calculate the full hamiltonian matrix, which is

H=
1

2m
P

2 +
mω2

2
X

2 (10)

In order to calculate the squares of the two matrices, we observe that both
X and P are tridiagonal matrices with the added condition that their main
diagonals are all zero. That is, the two diagonals above and below the main
diagonal are the only places with non-zero elements. The square of such a
matrix will have non-zero elements only on the main diagonal, and on the
diagonals two above and below the main diagonal (you can verify this by
drawing out such a matrix and seeing where the non-zero elements lie, or
by doing tedious calculations with indices).

We can demonstrate how these elements can be calculated by considering
the diagonal elements of X2.

X
2
nn = ∑

n′
〈n|x|n′〉〈n′|x|n〉 (11)

=
h̄

2mω∑
n′
[
√
n′+1δn,n′+1 +

√
n′δn,n′−1][

√
n+1δn′,n+1 +

√
nδn′,n−1]

(12)

=
h̄

2mω
(2n+1) (13)

The last line is obtained by noting that all the terms in the sum contain the
product of two Kronecker deltas, so only in those cases where both deltas
are non-zero is there a non-zero contribution to the sum. This happens
only in the terms involving the product of the first and fourth terms (where
n′ = n−1) and the second and third terms (where n′ = n+1).

By a similar argument, we get

P
2
nn =

h̄mω

2
(2n+1) (14)

Therefore the diagonal elements of (1/2m)P2 +(mω2/2)X2 are

Hnn = h̄ω

(
n+

1
2

)
(15)

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 02.12.pdf
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which is what you would expect, as these are the energy levels of the har-
monic oscillator.

It remains only to show that the off-diagonal elements of H are zero.

X
2
nm = ∑

n′
〈n|x|n′〉〈n′|x|m〉 (16)

=
h̄

2mω∑
n′
[
√
n′+1δn,n′+1 +

√
n′δn,n′−1][

√
m+1δn′,m+1 +

√
mδn′,m−1]

(17)

To see which non-zero elements exist on row n, we note that for a given
value of n, we must have either n′ = n−1 or n′ = n+1 in order for one of
the deltas in the first term to be non-zero. If n′ = n−1, then in the second
term, we must have either n− 1 = m+ 1 or n− 1 = m− 1. The second
case results in a diagonal element which we have already considered, so we
need consider only the case m= n−2. In this case, the matrix element is

X
2
n,n−2 =

h̄

2mω

√
n(n−1) (18)

Similarly, if n′ = n+1, the non-diagonal term is n+1 =m−1 or m =
n+2, and we get

X
2
n,n+2 =

h̄

2mω

√
(n+1)(n+2) (19)

Similar reasoning gives us the elements from P
2:

P
2
n,n−2 = − h̄mω

2

√
n(n−1) (20)

P
2
n,n+2 = − h̄mω

2

√
(n+1)(n+2) (21)

Combining these two results, we see that the non-diagonal elements of
(1/2m)P2 +(mω2/2)X2 are all zero.
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Section 7.4, Exercise 7.4.4.
We can apply the relativistic correction to the one-dimensional harmonic

oscillator as another example. When analyzing the hydrogen atom, we ar-
rived at this formula for the first order correction to the energy:

En1 =−
1

2mc2 〈n0|(En0−V )2 |n0〉 (1)

where we’ve adjusted the wave functions so they apply to the harmonic
oscillator.

Before applying this formula, we should check a couple of things. First,
this formula was derived using non-degenerate perturbation theory. In the
one-dimensional oscillator this is fine, since there are no degenerate states.

Second, we assumed that the operator p4 was hermitian, and to check this
it is easiest to use the raising and lowering operators. We have

p= i

√
h̄mω

2
(a+−a−) (2)

The raising and lowering operators transform one wave function into an-
other:

a+ |n0〉 =
√
n+1 |n+1,0〉 (3)

a− |n0〉 =
√
n |n−1,0〉 (4)

Therefore, each application of p transforms the original wave function
into a linear combination of other wave functions and since p itself must
be hermitian (it represents an observable: the momentum) when applied to
any oscillator wave function, any power of p is also hermitian in the same
situation.

1
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Having verified that the first order energy correction may be applied to
the harmonic oscillator, we can now plug in the values. The unperturbed
energies are

En0 =

(
n+

1
2

)
h̄ω (5)

From the virial theorem we know that 〈T 〉= 〈V 〉= 1
2En0 so

En1 =−
1

2mc2

(
E2
n0−2En0 〈V 〉+

〈
V 2〉) (6)

=− 1
2mc2

[((
n+

1
2

)
h̄ω

)2

−
((

n+
1
2

)
h̄ω

)2

+
1
4
m2ω4 〈x4〉]

(7)

=−mω
4

8c2

〈
x4〉 (8)

To calculate
〈
x4〉, we can use the raising and lowering operators again.

We have

x =

√
h̄

2mω
(a++a−) (9)

x2 =
h̄

2mω
(
a2
++a+a−+a−a++a2

−
)

(10)

Since
〈
x4〉= 〈n0|x4 |n0〉, the two wave functions involved in calculating

the mean value are the same (both |n0〉) and 〈n0|m0〉 = δmn, any combi-
nation of a+ and a− that converts |n0〉 into a different wave function will
not contribute to the overall integral, so we need consider only those terms
in the operator x4 with equal numbers of a+ and a−. Retaining only these
terms, we get

x4 =

(
h̄

2mω

)2 (
a2
+a

2
−+a+a−a+a−+a+a

2
−a++a−a+a−a++a−a

2
+a−+a

2
−a

2
+

)
(11)

Applying the operators according to the formulas above, we get

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 03.31.pdf
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〈
x4〉= ( h̄

2mω

)2 [
n(n−1)+n2 +n(n+1)+(n+1)2 +n(n+1)+(n+1)(n+2)

]
(12)

=

(
h̄

2mω

)2 (
6n2 +6n+3

)
(13)

The energy correction is then

En1 =−
3h̄2ω2

32mc2

(
2n2 +2n+1

)
(14)
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Chapter 8.
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Although all the non-relativistic quantum mechanics we’ve done so far

has started with the Schrödinger equation, a different approach was devised
by Richard Feynman in the 1940s. The Schrödinger method requires us to
find the eigenvalues (allowed energies) and eigenstates of the hamiltonian
H and then use these to construct the unitary operator known as the propa-
gator. For discrete energies, this propagator is

U (t) = ∑e−iEt/h̄ |E〉〈E| (1)

and for continuous energies, we have

U (t) =
∫
e−iEt/h̄ |E〉〈E|dE (2)

Given the state of the system at an initial time t= 0, the general solution
as a function of time is then

|ψ (t)〉= U (t) |ψ (0)〉 (3)

Feynman’s method allows us to compute the propagator directly, with-
out first solving the Schrödinger equation. It is known as the path integral
forumulation.

The idea is based on the observation that the exponential e−iEt/h̄ that
appears in the propagator contains the ratio of two quantities with the di-
mensions of action, that is, energy times time. In classical mechanics, the
actual trajectory of a particle is found by minimizing the action S over all
possible paths available to the particle. The path integral formulation of
quantum mechanics works in a similar way, although at first sight, it looks
like a completely impractical method.

The formulation works like this, for a single particle:
(1) Find all paths available for the particle to travel between its initial

point (x′, t′) and its final point (x,t). This is actually similar to what
we do in classical mechanics, where S is defined as S =

∫
L dt

1
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where L is the Lagrangian. We then use the functional derivative
to minimize S over all these paths and find the path that gives the
minimum action.

(2) For each path, calculate the action S. (This is where things sound
terribly impractical, since there are an infinite number of paths of
all possible shape, so how can we find the action for all these paths?
It turns out that, in most cases, we don’t need to.)

(3) Calculate the propagator as

U
(
x,t;x′, t′

)
= A ∑

all paths

eiS[x(t)]/h̄ (4)

The notation S [x(t)] indicates that S is a functional of the path x(t).
The key to the success of this method is that since the action is real, the

exponential eiS[x(t)]/h̄ is an oscillatory function, so we can expect contri-
butions from the actions for different paths to cancel each other to some
extent. Although the quantum path of a particle can’t be defined precisely
due to the uncertainty principle, we expect that the particle is much more
likely to be found following a path that is close to the classical path, and
the classical path occurs when S [x(t)] is a minimum. Paths sufficiently far
from this minimum will tend to cancel each other, so for practical purposes,
we need calculate 4 only for paths near to the classical path.

The example given by Shankar is of a particle of mass 1 gram moving
from (x,t) = (0,0) to (1,1) by two different paths. In the first path, the
particle moves with constant speed so x= t. The action is

S =
∫ 1

0
L dt (5)

=
∫ 1

0
(T −V )dt (6)

=
∫ 1

0

1
2
mv2dt (7)

=
m

2

∫ 1

0

(
dx

dt

)2

dt (8)

=
m

2

∫ 1

0
dt (9)

=
m

2
(10)

In the second path, we have x= t2, so the velocity is

v =
dx

dt
= 2t (11)
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with associated action

S =
∫ 1

0

1
2
mv2dt (12)

= 2m
∫ 1

0
t2dt (13)

=
2m
3

(14)

The guideline for when the phases of the paths start to cancel each other
is when S/h̄ is about π out of phase with Scl/h̄. In this example, the second
path is πout of phase with the first when(

2m
3
−m

2

)
= πh̄≈ 3×10−34 m2kg s−1 (15)

Thus for any mass larger than about 6πh̄ ≈ 1.8× 10−33 kg the second
path will contribute essentially nothing to 4 and can be ignored. This mass
is smaller than the mass of the electron.

For the free particle, we worked out the propagator earlier and found that
(where we’ve generalized the earlier result for an arbitrary initial time t′):

U
(
t, t′
)
=
∫

∞

−∞

e−ip
2(t−t′)/2mh̄ |p〉〈p|dp (16)

The matrix elements of U in the x basis are worked out by evaluating a
Gaussian integral

U
(
x,t;x′, t′

)
=
∫

∞

−∞

e−ip
2(t−t′)/2mh̄ 〈x |p〉

〈
p
∣∣x′ 〉dp (17)

=
1

2πh̄

∫
∞

−∞

eip(x−x
′)/h̄e−ip

2(t−t′)/2mh̄dp (18)

=

√
m

2πh̄i(t− t′)
eim(x−x′)2/2h̄(t−t′) (19)

We can try to estimate U using the path integral approach by assuming
that only the classical path contributes to the propagator. For a free particle
travelling between (x′, t′) to (x,t), the constant velocity is

v =
x−x′

t− t′
(20)

The Lagrangian is a constant
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L=
mv2

2
=
m

2

(
x−x′

t− t′

)2

(21)

The classical action is thus

Scl =
∫ t

t′
L dt′′ (22)

=
m

2

(
x−x′

t− t′

)2 ∫ t

t′
dt′′ (23)

=
m

2

(
x−x′

t− t′

)2 (
t− t′

)
(24)

=
m

2
(x−x′)2

t− t′
(25)

The propagator in this approximation is

U
(
x,t;x′, t′

)
= Aexp

[
im

2h̄
(x−x′)2

(t− t′)

]
(26)

Comparing with 19 we see that the exponential factors match; all that is
left is to determine the constantA. To do this, we require limt→t′U (x,t;x′, t′)=
δ (x−x′), since if the time interval t′− t goes to zero, the particle cannot
move so must be in the same place. By comparing 26 with the form of a
delta function as the limit of a gaussian integral, which is

lim
∆2→0

1

(π∆2)
1/2

∫
∞

−∞

e−(x−x
′)/∆2

dx= δ
(
x−x′

)
(27)

we see that

∆
2 =

2h̄i(t− t′)
m

(28)

so the final propagator is the same as 19.
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We’ve seen that the free-particle propagator can be obtained in the path

integral approach by using only the classical path in the sum over paths. It
turns out that it’s not too hard to calculate the propagator for a free particle
properly, by summing over all possible paths. The notation used by Shankar
is as follows.

We want to evaluate the path integral∫ xN

x0

eiS[x(t)]/h̄D [x(t)] (1)

The notation D [x(t)] means an integration over all possible paths from
x0 to xN in the given time interval. This includes paths where the particle
might move to the right for a while, then jog back to the left, then back
to the right again and so on. This might seem like a hopeless task, but
we can make sense of this method by splitting the time interval between t0
and tN into N small intervals, each of length ε. Thus an intermediate time
tn = t0 +nε, and the final time is tN = t0 +Nε.

For a free particle, there is no potential energy so the Lagrangian is just
the kinetic energy:

L=
1
2
mẋ2 (2)

We can estimate the velocity in each time slice by

ẋi =
xi+1−xi

ε
(3)

Note that this assumes that the velocity within each time slice is constant,
but as we make ε smaller and smaller, this is increasingly accurate. Also
note that it is possible for ẋi to be both positive (if the particle moves to the
right in the interval) or negative (if it moves to the left).

The action for a given path is given by the integral of the Lagrangian:
1
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S =
∫ tN

t0

L(t)dt (4)

In our discretized approximation, we evaluate L within each time slice,
and dt becomes the interval length ε, so the action becomes a sum:

S =
N−1

∑
i=0

L(ti)ε (5)

=
m

2

N−1

∑
i=0

(
xi+1−xi

ε

)2

ε (6)

=
m

2

N−1

∑
i=0

(xi+1−xi)2

ε
(7)

The key point here is to notice that we can label any given path by choos-
ing values for all the xis between the two times, and that each xi can vary
independently of the others, over a range from−∞ to +∞. We can therefore
implement the multiple integration required by D [x(t)] by integrating over
all the xi variables separately. That is,

∫ xN

x0

eiS[x(t)]/h̄D [x(t)]=A
∫

∞

−∞

∫
∞

−∞

. . .
∫

∞

−∞

exp

[
im

2h̄

N−1

∑
i=0

(xi+1−xi)2

ε

]
dx1dx2 . . .dxN−1

(8)
where A is some constant to make the scale come out right.
We don’t integrate over x0 or xN since these are fixed as the end points of

the path. To get the final version, we need to take the limit of this expression
as N → ∞ and ε→ 0. This still looks pretty scary, but in fact it is doable.
We define the variable

yi ≡
√

m

2h̄ε
xi (9)

dxi =

√
2h̄ε
m

dyi (10)

This gives us

A

(
2h̄ε
m

)(N−1)/2 ∫ ∞

−∞

∫
∞

−∞

. . .
∫

∞

−∞

exp

[
i
N−1

∑
i=0

(yi+1−yi)2

]
dy1dy2 . . .dyN−1

(11)
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We can do the integral in stages in order to spot a pattern. Consider first
the integral over y1, which involves only two of the factors in the integrand:∫

∞

−∞

ei[(y1−y0)
2+(y2−y1)

2]dy1 (12)

We first simplify the exponent

(y1−y0)
2 +(y2−y1)

2 = y2
2 +y

2
0 +2

(
y2

1−y0y1−y1y2
)

(13)

= y2
2 +y

2
0 +2y2

1−2(y0 +y2)y1 (14)

We get

∫
∞

−∞

ei[(y1−y0)
2+(y2−y1)

2]dy1 = ei(y
2
2+y2

0)
∫

∞

−∞

e2i[y2
1−(y0+y2)y1]dy1 (15)

We can evaluate this using a standard Gaussian integral∫
∞

−∞

e−ax
2+bxdx= eb

2/4a
√
π

a
(16)

This gives

∫
∞

−∞

ei[(y1−y0)
2+(y2−y1)

2]dy1 = ei(y
2
2+y2

0)e4(y0+y2)
2/8i
√
− π

2i
(17)

= ei(y
2
2+y2

0)e(y0+y2)
2/2i

√
πi

2
(18)

To simplify the exponents on the RHS:

i
(
y2

2 +y
2
0
)
+

(y0 +y2)
2

2i
=

1
2i

[
(y0 +y2)

2−2y2
2−2y2

0

]
(19)

=− 1
2i

(y0−y2)
2 (20)

Thus we have

∫
∞

−∞

ei[(y1−y0)
2+(y2−y1)

2]dy1 =

√
πi

2
e−(y0−y2)

2/2i (21)

Having eliminated y1 we can now do the integral over y2:√
πi

2

∫
∞

−∞

e−(y3−y2)
2/i−(y2−y0)

2/2idy2 (22)

Again, we can simplify the exponent:

http://www.physicspages.com/2011/02/15/gaussian-integral/
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− (y3−y2)
2

i
− (y2−y0)

2

2i
=

1
2i
[
−
(
2y2

3 +y
2
0
)
−3y2

2 +y2 (4y3 +2y0)
]

(23)
The integral now becomes√
πi

2

∫
∞

−∞

e−(y3−y2)
2/i−(y2−y0)

2/2idy2 =

√
πi

2
e−(2y2

3+y2
0)/2i

∫
∞

−∞

e(−3y2
2+y2(4y3+2y0))/2idy2(24)

Doing the Gaussian integral on the RHS using 16:

∫
∞

−∞

e(−3y2
2+y2(4y3+2y0))/2idy2 = e−(4y3+2y0)

2i/24

√
2πi
3

(25)

= e(2y3+y0)
2/6i

√
2πi
3

(26)

Thus the combined integral over y1 and y2 is

√
πi

2
e−(2y2

3+y2
0)/2ie(2y3+y0)

2/6i

√
2πi
3

=

√
(πi)2

3
e(−6y2

3−3y2
0+(2y3+y0)

2)/6i

(27)

=

√
(πi)2

3
e−(y3−y0)

2/3i (28)

The general pattern after N −1 integrations is (presumably this could be
proved by induction, but we’ll accept the result):

(πi)(N−1)/2
√
N

e−(yN−y0)
2/Ni =

(πi)(N−1)/2
√
N

e−m(xN−x0)
2/2h̄εNi (29)

where we reverted back to xi using 9.
Going back to 11, we must multiply the result by A

(2h̄ε
m

)(N−1)/2
to get

the final expression for the propagator:

U = A

(
2h̄ε
m

)(N−1)/2 (πi)(N−1)/2
√
N

e−m(xN−x0)
2/2h̄εNi (30)

= A

(
2πh̄εi
m

)N/2√ m

2πh̄iNε
eim(xN−x0)

2/2h̄εN (31)

In the limit as N → ∞ and ε→ 0, Nε= tN − t0 so we have
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U = A

(
2πh̄εi
m

)N/2√ m

2πh̄i(tN − t0)
eim(xN−x0)

2/2h̄(tN−t0) (32)

The expression we got earlier using the Schrödinger method is

U
(
x,t;x′, t′

)
=

√
m

2πh̄i(t− t′)
eim(x−x′)2/2h̄(t−t′) (33)

Thus the full path integral gives the same result, with t′ = t0 and t = tN
(similarly for x), provided that we can set

A=
( m

2πh̄εi

)N/2
≡B−N (34)

Shankar then says that it is conventional to associate one factor of B−1

with each integration over an xi, and the remaining factor with the overall
process. This seems to overlook a basic problem, in that as N → ∞ and
ε→ 0, A→∞, so we seem to be cancelling two infinities when we multiply
the path integral by A.
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We’ve seen that we can produce the propagator for the free particle by

means of a complete path integral over all paths between some specified
initial state at (x0, t0) and specified final state (xN , tN ). Here we’ll show
that the path integral approach is formally equivalent to the Schrödinger
equation, even for an arbitrary potential V .

The Schrödinger equation is a differential equation that allows us to cal-
culate the wave function as a function of position x and time t, when solved
in the position basis. To find the same thing from the path integral, we’ll
consider an infinitesimal time interval ε and try to find ψ (x,ε) given the
wave function at t= 0, that is, given ψ (x′,0) for some arbitrary x′. To use a
path integral in this way, we’re effectively asking for the contribution to the
propagator from all possible paths between t = 0 and t = ε. That is, we’re
considering that the particle may have started at any position x′ at t= 0 and
stilll ended up at position x at t= ε. In terms of the propagator, this is

ψ (x,ε) =
∫

∞

−∞

U
(
x,ε;x′,0

)
ψ
(
x′,0

)
dx′ (1)

Looking at our previous derivation of the propagator, we saw that there
we fixed the initial and final states and integrated over all possible paths
between these two states. In this case, all we’re specifying is the final state
so in principle, the particle could have been anywhere at t= 0.

The general form for the propagator is

U (t) = A
∫
all paths

eiS[x(t)]/h̄ (2)

where A is a scale factor and S [x(t)] is the action for travelling along
path x(t):

S =
∫ ε

0
L dt (3)

We can approximate the action by taking the Lagrangian to be
1
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L= T −V (4)

=
1
2
mv2−V (5)

=
1
2
m
(x−x′)2

ε2 −V
(
x+x′

2
,0
)

(6)

Here we take the velocity over the interval ε to be constant at v = x−x′
ε ,

and we take the potential to be constant, with its value at the midpoint be-
tween x and x′ at time t= 0. The reason we can approximate V by its value
at t= 0 is that in calculating the action 3, we will multiply L by ε, and we’re
interested only in terms of first order in ε. The action to this order is then

S = εL=
1
2
m
(x−x′)2

ε
− εV

(
x+x′

2
,0
)

(7)

which gives a propagator of

U
(
x,ε;x′,0

)
= Aexp

[
i

h̄

(
1
2
m
(x−x′)2

ε
− εV

(
x+x′

2
,0
))]

(8)

We can try the same value for A that we had for the free particle

A=
( m

2πh̄εi

)N/2
(9)

In this case, we have only one step so N = 1 and

U
(
x,ε;x′,0

)
=

√
m

2πh̄εi
exp

[
i

h̄

(
1
2
m
(x−x′)2

ε
− εV

(
x+x′

2
,0
))]

(10)
We now need to do some approximating. The kinetic energy term is

exp

[
i

h̄

(
1
2
m
(x−x′)2

ε

)]
(11)

The exponent is pure imaginary so for infinitesimal ε, it oscillates very
rapidly away from the stationary point at x= x′. When this term is placed in
the integral 1, it multiplies ψ (x′,0) which we’ll assume is a smooth function
that doesn’t oscillate much, at least over the scale at which 11 oscillates. We
define

η ≡ x′−x (12)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 08.04.01 Free particle propagator from path integral - complete.pdf
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to be the distance from the minimum phase. Once the phase approaches
π, the oscillations will be rapid enough that the contributions to the integral
effectively cancel out, so we’re looking at the region

mη2

2h̄ε
. π (13)

or

|η|.
√

2h̄επ
m

(14)

If we work to first order in ε we therefore must retain terms up to second
order in η. In terms of η, 1 now becomes

ψ (x,ε)=

√
m

2πh̄εi

∫
∞

−∞

exp
(
imη2

2h̄ε

)
exp
(
−iε
h̄
V
(
x+

η

2
,0
))

ψ (x+η,0)dη

(15)
We now expand the last two factors as a Taylor series in η and ε up to

first order in ε or second order in η:

exp
(
−iε
h̄
V
(
x+

η

2
,0
))

= 1− iε
h̄
V
(
x+

η

2
,0
)
+ . . . (16)

= 1− iε
h̄
V (x,0)+ . . . (17)

We can drop terms in the expansion of V
(
x+ η

2 ,0
)

beyond V (x,0) since

they will be of order O (εη) =O
(
ε3/2

)
or higher.

For the second term, we have

ψ (x+η,0) = ψ (x,0)+η
∂ψ

∂x
+
η2

2
∂2ψ

∂x2 + . . . (18)

where the partial derivatives are evaluated at η = 0.
Inserting these into the integral 15 we get

ψ (x,ε) =

√
m

2πh̄εi

∫
∞

−∞

exp
(
imη2

2h̄ε

)
× (19)[

ψ (x,0)+η
∂ψ

∂x
+
η2

2
∂2ψ

∂x2

]
× (20)[

1− iε
h̄
V (x,0)

]
dη (21)

Again, retaining only terms up to first order in ε or second order in η:
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ψ (x,ε) =

√
m

2πh̄εi

∫
∞

−∞

exp
(
imη2

2h̄ε

)
× (22)[

ψ (x,0)− iε
h̄
V (x,0)ψ (x,0)+η

∂ψ

∂x
+
η2

2
∂2ψ

∂x2

]
dη (23)

Everything in the integrand is constant with respect to η except for the
first exponential and the factors of η and η2 in the last two terms. We are
therefore faced with a couple of Gaussian integrals. We have

∫
∞

−∞

exp
(
imη2

2h̄ε

)
dη =

∫
∞

−∞

exp
(
−mη

2

2h̄iε

)
dη (24)

=

√
2πh̄iε
m

(25)∫
∞

−∞

η exp
(
imη2

2h̄ε

)
dη = 0 (26)∫

∞

−∞

η2 exp
(
imη2

2h̄ε

)
dη =

∫
∞

−∞

η2 exp
(
−mη

2

2h̄iε

)
dη (27)

=
h̄iε

m

√
2πh̄iε
m

(28)

=− h̄ε
im

√
2πh̄iε
m

(29)

Putting it all together, we have

ψ (x,ε) =

√
m

2πh̄εi

√
2πh̄iε
m

[(
1− iε

h̄
V (x,0)

)
− h̄ε

2im
∂2

∂x2

]
ψ (x,0)

(30)

= ψ (x,0)− iε
h̄

(
− h̄2

2m
∂2

∂x2 +V (x,0)

)
ψ (x,0) (31)

Rearranging, we get

ih̄
ψ (x,ε)−ψ (x,0)

ε
=

(
− h̄2

2m
∂2

∂x2 +V (x,0)

)
ψ (x,0) (32)

In the limit ε→ 0, the LHS becomes ih̄∂ψ∂t and we get the Schrödinger
equation:

http://www.physicspages.com/pdf/Mathematics/Gaussian integral.pdf
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ih̄
∂ψ

∂t
=

(
− h̄2

2m
∂2

∂x2 +V (x,0)

)
ψ (x,0) (33)

PINGBACKS

Pingback: Path integral to Schrödinger equation for a vector potential
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We’ve seen that if we use the path integral formulation for a free particle,

we get the exact propagator by considering only one path (the classical path)
between the starting point (x′, t′) and the end point (x,t). In this case, the
propagator has the form

U
(
x,t;x′, t′

)
= A(t)eiScl/h̄ (1)

where Scl is the classical action. It turns out that this form is true for a
wider set of potentials, beyond just the free particle. The general form of
the potential for which this is true is

V = a+ bx+ cx2 +dẋ+ exẋ (2)

where a,b,c,d and e are constants. The general expression for the prop-
agator is (where we’re taking the starting time to be t′ = 0):

U
(
x,t;x′

)
=
∫ x

x′
eiS[x(t

′′)]/h̄D
[
x
(
t′′
)]

(3)

where the notation D [x(t′′)] means an integration over all possible paths
from x′ to x in the given time interval.

For a given path, we can write the location of the particle x(t′′) as com-
posed of its position on the classical path xcl (t′′) plus the deviation y (t′′)
from the classical path:

x
(
t′′
)
= xcl

(
t′′
)
+y
(
t′′
)

(4)

As the endpoints are fixed

y (0) = y (t) = 0 (5)

Also, since for any given potential and choice of endpoints, xcl (t′′) is
fixed for all times, it is effectively a constant with regard to the path inte-
gration. Therefore

1
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dx= dy (6)
Making these substitutions into 3, we get, using Shankar’s slightly mis-

leading notation:

U
(
x,t;x′

)
=
∫ 0

0
eiS[xcl(t

′′)+y(t′′)]/h̄D
[
y
(
t′′
)]

(7)

Usually, when the limits on an integral are the same, the integral evaluates
to zero. However, in this case, the notation

∫ 0
0 D [y (t′′)] means that y starts

and ends at zero, but covers all possible paths between these endpoints.
The action is the integral of the Lagrangian which, for the potential 2 is

L = T −V (8)

=
1
2
mẋ2−a− bx− cx2−dẋ− exẋ (9)

Because L is quadratic in both x and ẋ, we can expand it in a Taylor
series up to second order without any approximation. That is

L(xcl+y, ẋcl+ ẏ) = L(xcl, ẋcl)+
∂L

∂x

∣∣∣∣
xcl

y+
∂L

∂ẋ

∣∣∣∣
xcl

ẏ+ (10)

1
2

(
∂2L

∂x2

∣∣∣∣
xcl

y2 +2
∂2L

∂x∂ẋ

∣∣∣∣
xcl

yẏ+
∂2L

∂ẋ2

∣∣∣∣
xcl

ẏ2

)
(11)

Look first at the last two terms on the RHS of the first line. Using the
equations of motion, we have

∂L

∂x

∣∣∣∣
xcl

=
d

dt

(
∂L

∂ẋ

∣∣∣∣
xcl

)
(12)

To get the action, we need to integrate the Lagrangian over the time in-
terval of interest. Integrating these two terms gives

∫ t

0

[
∂L

∂x

∣∣∣∣
xcl

y+
∂L

∂ẋ

∣∣∣∣
xcl

ẏ

]
dt′′ =

∫ t

0

[
d

dt

(
∂L

∂ẋ

∣∣∣∣
xcl

)
y+

∂L

∂ẋ

∣∣∣∣
xcl

ẏ

]
dt′′

(13)

=

(
∂L

∂ẋ

∣∣∣∣
xcl

)
y

∣∣∣∣∣
t

0

−
∫ t

0

∂L

∂ẋ

∣∣∣∣
xcl

ẏdt′′+
∫ t

0

∂L

∂ẋ

∣∣∣∣
xcl

ẏdt′′

(14)
= 0 (15)
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where we integrated the first term by parts. The integrated term in the
second line is zero because y = 0 at both endpoints, and the last two terms
cancel each other.

Returning to 11, we can calculate the three second derivatives explicitly:

1
2
∂2L

∂x2 = −c (16)

∂2L

∂x∂ẋ

∣∣∣∣
xcl

= −e (17)

1
2
∂2L

∂ẋ2 =
m

2
(18)

[Note that Shankar’s equation 8.6.10 is wrong - the RHS should be m
2 .

However, his equation 8.6.11 appears to be correct. Thanks to commenter
Alex for pointing this out.]

The integral of the first term on the RHS of 10 is just the classical action,
so we get for the propagator 7:

U
(
x,t;x′

)
= eiScl/h̄

∫ 0

0
exp
[
i

h̄

∫ t

0

(
mẏ2

2
− cy2− eyẏ

)
dt′′
]
D
[
y
(
t′′
)]
(19)

The remaining path integral can still be difficult to evaluate, but we can
observe a few properties that it has. First, for any given path in the path
integral, we must be able to express both y and ẏ as functions of time t′′,
so the complete path integral can depend only on the end time t (and, of
course, on the constants m, c and e). That is, the propagator will always
have the form 1:

U
(
x,t;x′, t′

)
= A(t)eiScl/h̄ (20)

We have already evaluated the integral for the free particle where c= e=
0 and we found there that

U
(
x,t;x′

)
=

√
m

2πh̄it
eiScl/h̄ (21)

Since the constant b doesn’t appear in 19, the propagator must have the
same form for the more general case where V = a+ bx. For more complex
potentials, such as the harmonic oscillator, the function A(t) will in general
have a different form and will have to be calculated explicitly in these cases.

As an example, we’ll consider the case of a particle subject to a constant
force in the x direction, so that the potential is given by

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 08.04.01 Free particle propagator from path integral - complete.pdf
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V (x) =−fx (22)

This gives a constant force of

F =−dV
dx

= f (23)

and thus a constant acceleration of f/m. For such a particle, its classical
position is (from first year physics)

xcl
(
t′′
)

= x0 +v0t
′′+

1
2
f

m
t′′2 (24)

ẋcl
(
t′′
)

= v0 +
f

m
t′′ (25)

To find x0 and v0, we impose boundary conditions. At t′′ = 0

xcl (0) = x0 = x′ (26)

At t′′ = t, its position is

xcl (t) = x= x′+v0t+
f

2m
t2 (27)

This gives

v0 =
x−x′

t
− f

2m
t (28)

The classical Lagrangian is

L= T −V (29)

=
1
2
mẋ2

cl+fxcl (30)

=
1
2
m

(
v0 +

f

m
t′′
)2

+f

(
x0 +v0t

′′+
1
2
f

m
t′′2
)

(31)

=
1
2
m

(
x−x′

t
− f

2m
t+

f

m
t′′
)2

+f

(
x′+

(
x−x′

t
− f

2m
t

)
t′′+

1
2
f

m
t′′2
)

(32)

Note that t is a constant, as it is the time of the endpoint of the motion. To
find the classical action, we must integrate this from t′′= 0 to t. The integral
is a straightforward integral of a quadratic in t′′, although the algebra is
tedious if done by hand, so is best done with Maple.
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Scl =
∫ t

0
L dt′′ (33)

=
1
3
f2t3

m
+

(
x−x′

t
− 1

2
ft

m

)
ft2 +

1
2
m

(
x−x′

t
− 1

2
ft

m

)2

t+fxt

(34)

=−f
2t3

24m
+

1
2
ft
(
x+x′

)
+
m(x−x′)2

2t
(35)

From 21, this gives a propagator of

U
(
x,t;x′

)
=

√
m

2πh̄it
exp

[
i

h̄

(
−f

2t3

24m
+

1
2
ft
(
x+x′

)
+
m(x−x′)2

2t

)]
(36)

This agrees with Shankar’s result in his equation 5.4.31.
As another example, consider the harmonic oscillator, where the potential

is

V =
1
2
mω2x2 (37)

This potential is also of the form 2, so the propagator must have the form
20. This time, however, since c 6= 0, the function A(t) will probably not
have the form used in 21. The best we can say therefore is that

U
(
x,t;x′, t′

)
= A(t)eiScl/h̄ (38)

where A(t) has the form (from 19):

A(t) =
∫ 0

0
exp
[
i

h̄

∫ t

0

(
mẏ2

2
− 1

2
mω2y2

)
dt′′
]
D
[
y
(
t′′
)]

(39)

We worked out the classical action for the harmonic oscillator earlier and
found

Scl =
mω

2sinωt
[(
x′2 +x2)cosωt−2x′x

]
(40)

where the particle is at x′ at t′′ = 0 and at x at t′′ = t. The propagator is
therefore

U
(
x,t;x′

)
= A(t)exp

[
imω

2h̄sinωt
((
x′2 +x2)cosωt−2x′x

)]
(41)

with A(t) given by 39.

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.08.06 - 07.pdf
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Error in equation 0.18 I believe the RHS should be equal to m/2, not m.

I think this is also incorrect in Shankar.
Time: October 25, 2017 at 11:23 pm
=========
Fixed now. Thanks.
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Chapter 8. Section 8.6, Exercise 8.6.3.
Post date: 14 Feb 2017
Given the propagator for the harmonic oscillator, it is possible to work

backwards and deduce the eigenvalues and eigenfunctions of the Hamilton-
ian, although this isn’t the easiest way to find them. We’ve seen that the
propagator for the oscillator is

U
(
x,t;x′

)
= A(t)exp

[
imω

2h̄sinωt
((
x′2 +x2)cosωt−2x′x

)]
(1)

where A(t) is some function of time which is found by doing a path
integral. Shankar cheats a bit by just telling us what A is:

A(t) =

√
mω

2πih̄sinωt
(2)

To deduce (some of) the energy levels, we can compare the propagator
with its more traditional form

U (t) = ∑
n

e−iEnt/h̄ |En〉〈En| (3)

where En is the nth energy level. In position space this is

U (t) = ∑
n

ψ∗n (x)ψn (x)e
−iEnt/h̄ (4)

We can try finding the energy levels as follows. We take x= x′ = t′ = 0,
which is equivalent to taking the end time t to be a multiple of a complete
period of the oscillator, so that the particle has returned to its starting point.
In that case, 1 becomes

U
(
x,t;x′

)
= A(t) =

√
mω

2πih̄sinωt
(5)

1
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If we can expand this quantity in powers of e−iωt, we can compare it with
the series 4 and read off the energies from the exponents in the series. To
do this, we write

A(t) =

√
mω

πh̄(eiωt− e−iωt)
(6)

=

√
mω

πh̄
e−iωt/2 1√

1− e−2iωt
(7)

To save writing, we’ll define the symbol

η ≡ e−iωt (8)

so that

A(t) =

√
mω

πh̄
η1/2 1√

1−η2
(9)

We can now expand the last factor using the binomial expansion to get

A(t) =

√
mω

πh̄
η1/2

[
1+

1
2
η2 +

3
8
η4 + . . .

]
(10)

In terms of the original variables, we get

A(t) =

√
mω

πh̄

[
e−iωt/2 +

1
2
e−5iωt/2 +

3
8
e−9iωt/2 + . . .

]
(11)

Comparing with 4, we find energy levels of

E =
h̄ω

2
,
5h̄ω

2
,
9h̄ω

2
, . . . (12)

These correspond toE0,E2,E4, . . .. The odd energy levels
(3h̄ω

2 , 7h̄ω
2 , . . .

)
are missing because the corresponding wave functions ψn (x) are odd func-
tions of x and are therefore zero at x = 0, so the corresponding terms in 4
vanish. The numerical coefficients in 11 give us |ψn (0)|2 for n= 0,2,4, . . ..

To get the other energies, as well as the eigenfunctions, from a compari-
son of 1 and 4 is possible, but quite messy, even for the lower energies. To
do it, we take t′ = 0 as before, but now we take x = x′ 6= 0. That is, we
start the oscillator off at some location x′ 6= 0 and then look at it exactly one
period later, when it has returned to the same position. The propagator 1
now becomes
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U
(
x,t;x′

)
=

√
mω

2πih̄sinωt
exp
[

imω

2h̄sinωt
(
2x2 (cosωt−1)

)]
(13)

=

√
mω

πh̄(eiωt− e−iωt)
exp
[
− mω

h̄(eiωt− e−iωt)
(
x2 ((eiωt+ e−iωt)−2

))]
(14)

=

√
mω

πh̄
η1/2 1√

1−η2
exp

[
−mωx

2

h̄

( 1
η +η−2

1
η −η

)]
(15)

=

√
mω

πh̄
η1/2 1√

1−η2
exp
[
−mωx

2

h̄

(
1+η2−2η

1−η2

)]
(16)

We now need to expand this in a power series in η, which gets very messy
so is best handled with software like Maple. Shankar asks only for the first
two terms in the series (the terms corresponding to η1/2 and η3/2) but even
doing this by hand can get very tedious. The result from Maple is, for the
first two terms:

η1/2→
√
mω

πh̄
e−mωx

2/h̄η1/2 =

√
mω

πh̄
e−mωx

2/h̄e−iωt/2 (17)

η3/2→
√
mω

πh̄

2mω
h̄

e−mωx
2/h̄x2η3/2 =

√
mω

πh̄

2mω
h̄

e−mωx
2/h̄x2e−3iωt/2

(18)

Comparing this with 4, we can read off:

E0 =
h̄ω

2
(19)

|ψ0 (x)|2 =
√
mω

πh̄
e−mωx

2/h̄ (20)

E1 =
3h̄ω

2
(21)

|ψ1 (x)|2 =
√
mω

πh̄

2mω
h̄

e−mωx
2/h̄x2 (22)

To check this, we recall the eigenfunctions we worked out earlier, using
Hermite polynomials

ψn(x) =
(mω
πh̄

)1/4 1√
2nn!

Hn

(√
mω

h̄
x

)
e−mωx

2/2h̄ (23)

The first two Hermite polynomials are

http://www.physicspages.com/pdf/Griffiths QM/Harmonic oscillator - Hermite polynomials.pdf
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H0

(√
mω

h̄
x

)
= 1 (24)

H1

(√
mω

h̄
x

)
= 2

√
mω

h̄
x (25)

Plugging these into 23 and comparing with 20 and 22 shows we got the
right answer.
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Chapter 8. Section 8.6, Exercise 8.6.4.
Post date: 19 Feb 2017
When we showed that the path integral approach is equivalent to the

Schrödinger equation, we did so for a scalar potential V , so that the La-
grangian is the usual L= T −V , and we can use that to calculate the action
over an infinitestimal time interval ε, during which time the particle moves
from x′ to x. In the calculation, we chose the value of V at the midpoint
of this interval, that is V

(
x+x′

2

)
. In fact, in this derivation it didn’t mat-

ter where in the interval [x′,x] we chose to evaluate V , since we took only
terms up to first order in ε, and moving the point at which we evaluate V
introduced terms only of order ε2 or higher.

Things get a bit more complicated if we consider a system such as the
electromagnetic force, where the Lagrangian is no longer just T −V , but
becomes

L=
1
2
mv ·v− qφ+ q

c
v ·A (1)

To examine the effect this has on the demonstration that the path integral
approach is equivalent to the Schrödinger equation, we’ll consider only one
dimension, and leave out the electrostatic potential φ since it’s just a scalar
potential and we already know that such potentials do indeed convert to the
Schrödinger equation. Thus the Lagrangian we’ll consider is

L=
1
2
mv2 +

q

c
vA (2)

Over the infinitesimal time interval ε we have

v =
x−x′

ε
(3)

The propagator over this time interval is
1
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http://www.physicspages.com/pdf/Shankar/Shankar Exercises 08.05.01 Path integral equivalence to Schrodinger equation.pdf


PATH INTEGRAL TO SCHRÖDINGER EQUATION FOR A VECTOR POTENTIAL 2

U
(
x,ε;x′,0

)
=

√
m

2πh̄εi
exp

[
i

h̄

(
1
2
m
(x−x′)2

ε
+ ε

q

c

x−x′

ε
A
(
x+α

(
x−x′

)))]
(4)

=

√
m

2πh̄εi
exp
[
i

h̄

(
1
2
m
η2

ε
− q
c
ηA(x+αη)

)]
(5)

=

√
m

2πh̄εi
exp
(
imη2

2h̄ε

)
exp
[
− iq
h̄c
ηA(x+αη)

]
(6)

where α is a parameter that we can vary between 0 and 1 in order to
vary the point along the path from x′ to x at which we evaluate the vector
potential A. Also,

η ≡ x′−x (7)
Using the same argument as before, we require

|η|.
√

2h̄επ
m

(8)

so calculations to first order in ε must include terms up to second order
in η.

Once we have U (x,ε;x′,0), we can find ψ (x,ε) from

ψ (x,ε) =
∫

∞

−∞

U
(
x,ε;x′,0

)
ψ
(
x′,0

)
dx′ (9)

To find U to first order in ε, we need to expand the second exponential in
6 out to terms in η2, so we first look at the argument of the exponential:

− iq

h̄c
ηA(x+αη) =− iq

h̄c

(
ηA(x)+αη2∂A

∂x
+ . . .

)
(10)

where the derivative is evaluated at the endpoint x and is constant in the
integral. The second exponential in 6 now becomes, to second order in η:

exp
[
− iq
h̄c
ηA(x+αη)

]
= 1− iq

h̄c

(
ηA(x)+αη2∂A

∂x

)
−
( q
h̄c

)2 η2A2 (x)

2
(11)

We also need the expansion of the wave function in 9 up to second order
in η:

ψ (x+η,0) = ψ (x,0)+η
∂ψ

∂x
+
η2

2
∂2ψ

∂x2 (12)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 08.05.01 Path integral equivalence to Schrodinger equation.pdf
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Again, both derivatives are evaluated at the endpoint x and are constants
in the integral.

We now need to do the integral 9, which consists of several standard
Gaussian integrals. From 7, dx′ = dη, so

∫
∞

−∞

U
(
x,ε;x′,0

)
ψ
(
x′,0

)
dx′ =

√
m

2πh̄εi
ψ (x,0)

∫
∞

−∞

exp
(
imη2

2h̄ε

)
dη+

(13)√
m

2πh̄εi

(
∂ψ

∂x
− iq

h̄c
A(x)ψ (x,0)

)∫
∞

−∞

exp
(
imη2

2h̄ε

)
η dη+

(14)√
m

2πh̄εi

[
1
2
∂2ψ

∂x2 −
iq

h̄c
A(x)

∂ψ

∂x
+ (15)

ψ (x,0)

(
−iqα
h̄c

∂A

∂x
− 1

2

(
qA(x)

h̄c

)2
)]
×

(16)∫
∞

−∞

exp
(
imη2

2h̄ε

)
η2dη (17)

We can now do the integrals:

∫
∞

−∞

exp
(
imη2

2h̄ε

)
dη =

√
2πh̄εi
m

(18)∫
∞

−∞

exp
(
imη2

2h̄ε

)
η dη = 0 (19)

∫
∞

−∞

exp
(
imη2

2h̄ε

)
η2dη =− h̄ε

im

√
2πh̄εi
m

(20)

Plugging these in we get

ψ (x,ε) = ψ (x,0)− h̄ε

im

[
1
2
∂2ψ

∂x2 −
iq

h̄c
A(x)

∂ψ

∂x
+ψ (x,0)

(
−iqα
h̄c

∂A

∂x
− 1

2

(
qA(x)

h̄c

)2
)]

(21)

= ψ (x,0)+
ε

ih̄

[
− h̄2

2m
∂2ψ

∂x2 +
ih̄q

mc
A(x)

∂ψ

∂x
+ψ (x,0)

(
ih̄qα

mc

∂A

∂x
+

1
2m

(
qA(x)

c

)2
)]

(22)

http://www.physicspages.com/pdf/Mathematics/Gaussian integral.pdf
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We can compare this with the quantum version of the Hamiltonian for
the vector potential part of the electromagnetic force. The classical Hamil-
tonian is

H =
|p− qA/c|2

2m
(23)

Because A depends on x, it doesn’t commute with p so to get the quan-
tum version we need to symmetrize when we expand the square. The one
dimensional version is

H =
P 2

2m
− q

2mc
PA− q

2mc
AP +

q2A2

2mc2 (24)

In the coordinate basis, we have, using P =−ih̄∂/∂x

Hψ =− h̄2

2m
∂2ψ

∂x2 +
ih̄q

2mc

(
∂ (Aψ)

∂x
+A

∂ψ

∂x

)
+
q2A2

2mc2ψ (25)

=− h̄2

2m
∂2ψ

∂x2 +
ih̄q

2mc

(
2A

∂ψ

∂x
+ψ

∂A

∂x

)
+
q2A2

2mc2ψ (26)

=− h̄2

2m
∂2ψ

∂x2 +
ih̄q

mc

(
A
∂ψ

∂x
+

1
2
ψ
∂A

∂x

)
+
q2A2

2mc2ψ (27)

Returning to the result we got from the path integral, upon rearranging
22 we get

ih̄
ψ (x,ε)−ψ (x,0)

ε
=− h̄2

2m
∂2ψ

∂x2 +
ih̄q

mc

(
A(x)

∂ψ

∂x
+αψ (x,0)

∂A

∂x

)
+
ψ (x,0)

2m

(
qA(x)

c

)2

(28)

ih̄
∂ψ

∂t
=− h̄2

2m
∂2ψ

∂x2 +
ih̄q

mc

(
A(x)

∂ψ

∂x
+αψ

∂A

∂x

)
+

ψ

2m

(
qA(x)

c

)2

(29)

where in the last line we took the limit as ε → 0 on the LHS to get
Schrödinger’s equation in the form

ih̄
∂ψ

∂t
=Hψ (30)

Comparing the RHS of 29 with 27, we see that they are equal provided
we take α = 1

2 . Thus in this case, we really do need to evaluate the vector
potential A at the midpoint of the path.

http://www.physicspages.com/2016/12/03/hamiltonian-for-the-electromagnetic-force/
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Chapter 9.

Post date: 25 May 2017
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

Shankar’s derivation of the general uncertainty principle relating the vari-
ances of two Hermitian operators actually gives a different result from that
in Griffiths. To follow this post, you should first review the earlier post. To
keep things consistent I’ll use the original Griffiths notation up to equation
11, which is a summary of the earlier post.

Shankar’s derivation is the same as Griffiths’s up to equation (13) in the
earlier post. To summarize, we have two operators Â and B̂ and calculate
their variances as

σ
2
A =

〈
Ψ|(Â−〈A〉)2

Ψ
〉

(0.1)

=
〈(

Â−〈A〉
)

Ψ|
(
Â−〈A〉

)
Ψ
〉

(0.2)
≡ 〈 f | f 〉(0.3)

where the function f is defined by this equation.
Similarly, for B̂:

σ
2
B =

〈
Ψ|(B̂−〈B〉)2

Ψ
〉

(0.4)

=
〈(

B̂−〈B〉
)

Ψ|
(
B̂−〈B〉

)
Ψ
〉

(0.5)
≡ 〈g|g〉(0.6)

We now invoke the Schwarz inequality to say

σ
2
Aσ

2
B = 〈 f | f 〉〈g|g〉(0.7)

≥ |〈 f |g〉 |2(0.8)

At this point, Griffiths continues by saying that

(0.9) 〈 f |g〉 |2 ≥ (ℑ〈 f |g〉)2

1

http://www.physicspages.com/pdf/Griffiths QM/Uncertainty principle.pdf
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That is, he throws away the real part of 〈 f |g〉 to get another inequality.
Shankar retains the full complex number and thus states that

| 〈 f |g〉 |2 =
∣∣〈(Â−〈A〉)Ψ|

(
B̂−〈B〉

)
Ψ
〉∣∣2(0.10)

=
∣∣〈Ψ ∣∣(Â−〈A〉)(B̂−〈B〉)∣∣Ψ〉∣∣2(0.11)

Defining the operators

Ω̂ ≡ Â−〈A〉(0.12)

Λ̂ ≡ B̂−〈B〉(0.13)

we have

| 〈 f |g〉 |2 =
∣∣〈Ψ ∣∣Ω̂Λ̂

∣∣Ψ〉∣∣2(0.14)

=
1
4

∣∣∣〈Ψ

∣∣∣[Ω̂, Λ̂
]
+
+
[
Ω̂, Λ̂

]∣∣∣Ψ〉∣∣∣2(0.15)

where

(0.16)
[
Ω̂, Λ̂

]
+
≡ Ω̂Λ̂+ Λ̂Ω̂

is the anticommutator. For two Hermitian operators, the commutator is
the difference between a value and its complex conjugate, so is always pure
imaginary (and thus the anticommutator is always real), so we can write this
as

(0.17)
[
Ω̂, Λ̂

]
= iΓ

for some Hermitian operator Γ. Using the triangle inequality, we thus
arrive at

(0.18) σ
2
Aσ

2
B ≥ |〈 f |g〉 |2 ≥

1
4

〈
Ψ

∣∣∣[Ω̂, Λ̂
]
+

∣∣∣Ψ〉2
+

1
4
〈Ψ |Γ|Ψ〉2

Comparing this with Griffiths’s result, he had

(0.19) σ
2
Aσ

2
B ≥

(
1
2i

〈
[Â, B̂]

〉)2

=
1
4
〈Ψ |Γ|Ψ〉2

That is, Griffiths’s uncertainty principle is actually weaker than Shankar’s
as he includes only the last term in 0.18. For canonically conjugate opera-
tors (such as X and P) the commutator is always
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(0.20) [X ,P] = ih̄

so the last term in 0.18 is always h̄2/4 for any wave function Ψ. The first
term in 0.18, which involves the anticommutator, will, in general, depend
on the wave function Ψ, but it is always positive (or zero), so we can still
state that, for such operators

(0.21) σ
2
Aσ

2
B ≥

h̄2

4
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Chapter 9, Exercises 9.4.1 - 9.4.2.
Post date: 21 Feb 2017
Here we’ll look at a couple of calculations relevant to the application of

the uncertainty principle to the hydrogen atom. When calculating uncertain-
ties, we need to find the average values of various quantities. First, we’ll
look at an average in the case of the harmonic oscillator.

The harmonic oscillator eigenstates are

ψn(x) =
(mω
πh̄

)1/4 1√
2nn!

Hn

(√
mω

h̄
x

)
e−mωx

2/2h̄ (1)

where Hn is the nth Hermite polynomial. For n= 1, we have

H1

(√
mω

h̄
x

)
= 2
√
mω

h̄
x (2)

so

ψ1(x) =

√
2

π1/4

(mω
h̄

)3/4
x e−mωx

2/2h̄ (3)

For this state, we can calculate the average

〈
1
X2

〉
=
∫

∞

−∞

ψ2
1(x)

1
x2dx (4)

=
2√
π

(mω
h̄

)3/2 ∫ ∞

−∞

e−mωx
2/h̄dx (5)

=
2√
π

(mω
h̄

)3/2
√

πh̄

mω
(6)

=
2mω
h̄

(7)

where we evaluated the Gaussian integral in the second line.
We can compare this to 1/

〈
X2〉 as follows:

1
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〈
X2〉= ∫ ∞

−∞

ψ2
1(x)x

2dx (8)

=
2√
π

(mω
h̄

)3/2 ∫ ∞

−∞

e−mωx
2/h̄x4dx (9)

=
2√
π

(mω
h̄

)3/2 3
√
π

4

(
h̄

mω

)5/2

(10)

=
3
2
h̄

mω
(11)

1
〈X2〉 =

2
3
mω

h̄
(12)

Thus
〈

1
X2

〉
and 1
〈X2〉 have the same order of magnitude, although they

are not equal.
In three dimensions, we consider the ground state of hydrogen

ψ100 (r) =
1

√
πa

3/2
0

e−r/a0 (13)

where a0 is the Bohr radius

a0 ≡
h̄2

me2 (14)

with m and e being the mass and charge of the electron. The wave func-
tion is normalized as we can see by doing the integral (in 3 dimensions):

∫
ψ2

100(r)d
3r =

4π
πa3

0

∫
∞

0
e−2r/a0r2dr (15)

We can use the formula (given in Shankar’s Appendix 2)∫
∞

0
e−r/αrndr =

n!
αn+1 (16)

We get ∫
ψ2

100(r)d
3r =

4π
πa3

0

2!
23a

3
0 = 1 (17)

as required.
For a spherically symmetric wave function centred at r = 0,

(∆X)2 =
〈
X2〉−〈X〉2 = 〈X2〉 (18)

with identical relations for Y and Z. Since

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.43.pdf
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r2 = x2 +y2 + z2 (19)〈
r2〉= 〈x2〉+〈y2〉+〈z2〉= 3

〈
X2〉 (20)〈

X2〉= 1
3
〈
r2〉 (21)

Thus

〈
X2〉= 1

3

∫
ψ2

100(r)r
2d3r (22)

=
4π

3πa3
0

∫
∞

0
e−2r/a0r4dr (23)

=
4

3a3
0

4!
25a

5
0 (24)

= a2
0 (25)

∆X = a0 =
h̄2

me2 (26)

We can also find

〈
1
r

〉
=
∫
ψ2

100(r)
1
r
d3r (27)

=
4π
πa3

0

∫
∞

0
e−2r/a0r dr (28)

=
4
a3

0

a2
0

4
(29)

=
1
a0

(30)

〈r〉=
∫
ψ2

100(r)r d
3r (31)

=
4π
πa3

0

∫
∞

0
e−2r/a0r3dr (32)

=
4
a3

0

6a4
0

16
(33)

=
3
2
a0 (34)
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Thus both
〈1
r

〉
and 1

〈r〉 are of the same order of magnitude as 1/a0 =

me2/h̄2.

PINGBACKS

Pingback: Uncertainty principle and an estimate of the ground state en-
ergy of hydrogen
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Chapter 9, Exercise 9.4.3.
Post date: 23 Feb 2017
The uncertainty principle can be used to get an estimate of the ground

state energy in some systems. In his section 9.4, Shankar shows how this is
done for the hydrogen atom, treating the system as a proper 3-d system.

A somewhat simpler analysis can be done by treating the hydrogen atom
as a one-dimensional system. The Hamiltonian is

H =
P 2

2m
− e2

(R2)
1/2

(1)

where m and e are the mass and charge of the electron. The operators P
and R stand for the 3-d momentum and position:

P 2 = P 2
x +P 2

y +P 2
z (2)

R2 = X2 +Y 2 +Z2 (3)

If we ignore the expansions of P 2 and R2 and treat the Hamiltonian as a
function of the operators P and R on their own, we can use the uncertainty
principle to get a bound on the ground state energy. By analogy with one-
dimensional position and momentum, we assume that the uncertainties are
related by

∆P ·∆R≥ h̄

2
(4)

By using coordinates such that the hydrogen atom is centred at the origin,
and from the spherical symmetry of the ground state, we have

(∆P )2 =
〈
P 2〉−〈P 〉2 = 〈P 2〉 (5)

(∆R)2 =
〈
R2〉−〈R〉2 = 〈R2〉 (6)

We can then write 1 as
1
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〈H〉=
〈
P 2〉
2m
− e2

〈
1

(R2)
1/2

〉
(7)

'
〈
P 2〉
2m
− e2〈√

〈R2〉
〉 (8)

where in the last line we used an argument similar to that considered
earlier, in which we showed that, for a one-dimensional system,〈

1
X2

〉
' 1
〈X2〉 (9)

where the ' sign means ’same order of magnitude’. We can now write
the mean of the Hamiltonian in terms of the uncertainties:

〈H〉 ' (∆P )2

2m
− e2

∆R
(10)

&
h̄2

8m(∆R)2 −
e2

∆R
(11)

We can now minimize 〈H〉:

∂ 〈H〉
∂ (∆R)

=− h̄2

4m(∆R)3 +
e2

(∆R)2 = 0 (12)

∆R=
h̄2

4me2 (13)

This gives an estimate for the ground state energy of

〈H〉g.s. '−
2me4

h̄2 (14)

The actual value is

E0 =−
me4

2h̄2 (15)

so our estimate is too large (in magnitude) by a factor of 4. For compari-
son, the estimate worked out by Shankar for the 3-d case is

〈H〉&−2me4

9h̄2 (16)

This estimate is too small by around a factor of 2.

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 09.04.01 - 09.04.02.pdf
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To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 10, Exercise 10.1.1.
Post date: 26 Feb 2017
Although we’ve studied quantum systems of more than one particle be-

fore (for example, systems of fermions and bosons) as covered by Griffiths’s
book, the wave functions associated with such particles were just given as
products of single-particle wave functions (or linear combinations of these
products). We didn’t examine the linear algebra behind these functions. In
his chapter 10, Shankar begins by describing the algebra of a direct product
vector space, so we’ll review this here.

The physics begins with an extension of the postulate of quantum me-
chanics that, for a single particle, the position and momentum obey the
commutation relation

[X,P ] = ih̄ (1)

To extend this to multi-particle systems, we propose

[Xi,Pj ] = ih̄δij (2)
[Xi,Xj ] = [Pi,Pj ] = 0 (3)

where the subscripts refer to the particle we’re considering.
These postulates are translations of the classical Poisson brackets from

classical mechanics, following the prescription that to obtain the quantum
commutator, we multiply the classical Poisson bracket by ih̄. The physics in
these relations is that properties such as position or momentum of different
particles are simultaneously observable, although the position and momen-
tum of a single particle are still governed by the uncertainty principle.

We’ll now restrict our attention to a two-particle system. In such a sys-
tem, the eigenstate of the position operators is written as |x1x2〉 and satisfies
the eigenvalue equation

Xi |x1x2〉= xi |x1x2〉 (4)

Operators referring to particle i effectively ignore any quantities associ-
ated with the other particle.

1
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So what exactly are these states |x1x2〉? They are a set of vectors that
span a Hilbert space that describes the state of two particles. Note that we
can use any two commuting operators Ω1 (X1,P1) and Ω2 (X2,P2) to create
a set of eigenkets |ω1ω2〉 which also span the space. Any operator that is a
function of the position and momentum of only one of the particles always
commutes with a similar operator that is a function of only the other par-
ticle, since the position and momentum operators of which it is a function
commute with those of the other operator. That is

[Ω(X1,P1) ,Λ(X2,P2)] = 0 (5)
The space spanned by |x1x2〉 can also be written as a direct product of

two one-particle spaces. This space is written as V1⊗2 where the symbol ⊗
is the direct product symbol (it’s also the logo of the X-Men, but we won’t
pursue that). The direct product is composed of the two single-particle
spaces V1 (spanned by |x1〉) and V2 (spanned by |x2〉). The notation gets
quite cumbersome at this point, so let’s spell it out carefully. For an operator
Ω, we can specify which particle it acts on by a subscript, and which space
it acts on by a superscript. Thus X(1)

1 is the position operator for particle
1, which operates on the vector space V1. It might seem redundant at this
point to specify both the particle and the space, since it would seem that
these are always the same. However, be patient...

From the two one-particle spaces, we can form the two-particle space by
taking the direct product of the two one-particle states. Thus the state in
which particle 1 is in state |x1〉 and particle 2 is in state |x2〉 is written as

|x1x2〉= |x1〉⊗ |x2〉 (6)
It is important to note that this object is composed of two vectors from

different vector spaces. The inner and outer products we’ve dealt with up to
now, for things like finding the probability that a state has a particular value
and so on, that is, objects like 〈ψ1 |ψ2 〉 and |ψ1〉〈ψ2|, are composed of two
vectors from the same vector space, so no direct product is needed.

If we recall the direct sum of two vector spaces

V1⊕2 = V1⊕V2 (7)
in that case, the dimension of V1⊕2 is the sum of the dimensions of V1

and V2. For a direct product we see from 6 that for each vector |x1〉 there
is one basis vector for each vector |x2〉. Thus the number of basis vectors
is the product of the number of basis vectors in each of the two one-particle
spaces. In other words, the dimension of a direct product is the product
of the dimensions of the two vector spaces of which it is composed. [In
the case here, both the spaces V1 and V2 have infinite dimension, so the

http://www.physicspages.com/pdf/Shankar/MIT 8.05x 04.01.01 Inner products.pdf
http://www.physicspages.com/pdf/Shankar/MIT 8.05x 03.02.01 Subspaces & Direct sums.pdf
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dimension of V1⊗2 is in effect, ’doubly infinite’. In a case where V1 and V2
have finite dimension, we can then just multiply these dimensions to get the
dimension of V1⊗2.]

As V1⊗2 is a vector space with basis vectors |x1〉⊗ |x2〉, any linear com-
bination of the basis vectors is also a vector in the space V1⊗2. Thus the
vector

|ψ〉= |x1〉⊗ |x2〉+ |y1〉⊗ |y2〉 (8)
is in V1⊗2, although it can’t be written as a direct product of the two

one-particle spaces V1 and V2.
Having defined the direct product space, we now need to consider opera-

tors in this space. Although Shankar states that it ’is intuitively clear’ that a
single particle operator such as X(1)

1 must have a corresponding operator in
the product space that has the same effect hasX(1)

1 has on the single particle
state, it seems to me to be more of a postulate. In any case, it is proposed
that if

X
(1)
1 |x1〉= x1 |x1〉 (9)

then in the product space there must be an operatorX(1)⊗(2)
1 that operates

only on particle 1, with the same effect, that is

X
(1)⊗(2)
1 |x1〉⊗ |x2〉= x1 |x1〉⊗ |x2〉 (10)

The notation can be explained as follows. The subscript 1 in X(1)⊗(2)
1

means that the operator operates on particle 1, while the superscript (1)⊗
(2) means that the operator operates in the product space V1⊗2. In effect, the
operator X(1)⊗(2)

1 is the product of two one-particle operators X(1)
1 , which

operates on space V1 and an identity operator I(2)2 which operates on space
V2. That is, we can write

X
(1)⊗(2)
1 = X

(1)
1 ⊗ I

(2)
2 (11)

X
(1)⊗(2)
1 |x1〉⊗ |x2〉 =

∣∣∣X(1)
1 x1

〉
⊗
∣∣∣I(2)2 x2

〉
(12)

= x1 |x1〉⊗ |x2〉 (13)

Generally, if we have two one-particle operators Γ
(1)
1 and Λ

(2)
2 , each of

which operates on a different one-particle state, then we can form a direct
product operator with the property(

Γ
(1)
1 ⊗Λ

(2)
2

)
|ω1〉⊗ |ω2〉=

∣∣∣Γ(1)
1 ω1

〉
⊗
∣∣∣Λ(2)

2 ω2

〉
(14)
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That is, a single-particle operator that operates on space i that forms part
of a direct product operator operates only on the factor of a direct product
vector that corresponds to the one-particle space. Given this property, it’s
fairly easy to derive a few properties of direct product operators.

[
Ω

(1)
1 ⊗ I

(2), I(1)⊗Λ
(2)
2

]
|ω1〉⊗ |ω2〉= Ω

(1)
1 ⊗ I

(2)I(1)⊗Λ
(2)
2 |ω1〉⊗ |ω2〉−

(15)

I(1)⊗Λ
(2)
2 Ω

(1)
1 ⊗ I

(2) |ω1〉⊗ |ω2〉
(16)

= Ω
(1)
1 ⊗ I

(2)
∣∣∣I(1)ω1

〉
⊗
∣∣∣Λ(2)

2 ω2

〉
−

(17)

I(1)⊗Λ
(2)
2

∣∣∣Ω(1)
1 ω1

〉
⊗
∣∣∣I(2)ω2

〉
(18)

=
∣∣∣Ω(1)

1 ω1

〉
⊗
∣∣∣I(2)Λ(2)

2 ω2

〉
− (19)∣∣∣I(1)Ω(1)

1 ω1

〉
⊗
∣∣∣Λ(2)

2 ω2

〉
(20)

=
∣∣∣Ω(1)

1 ω1

〉
⊗
∣∣∣Λ(2)

2 ω2

〉
−
∣∣∣Ω(1)

1 ω1

〉
⊗
∣∣∣Λ(2)

2 ω2

〉
(21)

= 0 (22)

This derivation shows that the identity operators effectively cancel out
and we’re left with the earlier commutator 5 between two operators that
operate on different spaces.

The next derivation involves the successive operation of two direct prod-
uct operators.
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(
Ω

(1)
1 ⊗Γ

(2)
2

)(
θ
(1)
1 ⊗Λ

(2)
2

)
|ω1〉⊗ |ω2〉=

(
Ω

(1)
1 ⊗Γ

(2)
2

)∣∣∣θ(1)1 ω1

〉
⊗
∣∣∣Λ(2)

2 ω2

〉
(23)

=
∣∣∣Ω(1)

1 θ
(1)
1 ω1

〉
⊗
∣∣∣Γ(2)

2 Λ
(2)
2 ω2

〉
(24)

=
(

Ω
(1)
1 θ

(1)
1

)
⊗
(

Γ
(2)
2 Λ

(2)
2

)
|ω1〉⊗ |ω2〉

(25)

=
{
(Ωθ)(1)⊗ (ΓΛ)(2)

}
|ω1〉⊗ |ω2〉

(26)(
Ω

(1)
1 ⊗Γ

(2)
2

)(
θ
(1)
1 ⊗Λ

(2)
2

)
= (Ωθ)(1)⊗ (ΓΛ)(2) (27)

Next, another commutator identity. Given

[
Ω

(1)
1 ,Λ

(1)
1

]
= Γ

(1)
1 (28)

we have

[
Ω

(1)⊗(2)
1 ,Λ

(1)⊗(2)
1

]
|ω1〉⊗ |ω2〉=

[
Ω

(1)
1 ⊗ I

(2),Λ
(1)
1 ⊗ I

(2)
]
|ω1〉⊗ |ω2〉

(29)

=
∣∣∣[Ω(1)

1 ,Λ
(1)
1

]
ω1

〉
⊗
∣∣∣I(2)ω2

〉
(30)

=
∣∣∣Γ(1)

1 ω1

〉
⊗
∣∣∣I(2)ω2

〉
(31)

= Γ
(1)
1 ⊗ I

(2) |ω1〉⊗ |ω2〉 (32)[
Ω

(1)⊗(2)
1 ,Λ

(1)⊗(2)
1

]
= Γ

(1)
1 ⊗ I

(2) (33)

Finally, the square of the sum of two operators:
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(
Ω

(1)⊗(2)
1 +Ω

(1)⊗(2)
2

)2
|ω1〉⊗ |ω2〉=

(
Ω

(1)
1 ⊗ I

(2)+ I(1)⊗Ω
(2)
2

)2
|ω1〉⊗ |ω2〉

(34)

=
(

Ω
(1)
1 ⊗ I

(2)
)2
|ω1〉⊗ |ω2〉+ (35)

Ω
(1)
1 ⊗ I

(2)I(1)⊗Ω
(2)
2 |ω1〉⊗ |ω2〉+

(36)

I(1)⊗Ω
(2)
2 Ω

(1)
1 ⊗ I

(2) |ω1〉⊗ |ω2〉+
(37)(

I(1)⊗Ω
(2)
2

)2
|ω1〉⊗ |ω2〉 (38)

=
∣∣∣(Ω2

1
)(1)

ω1

〉
⊗
∣∣∣I(2)ω2

〉
+ (39)∣∣∣Ω(1)

1 ω1

〉
⊗
∣∣∣Ω(2)

2 ω2

〉
+ (40)∣∣∣Ω(1)

1 ω1

〉
⊗
∣∣∣Ω(2)

2 ω2

〉
+ (41)∣∣∣I(1)ω1

〉
⊗
∣∣∣(Ω2

2
)(2)

ω2

〉
(42)

=
((

Ω
2
1
)(1)⊗ I(2)+2Ω

(1)
1 ⊗Ω

(2)
2 + I(1)⊗

(
Ω

2
2
)(2)) |ω1〉⊗ |ω2〉

(43)(
Ω

(1)⊗(2)
1 +Ω

(1)⊗(2)
2

)2
=
(
Ω

2
1
)(1)⊗ I(2)+2Ω

(1)
1 ⊗Ω

(2)
2 + I(1)⊗

(
Ω

2
2
)(2)

(44)

In this derivation, we used the fact that the identity operator leaves its
operand unchanged, and thus that

(
I2)(i) = I(i) for either space i.
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DIRECT PRODUCT OF VECTOR SPACES: 2-DIM EXAMPLES

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 10, Exercise 10.1.2.
Post date: 27 Feb 2017
To help with understanding the direct product of two vector spaces, some

examples with a couple of 2-d vector spaces are useful. Suppose the one-
particle Hilbert space is two-dimensional, with basis vectors |+〉 and |−〉.
Now suppose we have two such particles, each in its own 2-d space, V1 for
particle 1 and V2 for particle 2. We can define a couple of operators by their
matrix elements in these two spaces. We define

σ
(1)
1 ≡

[
a b
c d

]
(1)

σ
(2)
2 ≡

[
e f
g h

]
(2)

where the first column and row refer to basis vector |+〉 and the second
column and row to |−〉. Recall that the subscript on each σ refers to the par-
ticle and the superscript refers to the vector space. Thus σ(1)1 is an operator
in space V1 for particle 1.

Now consider the direct product space V1⊗V2, which is spanned by
the four basis vectors formed by direct products of the two basis vectors in
each of the one-particle spaces, that is by |+〉⊗ |+〉, |+〉⊗ |−〉, |−〉⊗ |+〉
and |−〉⊗ |−〉. Each of the σ operators has a corresponding version in the
product space, which is formed by taking the direct product of the one-
particle version for one of the particles with the identity operator for the
other particle. That is

σ
(1)⊗(2)
1 = σ

(1)
1 ⊗ I

(2) (3)

σ
(1)⊗(2)
2 = I(1)⊗σ(2)2 (4)

To get the matrix elements in the product space, we need the form of the
identity operators in the one-particle spaces. They are, as usual

1
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I(1) =

[
1 0
0 1

]
(5)

I(2) =

[
1 0
0 1

]
(6)

I’ve written the two identity operators as separate equations since al-
though they have the same numerical form as a matrix, the two operators op-
erate on different spaces, so they are technically different operators. To get
the matrix elements of σ(1)⊗(2)1 we can expand the direct product (Shankar
suggests using the ’method of images’, although I have no idea what this
is. I doubt that it’s the same method of images used in electrostatics, and
Google draws a blank for any other kind of method of images.) In any case,
we can form the product by taking the corresponding matrix elements. For
example

〈
++

∣∣∣σ(1)⊗(2)1

∣∣∣++
〉
= (〈+|⊗ 〈+|)σ(1)1 ⊗ I

(2) (|+〉⊗ |+〉) (7)

=
〈
+
∣∣∣σ(1)1

∣∣∣+〉〈+ ∣∣∣I(2)∣∣∣+〉 (8)

= a×1 = a (9)

When working out the RHS of the first line, remember that operators
with a superscript (1) operate only on bras and kets from the space V1 and
operators with a superscript (2) operate only on bras and kets from the space
V2. Applying the same technique for the remaining elements gives

σ
(1)⊗(2)
1 = σ

(1)
1 ⊗ I

(2) =


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d

 (10)

Another less tedious way of getting this result is to note that we can form
the direct product by taking each element in the first matrix σ(1)1 from 1 and
multiply it into the second matrix I(2) from 6. Thus the top 2×2 elements
in σ(1)⊗(2)1 are obtained by taking the element

〈
+
∣∣∣σ(1)1

∣∣∣+〉= a from 1 and

multiplying it into the matrix I(2) from 6. That is, the upper left 2×2 block
is formed from

aI
(2)
2×2 =

[
a 0
0 a

]
(11)

http://www.physicspages.com/pdf/Griffiths EM/Griffiths Problems 03.06.pdf
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and so on for the other three 2× 2 blocks in the complete matrix. Note
that it’s important to get things in the right order, as the direct product is not
commutative.

To get the other direct product, we can apply the same technique:

σ
(1)⊗(2)
2 = I(1)⊗σ(2)2 =


e f 0 0
g h 0 0
0 0 e f
0 0 g h

 (12)

Again, note that

I(1)⊗σ(2)2 6= σ
(2)
2 ⊗ I

(1) =


e 0 f 0
0 e 0 f
g 0 h 0
0 g 0 h

 (13)

Finally, we can work out the direct product version of the product of two
one-particle operators. That is, we want

(σ1σ2)
(1)⊗(2) = σ

(1)
1 ⊗σ

(2)
2 (14)

We can do this in two ways. First, we can apply the same recipe as in the
previous example. We take each element of σ(1)1 and multiply it into the full
matrix σ(2)2 :

σ
(1)
1 ⊗σ

(2)
2 =


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

 (15)

Second, we can take the matrix product of σ(1)⊗(2)1 from 10 with σ(1)⊗(2)2
from 12:

(σ1σ2)
(1)⊗(2) =


a 0 b 0
0 a 0 b
c 0 d 0
0 c 0 d



e f 0 0
g h 0 0
0 0 e f
0 0 g h

 (16)

=


ae af be bf
ag ah bg bh
ce cf de df
cg ch dg dh

 (17)
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Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 10, Exercise 10.1.3.
Post date: 2 Mar 2017
Shankar shows that, for a two-particle system, the state vector |ψ〉 is an

element of the direct product space V1⊗2. Its evolution in time is determined
by the Schrödinger equation, as usual, so that

ih̄
∣∣ψ̇〉=H |ψ〉=

[
P 2

1
2m1

+
P 2

2
2m2

+V (X1,X2)

]
|ψ〉 (1)

The method by which this equation can be solved (if it can be solved, that
is) depends on the form of the potential V . If the two particles interact only
with some external potential, and not with each other, then V is composed
of a sum of terms, each of which depends only on X1 or X2, but not on
both. In such cases, we can split H into two parts, one of which (H1)
depends only on operators pertaining to particle 1 and the other (H2) on
operators pertaining to particle 2. If the eigenvalues (allowed energies) of
particle i are given by Ei, then the stationary states are direct products of
the corresponding single particle eigenstates. That is, in general

H |E〉= (H1 +H2) |E1〉⊗ |E2〉= (E1 +E2) |E1〉⊗ |E2〉= E |E〉 (2)

Thus the two-particle state |E〉 = |E1〉⊗ |E2〉. Since a stationary state
|Ei〉 evolves in time according to

|ψi (t)〉= |Ei〉e−iEit/h̄ (3)
the compound two-particle state evolves according to

|ψ (t)〉= e−iE1t/h̄ |E1〉⊗ e−iE2t/h̄ |E2〉 (4)

= e−i(E1+E2)t/h̄ |E〉 (5)

= e−iEt/h̄ |E〉 (6)

In this case, the two particles are essentially independent of each other,
and the compound state is just the product of the two separate one-particle
states.

1
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DECOUPLING THE TWO-PARTICLE HAMILTONIAN 2

IfH is not separable, which will occur if V contains terms involving both
X1 and X2 in the same term, we cannot, in general, reduce the system to
the product of two one-particle systems. There are a couple of instances,
however, where such a reduction can be done.

The first instance is if the potential is a function of x2−x1 only, in other
words, that the interaction between the particles depends only on the dis-
tance between them. Shankar shows that in this case we can transform the
system to that of a reduced mass µ = m1m2/(m1 +m2) and a centre of
mass M = m1 +m2. We’ve already seen this problem solved by means
of separation of variables. The result is that the state vector is the product
of a vector for a free particle of mass M and of a vector of a particle with
reduced mass µ moving in the potential V .

Another case where we can decouple the Hamiltonian is in a system of
harmonic oscillators. We’ve already seen this system solved for two masses
in classical mechanics using diagonalization of the matrix describing the
equations of motion. The classical Hamiltonian is

H =
p2

1
2m

+
p2

2
2m

+
mω2

2

[
x2

1 +x
2
2 +(x1−x2)

2
]

(7)

The earlier solution involved introducing normal coordinates

xI =
1√
2
(x1 +x2) (8)

xII =
1√
2
(x1−x2) (9)

and corresponding momenta

pI =
1√
2
(p1 +p2) (10)

pII =
1√
2
(p1−p2) (11)

These normal coordinates are canonical as we can verify by calculating
the Poisson brackets. For example

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 05.01.pdf
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{xI ,pI}= ∑
i

(
∂xI
∂xi

∂pI
∂pi
− ∂xI
∂pi

∂pI
∂xi

)
(12)

= 1 (13)

{xI ,xII}= ∑
i

(
∂xI
∂xi

∂xII
∂pi
− ∂xI
∂pi

∂xII
∂xi

)
(14)

= 0 (15)

and so on, with the general result

{xi,pj} = δij (16)
{xi,xj} = {pi,pj}= 0 (17)

We can invert the transformation to get

x1 =
1√
2
(xI +xII) (18)

x2 =
1√
2
(xI −xII) (19)

and

p1 =
1√
2
(pI +pII) (20)

p2 =
1√
2
(pI −pII) (21)

Inserting these into 7 we get

H =
1

4m

[
(pI +pII)

2 +(pI −pII)2
]
+ (22)

mω2

4

[
(xI +xII)

2 +(xI −xII)2 +4x2
II

]
(23)

=
p2
I

2m
+
p2
II

2m
+
mω2

2

(
x2
I +

3
2
x2
II

)
(24)

We can now subsitute the usual quantum mechanical operators to get the
quantum Hamiltonian:

H =− h̄2

2m
(
P 2
I +P

2
II

)
+
mω2

2

(
X2

I +
3
2
X2

II

)
(25)

In the coordinate basis, this is
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H =− h̄2

2m

(
∂2

∂x2
I

+
∂2

∂x2
II

)
+
mω2

2

(
x2
I +

3
2
x2
II

)
(26)

The Hamiltonian is now decoupled and can be solved by separation of
variables.

We could have arrived at this result by starting with 7 and promoting xi
and pi to quantum operators directly, then made the substitution to normal
coordinates. We would then start with

H =− h̄2

2m

(
∂2

∂x2
1
+

∂2

∂x2
2

)
+
mω2

2

[
x2

1 +x
2
2 +(x1−x2)

2
]

(27)

The potential term on the right transforms the same way as before, so we
get

mω2

2

[
x2

1 +x
2
2 +(x1−x2)

2
]
→ mω2

2

(
x2
I +

3
2
x2
II

)
(28)

To transform the two derivatives, we need to use the chain rule a couple
of times. To get the first derivatives:

∂ψ

∂x1
=

∂ψ

∂xI

∂xI
∂x1

+
∂ψ

∂xII

∂xII
∂x1

(29)

=
1√
2

(
∂ψ

∂xI
+

∂ψ

∂xII

)
(30)

∂ψ

∂x2
=

∂ψ

∂xI

∂xI
∂x2

+
∂ψ

∂xII

∂xII
∂x2

(31)

=
1√
2

(
∂ψ

∂xI
− ∂ψ

∂xII

)
(32)

Now the second derivatives:
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∂2ψ

∂x2
1
=

∂

∂xI

(
∂ψ

∂x1

)
∂xI
∂x1

+
∂

∂xII

(
∂ψ

∂x1

)
∂xII
∂x1

(33)

=
1
2

[
∂

∂xI

(
∂ψ

∂xI
+

∂ψ

∂xII

)
+

∂

∂xII

(
∂ψ

∂xI
+

∂ψ

∂xII

)]
(34)

=
1
2

[
∂2ψ

∂x2
I

+2
∂2ψ

∂xI∂xII
+
∂2ψ

∂x2
II

]
(35)

∂2ψ

∂x2
2
=

∂

∂xI

(
∂ψ

∂x2

)
∂xI
∂x1

+
∂

∂xII

(
∂ψ

∂x2

)
∂xII
∂x1

(36)

=
1
2

[
∂

∂xI

(
∂ψ

∂xI
− ∂ψ

∂xII

)
− ∂

∂xII

(
∂ψ

∂xI
− ∂ψ

∂xII

)]
(37)

=
1
2

[
∂2ψ

∂x2
I

−2
∂2ψ

∂xI∂xII
+
∂2ψ

∂x2
II

]
(38)

Combining the two derivatives, we get

∂2ψ

∂x2
1
+
∂2ψ

∂x2
2
=
∂2ψ

∂x2
I

+
∂2ψ

∂x2
II

(39)

Inserting this, together with 28, into 27 we get 26 again.
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Chapter 10, Exercises 10.2.2 - 10.2.3.
Post date: 4 Mar 2017
We’ve seen that the 3-d isotropic harmonic oscillator can be solved in

rectangular coordinates using separation of variables. The Hamiltonian is

H =
p2
x+p

2
y+p

2
z

2m
+
mω2

2
(
x2 +y2 + z2) (1)

The solution to the Schrödinger equation is just the product of three one-
dimensional oscillator eigenfunctions, one for each coordinate. That is

ψn (x,y,z) = ψnx (x)ψny (y)ψnz (z) (2)

Each one-dimensional eigenfunction can be expressed in terms of Her-
mite polynomials as

ψnx (x) =
(mω
πh̄

)1/4 1√
2nxnx!

Hnx

(√
mω

h̄
x

)
e−mωx

2/2h̄ (3)

with the functions for y and z obtained by replacing x by y or z and nx
by ny or nz. We also saw earlier that in the 3-d oscillator, the total energy
for state ψn (x,y,z) is given in terms of the quantum numbers of the three
1-d oscillators as

En = h̄ω

(
n+

3
2

)
= h̄ω

(
nx+ny+nz+

3
2

)
(4)

and that the degeneracy of level n is 1
2 (n+1)(n+2).

Since the Hermite polynomial Hnx has parity (−1)nx (that is, odd (even)
polynomials are odd (even) functions), the 3-d wave function ψn has parity
(−1)nx (−1)ny (−1)nz = (−1)n.

We can write the one n = 0 state and three n = 1 states in spherical
coordinates using the standard transformation

1
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x = r sinθ cosφ (5)
y = r sinθ sinφ (6)
z = r cosφ (7)

Using the notation ψn=ψnxnynz =ψnxψnyψnz , we have, usingH0 (y) =
1 and H1 (y) = 2y:

ψ000 =
(mω
πh̄

)3/4
e−mωr

2/2h̄ (8)

ψ100 =

√
2mω
h̄

(mω
πh̄

)3/4
e−mωr

2/2h̄r sinθ cosφ (9)

ψ010 =

√
2mω
h̄

(mω
πh̄

)3/4
e−mωr

2/2h̄r sinθ sinφ (10)

ψ001 =

√
2mω
h̄

(mω
πh̄

)3/4
e−mωr

2/2h̄r cosθ (11)

We can check that these are the correct spherical versions of the eigen-
functions by using the Schrödinger equation in spherical coordinates, which
is

Hψ =

[
− h̄

2
∇2

2m
+
mω2

2
r2

]
ψ = Eψ (12)

The spherical laplacian operator is

∇
2ψ =

1
r2

∂

∂r

(
r2∂ψ

∂r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+

1
r2 sin2 θ

∂2ψ

∂φ2 (13)

You can grind through the derivatives by hand if you like, but I just used
Maple to do it, giving the results

Hψ000 =
3
2
h̄ωψ000 (14)

Hψ100 =
5
2
h̄ωψ100 (15)

Hψ010 =
5
2
h̄ωψ010 (16)

Hψ001 =
5
2
h̄ωψ001 (17)
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In two dimensions, the analysis is pretty much the same. In the more
general case where the masses are equal, but ωx 6= ωy, the Hamiltonian is

H =
p2
x+p

2
y

2m
+
m

2
(
ω2
xx

2 +ω2
yy

2) (18)

A solution by separation of variables still works, with the result

ψn (x,y) = ψnx (x)ψny (y) (19)

The total energy is

En = Enx +Eny = h̄ω

(
nx+

1
2
+ny+

1
2

)
= h̄ω (n+1) (20)

For a given energy level n = nx+ny, there are n+ 1 ways of forming
n out of a sum of 2 non-negative integers, so the degeneracy of level n is
n+1.

The one n= 0 state and two n= 1 states are

ψ00 =
(mω
πh̄

)1/2
e−mω(x

2+y2)/2h̄ (21)

ψ10 =

√
2mω
h̄

(mω
πh̄

)1/2
e−mω(x

2+y2)/2h̄x (22)

ψ01 =

√
2mω
h̄

(mω
πh̄

)1/2
e−mω(x

2+y2)/2h̄y (23)

To translate to polar coordinates, we use the transformations

x = ρcosφ (24)
y = ρsinφ (25)

so we have

ψ00 =
(mω
πh̄

)1/2
e−mωρ

2/2h̄ (26)

ψ10 =

√
2mω
h̄

(mω
πh̄

)1/2
e−mωρ

2/2h̄ρcosφ (27)

ψ01 =

√
2mω
h̄

(mω
πh̄

)1/2
e−mωρ

2/2h̄ρsinφ (28)

Again, we can check this by plugging these polar formulas into the polar
Schrödinger equation, where the 2-d Laplacian is
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∇
2 =

∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2 (29)

The results are

Hψ00 = h̄ωψ00 (30)
Hψ10 = 2h̄ωψ10 (31)
Hψ01 = 2h̄ωψ01 (32)

PINGBACKS

Pingback: Harmonic oscillator in 2 dimensions: comparison with rectan-
gular coordinates

Pingback: isotropic harmonic oscillator in 3-d: use of spherical harmon-
ics
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Although we’ve looked at the quantum treatment of identical particles as

done by Griffiths, it’s worth summarizing Shankar’s treatment of the topic
as it provides a few more insights.

In classical physics, suppose we have two identical particles, where ’iden-
tical’ here means that all their physical properties such as mass, size, shape,
charge and so on are the same. Suppose we do an experiment in which these
two particles collide and rebound in some way. Can we tell which particle
ends up in which location? We’re not allowed to label the particles by writ-
ing on them, for example, since then they would no longer be identical. In
classical physics, we can determine which particle is which by tracing their
histories. For example, if we start with particle 1 at position r1 and particle
2 at position r2, then let them collide, and finally measure their locations
at some time after the collision, we might find that one particle ends up at
position r3 and the other at position r4. If we videoed the collision event,
we would see the two particles follow well-defined paths before and after
the collision, so by observing which particle followed the path that leads
from r1 to the collision and then out again, we can tell whether it ends up
at r3 or r4. That is, the identification of a particle depends on our ability to
watch it as it travels through space.

In quantum mechanics, because of the uncertainty principle, a particle
does not have a well-defined trajectory, since in order to define such a tra-
jectory, we would need to specify its position and momentum precisely at
each instant of time as it travels. In terms of our collision experiment, if
we measured one particle to be at starting position r1 at time t = 0 then
we know nothing about its momentum, because we specified the position
exactly. Thus we can’t tell what trajectory this particle will follow. If we
measure the two particles at positions r1 and r2 at t= 0, and then at r3 and
r4 at some later time, we have no way of knowing which particle ends up at
r3 and which at r4. In terms of the state vector, this means that the physics
in the state vector must be the same if we exchange the two particles within

1
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the wave function. Since multiplying a state vector ψ by some complex
constant α leaves the physics unchanged, this means that we require

ψ (a,b) = αψ (b,a) (1)

where a and b represent the two particles.
For a two-particle system, the vector space is spanned by a direct product

of the two one-particle vector spaces. Thus the two basis vectors in this
vector space that can describe the two particles a and b are |ab〉 and |ba〉. If
these two particles are identical, then ψ must be some linear combination
of these two vectors that satisfies 1. That is

ψ (b,a) = β |ab〉+γ |ba〉 (2)
ψ (a,b) = αψ (b,a) (3)

= α (β |ab〉+γ |ba〉) (4)

However, ψ (a,b) is also just ψ (b,a) with a swapped with b, that is

ψ (a,b) = β |ba〉+γ |ab〉 (5)

Since |ab〉 and |ba〉 are independent, we can equate their coefficients in
the last two equations to get

αβ = γ (6)
αγ = β (7)

Inserting the second equation into the first, we get

α2γ = γ (8)
α2 = 1 (9)
α = ±1 (10)

Thus the two possible state functions 1 are combinations of |ab〉 and |ba〉
such that

ψ (a,b) =±ψ (b,a) (11)

The plus sign gives the symmetric state, which can be written as

ψ (ab,S) =
1√
2
(|ab〉+ |ba〉) (12)

and the minus sign gives the antisymmetric state

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 10.01.01.pdf
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ψ (ab,A) =
1√
2
(|ab〉− |ba〉) (13)

The 1√
2

factor normalizes the states so that

〈ψ (ab,S) |ψ (ab,S)〉 = 1 (14)
〈ψ (ab,A) |ψ (ab,A)〉 = 1 (15)

This follows because the basis vectors |ab〉 and |ba〉 are orthonormal vec-
tors.

Particles with symmetric states are called bosons and particles with an-
tisymmetric states are called fermions. The Pauli exclusion principle for
fermions follows directly from 13, since if we set the state variables of the
two particles to be the same, that is, a= b, then

ψ (aa,A) =
1√
2
(|aa〉− |aa〉) = 0 (16)

The symmetry or antisymmetry rules apply to all the properties of the
particle taken as an aggregate. That is, the labels a and b can refer to the par-
ticle’s location plus its other quantum numbers such as spin, charge, and so
on. In order for two fermions to be excluded, the states of the two fermions
must be identical in all their quantum numbers, so that two fermions with
the same orbital location (as two electrons in the same orbital within an
atom, for example) are allowed if their spins are different.

Example 1. Suppose we have 2 identical bosons that are measured to be in
states |φ〉 and |χ〉 where 〈φ |χ〉 6= 0. What is their combined state vector?
Since they are bosons, their state vector must be symmetric, so we must
have

ψ (φ,χ) = A |φχ〉+B |χφ〉 (17)

Because ψ must be symmetric, we must have A = B, so that ψ (φ,χ) =
ψ (χ,φ). The 2-particle states can be written as direct products, so we have

ψ (φ,χ) = A(|φ〉⊗ |χ〉+ |χ〉⊗ |φ〉) (18)

To normalize, we have, assuming that |φ〉 and |χ〉 are normalized:
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|ψ|2 = 1 (19)

= |A|2 (〈φ|⊗ 〈χ|+ 〈χ|⊗ 〈φ|)(|φ〉⊗ |χ〉+ |χ〉⊗ |φ〉) (20)

= |A|2
(

1+1+ |〈φ |χ〉|2 + |〈χ |φ〉|2
)

(21)

A=
±1√

2
(

1+ |〈φ |χ〉|2
) (22)

Thus the normalized state vector is (choosing the + sign):

ψ (φ,χ) =
1√

2
(

1+ |〈φ |χ〉|2
) (|φχ〉+ |χφ〉) (23)

Notice that this reduces to 12 if 〈φ |χ〉= 0.

For more than 2 particles, we need to form state vectors that are either
totally symmetric or totally antisymmetric.

Example 2. Suppose we have 3 identical bosons, and they are measured
to be in states 3, 3 and 4. Since two of them are in the same state, there
are 3 possible combinations, which we can write as |334〉 , |343〉 and |433〉.
Assuming these states are orthonormal, the full normalized state vector is

ψ (3,3,4) =
1√
3
(|334〉+ |343〉+ |433〉) (24)

The 1√
3

ensures that |ψ (3,3,4)|2 = 1.

Incidentally, forN ≥ 3 particles, it turns out to be impossible to construct
a linear combination of the basis states such that the overall state vector is
symmetric with respect to the interchange of some pairs of particles and
antisymmetric with respect to the interchange of other pairs. A general
proof for all N requires group theory, but for N = 3 we can show this by
brute force. There are 3! = 6 basis vectors

|123〉 , |231〉 , |312〉 , |132〉 , |321〉 , |213〉 (25)

Suppose we require the compound state vector to be symmetric with re-
spect to exchanging 1 and 2. We then must have

ψ = A(|123〉+ |213〉)+B (|231〉+ |132〉)+C (|312〉+ |321〉) (26)
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If we now try to make ψ antisymmetric with respect to exchanging 2 and
3, we must have

ψ =D (|123〉− |132〉)+E (|231〉− |321〉)+F (|312〉− |213〉) (27)

Comparing the two, we see that

A = D =−F (28)
B = E =−D (29)
C = F =−E (30)

Eliminating A,B, and C we have, combining the 3 equations:

D =−E = F (31)

But from the first equation, we have D = −F , so F = −F = 0. From
the other equations, this implies that D = −F = 0 and E = −F = 0, and
thus that A = B = C = 0. So there is no non-trivial solution that allows
both a symmetric and antisymmetric particle exchange within the same state
vector.

Example 3. Suppose we have 3 particles and only 3 distinct states that each
particle can have. If the particles are distinguishable (not identical) the total
number of states is found by considering the possibilities. If all 3 particles
are in different states, then there are 3! = 6 possible overall states. If two
particles are in one state and one particle in another, there are

(3
2

)
= 3 ways

of choosing the two states, for each of which there are 2 ways of partitioning
these two states (that is, which state has 2 particles and which has the other
one), and for each of those there are 3 possible configurations, so there
are 3× 2× 3 = 18 possible configurations. Finally, if all 3 particles are in
the same state, there are 3 possibilities. Thus the total for distinguishable
particles is 6+18+3 = 27.

If the particles are bosons, then if all 3 are in different states, there is only
1 symmetric combination of the 6 basis states. If two particles are in one
state and one particle in another, there are 3×2 = 6 ways of partitioning the
states, each of which contributes only one symmetric overall state. Finally,
if all 3 particles are in the same state, there are 3 possibilities. Thus the total
for bosons is 1+6+3 = 10.

For fermions, all three particles must be in different states, so there is
only 1 possibility.
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Suppose we have two identical particles in an infinite square well. The

energy levels in a well of width L are

E =
(πnh̄)2

2mL2 (1)

where n= 1,2,3, . . . The corresponding wave functions are given by

ψn (x) =

√
2
L

sin
nπx

L
(2)

If the total energy of the two particles is π2h̄2/mL2, the only possible
configuration is for both particles to be in the ground state n = 1. This
means the particles must be bosons, so the state vector is

|x1,x2〉=
2
L

sin
πx1

L
sin

πx2

L
(3)

If the total energy is 5π2h̄2/2mL2, then one particle is in the state n= 1
and the other is in n= 2. Since the states are different, the particles can be
either bosons or fermions. For bosons, the state vector is

|x1,x2〉=
1√
2

[
2
L

sin
πx1

L
sin

2πx2

L
+

2
L

sin
2πx1

L
sin

πx2

L

]
(4)

=

√
2
L

[
sin

πx1

L
sin

2πx2

L
+ sin

2πx1

L
sin

πx2

L

]
(5)

For fermions, the state must be antisymmetric, so we have

|x1,x2〉=
√

2
L

[
sin

πx1

L
sin

2πx2

L
− sin

2πx1

L
sin

πx2

L

]
(6)

1
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In a system with two particles, the state in theX basis is given by |x1,x2〉

where xi is the position of particle i. We can define the exchange operator
P12 as an operator that swaps the two particles, so that

P12 |x1,x2〉= |x2,x1〉 (1)

To find the eigenvalues and eigenvectors of P12 we have

P12 |ψ (x1,x2)〉= α |ψ (x1,x2)〉= ψ (x2,x1) (2)

where α is the eigenvalue and |ψ (x1,x2)〉 is the eigenvector. Using the
same argument as before, we can write

|ψ (x1,x2)〉= β |x1,x2〉+γ |x2,x1〉 (3)

|ψ (x2,x1)〉= β |x2,x1〉+γ |x1,x2〉 (4)

= α [β |x1,x2〉+γ |x2,x1〉] (5)

Equating coefficients in the first and third lines, we arrive at

α=±1 (6)

which gives the same symmetric and antisymmetric eigenfunctions that
we had before:

ψS (x1,x2) =
1√
2
(|x1,x2〉+ |x2,x1〉) (7)

ψA (x1,x2) =
1√
2
(|x1,x2〉− |x2,x1〉) (8)

We can derive a couple of other properties of the exchange operator by
noting that if it is applied twice in succession, we get the original state back,
so that

1
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P 2
12 = I (9)

P12 = P−1
12 (10)

Thus the operator is its own inverse.
Consider also the two states |x′1,x′2〉 and |x1,x2〉. Then

〈
x′1,x

′
2

∣∣∣P †
12P12

∣∣∣x1,x2

〉
=
〈
P12x

′
1,x
′
2 |P12x1,x2

〉
(11)

=
〈
x′2,x

′
1 |x2,x1

〉
(12)

=
(〈
x′2
∣∣⊗〈x′1∣∣)(|x2〉⊗ |x1〉) (13)

= δ
(
x′2−x2

)
δ
(
x′1−x1

)
(14)

However, the last line is just equal to the inner product of the original
states, that is

〈
x′1,x

′
2 |x1,x2

〉
= δ
(
x2−x′2

)
δ
(
x1−x′1

)
= δ
(
x′2−x2

)
δ
(
x′1−x1

)
(15)

This means that

P †
12P12 = I (16)

P †
12 = P−1

12 = P12 (17)

Thus P12 is both Hermitian and unitary.
Shankar asks us to show that, for a general basis vector |ω1,ω2〉, P12 |ω1,ω2〉=

|ω2,ω1〉. One argument could be that, since the X basis spans the space, we
can express any other vector such as |ω1,ω2〉 as a linear combination of the
|x1,x2〉 vectors, so that applying P12 to |ω1,ω2〉 means applying it to a sum
of |x1,x2〉 vectors, which swaps the two particles in every term. I’m not
sure if this is a rigorous result. One argument, due to Petra Axolotl, is this:

http://www.physicspages.com/pdf/Shankar/MIT 8.05x 04.04.02 Unitary operators.pdf
http://www.petraaxolotl.com/
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P12|ω1ω2 > (18)

=
∫
x1

∫
x2

P12|x1x2 >< x1x2|ω1ω2 > dx1dx2 (19)

=
∫
x1

∫
x2

P12|x1x2 > ω1(x1)ω2(x2)dx1dx2 (20)

=
∫
x1

∫
x2

P12|x1x2 > ω2(x2)ω1(x1)dx1dx2 (21)

=
∫
x1

∫
x2

|x2x1 >< x2x1|ω2ω1 > dx1dx2 (22)

= |ω2ω1 > (23)

In any case, if we accept this result it shows that if we start in a state that
is totally symmetric (that is, a boson state), this state is an eigenvector of
P12 with eigenvalue +1. Similarly, if we start in an antisymmetric (fermion)
state, this state is an eigenvector of P12 with eigenvalue −1.

Now we can look at some other properties of P12. Consider

P12X1P12 |x1,x2〉= P12X1 |x2,x1〉 (24)

= x2P12 |x2,x1〉 (25)

= x2 |x1,x2〉 (26)

=X2 |x1,x2〉 (27)

This follows because the operator X1 operates on the first particle in the
state |x2,x1〉 which on the RHS of the first line is at position x2. Thus
X1 |x2,x1〉 = x2 |x2,x1〉, that is, X1 returns the numerical value of the po-
sition of the first particle, which is x2. This means that in terms of the
operators alone

P12X1P12 = X2 (28)
P12X2P12 = X1 (29)
P12P1P12 = P2 (30)
P12P2P12 = P1 (31)

In the last two lines, the operator Pi is the momentum of particle i, and
the result follows by applying the operators to the momentum basis state
|p1,p2〉.

For some general operator which can be expanded in a power series of
terms containing powers of Xi and/or Pi, we can use 10 to insert P12P12
between every factor of Xi or Pi. For example
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P12P1X
2
2X1P12 = P12P1P12P12X2P12P12X2P12P12X1P12 (32)

= P2X
2
1X2 (33)

That is, for any operator Ω(X1,P1;X2,P2) we have

P12Ω(X1,P1;X2,P2)P12 = Ω(X2,P2;X1,P1) (34)
The Hamiltonian for a system of two identical particles must be symmet-

ric under exchange of the particles, since it represents an observable (the
energy), and this observable must remain unchanged if we swap the parti-
cles. (In the case of two fermions, the wave function is antisymmetric, but
the wave function itself is not an observable. The wave function gets mul-
tiplied by −1 if we swap the particles, but the square modulus of the wave
function, which contains the physics, remains the same.) Thus we have

P12H (X1,P1;X2,P2)P12 =H (X2,P2;X1,P1) =H (X1,P1;X2,P2)
(35)

[Note that this condition doesn’t necessarily follow if the two particles
are not identical, since exchanging them in this case leads to an observably
different system. For example, exchanging the proton and electron in a
hydrogen atom leads to a different system.]

The propagator is defined as

U (t) = e−iHt/h̄ (36)
and the propagator dictates how a state evolves according to

|ψ (t)〉= U (t) |ψ (0)〉 (37)
Since the only operator on which U depends is H , then U is also invari-

ant, so that

P12U (X1,P1;X2,P2)P12 =U (X2,P2;X1,P1) =U (X1,P1;X2,P2) (38)

Multiplying from the left by P12 and subtracting, we get the commutator

[U,P12] = 0 (39)
For a symmetric state |ψS〉 or antisymmetric state |ψA〉, we have

UP12 |ψS (0)〉= U |ψS (0)〉= |ψS (t)〉= P12U |ψS (0)〉 (40)

UP12 |ψA (0)〉=−U |ψA (0)〉=−|ψA (t)〉= P12U |ψA (0)〉 (41)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 04.03.01 Schrodinger equation & propagators.pdf
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This means that states that begin as symmetric or antisymmetric remain
symmetric or antisymmetric for all time. In other words, a system that starts
in an eigenstate of P12 remains in the same eigenstate as time passes.
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In a system of identical particles, we’ve seen that if the particles are

bosons, the state vector is symmetric with respect to the exchange of any
two particles (that is, ψ (a,b) = ψ (b,a) where a and b are any two of the
particles in the system), while for fermions, the state vector is antisymmet-
ric, meaning that ψ (a,b) =−ψ (a,b). What happens if we have a compound
object such as a hydrogen atom that is composed of a collection of fermions
and/or bosons?

Suppose we look at the hydrogen atom in particular. It is composed of a
proton and an electron, both of which are fermions. The proton and elec-
tron are not, of course, identical particles, but now suppose we have two
hydrogen atoms. The two protons are identical fermions, just as are the two
electrons. However, when analyzing a system of two hydrogen atoms, the
relevant question is what happens to the state vector if we exchange the two
atoms. In doing so, we exchange both the two protons and the two elec-
trons. Each exchange multiplies the state vector by −1, so the net effect of
exchanging both protons and both electrons is to multiply the state vector
by (−1)2 = 1. In other words, a hydrogen atom acts as a boson, even though
it is composed of two fermions.

In general, if we have a compound object containing n fermions, then the
state vector for a system of two such objects is multiplied by (−1)n when
these two objects are exchanged. That is, a compound object containing an
even number of fermions behaves as a boson, while if it contains an odd
number of fermions, it behaves as a fermion.

A compound object consisting entirely of bosons will always behave as
a boson, no matter how many such bosonic particles it contains, since inter-
changing all n bosons just multiplies the state vector by (+1)n = 1.
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Chapter 10, Exercise 10.2.1.
Post date: 5 Jan 2013.
The three-dimensional particle in a box problem is a fairly straightfor-

ward extension of the one dimensional case. The 3-d time-independent
Schrödinger equation in rectangular coordinates is

− h̄2

2m
∇

2ψ = Eψ (1)

Using separation of variables, we can assume that the spatial wave func-
tion is the product of three individual functions, each dependent on only one
spatial coordinate:

ψ(r) = ξ(x)η(y)ζ(z) (2)
Plugging this into the 3-d Schrödinger equation and dividing through by

ξ(x)η(y)ζ(z) gives

− h̄2

2m

(
ξxx
ξ

+
ηyy
η

+
ζzz
ζ

)
= E (3)

where a subscript indicates a derivative with respect to that variable, so
ξxx = d2ξ/dx2 etc.

Since E is a constant (independent of position), and each term in the sum
depends on a different independent variable, each term in the sum must
itself be a constant. In order to be able to use the analysis from the one-
dimensional case, we therefore introduce three constants kx, ky and kz so
that

ξxx = −k2
xξ (4)

ηyy = −k2
yη (5)

ζzz = −k2
zζ (6)

From 3 the constants satisify the condition:
1
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k2
x+k

2
y+k

2
z =

2mE
h̄2 (7)

From here, we can use the analysis of the infinite square well in one
dimension, to get:

ξ(x) =

√
2
a

sin
nxπ

a
x (8)

η(y) =

√
2
a

sin
nyπ

a
y (9)

ζ(z) =

√
2
a

sin
nzπ

a
z (10)

where each of nx, ny and nz can take any positive integer value. From 7,
the energies are given by

Ei =
π2h̄2

2ma2 (n
2
x+n

2
y+n

2
z) (11)

The various energies can be found by listing the values of nx, ny and nz
such that the sums n2

x+n
2
y+n

2
z are listed in ascending order. The degener-

acy of each combination of ns can be found by noting that if all three ns are
the same, the degeneracy is 1, if two are the same, the degeneracy is 3, and
if all three are different, the degeneracy is 6. Thus in the following table,
we list only one combination of ns for each degenerate set. The energies
are given in units of π2h̄2

2ma2
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nx ny nz Energy Degeneracy
1 1 1 E1 = 3 1
2 1 1 E2 = 6 3
2 2 1 E3 = 9 3
3 1 1 E4 = 11 3
2 2 2 E5 = 12 1
3 2 1 E6 = 14 6
3 2 2 E7 = 17 3
4 1 1 E8 = 18 3
3 3 1 E9 = 19 3
4 2 1 E10 = 21 6
3 3 2 E11 = 22 3
4 2 2 E12 = 24 3
4 3 1 E13 = 26 6
3 3 3 E14 = 27 4
5 1 1 “ “

The case ofE14 has a degeneracy of 4, since it can arise from two distinct
combinations of ns, as shown. It’s an interesting question as to whether this
case is unique. Not obvious from a superficial analysis how this could be
proved one way or the other.

PINGBACKS

Pingback: Rectangular wave guides: transverse electric waves
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Chapter 10, Exercise 10.3.6.
Post date: 17 Mar 2017
In a system of identical particles, we’ve seen that if the particles are

bosons, the state vector is symmetric with respect to the exchange of any
two particles (that is, ψ (a,b) = ψ (b,a) where a and b are any two of the
particles in the system), while for fermions, the state vector is antisymmet-
ric, meaning that ψ (a,b) =−ψ (a,b). What happens if we have a compound
object such as a hydrogen atom that is composed of a collection of fermions
and/or bosons?

Suppose we look at the hydrogen atom in particular. It is composed of a
proton and an electron, both of which are fermions. The proton and elec-
tron are not, of course, identical particles, but now suppose we have two
hydrogen atoms. The two protons are identical fermions, just as are the two
electrons. However, when analyzing a system of two hydrogen atoms, the
relevant question is what happens to the state vector if we exchange the two
atoms. In doing so, we exchange both the two protons and the two elec-
trons. Each exchange multiplies the state vector by −1, so the net effect of
exchanging both protons and both electrons is to multiply the state vector
by (−1)2 = 1. In other words, a hydrogen atom acts as a boson, even though
it is composed of two fermions.

In general, if we have a compound object containing n fermions, then the
state vector for a system of two such objects is multiplied by (−1)n when
these two objects are exchanged. That is, a compound object containing an
even number of fermions behaves as a boson, while if it contains an odd
number of fermions, it behaves as a fermion.

A compound object consisting entirely of bosons will always behave as
a boson, no matter how many such bosonic particles it contains, since inter-
changing all n bosons just multiplies the state vector by (+1)n = 1.
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When we consider infinitesimal transformations of some dynamical vari-

able, there is a correspondence between classical and quantum mechanics
which we can see as follows. First, we’ll summarize the results from clas-
sical mechanics. We can define a canonical transformation generated by a
variable g as

q̄i = qi+ ε
∂g

∂pi
≡ qi+ δqi (1)

p̄i = pi− ε
∂g

∂qi
≡ pi+ δpi (2)

Here, ε is an infintesimal amount and δqi and δpi are the infinitesimal
amounts by which the coordinates and momenta vary. It follows from these
definitions that, for any dynamical variable ω, its variation δω is given by a
Poisson bracket

δω = ω (q̄i, p̄i)−ω (qi,pi) = ε{ω,g} (3)

For the special cases of coordinates and momenta, this is

δqi = ε{qi,g} (4)
δpi = ε{pi,g} (5)

If the generator is the momentum pj , then

δqi = ε{qi,pj}= εδij (6)
δpi = ε{pi,pj}= 0 (7)

Thus, in classical mechanics, pj is the generator of translations in direc-
tion j.

1
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If ω = H (the Hamiltonian) and if {H,g} = 0, then g is conserved (it
doesn’t vary with time). Because the transformation 1 and 2 is canonical, it
preserves the Poisson brackets so that

{
qi, qj

}
=

{
pi,pj

}
= 0 (8){

qi,pj
}

= δij (9)

What do these things correspond to in quantum mechanics? [I find Shankar’s
treatment in section 11.2 to be almost tautological, since it merely repeats
the derivation given earlier. I’ll try to be a bit more general.]

Suppose we have some infinitesimal transformation given by a unitary
operator U (ε). We can then define the changes in X and P by

δX = U† (ε)XU (ε)−X (10)

δP = U† (ε)PU (ε)−P (11)

Since U (ε) describes an infinitesimal transformation, we can expand it
to first order in ε:

U (ε) = I− iε
h̄
G (12)

where G=G† is some Hermitian operator known as the generator of the
transformation. (We’ve seen a proof that the translation operator T (ε) (a
special case of U (ε)) is unitary and that its generator is Hermitian earlier,
and the current case follows the same reasoning.) Using this form we have
from 10 and 11, to order ε:

δX =

(
I+

iε

h̄
G

)
X

(
I− iε

h̄
G

)
−X (13)

=−iε
h̄
[X,G] (14)

δP =

(
I+

iε

h̄
G

)
P

(
I− iε

h̄
G

)
−P (15)

=−iε
h̄
[P,G] (16)

If G= P , then

δX = −iε
h̄
[X,P ] = εI (17)

δP = −iε
h̄
[P,P ] = 0 (18)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 02.07.01 - 02.07.02.pdf
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Comparing this with 6 and 7 we see that (in one dimension, where the
classical coordinate is given by x and momentum by p) there is a correspon-
dence between the classical Poisson bracket and quantum commutator:

{x,p}↔− i
h̄
[X,P ] (19)

The momentum operator P in quantum mechanics is thus the generator
of translations, just as p generates translations in classical mechanics.

More generally, we can define the variation in some arbitrary dynamical
operator Ω in a similar way, using 12 to expand the RHS:

δΩ = U† (ε)ΩU (ε)−Ω (20)

= −iε
h̄
[Ω,G] (21)

The correspondence with classical mechanics is then

{ω,g}↔− i
h̄
[Ω,G] (22)

The general rule is that a quantum commutator is ih̄ times the corre-
sponding classical Poisson bracket.

If Ω =H and [H,G] = 0, then by Ehrenfest’s theorem,
〈
Ġ
〉
= 0 and the

average value of G is conserved.
The correspondence is a bit odd in that the generator g in classical me-

chanics enters as a derivative in 1 and 2 while the generator G in quantum
mechanics enters as an operator (no derivatives) in 12.

One other feature is worth noting. A canonical transformation preserves
the Poisson brackets 8 in the new coordinate system. In quantum mechan-
ics, it is the commutators that get preserved. For example, using the fact
that U is unitary so that UU† = I:

U† [X,P ]U = U†XPU −U†PXU (23)

= U†XUU†PU −U†PUU†XU (24)

=
[
U†XU,U†PU

]
(25)
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We’ve seen that the translation operator T (ε) in quantum mechanics can

be derived by considering the translation to be an active transformation,
that is, a transformation where the state vectors, rather than the operators,
get transformed according to

T (ε) |ψ〉= |ψε〉 (1)

Using this approach, we found that

T (ε) = I− iε
h̄
P (2)

so that the momentum P is the generator of the transformation.
We can also derive T using a passive transformation, where the state

vectors remain the same but the operators are transformed according to

T † (ε)XT (ε) = X+ εI (3)

T † (ε)PT (ε) = P (4)

This is equivalent to an active transformation since

〈
ψ
∣∣∣T † (ε)XT (ε)

∣∣∣ψ〉 = 〈T (ε)ψ |X|T (ε)ψ〉 (5)

= 〈ψε |X|ψε〉 (6)
= x+ ε (7)

As before we start by taking

T (ε) = I− iε
h̄
G (8)

where G is some Hermitian operator, so that G† =G. Plugging this into
3 we get, keeping only terms up to order ε:

1
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T † (ε)XT (ε) =

(
I+

iε

h̄
G

)
X

(
I− iε

h̄
G

)
(9)

=X+
iε

h̄
I (GX−XG) (10)

=X− iε
h̄
[X,G] (11)

=X+ εI (12)

Therefore

−iε
h̄
[X,G] = εI (13)

[X,G] = ih̄I (14)

Since [X,P ] = ih̄ we see that

G= P +f (X) (15)

The extra f (X) is there because any function of X alone commutes with
X , so

[X,G] = [X,P ]+ [X,f (X)] = ih̄I+0 (16)

We can eliminate f (X) by considering 4.

T † (ε)PT (ε) =

(
I+

iε

h̄
G

)
P

(
I− iε

h̄
G

)
(17)

= P +
iε

h̄
I (GP −PG) (18)

= P − iε
h̄
[P,G] (19)

= P (20)

Thus we must have [P,G] = 0, which means that G must be a function
of P alone. This means that the most general form for f (X) is f (X) =
constant, but there’s nothing to be gained by adding some non-zero constant
to G, so we can take f (X) = 0. Thus we end up with the same form 2 that
we got from the active transformation.

Translational invariance is the condition that the Hamiltonian is unaltered
by a translation. In the passive representation this is stated by the condition

T † (ε)HT (ε) =H (21)
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Since translation is unitary, we can apply a theorem that is valid for any
operator Ω which can be expanded in powers of X and P . For any unitary
operator U , we have

U†
Ω(X,P )U = Ω

(
U†XU,U†PU

)
(22)

This follows because for a unitary operator U†U = UU† = I so we can
insert the product UU† anywhere we like. In particular, we can insert it
between each pair of factors in every term of the power series expansion of
Ω, for example

U†X2P 2U = U†XXPPU (23)

= U†XUU†XUU†PUU†PU (24)

=
(
U†XU

)2(
U†PU

)2
(25)

For 21 this means that

T † (ε)H (X,P )T (ε) =H (X+ εI,P ) =H (X,P ) (26)
As before, this leads to the condition

[P,H] = 0 (27)
which means that P is conserved, according to Ehrenfest’s theorem.
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One consequence of the invariance of the Hamiltonian under translation

is that the momentum and Hamiltonian commute:

[P,H] = 0 (1)
In quantum mechanics, commuting quantities are simultaneously observ-

able, and we can find a basis for the Hilbert space consisting of eigenstates
of both P and H . We’ve seen that Ehrenfest’s theorem allows us to con-
clude that for such a system, the average momentum is conserved so that〈
Ṗ
〉
= 0. We can go a step further and state that if a system starts out in an

eigenstate of P , then it remains in that eigenstate for all time.
First, we need to make a rather subtle observation, which is that

[P,H] = 0→ [P,U (t)] = 0 (2)
That is, if P and H commute, then P also commutes with the propagator

U (t). For a time-independent Hamiltonian, the propagator is

U (t) = e−iHt/h̄ (3)
Since this can be expanded in a power series in the Hamiltonian, condi-

tion 2 follows easily enough. What if the Hamiltonian is time-dependent?
In this case, the propagator comes out to a time-ordered integral

U (t) = T

{
exp
[
− i

h̄

∫ t

0
H
(
t′
)
dt′
]}
≡ lim

N→∞

N−1

∏
n=0

e−i∆H(n∆)/h̄ (4)

Here the time interval [0, t] is divided into N time slices, each of length
∆ = t/N . As explained in the earlier post, the reason we can’t just integrate
the RHS directly by summing the exponents is that such a procedure works
only if the operators in the exponents all commute with each other. If H is
time-dependent, its forms at different times may not commute, so we can’t
get a simple closed form for U (t).

1
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However, if [P,H (t)] = 0 for all times, then P commutes with all the
exponents on the RHS of 4, so we still get [P,U (t)] = 0. Another way of
looking at this is by imposing the condition [P,H (t)] = 0 we’re saying that
if H (t) can be expanded in a power series in X and P , it depends only on
P , and not on X . This follows from the fact that

[Xn,P ] = ih̄nXn−1 (5)
so that P does not commute with any power of X .
Given that 2 is valid for all Hamiltonians, then if we start in a eigenstate

|p〉 of P , then

P |p〉 = p |p〉 (6)
PU (t) |p〉 = U (t)P |p〉 (7)

= U (t)p |p〉 (8)
= pU (t) |p〉 (9)

Thus U (t) |p〉 remains an eigenstate of P with the same eigenvalue p
for all time. For a single particle moving in one dimension, the state |p〉
describes a free particle with momentum p (and thus a completely undeter-
mined position).
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In classical mechanics, we’ve seen that if a dynamical variable g is used

to generate a transformation of the variables qi and pi (the coordinates and
canonical momenta), then if the Hamiltonian is invariant under this transfor-
mation, the quantity g is conserved, meaning that it remains constant over
time. We’d like to extend these results to quantum mechanics, but in doing
so, there is one large obstacle. In classical mechanics, we can specify the
exact position (given by qi) and the exact momentum (pi) at every instant
in time for every particle. In other words, every particle has a precisely de-
fined trajectory through phase space. Due to the uncertainty principle, we
cannot do this in quantum mechanics, since we cannot specify the position
and momentum of any particle with arbitrary precision, so we can’t define
a precise trajectory for any particle.

The way in which this problem is usually handled is to examine the ef-
fects of changes in the expectation values of dynamical variables, rather
than with their precise values at any given time. In the case of a single par-
ticle moving in one dimension, we can apply this idea to investigate how we
might invoke translational invariance. Classically, where x is the position
variable and p is the momentum, an infinitesimal translation by a distance ε
is given by

x → x+ ε (1)
p → p (2)

In quantum mechanics, the equivalent translation is reflected in the ex-
pectation values:

〈X〉 → 〈X〉+ ε (3)
〈P 〉 → 〈P 〉 (4)

In order to find the expectation values 〈X〉 and 〈P 〉 we need to use the
state vector |ψ〉. There are two ways of interpreting the transformation. The

1
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first, known as the active transformation picture, is to say that translating
the position generates a new state vector |ψε〉 with the properties

〈ψε |X|ψε〉 = 〈ψ |X|ψ〉+ ε (5)
〈ψε |P |ψε〉 = 〈ψ |P |ψ〉 (6)

Since |ψε〉 is another state vector in the same vector space as |ψ〉, there
must be an operator T (ε) which we call the translation operator, and which
maps one vector onto the other:

T (ε) |ψ〉= |ψε〉 (7)

In terms of the translation operator, the translation becomes

〈
ψ
∣∣∣T † (ε)XT (ε)

∣∣∣ψ〉= 〈ψ |X|ψ〉+ ε (8)〈
ψ
∣∣∣T † (ε)PT (ε)

∣∣∣ψ〉= 〈ψ |P |ψ〉 (9)

These relations allow us to define the second interpretation, called the
passive transformation picture, in which the state vectors do not change,
but rather the position and momentum operators change. That is, we can
transform the operators according to

X → T † (ε)XT (ε) =X+ εI (10)

P → T † (ε)PT (ε) = P (11)

We need to find the explicit form for T . To begin, we consider its effect
on a position eigenket |x〉. One possibility is

T (ε) |x〉= |x+ ε〉 (12)

However, to be completely general, we should consider the case where T
not only shifts x by ε, but also introduces a phase factor. That is, the most
general effect of T is

T (ε) |x〉= eiεg(x)/h̄ |x+ ε〉 (13)

where g (x) is some arbitrary real function of x. Using this form, we
have, for some arbitrary state vector |ψ〉:
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|ψε〉= T (ε) |ψ〉 (14)

= T (ε)
∫

∞

−∞

|x〉〈x |ψ 〉dx (15)

=
∫

∞

−∞

eiεg(x)/h̄ |x+ ε〉〈x |ψ 〉dx (16)

=
∫

∞

−∞

eiεg(x
′−ε)/h̄ ∣∣x′〉〈x′− ε |ψ〉dx′ (17)

To get the last line, we changed the integration variable to x′ = x+ ε.
Multiplying by the bra 〈x| gives, using 〈x |x′ 〉= δ (x−x′):

〈x |T (ε)|ψ〉= 〈x |ψε 〉= eiεg(x−ε)/h̄ 〈x− ε |ψ 〉 (18)

= eiεg(x−ε)/h̄ψ (x− ε) (19)

That is, the action of T (ε) is to move the coordinate axis a distance ε
to the right, which means that the new state vector |ψε〉 becomes the old
state vector at position x− ε. Alternatively, we can leave the coordinate
axis alone and shift the wave function a distance ε to the right, so that the
new vector at position x is the old vector at position x− ε (multiplied by a
phase factor).

We can now use this result to calculate 8 and 9:

〈ψε |X|ψε〉=
∫

∞

−∞

∫
∞

−∞

〈ψε |x〉
〈
x |X|x′

〉〈
x′ |ψε

〉
dx dx′ (20)

=
∫

∞

−∞

∫
∞

−∞

〈ψε |x〉x′δ
(
x−x′

)〈
x′ |ψε

〉
dx dx′ (21)

=
∫

∞

−∞

〈ψε |x〉x〈x |ψε 〉dx (22)

=
∫

∞

−∞

e−iεg(x−ε)/h̄ψ∗ (x− ε)xeiεg(x−ε)/h̄ψ (x− ε)dx (23)

=
∫

∞

−∞

ψ∗ (x− ε)xψ (x− ε)dx (24)

=
∫

∞

−∞

ψ∗
(
x′
)(
x′+ ε

)
ψ
(
x′
)
dx′ (25)

= 〈ψ |X|ψ〉+ ε (26)

In the second line, we used the matrix element of X〈
x |X|x′

〉
= x′δ

(
x−x′

)
(27)
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and in the penultimate line, we again used the change of integration vari-
able to x′ = x− ε. Thus we regain 8.

The momentum transforms as follows.

〈ψε |P |ψε〉=
∫

∞

−∞

ψ∗ (x− ε)e−iεg(x−ε)/h̄
(
−ih̄ d

dx

)(
eiεg(x−ε)/h̄ψ (x− ε)

)
dx

(28)

=
∫

∞

−∞

ψ∗ (x− ε)
(
ε
d

dx
(g (x− ε))ψ (x− ε)− ih̄ d

dx
(ψ (x− ε))

)
dx

(29)

=
∫

∞

−∞

ψ∗
(
x′
)(

εψ
(
x′
) d

dx′
g
(
x′
)
− ih̄ d

dx′
ψ
(
x′
))

dx′ (30)

= ε

〈
d

dx
g (x)

〉
+ 〈P 〉 (31)

In the third line, we again transformed the integration variable to x′ =
x− ε, and used the fact that dx = dx′, so a derivative with respect to x is
the same as a derivative with respect to x′. [This derivation is condensed a
bit compared to the derivation of 〈ψε |X|ψε〉, but you can insert a couple of
sets of complete states and do the extra integrals if you like.]

If we now impose the condition 9 so that the momentum is unchanged by
the translation, this is equivalent to choosing the phase function g (x) = 0,
and this is what is done in most applications.

Having explored the properties of the translation operator, we can now
define what we mean by translational invariance in quantum mechanics.
This is the requirement that the expectation value of the Hamiltonian is
unchanged under the transformation. That is

〈ψ |H|ψ〉= 〈ψε |H|ψε〉 (32)

For this, we need the explicit form of T (ε). Since ε = 0 corresponds to
no translation, we require T (0) = I . To first order in ε, we can then write

T (ε) = I− iε
h̄
G (33)

where G is some operator, called the generator of translations, that is to
be determined. From 13 (with g = 0 from now on), we have

〈
x′+ ε |x+ ε

〉
=
〈
x′
∣∣∣T † (ε)T (ε)

∣∣∣x〉= δ
(
x′−x

)
=
〈
x′ |x

〉
(34)

so we must have
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T † (ε)T (ε) = I (35)
so that T is unitary. Applying this condition to 33 up to order ε, we have

T † (ε)T (ε) =

(
I+

iε

h̄
G†
)(

I− iε
h̄
G

)
(36)

= I+
iε

h̄

(
G†−G

)
+O

(
ε2) (37)

Requiring 35 shows thatG=G† soG is Hermitian. Now, from 19 (g= 0
again) we have

〈x |T (ε)|ψ〉= ψ (x− ε) (38)
We expand both sides to order ε:

〈x |I|ψ〉− iε
h̄
〈x |G|ψ〉= ψ (x)− εdψ

dx
(39)

Since 〈x |I|ψ〉= 〈x |ψ 〉= ψ (x), we have

〈x |G|ψ〉=−ih̄dψ
dx

= 〈x |P |ψ〉 (40)

so G = P and the momentum operator is the generator of translations,
and the translation operator is, to order ε

T (ε) = I− iε
h̄
P (41)

By plugging this into 32 and expanding the RHS, we find that in order
for the Hamiltonian to be invariant, the expectation value of the commuta-
tor [P,H] must be zero (the derivation is done in Shankar’s eqn 11.2.15).
Using Ehrenfest’s theorem we then find that the expectation value

〈
Ṗ
〉
=

〈[P,H]〉= 0, so that the expectation value of P is conserved over time.
Note that we cannot say that the momentum itself (rather than just its

expectation value) is conserved since, due to the uncertainty principle, we
never know what the exact momentum is at any given time.
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The translation operator for an infinitesimal translation ε is, to first order

in ε:

T (ε) = I− iε
h̄
P (1)

where P , the momentum operator, serves as the generator of translations.
To derive a formula for a finite (non-infinitesimal) translation over a dis-
tance a, we divide the interval a into N segments, each of width a/N , so
that for very large N , the width becomes infinitesimal. Then we have

T (a) =

(
I− ia

h̄N
P

)N

(2)

This formula is reminiscent of one definition of the exponential function
(which can be found in most introductory calculus texts):

e−ax = lim
N→∞

(
1− ax

N

)N
(3)

When we try to apply a formula that is valid for ordinary numbers to
a case containing operators, we need to take care that any commutation
relations involving the operators are taken into account. In this case, 2 con-
tains only the momentum operator and the identity operator, which com-
mute with each other, so we can in fact apply the limit formula directly to
the operator case. We therefore have

T (a) = lim
N→∞

(
I− ia

h̄N
P

)N

= e−iaP/h̄ (4)

In the position basis, P = −ih̄ d
dx , so if we apply T (a) to a state vector

ψ (x) = 〈x |ψ 〉 we can expand the exponential in a Taylor series to get

〈x |T (a)|ψ〉= ψ (x)−adψ
dx

+
a

2!
d2ψ

dx2 + . . . (5)
1
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We can extend our analysis of the correspondence between classical and
quantum versions of translations. In the passive transformation model, the
transformation is applied to operators rather than state vectors, so for a finite
translation of an operator Ω we have

Ω→ T † (a)ΩT (a) = eiaP/h̄Ωe−iaP/h̄ (6)

The operator expression on the RHS can be expanded using Hadamard’s
lemma, which for two operators A and B is

e−ABeA =B+[B,A]+
1
2!

[[B,A] ,A]+ . . . (7)

where each term contains the commutator of the previous term’s commu-
tator with A.

In this case gives us

eiaP/h̄Ωe−iaP/h̄ = Ω+a

(
− i
h̄

)
[Ω,P ]+

a2

2!

(
− i
h̄

)2

[[Ω,P ] ,P ]+ . . . (8)

For example, in the case Ω=X , [X,P ] = ih̄I and all higher commutators
are zero (since they involve the commutator of a constant with P ), so we
get

eiaP/h̄Xe−iaP/h̄ =X+aI (9)

so the system is translated by a distance a, as we’d expect.
For higher powers of X , we can use the result

[Xn,P ] = ih̄nXn−1 (10)

We therefore get

eiaP/h̄Xne−iaP/h̄ = Xn+anXn−1 +
a2

2!
n(n−1)Xn−2 + . . .+

an

n!
n!I(11)

=
n

∑
m=0

(
n

m

)
Xn−m (aI)m (12)

= (X+aI)n (13)

We’re allowed to treat X as an ordinary number in these equations since
it is (apart from I), the only operator present so all terms commute.

In the classical case, the infinitesimal change δω of a variable ω under an
infinitesimal displacement δa generated by the momentum p is given by the
Poisson bracket
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δω = δa{ω,p} (14)

We can write this as a derivative:

dω

da
= {ω,p} (15)

For a finite translation by an amount a, we can write the value of ω as a
Taylor series relative to some starting point a0 as

ω (a0 +a) = ω (a0)+a
dω

da
+
a2

2!
d2ω

da2 + . . . (16)

where all derivatives are evaluated at a= a0.
We can write all the derivatives in terms of Poisson brackets by using 15.

For example

d2ω

da2 =
d

da

(
dω

da

)
=

{
dω

da
,p

}
= {{ω,p} ,p} (17)

Thus the variable ω transforms according to

ω (a0 +a) = ω+a{ω,p}+ a2

2!
{{ω,p} ,p}+ . . . (18)

Comparing this with 8, we see that the two expressions match if we use
the usual recipe for converting classical Poisson brackets to quantum com-
mutators, namely {a,b}=− i

h̄ [A,B].
Although we’ve worked this out for the special case of translations, the

same principle can be used for other transformations. For example, the
angular momentum about the z axis is

`z = xpy−ypx (19)

and serves as the generator of rotations about the z axis. Suppose we have
a rotation through an angle θ and we want to see how the two coordinates x
and y transform. The expansion 18 becomes

x̄= x+ θ{x,`z}+
θ2

2!
{{x,`z} , `z}+ . . . (20)

The relevant Poisson brackets are (using the generic term qi to represent
the two coordinates x and y):
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{x,`z}= ∑
i

[
∂x

∂qi

∂`z
∂pi
− ∂x

∂pi

∂`z
∂qi

]
(21)

=−y (22)

{y,`z}= ∑
i

[
∂y

∂qi

∂`z
∂pi
− ∂y

∂pi

∂`z
∂qi

]
(23)

= x (24)

Looking at how x transforms, we see that the Poisson brackets in 20 will
cycle through the four values

{x,`z}=−y (25)

{{x,`z} , `z}=−{y,`z}=−x (26)

{{{x,`z} , `z} , `z}=−{x,`z}= y (27)

{{{{x,`z} , `z} , `z} , `z}= {y,`z}= x (28)

The series 20 thus expands to

x̄ = x

[
1− θ

2

2!
+
θ4

4!
− . . .

]
−y

[
θ− θ

3

3!
+
θ5

5!
− . . .

]
(29)

= xcosθ−y sinθ (30)

We can do the same calculation for ȳ to get

ȳ = xsinθ+y cosθ (31)
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We can investigate the effect of a quantum system being invariant under

time translation by considering the evolution of a state vector using a prop-
agator. A state at time t is given in terms of the state at time t= 0 according
to

|ψ (t)〉= U (t) |ψ (0)〉= e−itH/h̄ |ψ (0)〉 (1)

Strictly speaking, this equation is true only if H is time-independent,
since in the time-dependent case, we need to express the propagator as a
time-ordered integral. However, if we let the system evolve for only an
infinitesimal time ε, we can ignore the complexities of the time-ordered
integral and write, to first order in ε

U (ε) = e−iεH(0)/h̄ = I− iεH (0)
h̄

(2)

Note that it doesn’t matter if we use the value of H at time t= 0 or t= ε
or at some time in between, since the differences between these values are
of order ε, and thus make no difference to U (ε) to first order in ε.

Now suppose we prepare the same system (which we’ll call |ψ0〉) at some
time t= t1 and consider how the system evolves over an infinitesimal time
ε starting from t= t1. We then have

|ψ (t1 + ε)〉= U (t1 + ε) |ψ0〉 (3)

=

(
I− iεH (t1)

h̄

)
|ψ0〉 (4)

The idea behind time translation invariance is that it shouldn’t make any
difference at what time we prepare a system, provided that the system is
prepared identically at whatever time we actually do prepare it. In other
words, if we had prepared our system above at t = t2 instead of t = t1 and
then let it evolve for an infinitesimal time ε, we should end up with exactly
the same state. That is, we require that

1
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|ψ (t2 + ε)〉=
(
I− iεH (t2)

h̄

)
|ψ0〉 (5)

=

(
I− iεH (t1)

h̄

)
|ψ0〉 (6)

Rearranging things, we get

− iε
h̄
(H (t2)−H (t1)) |ψ0〉= 0 (7)

The initial state can be anything we like, so in order for this condition to
be always true, we must have

H (t2) =H (t1) (8)

Again, the two times t1 and t2 at which we prepared the system are arbi-
trary (and not necessarily separated by an infinitesimal time, so they could
be years apart), so this condition implies that H itself must be constant in
time. For a time-independent operator A, Ehrenfest’s theorem says that

〈
Ȧ
〉
=− i

h̄
〈[A,H]〉 (9)

If A=H , then the commutator is [H,H] = 0, so time translation invari-
ance implies that 〈

Ḣ
〉
= 0 (10)

That is, time translation invariance implies that the average energy of the
system is conserved.

Clearly, energy is conserved if the system is in an energy eigenstate, since
then the energy has a single, unchanging value. However, if we prepare the
state as a combination of energy eigenstates, then the system has the form

ψ (x,t) = ∑
k

cke
−iEkt/h̄ψk (x) (11)

where the ck are constant coefficients. A measurement of the energy on
such a system can yield any of the energies Ek for which ck 6= 0, so it might
seem that we’re violating the conservation of energy. The point is that, on
average, the energy is

〈E〉= ∑
k

|ck|2Ek (12)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 06.01.01 Classical limit.pdf
http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 02.07.pdf
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and it is this average that doesn’t change with time. In dealing with av-
erages, we’re also retaining consistency with the infamous energy-time un-
certainty relation.

http://www.physicspages.com/pdf/Griffiths QM/Uncertainty principle - energy_time.pdf
http://www.physicspages.com/pdf/Griffiths QM/Uncertainty principle - energy_time.pdf
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A parity transformation reflects all the coordinate axes through the origin,

so that, in one dimension x→ −x and in three dimensions the position
vector r→ −r. In one dimension, a parity transformation is the same as
reflection in a point-sized mirror placed at the origin. It might seem that in
three dimensions, parity is more than just a reflection in a plane mirror, but
in fact it can be shown that it is equivalent to such a reflection followed by
a rotation. To see this, suppose we place a mirror in the xy plane, so that
the z axis gets reflected into −z. This converts a right-handed rectangular
coordinate system (where the direction of the z axis is determined by the
direction of your thumb on your right hand when you curl your fingers
through the right angle between the positive x and y axes) into a left-handed
coordinate system (the direction of the new +z axis is found by doing the
finger-curling maneuver with your left hand). However, merely reflecting
the z axis in the xy plane leaves the x and y axes unchanged. Now if we
rotate the xy plane by an angle π (or 180◦) about the z axis, then the +x
axis gets rotated into the −x axis, and the +y axis gets rotated into the −y
axis. In this sense, the 3-d parity transformation is equivalent to a reflection
(since pretty well every physical phenomenon is invariant under a rotation).

To apply parity to quantum state vectors, we define a parity operator Π

to have the following action on the X basis:

Π |x〉= |−x〉 (1)

From this definition we can see the effect on an arbitrary state |ψ〉 by
inserting a complete set of X states:

1
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Π |ψ〉= Π

∫
∞

−∞

|x〉〈x |ψ 〉dx (2)

=
∫

∞

−∞

|−x〉〈x |ψ 〉dx (3)

=
∫ −∞

∞

∣∣x′〉〈−x′ |ψ〉(−dx′) (4)

=
∫

∞

−∞

∣∣x′〉〈−x′ |ψ〉dx′ (5)

In the third line we made the substitution x′ =−x, so that dx=−dx′ and
the limits of integration get swapped. As a result of this, the effect of parity
in the X basis representation 〈x |ψ 〉= ψ (x) of a state vector |ψ〉 is

〈x |Π|ψ〉=
∫

∞

−∞

〈
x
∣∣x′〉〈−x′ |ψ〉dx′ (6)

=
∫

∞

−∞

δ
(
x−x′

)〈
−x′ |ψ

〉
dx′ (7)

= ψ (−x) (8)

Parity therefore simply converts x→−x wherever it occurs in the func-
tion ψ (x).

One special case of this is the momentum eigenstate |p〉 which has the
form in the X basis of

〈x |p〉= 1√
2πh̄

eipx/h̄ (9)

The parity transformation gives

〈x |Π|p〉= 1√
2πh̄

e−ipx/h̄ (10)

Another way of looking at this is that parity changes p to −p and leaves
the x alone, so that

Π |p〉= |−p〉 (11)

[You might think that if parity transforms x→−x and p→−p then the
effect on eipx/h̄ should be to switch the signs of both x and p and thus leave
the state unchanged. However, this isn’t correct, as we can express a state
vector in either the X basis (in which x→−x) or in the P basis (in which
p→−p) but not both at the same time.]

http://www.physicspages.com/pdf/Griffiths QM/Griffiths Problems 03.09.pdf
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A few properties of Π can be derived fairly easily. First, since applying
Π twice in succession to the same state swaps x→−x and back again, it
leaves that state unchanged. Since this is true for all states, we must have

Π
2 = I (12)

from which we see that Π is its own inverse, so

Π
−1 = Π (13)

We can also see that Π is Hermitian by considering〈
ψ
∣∣∣Π†

Π

∣∣∣ψ〉= 〈Πψ |Πψ 〉=
∫

∞

−∞

ψ∗ (−x)ψ (−x)dx (14)

=
∫

∞

−∞

ψ∗
(
x′
)
ψ
(
x′
)
dx′ (15)

= 〈ψ |ψ 〉 (16)

In the second line we used the same trick as in the derivation of 5 to
substitute x′ =−x. Thus we see that

Π
†
Π = I (17)

Π
† = Π

−1 = Π (18)

The condition Π† =Π shows that Π is Hermitian, and the condition Π† =
Π−1 shows that Π is unitary.

Finally, any operator whose square is the identity operator has eigenval-
ues ±1, as we can see as follows. Suppose |ψ〉 is an eigenvector of Π with
eigenvalue α. Then

Π |ψ〉 = α |ψ〉 (19)

Π
2 |ψ〉 = αΠ |ψ〉 (20)

= α2 |ψ〉 (21)
= I |ψ〉 (22)
= |ψ〉 (23)

Therefore α2 = 1, so α=±1.
We can also define Π by examining its effect on operators, rather than

states. Consider

〈
Πx′ |X|Πx

〉
=

〈
−x′ |X|−x

〉
(24)

= −xδ
(
x′−x

)
(25)
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However, this is equivalent to〈
Πx′ |X|Πx

〉
=
〈
x′
∣∣∣Π†XΠ

∣∣∣x〉=−xδ
(
x′−x

)
(26)

Thus we can write

Π
†XΠ =−X (27)

and similarly for the momentum

Π
†PΠ =−P (28)

Eigenstates of parity are said to be even if the eigenvalue is +1 and odd
if the eigenvalue is −1. Mathematically, the X basis representation of such
eigenstates are even or odd functions of x, respectively.

The Hamiltonian is parity invariant if a parity transformation leaves it
unchanged, so that

Π
†H (X,P )Π =H (−X,−P ) =H (X,P ) (29)

Since Π† = Π, this condition is equivalent to

[Π,H] = 0 (30)
Using the same argument as with conservation of momentum, if this com-

mutator is valid at all times (if H is time-independent this is automatic; if
H is time-dependent, then we must impose the commutator at all times),
then Π must also commute with the propagator U (t), since U depends only
on H . In this case, if we start with a system in a definite parity state (even
or odd), then the parity of the state doesn’t change with time. This follows
because if [Π,U (t)] = 0 then if Π |ψ (0)〉= α |ψ (0)〉 (where α=±1), then
we can let the state evolve in time by applying the propagator to it, so that
we have

|ψ (t)〉= U (t) |ψ (0)〉 (31)
Applying the parity operator to this and using the commutator, we have

Π |ψ (t)〉= ΠU (t) |ψ (0)〉= U (t)Π |ψ (0)〉= αU (t) |ψ (0)〉= α |ψ (t)〉
(32)

Thus the parity of the evolved state is the same as the parity of the initial
state.

Parity is not always conserved in physics. A notable parity-violating re-
action is a decay involving the weak nuclear force. Shankar describes one
such case with the decay of an isotope of cobalt: 60Co→60 Ni+ e−+ ν̄.
Another example is in Shankar’s exercise 11.4.3.

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 11.02 Translational invariance and conservation of momentum.pdf
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Suppose that in one particular reaction which emits an electron, the elec-
tron’s spin is observed to be always parallel to its momentum. For the pur-
poses of this argument, we can regard an electron’s spin as being caused by
some physical rotation of the electron. Suppose in one such reaction, the
electron’s spin is in the +z direction (using the right-hand rule for calcu-
lating the direction of angular momentum, so that viewed from above, the
electron is rotating counterclockwise) and therefore its momentum is also
in the +z direction. Now reflect this reaction in a mirror lying in the yz
plane. This reflection will invert the direction of rotation (think of viewing
a spinning top in a mirror) so that the spin direction will now point in the
−z direction, but since the momentum vector is parallel to the plane of the
mirror, it will not be inverted. Thus the spin and momentum are now anti-
parallel after a parity transformation, showing that parity in this case is not
conserved.

Finally, Shankar includes a curious problem (11.4.2) which, as far as I
can tell, doesn’t have anything to do with parity, but I’ll include it here for
completeness. Suppose we have a particle that moves in a potential

V (x) = V0 sin
(

2πx
a

)
(33)

This potential is periodic with a period of a, so if we translate the system
according to x→ x+ma for some integer m, the potential is unchanged.
The problem is to show that momentum is not conserved in this case. The
conservation of momentum argument, valid for infinitesimal translations,
relied on Ehrenfest’s theorem, which states that〈

Ṗ
〉
=− i

h̄
〈[P,H]〉 (34)

If the momentum commutes with the Hamiltonian, then, on average, the
momentum is conserved. Now in this case we can calculate the commutator
[P,V ] using the result

[Xn,P ] = ih̄nXn−1 (35)
We can write the potential as a series:

V (X) = V0

[
2πX
a
− 1

3!

(
2πX
a

)3

+ . . .

]
(36)

The commutator is therefore

[V,P ] =
2πih̄V0

a

[
1− 1

2!

(
2πX
a

)2

+ . . .

]
=

2πih̄V0

a
cos
(

2πX
a

)
(37)

http://www.physicspages.com/pdf/Shankar/Shankar Exercises 11.02 Translation from Passive Transformation.pdf
http://www.physicspages.com/pdf/Shankar/Shankar Exercises 06.01.01 Classical limit.pdf
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Therefore, Ehrenfest’s theorem gives us (since H presumably is of the
form H = T +V with the kinetic energy depending only on P , so it com-
mutes with P ):

〈
Ṗ
〉
=−2πV0

a

〈
cos
(

2πX
a

)〉
(38)

Since the cosine is periodic, we can’t actually calculate a unique value for
its average, although if we do the average over an exact number of periods,
the average is still zero. I have a feeling that I’m missing something obvious
here, so any suggestions are welcome.

COMMENTS

Remark 1. Aaron Stevens
Nov 21, 2017 10:40 PM
I am specifically referring to problem 11.4.2 in Shankar’s Quantum Me-

chanics book (around equation 33 in the above link).
The final equation 38 you arrive at is valid, but then you say,
“Since the cosine is periodic, we can’t actually calculate a unique value

for its average, although if we do the average over an exact number of pe-
riods, the average is still zero. I have a feeling that I’m missing something
obvious here, so any suggestions are welcome.”

Let me see what you think: The final expression that results in the expec-
tation value of the cosine function is not the same thing as the average of the
cosine function. The only time the expectation value is equal to the average
is when the probability distribution in question is the uniform distribution.
In general, this expectation value is state dependent. It is a measure of what
we would “expect” this cosine function to be given the probability distri-
bution of finding the particle between x and x+dx in space (psi* times psi).
We could contrive a state that gives 0 for this expectation value, but I doubt
that the state will then evolve according to the Schrodinger’s equation in
such a way as to keep the expectation value set at 0.

To have momentum conservation, we need the expectation value of the
commutator [P,H] to be 0 always, since momentum conservation is a prop-
erty of the physical system in question, not on the states within that system.
So since we get a “final answer” that is not identically 0, we must say that
momentum is not conserved.

Another way I thought to solve the problem that is simpler but I am un-
sure is valid is that since the potential (and therefore Hamiltonian) is not
invariant under infinitesimal translations that we cannot say momentum is
conserved. Or thinking a little bit differently, just because we have found
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points in space where the potential energy is the same does not mean mo-
mentum is conserved. It is like if you were to push a block down and back
up a hill with friction so that it begins and ends at rest. If you are consid-
ering just the block as your system and then saying since it starts and stops
with the same energy that its energy must have been conserved the entire
time, you would not be correct.

I grade for a quantum class that uses this book, and I think a lot of the
students refer to these solutions, so this is how I came across this. Thanks!

=========
I suspect you’re right. The main point appears to be that in order to

calculate
〈
cos
(2πX

a

)〉
we must do so in a particular state of the particle, and

this will not in general be zero. However, I think your second solution is also
valid - the derivation of constant momentum resulted from the invariance of
the system under infinitesimal translations, and that’s not true in this case.

==========
Aaron Stevens says:
December 19, 2017 at 4:05 pm
Awesome! Thanks! I agree, it requires some thought, and even though

it all sounds good I still feel like I am doing some hand waving, especially
with the infinitesimal translation argument. Thanks for looking it over!

PINGBACKS
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WIGNER’S THEOREM

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 11, Section 11.5.
Zee, A. (2016), Group Theory in a Nutshell for Physicists. Section IV.6.
Post date: 12 Apr 2017
Parity is one of the two main discrete symmetries treated in non-relativistic

quantum mechanics. The other is time reversal, which we’ll look at here.
First, we’ll have a look at what time reversal symmetry means in classical

physics. The idea is that if we can take a snapshot of the system at some
time, each particle will have a given position x and a given momentum p.
If we reverse the direction of time at that instant, the particle’s position
remains the same, but its momentum reverses. In other words x→ x and
p→−p. Note the difference between time reversal and parity: in a parity
operation, both position and momentum get ’reflected’ into their negative
values, while in time reversal, only momentum gets ’reflected’.

We can see how this works by looking at Newton’s law in the form

F =m
d2x

dt2
(1)

Time reversal invariance is valid if the same equation holds when we
reverse the direction of time, that is, we let t → −t. Since x → x, the
numerator on the RHS is unchanged. For the denominator t→−t means
that dt→−dt and (dt)2→ (−dt)2 = dt2, so the acceleration is invariant.
Newton’s law is invariant under time reversal provided that the force on
the LHS is invariant, which will be the case provided that F depends only
on x and not on ẋ. This is true for forces such as Newtonian gravity and
electrostatics, but is not true for the magnetic force felt by a charge q moving
through a magnetic field B with velocity v, where the Lorentz force law
holds:

F = qv×B (2)
This follows because v→−v so if the field B is the same after time re-

versal, F→−F. However, because all magnetic fields are produced by the
motion of charges, if we expand the time reversal to include the charges giv-
ing rise to the magnetic field B, then the motion of all these charges would

1
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reverse, which in turn would cause B→−B. Thus if we time-reverse the
entire electromagnetic system, the electromagnetic force is invariant under
time reversal.

How does time reversal work in quantum mechanics? Shankar considers
a particle in one dimension governed by a time-independent Hamiltonian,
which obeys the Schrödinger equation, as usual:

ih̄
∂ψ (x,t)

∂t
=H (x)ψ (x,t) (3)

At this point, Shankar states that if we replace ψ by its complex conjugate
ψ∗, we are implementing time reversal, claiming that it is ’clear’ because
ψ∗ gives the same probability distribution as ψ. I cannot find any reason
why this should be ’clear’ from this statement, so let’s try looking at the
problem in a bit more detail. The clearest explanation I’ve found is in Zee’s
book, referenced above.

In order that the system be invariant under time reversal, we consider the
transformation t→ t′ = −t and we wish to find some operator T which
operates on the wave function ψ (t) so that

Tψ (t) = ψ′
(
t′
)
= ψ′ (−t) (4)

[I’m suppressing the dependence on x for brevity; since time reversal
doesn’t affect x, it stays the same throughout this argument] satisfies the
Schrödinger equation in the form

ih̄
∂ψ′ (t′)

∂t′
=Hψ′

(
t′
)

(5)

From this, we get

ih̄
∂ (Tψ (t))

∂ (−t)
=HTψ (t) (6)

Whatever this unknown operator T is, it has an inverse, so we can multi-
ply on the left by T−1 to get

T−1 (−i)T h̄∂ψ (t)
∂t

= T−1HTψ (t) (7)

Notice that we’re not assuming that T has no effect on i (that is, we’re
not assuming that we can pull i out of the expression on the LHS). Now
we know that T has an effect only if what it operates on depends on time
(since it’s the time reversal operator) so, since we’re assuming that H is
time-independent, we must have [H,T ] = 0. Given this, we have

T−1HT = T−1TH =H (8)
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Thus, the RHS of 7 reduces to the RHS of the original Schrödinger equa-
tion 3. If the Schrödinger equation is to remain valid after time reversal, the
LHS of 7 must also reduce to the LHS of 3. That is, we must have

T−1 (−i)T = i (9)

Multiplying on the left by T we get

− iT = Ti (10)

In other words, one of the effects of T is that it takes the complex conju-
gate of any expression that it operates on.

To find out exactly what T is, we can write it as the product of a unitary
operator U and the operator K, whose only job is that it takes the complex
conjugate. Since doing the complex conjugate operation twice in succession
returns us to the original expression, K2 = I , so K =K−1. We get

T = UK (11)
T−1 = K−1U−1 =KU−1 (12)

Ordinary unitary operators are linear in the sense that U (αψ) = αUψ,
where α is a complex number and ψ is some function, with a similar relation
holding for U−1. Combining the above few equations, we have

T−1 (−i)T =KU−1 (−i)UK (13)

=K (−i)U−1UK (14)

= iK2 (15)
= i (16)

Thus the most general form for T is some unitary operator U multiplied
by the complex conjugate operatorK. We can see that, for such an operator,
and complex constants αand β and functions ψ and φ:

T (αψ+βφ) = UK (αψ+βφ) (17)

= U (α∗Kψ+β∗Kφ) (18)

= α∗UKψ+β∗UKφ (19)

= α∗Tψ+β∗Tφ (20)

An operator that obeys this relation is called antilinear. The operator T
has the additional property
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〈Tψ |Tφ〉= 〈UKψ |UKφ〉 (21)

= 〈Uψ |Uφ〉∗ (22)

= 〈ψ |φ〉∗ (23)

= 〈φ |ψ 〉 (24)

The third line follows from the fact that a unitary operator preserves inner
products. An antilinear operator that satisfies the condition 〈Tψ |Tφ〉 =
〈φ |ψ 〉 is called antiunitary. [The fact that time reversal is antiunitary was
first derived by Eugene Wigner in 1932. A more general result, known as
Wigner’s theorem, states that any symmetry in a quantum system must be
represented by either a unitary or an antiunitary operator.]

To find U in this case, consider a plane wave state

ψ (t) = ei(px−Et)/h̄ (25)

Applying T to this state, we have

Tψ (t) = UKei(px−Et)/h̄ (26)

= Ue−i(px−Et)/h̄ (27)

In one dimension, the only unitary operator U is a phase factor like eiα

for some real α (since U has to preserve the inner product). We can take
U = 1 since the phase factor cancels out when calculating |Tψ (t)|2. Going
back to 4, we see that the time-reversed wave function is

ψ′ (−t) = Tψ (t) = e−i(px−Et)/h̄ (28)

ψ′ (t) = e−i(px+Et)/h̄ = e(−ipx−Et)/h̄ (29)

Since this is the same as the original wave function except that p→−p,
we see that it is indeed a valid time-reversed wave function. The energy
is the same (the −Et part of the exponent still has a minus sign) but the
momentum has reversed, giving a wave that moves in the opposite direction.

Another way of looking at time reversal is as follows. Suppose we start
with a system in the state ψ (0) at t = 0. We can let it evolve for a time τ
using the propagator to get the state at time t= τ :

ψ (τ) = e−iHτ/h̄ψ (0) (30)

Applying time reversal via the operator T to this state, we have (we’re
assuming that H is time-independent, but we’re allowing it to be complex)

http://www.physicspages.com/2016/10/30/unitary-operators/
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Tψ (τ) = eiH
∗τ/h̄ψ∗ (0) (31)

If we now evolve this time-reversed state through the same time τ , we
should end up back in the (time-reversed) original state if the system is
invariant under time reversal. That is,

ψ (2τ) = e−iHτ/h̄eiH
∗τ/h̄ψ∗ (0) = ψ∗ (0) (32)

[Note that we don’t require ψ (2τ) = ψ (0) since ψ (2τ) is the system
in its time-reversed state, where it’s moving in the opposite direction to
the original state. Think about time-reversing a bouncing ball. The ball
becomes effectively time-reversed when it bounces. If the ball is travelling
down at some speed v at a height h, then after bouncing (assuming an elastic
bounce) it will be travelling at the same speed v when it bounces back to
the height h, but it will be moving in the opposite direction.]

In this equation, we’re working in the X basis, so the exponents are nu-
merical functions, not operators, and we’re free to combine the exponents
without worrying about commutators. This means that in order for the sys-
tem to be time-reversal invariant, we must have

H (x) =H∗ (x) (33)
In other words, the Hamiltonian must be real. The usual kinetic plus

potential type of Hamiltonian satisfies this since it has the form

H =
P 2

2m
+V (x) (34)

and although the quantum momentum operator is P =−ih̄ d
dx , its square

is real. In the magnetic force case, the presence of the charge’s velocity as
a linear term (in qv×B) means the momentum operator occurs as a linear
term, making H complex, so time reversal invariance doesn’t hold. Again,
however, if we included the charges that give rise to the magnetic field, the
discrepancy disappears.
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In preparation for an examination of rotation invariance, we’ll have a

look at translational invariance in two dimensions. We can apply much of
what we did with translation in one dimension, where we showed that the
momentum P is the generator of translations. In particular, the translation
operator T (ε) for an infinitesimal translation ε is

T (ε) = I− iε
h̄
P (1)

In two dimensions, we can write an infinitesimal translation as δδδa where

δδδa= δaxx̂+ δayŷ (2)
In one dimension, we showed earlier that

〈x |T (ε)|ψ〉= ψ (x− ε) (3)
The analogous relation in two dimensions is

〈x,y |T (δδδa)|ψ〉= ψ (x− δax,y− δay) (4)
We can verify that the correct form for T (δδδa) is

T (δδδa) = I− i

h̄
δδδa ·P (5)

= I− i

h̄
(δaxPx+ δayPy) (6)

Using the representation of momentum in the position basis, which is

Px = −ih̄ ∂
∂x

(7)

Py = −ih̄ ∂
∂y

(8)

the LHS of 4 is, using 〈x,y |ψ 〉= ψ (x,y):
1
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〈x,y |T (δδδa)|ψ〉=
〈
x,y

∣∣∣∣I− i

h̄
(δaxPx+ δayPy)

∣∣∣∣ψ〉 (9)

= ψ (x,y)− δax
∂ψ

∂x
− δay

∂ψ

∂y
(10)

The last line is also what we get if we expand the RHS of 4 to first order in
δδδa, which verifies that 5 is correct, so that the two-dimensional momentum
P is the generator of two-dimensional translations.

We can apply the exponentiation technique we used in the one-dimensional
case to obtain the translation operator for a finite translation in two dimen-
sions. We need to be careful that we don’t run into problems with non-
commuting operators, but in view of 7 and 8 and the fact that derivatives
with respect to different independent variables commute, we see that

[Px,Py] = 0 (11)
We can divide a finite translation a into N small steps, each of size a

N , so
that the translation is

T (a) =
(
I− i

h̄N
a ·P

)N

(12)

Because the two components of momentum commute, we can take the
limit of this expression to get the exponential form:

T (a) = lim
N→∞

(
I− i

h̄N
a ·P

)N

= e−ia·P/h̄ (13)

Again, because the two components of momentum commute, we can
combine two translations, by a and then by b, to get

T (b)T (a) = e−ib·P/h̄e−ia·P/h̄ = e−i(a+b)·P/h̄ = T (b+a) (14)
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As a first look at rotational invariance in quantum mechanics, we’ll look

at two-dimensional rotations about the z axis. Classically, a rotation by an
angle φ0 about the z axis is given by the matrix equation for the coordinates[

x̄
ȳ

]
=

[
cosφ0 −sinφ0
sinφ0 cosφ0

][
x
y

]
(1)

The momenta transform the same way, since we are merely changing the
direction of the x and y axes. Thus we have also[

p̄x
p̄y

]
=

[
cosφ0 −sinφ0
sinφ0 cosφ0

][
px
py

]
(2)

The rotation matrix can be written as an operator, defined as

R (φ0ẑ) =
[

cosφ0 −sinφ0
sinφ0 cosφ0

]
(3)

In quantum mechanics, due to the uncertainty principle we cannot specify
position and momentum precisely at the same time, so as with the case
of translational invariance, we deal with expectation values. As usual, a
rotation is represented by a unitary operator U [R (φ0ẑ)] so that a quantum
state transforms according to

|ψ〉 → |ψR〉= U [R] |ψ〉 (4)

Dealing with expectation values means that the rotation operator must
satisfy

〈X〉R = 〈X〉cosφ0−〈Y 〉sinφ0 (5)

〈Y 〉R = 〈X〉sinφ0 + 〈Y 〉cosφ0 (6)

〈Px〉R = 〈Px〉cosφ0−〈Py〉sinφ0 (7)

〈Py〉R = 〈Px〉sinφ0 + 〈Py〉cosφ0 (8)
1
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The expectation values on the LHS of these equations are calculated us-
ing the rotated state, so that

〈X〉R = 〈ψR |X|ψR〉 (9)

and so on.
In two dimensions, the position eigenkets depend on the two independent

coordinates x and y, and each of these eigenkets transforms under rotation
in the same way the position variables above. Operating on such an eigenket
with the unitary rotation operator thus must give

U [R] |x,y〉= |xcosφ0−y sinφ0,xsinφ0 +y cosφ0〉 (10)

As with the translation operator, we try to construct an explicity form
for U [R] by considering an infinitesimal rotation εz ẑ about the z axis. We
propose that the unitary operator for this rotation is given by

U [R (εz ẑ)] = I− iεzLz

h̄
(11)

where Lz is, at this stage, an unknown operator called the generator of
infinitesimal rotations (although, as the notation suggests, it will turn out to
be the z component of angular momentum). Under this rotation, we have,
to first order in εz:

U [R (εz ẑ)] |x,y〉= |x−yεz,xεz+y〉 (12)

Note that we’ve omitted a possible phase factor in this rotation. That is,
we could have written

U [R (εz ẑ)] |x,y〉= eiεzg(x,y)/h̄ |x−yεz,xεz+y〉 (13)

for some real function g (x,y). Dropping the phase factor has the effect of
making the momentum expectation values transform in the same way as the
position expectaton values, as shown by Shankar in his equation 12.2.13, so
we’ll just take the phase factor to be 1 from now on.

We can now find the position space form of a general state vector |ψ〉
under an infinitesimal rotation by following a similar procedure to that for
a translation.

We have
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|ψεz〉= U [R (εz ẑ)] |ψ〉 (14)

= U [R (εz ẑ)]
∫

∞

−∞

∫
∞

−∞

|x,y〉〈x,y |ψ 〉dx dy (15)

=
∫

∞

−∞

∫
∞

−∞

U [R (εz ẑ)] |x,y〉〈x,y |ψ 〉dx dy (16)

=
∫

∞

−∞

∫
∞

−∞

|x−yεz,xεz+y〉〈x,y |ψ 〉dx dy (17)

We can now change integration variables if we define

x′ ≡ x−yεz (18)
y′ = xεz+y (19)

The differentials transform by considering terms only up to first order in
infinitesimal quantities, so we have

dx′ = dx− εzdy = dx (20)
dy′ = εzdx+dy = dy (21)

Also, to first order in infinitesimal quantities, we can invert the variables
to get

x′+ εzy
′ = x−yεz+xε2

z+yεz = x (22)

y′− εzx′ = xεz+y−xεz+yε2
z = y (23)

The ranges of integration are still ±∞, so we end up with

|ψεz〉=
∫

∞

−∞

∫
∞

−∞

∣∣x′,y′〉〈x′+ εzy′,y′− εzx′ |ψ〉dx′ dy′ (24)

Multiplying on the left by the bra 〈x,y| we have

〈x,y |ψεz 〉=
∫

∞

−∞

∫
∞

−∞

〈
x,y
∣∣x′,y′〉〈x′+ εzy′,y′− εzx′ |ψ〉dx′ dy′ (25)

=
∫

∞

−∞

∫
∞

−∞

δ
(
x−x′

)
δ
(
y−y′

)〈
x′+ εzy

′,y′− εzx′ |ψ
〉
dx′ dy′

(26)

= 〈x+ εzy,y− εzx |ψ 〉 (27)

= ψ (x+ εzy,y− εzx) (28)

This can now be expanded in a 2-variable Taylor series to give, to first
order in εz:
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ψ (x+ εzy,y− εzx) = ψ (x,y)+yεz
∂ψ

∂x
−xεz

∂ψ

∂y
(29)

We can compare this with 11 inserted into 14:

〈x,y |ψεz 〉= 〈x,y |U [R (εz ẑ)]|ψ〉 (30)

=

〈
x,y

∣∣∣∣I− iεzLz

h̄

∣∣∣∣ψ〉 (31)

= ψ (x,y)− iεz
h̄
〈x,y |Lz|ψ〉 (32)

Setting 32 equal to 29 we have

−iεz
h̄
〈x,y |Lz|ψ〉= yεz

∂ψ

∂x
−xεz

∂ψ

∂y
(33)

〈x,y |Lz|ψ〉= x

(
−ih̄∂ψ

∂y

)
−y
(
−ih̄∂ψ

∂x

)
(34)

Using the position-space forms of the momenta

Px = −ih̄ ∂
∂x

(35)

Py = −ih̄ ∂
∂y

(36)

we see that Lz is given by

Lz =XPy−Y Px (37)
which is the quantum equivalent of the z component of angular momen-

tum, as promised.
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We can also derive the generator of rotations Lz by considering passive

transformations of the position and momentum operators, in a way similar
to that used for deriving the generator of translations. In a passive transfor-
mation, the operators are modified while the state vectors remain the same.
For an infinitesimal rotation εz ẑ about the z axis in two dimensions, the
unitary operator has the form

U [R (εz ẑ)] = I− iεzLz

h̄
(1)

For a finite rotation by φ0ẑ the transformations are given by

〈X〉R = 〈X〉cosφ0−〈Y 〉sinφ0 (2)

〈Y 〉R = 〈X〉sinφ0 + 〈Y 〉cosφ0 (3)

〈Px〉R = 〈Px〉cosφ0−〈Py〉sinφ0 (4)

〈Py〉R = 〈Px〉sinφ0 + 〈Py〉cosφ0 (5)

For the infinitesimal transformation, φ0 = εz and these equations reduce
to

〈X〉R = 〈X〉−〈Y 〉εz (6)
〈Y 〉R = 〈X〉εz+ 〈Y 〉 (7)
〈Px〉R = 〈Px〉−〈Py〉εz (8)
〈Py〉R = 〈Px〉εz+ 〈Py〉 (9)

In the passive transformation scheme, we move the transformation to the
operators to get

1
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U† [R]XU [R] = X−Y εz (10)

U† [R]Y U [R] = Xεz+Y (11)

U† [R]PxU [R] = Px−Pyεz (12)

U† [R]PyU [R] = Pxεz+Py (13)

Substituting 1 into these equations gives us the commutation relations
satisfied by Lz. For example, in the first equation we have

U† [R]XU [R] =

(
I+

iεzLz

h̄

)
X

(
I− iεzLz

h̄

)
(14)

=X+
iεz
h̄

(LzX−XLz) (15)

=X−Y εz (16)

Equating the last two lines, we get

[X,Lz] =−ih̄Y (17)
Similarly, for the other three equations we get

[Y,Lz] = ih̄X (18)
[Px,Lz] = −ih̄Py (19)
[Py,Lz] = ih̄Px (20)

We can use these commutation relations to derive the form of Lz by using
the commutation relations for coordinates and momenta:

[X,Px] = [Y,Py] = ih̄ (21)
with all other commutators involving X,Y,Px and Py being zero. Start-

ing with 17, we see that

[X,Lz] =− [X,Px]Y (22)
We can therefore deduce that

Lz =−PxY +f (X,Y,Py) (23)
where f is some unknown function. We must include f since the com-

mutators of X with X,Y and Py are all zero, so adding on f still satisfies
17. (You can think of it as similar to adding on the constant in an indefinite
integral.)

Now from 18, we have
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[Y,Lz] = [Y,Py]X (24)
so combining this with 23 we have

Lz =−PxY +PyX+g (X,Y ) (25)
The undetermined function is now a function only of X and Y , since

the dependence of Lz on Px and Py has been determined uniquely by the
commutators 17 and 18.

From 19 we have

[Px,Lz] = [Px,X]Py (26)
We can see that this is satisfied already by 25, except that we now know

that the function g cannot depend on X , since then [Px,g] 6= 0. Thus we
have narrowed down Lz to

Lz =−PxY +PyX+h(Y ) (27)
Finally, from 20 we have

[Py,Lz] =− [Py,Y ]Px (28)
This is satisfied by 27 if we take h = 0 (well, technically, we could take

h to be some constant, but we might as well take the constant to be zero),
giving us the final form for Lz:

Lz =−PxY +PyX (29)
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The angluar momentum operatorLz is the generator of rotations in the xy

plane. We did the derivation for infinitesimal rotations, but we can general-
ize this to finite rotations in a similar manner to that used for translations.
The unitary transformation for an infinitesimal rotation is

U [R (εz ẑ)] = I− iεzLz
h̄

(1)

For rotation through a finite angle φ0, we divide up the angle intoN small
angles, so εz = φ0/N . Rotation through the full angle φ0 is then given by

U [R (φ0ẑ)] = lim
N→∞

(
I− iφ0Lz

Nh̄

)N
= e−iφ0Lz/h̄ (2)

The limit follows because the only non-trivial operator involved is Lz, so
no commutation problems arise.

In rectangular coordinates, Lz has the relatively non-obvious form

Lz = XPy−Y Px (3)

= −ih̄
(
x
∂

∂y
−y ∂

∂x

)
(4)

so it’s not immediately clear that 2 does in fact lead to the desired rota-
tion. Trying to calculate the exponential with Lz expressed this way is not
easy, given that the two terms x ∂

∂y and y ∂
∂x don’t commute.

It turns out that Lz has a much simpler form in polar coordinates, and
there are two ways of converting it to polar form. First, we recall the trans-
formation equations.

1
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x = ρcosφ (5)
y = ρsinφ (6)

ρ =
√
x2 +y2 (7)

φ = tan−1 y

x
(8)

From the chain rule, we can convert the derivatives:

∂

∂x
=
∂ρ

∂x

∂

∂ρ
+
∂ cosφ
∂x

∂

∂ (cosφ)
(9)

=
∂ρ

∂x

∂

∂ρ
− sinφ

∂φ

∂x

∂

(−sinφ)∂φ
(10)

=
x

ρ

∂

∂ρ
− sinφ

−y/x2

1+y2/x2

(
−1

sinφ

)
∂

∂φ
(11)

=
x

ρ

∂

∂ρ
− y

ρ2
∂

∂φ
(12)

Using similar methods, we get for the other derivative

∂

∂y
=

∂ρ

∂y

∂

∂ρ
+
∂ sinφ
∂x

∂

∂ (sinφ)
(13)

=
y

ρ

∂

∂ρ
+
x

ρ2
∂

∂φ
(14)

Plugging these into 4 we have

Lz =−ih̄
[
x

(
y

ρ

∂

∂ρ
+
x

ρ2
∂

∂φ

)
−y
(
x

ρ

∂

∂ρ
− y

ρ2
∂

∂φ

)]
(15)

=−ih̄x
2 +y2

ρ2
∂

∂φ
(16)

=−ih̄ ∂
∂φ

(17)

Another method of converting Lz to polar coordinates is to consider the
effect of U [R] for an infinitesimal rotation εz on a state vector expressed in
polar coordinates ψ (ρ,φ). Shankar states that

〈ρ,φ |U [R]|ψ (ρ,φ)〉= ψ (ρ,φ− εz) (18)
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If you don’t believe this, it can be shown using a method similar to that
for the one-dimensional translation. In this case, we’re dealing with position
eigenkets in polar coordinates, so we have

U [R] |ρ,φ〉= |ρ,φ+ εz〉 (19)

Applying this, we get

|ψεz〉= U [R] |ψ〉 (20)

= U [R]
∫ 2π

0

∫
∞

0
|ρ,φ〉〈ρ,φ |ψ 〉ρdρ dφ (21)

=
∫ 2π

0

∫
∞

0
|ρ,φ+ εz〉〈ρ,φ |ψ 〉ρdρ dφ (22)

=
∫ 2π

0

∫
∞

0

∣∣ρ′,φ′〉〈ρ′,φ′− εz |ψ〉ρ′dρ′ dφ′ (23)

where in the last line, we used the substitution φ′ = φ+ εz. (The substi-
tution ρ′ = ρ is used just to give the radial variable a different name in the
integrand.) We can use the same limits of integration for φ and φ′, since we
just need to ensure that the integral covers the total range of angles. It then
follows that

〈ρ,φ |ψεz 〉=
∫ 2π

0

∫
∞

0

〈
ρ,φ
∣∣ρ′,φ′ 〉〈ρ′,φ′− εz |ψ〉ρ′dρ′ dφ′ (24)

=
∫ 2π

0

∫
∞

0
δ
(
ρ−ρ′

)
δ
(
φ−φ′

)〈
ρ′,φ′− εz |ψ

〉
ρ′dρ′ dφ′ (25)

= ψ (ρ,φ− εz) (26)

Combining this with 1 we have〈
ρ,φ

∣∣∣∣I− iεzLzh̄

∣∣∣∣ψ〉= ψ (ρ,φ− εz) (27)

Expanding the RHS to order εz we have〈
ρ,φ

∣∣∣∣I− iεzLzh̄

∣∣∣∣ψ〉= ψ (ρ,φ)− εz
∂ψ

∂φ
(28)

from which 17 follows again.
Once we have Lz in this form, the exponential form of a finite rotation is

easier to interpret, for we have, from 2

http://physicspages.com/pdf/Shankar/Shankar Exercises 11.02.01 - 11.02.02.pdf


ROTATIONS THROUGH A FINITE ANGLE; USE OF POLAR COORDINATES 4

e−iφ0Lz/h̄ = exp
[
−φ0

∂

∂φ

]
(29)

= 1−φ0
∂

∂φ
+
φ2

0
2!

∂2

∂φ2 + . . . (30)

Applying this to a state function ψ (ρ,φ), we see that we get the Taylor
series for ψ (ρ,φ−φ0), so the exponential does indeed represent a rotation
through a finite angle.
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When it comes to symmetries in quantum mechanics, we’ve looked at
translations and rotations in two dimensions, and found that the generators
are the momenta Px and Py for translations, and the angular momentum Lz

for rotations.
From the fact that Lz does not commute with either momentum or po-

sition operators, you might guess that if we performed some sequence of
translations and rotations on a system that the order in which these oper-
ations are done matters. In fact, you can see this by considering simple
two-dimensional geometry, without reference to quantum mechanics. Con-
sider the x and y axes on a sheet of graph paper. First, translate these axes
by adding the vector r to all points, so that the new origin of coordinates lies
at position r as referenced in the original coordinates. Next, do a rotation
about the original origin by some angle φ. This will move the new origin
around the original z axis. Now, do the inverse of the original translation by
adding−r to all points. Finally, do the inverse of the rotation by rotating the
system by −φ around the original z axis. You’ll find that the xy axes that
have undergone this sequence of transformations does not coincide with the
original xy axes. However, if you did the same set of four transformations
in the order: translate by r, translate by −r, rotate by φ, rotate by −φ, the
transformed axes would coincide with the original axes.

To see how this works in quantum mechanics, we can again consider
infinitesimal translations and rotations. If we start with a point at location
[x,y] and apply the four transformations described above, but now for an
infinitesimal translation εεε= εxx̂+εyŷ and rotation εz ẑ, then the successive
transformations work as follows. In each case, we’ll retain terms up to order
εxεz and εyεz but discard terms of order ε2

x, ε2
y, ε2

z and higher. [I’m not quite
sure of the rationale that allows us to do this, apart from the fact that it gives
the right answer.]

1
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[
x
y

]
−→
T (εεε)

[
x+ εx
y+ εy

]
(1)[

x+ εx
y+ εy

]
−→

R (εz ẑ)

[
x+ εx− (y+ εy)εz
y+ εy+(x+ εx)εz

]
(2)[

x+ εx− (y+ εy)εz
y+ εy+(x+ εx)εz

]
−→
T (−εεε)

[
x+ εx− (y+ εy)εz− εx
y+ εy+(x+ εx)εz− εy

]
(3)

=

[
x− (y+ εy)εz
y+(x+ εx)εz

]
(4)[

x− (y+ εy)εz
y+(x+ εx)εz

]
−→

R (−εz ẑ)

[
x− (y+ εy)εz+[y+(x+ εx)εz]εz
y+(x+ εx)εz− [x− (y+ εy)εz]εz

]
(5)

=

[
x− εyεz
y+ εxεz

]
(6)

Thus, to this order in the infinitesimals, the combination of translation-
rotation-translation-rotation is equivalent to a single translation by a dis-
tance [−εyεz, εxεz]. We can write this in terms of the unitary quantum
operators for translations and rotations as

U [R (−εz ẑ)]T (−εεε)U [R (εz ẑ)]T (εεε) = T (−εyεzx̂+ εxεzŷ) (7)

Using the forms of these operators for infinitesimal transformations, we
can expand both sides to give

(
I+

iεz
h̄
Lz

)[
I+

i

h̄
(εxPx+ εyPy)

]
× (8)(

I− iεz
h̄
Lz

)[
I− i

h̄
(εxPx+ εyPy)

]
= I− i

h̄
(−εyεzPx+ εxεzPy)

(9)

Since the infinitesimal displacements are arbitrary, this equation can be
valid only if the coefficients of each combination of εx, εy and εz are equal
on both sides. As above, we’ll discard any terms of order ε2

x, ε2
y, ε2

z and
higher. The algebra is straightforward although a bit tedious, so I’ll just
give a couple of examples here.

The coefficient of εz on its own is, on the LHS

iεz
h̄
Lz−

iεz
h̄
Lz = 0 (10)
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On the RHS, there is no term in εz, so we get 0 on the RHS. In this case,
we see the equation is consistent.

For the εxεz term, we get on the LHS:

εxεz
i2

h̄2 (LzPx−LzPx−PxLz+LzPx) =−εxεz
i2

h̄2 [Px,Lz] (11)

On the RHS, the term is

− i

h̄
εxεzPy (12)

Thus the condition here becomes

[Px,Lz] =−ih̄Py (13)

which agrees with the commutation relation we found earlier. By con-
sidering the coefficient of εyεz, we arrive at the other condition, which is

[Py,Lz] = ih̄Px (14)

The result of this calculation doesn’t tell us anything new about the trans-
lation or rotation operators, but it does show that the condition 7 is consis-
tent with what we already know about the commutators of position, mo-
mentum and angular momentum.

As Shankar points out, we might think that we need to verify the condi-
tions for an infinite number of combinations of rotations and translations,
since each such combination gives rise to a different overall transformation.
He says that it has actually been shown that the example above is suffi-
cient to guarantee that all such combinations do in fact give valid results,
although he doesn’t give the details. We are, however, given the exercise of
verifying this claim for one special case, which we’ll consider now.

In this example, we’ll consider the same four transformations, in the same
order, as above except that we’ll take the translation to be entirely in the
x direction so that εy = 0. This time, we’ll retain terms up to εxε

2
z and

see what we get. We start by repeating the calculations in 1 through 6.
However, because we’re saving higher order terms, we need to represent
the infinitesimal rotations by

R (εz ẑ) =

[
1− ε2

z
2 −εz

εz 1− ε2
z
2

]
(15)

That is, we’re approximating cosεz by the first two terms in its expansion.
Using this, we have

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.02.02.pdf
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[
x
y

]
−→
T (εεε)

[
x+ εx
y

]
(16)

[
x+ εx
y

]
−→

R (εz ẑ)

 (x+ εx)
(

1− ε2
z
2

)
−yεz

y
(

1− ε2
z
2

)
+(x+ εx)εz

 (17)

[
x+ εx−yεz
y+(x+ εx)εz

]
−→
T (−εεε)

 (x+ εx)
(

1− ε2
z
2

)
−yεz− εx

y
(

1− ε2
z
2

)
+(x+ εx)εz

 (18)

=

 x
(

1− ε2
z
2

)
−yεz− 1

2εxε
2
z

y
(

1− ε2
z
2

)
+ εzx+ εxεz

 (19)

[
x−yεz

y+(x+ εx)εz

]
−→

R (−εz ẑ)

 [x(1− ε2
z
2

)
−yεz− 1

2εxε
2
z

](
1− ε2

z
2

)
+
[
y
(

1− ε2
z
2

)
+ εzx+ εxεz

]
εz[

y
(

1− ε2
z
2

)
+ εzx+ εxεz

](
1− ε2

z
2

)
−
[
x
(

1− ε2
z
2

)
−yεz− 1

2εxε
2
z

]
εz


(20)

=

 x
(

1+ ε4
z
4

)
+ 1

2εxε
2
z+

1
4εxε

4
z

y
(

1+ ε4
z
4

)
+ εxεz

 (21)

To get the last line, I used Maple to do the algebra in multiplying out the
terms. At this point, we can neglect the terms in ε4

z, leaving us with the
overall transformation: [

x
y

]
−→

[
x+ 1

2εxε
2
z

y+ εxεz

]
(22)

This is equivalent to a translation by εεε= 1
2εxε

2
zx̂+ εxεzŷ, so by analogy

with 7, we have the condition

U [R (−εz ẑ)]T (−εεε)U [R (εz ẑ)]T (εεε) = T

(
1
2
εxε

2
zx̂+ εxεzŷ

)
(23)

To expand the operators on the LHS and retain terms up to εxε
2
z, we

need to expand the rotation operators up to order ε2
z. Treating the rotation

operator as an exponential, this expansion is

R (εz ẑ) = I− iεz
h̄
Lz+

i2ε2
z

2h̄2 L
2
z+ . . . (24)

Using this approximation gives us
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(
I+

iεz
h̄
Lz+

i2ε2
z

2h̄2 L
2
z

)[
I+

i

h̄
εxPx

](
I− iεz

h̄
Lz+

i2ε2
z

2h̄2 L
2
z

)[
I− i

h̄
εxPx

]
= I− i

h̄

(
1
2
εxε

2
zPx+ εxεzPy

)
(25)

By equating the coefficients of εxεz we regain 13, so that condition
checks out.

Extracting the coefficient of εxε2
z on the LHS gives

i3

h̄3 εxε
2
z

(
−LzPxLz+

L2
zPx

2
− L

2
zPx

2
+
PxL

2
z

2
− L

2
zPx

2
+L2

zPx

)
=

i3

h̄3 εxε
2
z

(
−LzPxLz+

L2
zPx

2
+
PxL

2
z

2

)
(26)

Matching this to the εxε2
z term on the RHS of 25, we get the condition

specified in Shankar’s problem:

−2LzPxLz+L
2
zPx+PxL

2
z = h̄2Px (27)

We can show that this condition reduces to the already-known commuta-
tors by using the identity

[Λ, [Λ,Ω]] = Λ(ΛΩ−ΩΛ)− (ΛΩ−ΩΛ)Λ (28)

= −2ΛΩΛ+Λ
2
Ω+ΩΛ

2 (29)

Applying this to 27 we have

−2LzPxLz+L
2
zPx+PxL

2
z = [Lz, [Lz,Px]] (30)

= ih̄ [Lz,Py] (31)
= ih̄(−ih̄Px) (32)

= h̄2Px (33)

Thus the more complicated condition 27 actually reduces to existing
commutators.
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The angular momentum operator Lz for rotations in two dimensions has
the form, in polar coordinates, of

Lz =−ih̄
∂

∂φ
(1)

To find the eigenvalues and eigenfunctions, we need to solve

Lz |`z〉= `z |`z〉 (2)
where |`z〉 is the eigenfunction and `z is the corresponding eigenvalue.

Using polar coordinates, we must solve

− ih̄ ∂
∂φ
ψ`z (ρ,φ) = `zψ`z (ρ,φ) (3)

where ρ is the radial coordinate. As the only derivative here is with re-
spect to φ, we can solve this using separation of variables by proposing a
solution of form

ψ`z (ρ,φ) =R (ρ)Φ(φ) (4)
Substituting this and cancelling off R (ρ) we get

− ih̄ ∂
∂φ

Φ(φ) = `zΦ(φ) (5)

which has the solution

Φ(φ) = Aei`zφ/h̄ (6)
for some constant A, which we can absorb into R (ρ) to give the general

solution
1
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ψ`z (ρ,φ) =R (ρ)ei`zφ/h̄ (7)

[This is actually the two-dimensional version of the more general 3-d
case, in which the solution involved a radial function multiplied by a spher-
ical harmonic.]

At this stage, the eigenvalue `z could be any number, real or complex,
since they all satisfy 3. However, since Lz is an observable, it must be
hermitian, which implies that L†

z = Lz, so that

〈ψ1 |Lz|ψ2〉= 〈ψ2 |Lz|ψ1〉∗ (8)

In the coordinate basis, we have

∫
∞

0

∫ 2π

0
ψ∗1

(
−ih̄ ∂

∂φ

)
ψ2dφ dρ=

[∫
∞

0

∫ 2π

0
ψ∗2

(
−ih̄ ∂

∂φ

)
ψ1dφ dρ

]∗
(9)

Integrating the LHS by parts, we have

∫
∞

0

∫ 2π

0
ψ∗1

(
−ih̄ ∂

∂φ

)
ψ2dφ dρ=−ih̄

∫
∞

0
ψ∗1ψ2|2π0 dρ+ih̄

∫
∞

0

∫ 2π

0

∂ψ∗1
∂φ

ψ2dφ dρ

(10)
The second term on the RHS is seen to be equal to the RHS of 9, so in

order for 9 to be true, we must have∫
∞

0
ψ∗1ψ2|2π0 dρ= 0 (11)

Although two different eigenfunctions ψ1 and ψ2 are orthogonal and thus
would satisfy this condition automatically, the condition must also be true
when ψ1 = ψ2. This gives us the condition that

ψ`z (2π) = ψ`z (0) (12)

That is, the eigenfunctions must be periodic with period 2π. Looking
back at 7, we see that this forces the eigenvalues `z to be integral multiples
of h̄:

`z = mh̄ (13)
m = 0,±1,±2, . . . (14)

Here m is the magnetic quantum number, not the mass.

http://physicspages.com/pdf/Griffiths QM/Schrodinger's Equation - three dimensions.pdf
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One consequence of requiring the angular momentum operator Lz to be
hermitian is that the eigenvalues must be integral multiples of h̄, so that
`z =mh̄ form= 0,±1,±2, . . .. Shankar proposes another method by which
we might try to obtain this restriction on `z. We start with a superposition
of two eigenstates of Lz, so that

ψ (ρ,φ) = A(ρ)eiφ`z/h̄+B (ρ)eiφ`
′
z/h̄ (1)

= eiφ`
′
z/h̄

[
A(ρ)eiφ(`z−`

′
z)/h̄+B (ρ)

]
(2)

whereA andB are two unknown functions of the radial coordinate ρ, and
`z and `′z are two eigenvalues of Lz. If we rotate the system by a complete
circle, so that φ→ φ+2π, the physical state should remain unchanged. This
means that

|ψ (ρ,φ+2π)|= |ψ (ρ,φ)| (3)

so that ψ (ρ,φ+2π) may differ from ψ (ρ,φ) by a phase factor. From 2

ψ (ρ,φ+2π) = ei(φ+2π)`′z/h̄
[
A(ρ)ei(φ+2π)(`z−`′z)/h̄+B (ρ)

]
(4)

The phase factor of ei(φ+2π)`′z/h̄ on the RHS can be anything (provided
the exponent is purely imaginary), but the quantity in the square brackets
must be numerically the same as the corresponding quantity in 2. This
means that

(φ+2π)(`z− `′z)
h̄

=
φ(`z− `′z)

h̄
+2mπ (5)

where m is an integer. This gives the condition
1
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`z− `′z =mh̄ (6)
To proceed further, we need to argue that `z is symmetric about zero, that

is, if `z is an eigenvalue, then so is −`z. I’m not sure if Shankar expects
us to prove this rigorously, but it seems plausible, since the only difference
between +`z and −`z is (classically, anyway) that the direction of rotation
is reversed. Given this condition, `z must be a multiple of 1

2 h̄, since any
other value doesn’t satisfy both the conditions of symmetry about zero, and
6. (For example, if we try `z = 1

4 h̄, then the symmetry requirement means
we must also allow `z = −1

4 h̄, but this violates 6.) If `z is an odd multiple
of 1

2 h̄, then we get the sequence . . . ,−3
2 h̄,-1

2 h̄,+
1
2 h̄,+

3
2 h̄, . . . while if `z is

an even multiple of 1
2 h̄ we get the sequence . . . ,−2h̄,−h̄,0,+h̄,+2h̄, . . ..

In reality, only the latter sequence is correct, but we can’t show that from
this argument.
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We’ve seen that the eigenfunctions of two-dimensional angular momen-
tum have the form

ψ (ρ,φ) =R (ρ)ei`zφ/h̄ (1)
where `z (the eigenvalue) is an integral multiple of h̄ and R (ρ) is some

function of the radial coordinate ρ which depends on the particular poten-
tial function in the hamiltonian. It’s more convenient to write the angular
function as

Φm (φ) =
1√
2π
eimφ (2)

This set of functions is orthonormal over the interval φ ∈ [0,2π], that is∫ 2π

0
Φ
∗
m (φ)Φm′ (φ)dφ= δmm′ (3)

This set of functions forms the angular part of the eigenfunctions of Lz,
which in some cases allows us to determine the probabilities of a system
being in a particular eigenstate of Lz. Here are a couple of examples.

Example 1. A particle is described by the wave function

ψ (ρ,φ) = Ae−ρ
2/2∆2

cos2φ (4)
where A is a normalization constant, and ∆ is another constant.
We can use the trig identity

cos2φ=
1
2
(1+ cos2φ) (5)

to write this wave function as
1
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ψ (ρ,φ) =
A

2
e−ρ

2/2∆2
[1+ cos2φ] (6)

=
A

2
e−ρ

2/2∆2
(

1+
e2iφ+ e−2iφ

2

)
(7)

=
A
√

2π
2

e−ρ
2/2∆2

(
Φ0 +

1
2
(Φ2 +Φ−2)

)
(8)

Thus the wave function has the form

ψ (ρ,φ) = c0Φ0 + c2Φ2 + c−2Φ−2 (9)

where the coefficients cm can be found by comparison with 8. Since the
Φm are orthonormal functions, the probability of the particle being in state
i is

P (`z =mh̄) =
|cm|2

∑j |cj |2
(10)

We can see from this formula that the factor of A
√

2π
2 e−ρ

2/2∆2
cancels out

of the probability formula, so we have
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P (`z = 0) =
|c0|2

∑j |cj |2
(11)

=
1

1+ 1
4 +

1
4

(12)

=
2
3

(13)

P (`z = 2h̄) =
|c2|2

∑j |cj |2
(14)

=
1
4

1+ 1
4 +

1
4

(15)

=
1
6

(16)

P (`z =−2h̄) =
|c−2|2

∑j |cj |2
(17)

=
1
4

1+ 1
4 +

1
4

(18)

=
1
6

(19)

Example 2. Now we have the wave function

ψ (ρ,φ) = Ae−ρ
2/2∆2

( ρ
∆

cosφ+ sinφ
)

(20)

Again, we write the trig functions in terms of Φm to get

ψ (ρ,φ) = Ae−ρ
2/2∆2

(
ρ

∆

eiφ+ e−iφ

2
+
eiφ− e−iφ

2i

)
(21)

= A
√

2πe−ρ
2/2∆2

[(
ρ

2∆
+

1
2i

)
Φ1 +

(
ρ

2∆
− 1

2i

)
Φ−1

]
(22)

As above, the factor ofA
√

2πe−ρ
2/2∆2

cancels out when calculating prob-
abilities, so we have
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P (`z = h̄) =
|c1|2

|c1|2 + |c−1|2
(23)

=

∣∣ ρ
2∆

+ 1
2i

∣∣2∣∣ ρ
2∆

+ 1
2i

∣∣2 + ∣∣ ρ2∆
− 1

2i

∣∣2 (24)

=

( ρ
2∆

)2
+ 1

4

2
[( ρ

2∆

)2
+ 1

4

] (25)

=
1
2

(26)

P (`z =−h̄) =
|c−1|2

|c1|2 + |c−1|2
(27)

=

∣∣ ρ
2∆
− 1

2i

∣∣2∣∣ ρ
2∆

+ 1
2i

∣∣2 + ∣∣ ρ2∆
− 1

2i

∣∣2 (28)

=

( ρ
2∆

)2
+ 1

4

2
[( ρ

2∆

)2
+ 1

4

] (29)

=
1
2

(30)

Thus in this case, the ρ dependence cancels out when calculating the
probabilities, although we can’t expect this to be true in general.



RADIALLY SYMMETRIC POTENTIALS, ANGULAR
MOMENTUM AND CENTRIFUGAL FORCE

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 12, Exercise 12.3.5.
Post date: 4 May 2017
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

We’ve seen that the eigenfunctions of two-dimensional angular momen-
tum have the form

ψ (ρ,φ) =R (ρ)Φm (φ) (1)

where

Φm (φ) =
1√
2π
eimφ (2)

In 2 dimensions and polar coordinates, the hamiltonian can be written as

H =− h̄
2

2µ

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
+V (ρ,φ) (3)

If the potential is radially symmetric, that is, it doesn’t depend on φ, then

H =− h̄
2

2µ

(
∂2

∂ρ2 +
1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
+V (ρ) (4)

In polar coordinates, the angular momentum operator has the form

Lz =−ih̄
∂

∂φ
(5)

Thus Lz commutes with every term in the hamiltonian 4, so for V =
V (ρ), we find

[H,Lz] = 0 (6)

meaning that we can find a set of functions that are simultaneously eigen-
functions of both H and Lz. Since we already know what the most general

1
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eigenfunctions of Lz are (eqn 1), the problem is then to find the radial func-
tion R (ρ) so that

H [R (ρ)Φm (φ)] = ER (ρ)Φm (φ) (7)
If we use 4 for H and 2 for Φ we find that we must solve the differential

equation

− h̄2

2µ

(
d2R

dρ2 +
1
ρ

dR

dρ
−m

2

ρ2 R

)
+V (ρ)R= ER (8)

We’ve replaced the partial derivatives in 4 by ordinary derivatives, since
we now have an ODE in one independent variable, namely ρ.

The term arising from the 1
ρ2

∂2

∂φ2 term in 4 is similar to a potential term,
since it doesn’t involve any derivatives of R. The potential term is

Vc =
h̄2

2µ
m2

ρ2 (9)

We can find the force corresponding to Vc by taking the negative gradient,
which in this case amounts to

Fc =−
∂Vc
∂ρ

=
h̄2m2

µρ3 (10)

Since the quantum angular momentum is `z =mh̄, this can be written as

Fc =
`2
z

µρ3 (11)

If the particle is in a circular orbit, then `z = ρpwhere p is its momentum,
so this becomes

Fc =
p2

µρ
(12)

Classically, p= µv so this is equivalent to

Fc =
µv2

ρ
(13)

which is the formula for centrifugal force in Newtonian physics.
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A particle of mass µ constrained to move (at constant speed v, we as-
sume) on a circle of radius a centred at the origin in the xy plane has a
constant kinetic energy of 1

2µv
2. As its momentum p is always perpendicu-

lar to the radius vector r, the angular momentum is given by

L = r×p = µavẑ = Lz ẑ (1)

The energy can thus be written as

H =
1
2
µv2 =

L2
z

2µa2 (2)

In polar coordinates, the angular momentum operator is

Lz =−ih̄ ∂
∂φ

(3)

The eigenvalue problem for this system is therefore

Hψ = Eψ (4)

− h̄2

2µa2
∂2ψ

∂φ2 = Eψ (5)

The eigenvalues of Lz are the solutions of

−h̄2∂
2ψ

∂φ2 = `zψ (6)

which are

ψ = Aei`zφ/h̄ = Aeimφ (7)
1
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for some constant A, with the quantization condition (arising from the
requirement that ψ (φ+2π) = ψ (φ))

`z =mh̄ (8)
where m is an integer (positive, negative or zero). Plugging this into 5

we find

E =
h̄2m2

2µa2 (9)

Each energy is two-fold degenerate since ±m both give the same energy.
This corresponds to the particle moving round the circle in the clockwise or
counterclockwise direction.
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In this problem, we’ll look at solving the 2-dimensional isotropic har-
monic oscillator. The solution is fairly lengthy, so we’ll split it into two
posts, with this being the first. The method of solution is similar to that
used in the one-dimensional harmonic oscillator, so you may wish to refer
back to that before proceeding.

The Hamiltonian is, in rectangular coordinates:

H =
P 2
x +P

2
y

2µ
+

1
2
µω2 (X2 +Y 2) (1)

The potential term is radially symmetric (it doesn’t depend on the polar
angle φ) so we have a problem of the form considered earlier. We saw
there that for such potentials [H,Lz] = 0. [If you don’t believe this, you can
grind through the calculations using the commutation relations for Lz with
the rectangular momenta and coordinates, but I won’t go through that here.]

As a result, Lz and H have simultaneous eigenfunctions of form

ψ (ρ,φ) =R (ρ)Φm (φ) (2)
where

Φm (φ) =
1√
2π
eimφ (3)

The radial function satisfies the ODE

− h̄2

2µ

(
d2R

dρ2 +
1
ρ

dR

dρ
−m

2

ρ2 R

)
+V (ρ)R= ER (4)

where in this case

V (ρ) =
1
2
µω2ρ2 (5)
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Thus the equation we must solve is

− h̄2

2µ

(
d2

dρ2 +
1
ρ

d

dρ
−m

2

ρ2

)
R+

1
2
µω2ρ2R= ER (6)

To get a feel for the solution, we examine the behaviour in two limiting
cases: ρ→ 0 and ρ→ ∞. It’s actually easier if we introduce dimensionless
variables now, rather than in Shankar’s step 4, so we define

y ≡
√
µω

h̄
ρ (7)

ε ≡ E

h̄ω
(8)

This transforms 6 to

− h̄
2

2µ

(µω
h̄

)( d2

dy2 +
1
y

d

dy
−m

2

y2

)
R+

1
2
h̄ωy2R= ER (9)

−
(
d2

dy2 +
1
y

d

dy
−m

2

y2 +2ε
)
R+y2R= 0 (10)

We can now look at y→ 0, and we neglect the terms 2εR and y2R to get(
d2

dy2 +
1
y

d

dy
−m

2

y2

)
R= 0 (11)

If we try a solution of form

R= y|m| (12)
we have

|m|(|m|−1)y|m|−2 + |m|y|m|−2−m2y|m|−2 = 0 (13)
Thus 12 is indeed a solution in this limiting case.
For y→ ∞, we can ignore the terms 1

y
d
dy , m

2

y2 R and 2εR to get

− d2

dy2R+y2R= 0 (14)

or

R′′ = y2R (15)
We try a solution of form

R= yae−y
2/2 (16)
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where a is some constant. We find

R′ =
(
aya−1−ya+1)e−y2/2 (17)

R′′ =
(
a(a−1)ya−2− (a+1)ya−aya+ya+2)e−y2/2 (18)

= ya+2
(
a(a−1)
y4 − 2a+1

y2 +1
)
e−y

2/2 (19)

As y→ ∞, the last line tends to

R′′→ ya+2e−y
2/2 = y2R (20)

so in this limit 16 is a solution. We can therefore propose that R has the
general form

R (y) = y|m|e−y
2/2U (y) (21)

where U is a function to be determined by solving the exact ODE 10. We
can get an ODE for U by substituting 21 into 10, although the calculation
gets somewhat messy. As Shankar suggests, we can do this in two stages.
First, we substitute

R= y|m|f (y) (22)

where

f (y) = e−y
2/2U (y) (23)

The required derivatives are (To make the notation simpler, I’ll drop the
absolute value signs around m; you should assume that wherever m occurs,
it should really be |m|. We can replace the absolute value sign at the end.)

R′ =mym−1f +ymf ′ (24)

R′′ =m(m−1)ym−2f +2mym−1f ′+ymf ′′ (25)

Plugging these into 10 we have

−
(
m(m−1)ym−2f +2mym−1f ′+ymf ′′

)
−
(
mym−2f +ym−1f ′

)
+ . . .

(26)

m2ym−2f −2εymf +ym+2f = 0
(27)

Collecting terms and dividing through by −ym, we get
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f ′′+f ′
(

2m+1
y

)
+f

(
2ε−y2)= 0 (28)

We now get the derivatives of f :

f ′ =−ye−y
2/2U + e−y

2/2U ′ (29)

= e−y
2/2 (U ′−yU) (30)

f ′′ =
[
−y
(
U ′−yU

)
+U ′′−U −yU ′

]
e−y

2/2 (31)

=
(
U ′′−2yU ′+

(
y2−1

)
U
)
e−y

2/2 (32)

When we plug these into 28, the exponential factor cancels out, so we get

U ′′−2yU ′+
(
y2−1

)
U +

2m+1
y

(
U ′−yU

)
+U

(
2ε−y2)= 0 (33)

Collecting terms, we get, upon restoring the absolute values:

U ′′+

(
2 |m|+1

y
−2y

)
U ′+(2ε−2 |m|−2)U = 0 (34)

We can solve this ODE using a power series in y, but we’ll leave that till
the next post.
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In this post, we’ll continue with the solution of the 2-d isotropic harmonic
oscillator. In the last post, we started with the ODE for the radial function
in the form

− h̄2

2µ

(
d2

dρ2 +
1
ρ

d

dρ
−m

2

ρ2

)
R+

1
2
µω2ρ2R= ER (1)

We introduced dimensionless variables

y ≡
√
µω

h̄
ρ (2)

ε ≡ E

h̄ω
(3)

and found that R could be written as

R (y) = y|m|e−y
2/2U (y) (4)

with U given by the solution of the ODE

U ′′+

(
2 |m|+1

y
−2y

)
U ′+(2ε−2 |m|−2)U = 0 (5)

We can solve this by using a power series of the form

U (y) =
∞

∑
r=0

Cry
r (6)

where the coefficients Cr are constants.
The derivatives are

1
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U ′ =
∞

∑
r=0

Crry
r−1 (7)

= 0+C1 +2C2y+3C3 +y
2 + . . . (8)

=
∞

∑
r=0

Cr+1 (r+1)yr (9)

U ′′ =
∞

∑
r=0

Cr+1r (r+1)yr−1 (10)

= 0+(1)(2)C2 +(2)(3)C3y+ . . . (11)

=
∞

∑
r=0

Cr+2 (r+1)(r+2)yr (12)

Plugging these into 5 we have (we’ll drop the absolute value signs on |m|
to make the notation simpler; we can restore them at the end):

∞

∑
r=0

Cr+2 (r+1)(r+2)yr+(2m+1)
∞

∑
r=0

Crry
r−2− . . . (13)

2
∞

∑
r=0

Crry
r+2(ε−m−1)

∞

∑
r=0

Cry
r = 0 (14)

The second sum in the first line is

∞

∑
r=0

Crry
r−2 = 0+C1y

−1 +2C2 +3C3y+ . . . (15)

=
∞

∑
r=−1

Cr+2 (r+2)yr (16)

The sum thus becomes

(2m+1)C1y
−1 +

∞

∑
r=0

yrCr+2 (r+2)2 +2
∞

∑
r=0

yrCr [−r+ ε−m−1] = 0(17)

A basic theorem about power series is that if the sum of the series equals
zero for all y, then the coefficient of each power must be zero. This shows
that C1 = 0 since otherwise the series would blow up as y→ 0. This results
in a recursion relation for the Cr:

Cr+2 =
2(r+m+1− ε)

(r+2)2 Cr (18)
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Since C1 = 0, all Cr = 0 for odd r. For large r we have

Cr+2

Cr
→ 2

r
(19)

If the series is allowed to be infinite, this leads to a divergent series as
we can see from the following (based on Shankar’s section 7.3). Suppose
we look at ymey

2
, which clearly goes to infinity at large y (remember, m is

positive). In series form this is

ymey
2
=

∞

∑
k=0

y2k+m

k!
(20)

The coefficient Cn of yn , with n= 2k+m in this series is

Cn =
1

[(n−m)/2]!
(21)

Similarly,

Cn+2 =
1

[(n+2−m)/2]!
(22)

The ratio is

Cn+2

Cn
=

[(n−m)/2]!
[(n+2−m)/2]!

(23)

=
1

(n−m)/2+1
(24)

→ 2
n

(25)

In other words, the coefficients of our series solution have the same be-
haviour 19 for large r as those in the series for ymey

2
. Referring back to 4,

we see that this gives an overall behaviour for the radial function R of

R→ yme−y
2/2ymey

2
= y2mey

2/2 (26)

Thus if we allow the series for U to be infinite, the overall solution di-
verges, which is not acceptable. We therefore require that the series termi-
nates at some finite value of r, and from 18 we see that this happens if

ε= r+m+1 (27)

for some r. From the definition 3 this gives us the allowed values for the
energy:



TWO-DIMENSIONAL HARMONIC OSCILLATOR – PART 2: SERIES SOLUTION 4

E = h̄ω (r+ |m|+1) (28)
= h̄ω (2k+ |m|+1) (29)

where the last line follows because r must be even. If

n≡ 2k+ |m| (30)
then the allowed energies are

E = h̄ω (n+1) (31)
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In this post, we’ll continue with the solution of the 2-d isotropic harmonic
oscillator. In the previous post, we found that the radial equation R can be
written as

R (y) = y|m|e−y
2/2U (y) (1)

where the dimensionless variables are given by

y ≡
√
µω

h̄
ρ (2)

ε ≡ E

h̄ω
(3)

and U has a solution as a power series

U (y) =
∞

∑
r=0

Cry
r (4)

The coefficients Cr satisfy the recursion relation

Cr+2 =
2(r+ |m|+1− ε)

(r+2)2 Cr (5)

Only Cr for even r are non-zero.
In order for U to remain finite for large y, the series must terminate,

which gives the allowable values for the energy as

E = h̄ω (n+1) (6)

with
1
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n≡ 2k+ |m| (7)

and k = 0,1,2, . . ..
We can now compare the solution obtained in polar coordinates with

our earlier solution in terms of rectangular coordinates. First, what are
the possible values for m for a given energy E = h̄ω (n+1)? From the
relation 7, we can look at even and odd n separately. For even n, k can
take values 0,1, . . . , n2 − 1, n2 . The first n2 of these values for k (that is, for
k = 0,1, . . . , n2 − 1) each allow two values of m such that |m| = n− 2k,
namely m=±(n−2k). If k = n

2 , then we must have m= 0. Thus for even
n the total number of combinations is 2× n

2 +1 = n+1.
For odd n, k can take on values 0,1, . . . , n−1

2 , giving a total of n+1
2 pos-

sible values. (If this isn’t obvious, write it out for the first few values of
odd n to see the pattern.) For each of these values of k, m can take on the
two values m = ±(n−2k), thus there are again 2× n+1

2 = n+1 different
combinations. Thus a state with energy E = h̄ω (n+1) has a degeneracy
n+1.

We can construct the actual eigenfunctions for a couple of values of n by
plugging in the appropriate formulas. For n= 0 there is only one function,
which we find by setting k =m= 0. From 4, we have

U0 (y) = C0 (8)

and from 1 we have

R0 (y) = C0e
−y2/2 (9)

or, in terms of the original variables

R0 (ρ) = C0e
−µωρ2/2h̄ (10)

The complete solution is given by

ψm (ρ,φ) = R (ρ)Φm (φ) (11)

=
1√
2π
R (ρ)eimφ (12)

so for m= 0 we have

ψ0 (ρ,φ) =
C0√
2π
e−µωρ

2/2h̄ (13)

The constant C0 can be found by normalizing:
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1 =
∫

∞

0

∫ 2π

0
|ψ0|2 ρdφdρ (14)

= |C0|2
∫

∞

0
e−µωρ

2/h̄ρdρ (15)

= |C0|2
h̄

2µω
(16)

C0 =

√
2µω
h̄

(17)

ψ0 (ρ,φ) =

√
µω

πh̄
e−µωρ

2/2h̄ (18)

This agrees with the earlier result in rectangular coordinates (eqn 26 in
this post). This must be the case, since the n= 0 state is non-degenerate.

For n= 1, we have k = 0 and m=±1 so we have two solutions:

ψ1 =
C0√
2π

√
µω

h̄
ρe−µωρ

2/2h̄eiφ (19)

ψ−1 =
C0√
2π

√
µω

h̄
ρe−µωρ

2/2h̄e−iφ (20)

Again, we normalize

1 =
∫

∞

0

∫ 2π

0
|ψ±1|2 ρdφdρ (21)

=
µω

h̄
|C0|2

∫
∞

0
e−µωρ

2/h̄ρ3dρ (22)

C0 =

√
2µω
h̄

(23)

ψ±1 =
µω

h̄
√
π
ρe−µωρ

2/2h̄e±iφ (24)

These solutions are linear combinations of the corresponding solutions in
rectangular coordinates:

ψ10 =

√
2µω
h̄
√
π
e−µωρ

2/2h̄ρcosφ (25)

ψ01 =

√
2µω
h̄
√
π
e−µωρ

2/2h̄ρsinφ (26)

The combinations are
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ψ+1 =
1√
2
(ψ10 + iψ01) (27)

ψ−1 =
1√
2
(ψ10− iψ01) (28)

The parity of the states is found from their behaviour under the transfor-
mation (in rectangular coordinates) x→−x and y→−y. In polar coordi-
nates this is equivalent to the transformation φ→ φ+π and from 18 and 24
we see that

ψ0 (ρ,φ+π) = ψ0 (ρ,φ) (29)
ψ±1 (ρ,φ+π) = ψ±1 (ρ,φ)e

±π (30)
= −ψ±1 (ρ,φ) (31)

Thus the parity of n = 0 is even, and that of n = 1 is odd. In general,
since the φ dependence enters only through the term eimφ = einφe−2ikφ, we
see that adding π to φ leaves the e−2ikφ term unchanged and multiplies the
einφ term by einπφ = (−1)n, so the parity of state n is (−1)n.
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As another example of the harmonic oscillator, we’ll look at a charged
particle moving in a magnetic field. The field B is given in terms of the
magnetic vector potential

A =
B

2
(−yx̂+xŷ) (1)

The field is

B = ∇×A (2)

=

(
∂Ay

∂x
− ∂Ax

∂y

)
ẑ (3)

= Bẑ (4)

If the particle is confined to the xy plane and the magnetic field provides
the only force, the force is given by the Lorentz force law

F = qv×B (5)
Since F is always perpendicular to the direction of motion v, the magnetic

force does no work, so the kinetic energy and hence the speed v of the
particle is constant. Classically, the particle is thus confined to move in a
circle with F providing the centripetal force, so we have

qvB =
µv2

ρ
(6)

v =
qBρ

µ
(7)

where q is the charge, µ is the mass and ρ is the radius of the circle. The
period of the orbit is

1
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T =
2πρ
v

=
2πµ
qB

(8)

which gives an angular frequency of

ω0 =
2π
T

=
qB

µ
(9)

This is the result in SI units; Shankar uses Gaussian units, in which the
magnetic field picks up a factor of 1

c , so in Shankar’s notation, this is

ω0 =
qB

µc
(10)

As the rest of the problem relies on Gaussian units, we’ll stick to them
from now on.

Classically, the Hamiltonian for the electromagnetic force is

H =
|p− qA/c|2

2µ
+ qφ (11)

where φ is the electric potential, which is zero here. Thus using 1, we
have for the quantum version in which p and the position vector are replaced
by operators

H =
(Px+ qY B/2c)2

2µ
+

(Py− qXB/2c)2

2µ
(12)

We can perform a canonical transformation by defining

Q ≡ 1
qB

(
cPx+

qY B

2

)
(13)

P ≡ Py−
qXB

2c
(14)

We can verify that these coordinates are canonical by checking their com-
mutator:

[Q,P ] =
1
qB

[
cPx+

qY B

2
,Py−

qXB

2c

]
(15)

=
1
qB

(
−qB

2
[Px,X]+

qB

2
[Y,Py]

)
(16)

=
ih̄

2
+
ih̄

2
(17)

= ih̄ (18)

http://physicspages.com/pdf/Shankar/Shankar Exercises 02.06.01 Electromagnetic hamiltonian.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 11.02 Correspondence between classical and quantum transformations.pdf
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Thus Q and P have the correct commutator for a pair of position and
momentum variables.

Rewriting 12 in terms of Q and P , we have

H =
q2B2

2µc2 Q
2 +

P 2

2µ
(19)

=
P 2

2µ
+
µ

2
ω2

0Q
2 (20)

Thus H has the same form as that for a one-dimensional harmonic oscil-
lator with frequency ω0, so the energy levels of this system must be

E =

(
n+

1
2

)
h̄ω0 (21)

We can expand 12 in terms of the original position and momentum vari-
ables to get

H =
P 2
x +P

2
y

2µ
+

1
2
µ

(
qB

2µc

)2 (
X2 +Y 2)+ qB

2µc
(PxY −PyX) (22)

=
P 2
x +P

2
y

2µ
+

1
2
µ
(ω0

2

)2 (
X2 +Y 2)− ω0

2
(XPy−Y Px) (23)

=H
(ω0

2
,µ
)
− ω0

2
Lz (24)

where H
(ω0

2 ,µ
)

is the hamiltonian for a 2-dim harmonic oscillator with
frequency ω0/2. As we saw when solving that system, the Hamiltonian
for the isotropic oscillator commutes with Lz since the potential is radi-
ally symmetric, thus the eigenfunctions of H are also eigenfunctions of
Lz. In terms of the present problem, this means that the eigenfunctions of
H
(ω0

2 ,µ
)

are also eigenfunctions of Lz and thus also eigenfunctions of H .
In our solution of the 2-dim isotropic oscillator, we found that the energy
levels are given by

E = h̄ω (2k+ |m|+1) (25)
where k = 0,1,2, . . . and m is the angular momentum (in units of h̄).

Thus for the oscillator with Hamiltonian H
(ω0

2 ,µ
)
, the energy levels are

E =
1
2
h̄ω0 (2k+ |m|+1) (26)

= h̄ω0

(
k+

1
2
|m|+ 1

2

)
(27)

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.03.07(1)-(5).pdf
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The energy levels of the original H are therefore, from 24

E = h̄ω0

(
k+

1
2
|m|+ 1

2

)
− ω0

2
mh̄ (28)

= h̄ω0

(
k+

1
2
|m|− 1

2
m+

1
2

)
(29)

[Shankar says the k can be ’any integer’, but from our original derivation
of 25, we found that k is a non-negative integer.] Equation 29 gives the
same energies as 21, since if m > 0, we get E = h̄ω0

(
k+ 1

2

)
, while if

m < 0 we have E = h̄ω0
(
k+ |m|+ 1

2

)
. Both k+ 1

2 and k+ |m|+ 1
2 give

the same sequence of values as n+ 1
2 . [I’m not quite sure the two methods

are equivalent, though, since 21, being the solution of a one-dimensional
system is non-degenerate, while 29, being a two-dimensional system does
have degenerate energy levels.]
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The Levi-Civita symbol εijk is defined as +1 if i, j,k have the values
1,2,3 (in that order), 2,3,1 or 3,1,2. Swapping any pair of indices multiplies
the value by −1, so that, for example, ε123 = +1 and ε213 = −1. If two
indices are the same, such as i = j = 1, then swapping them leaves ε11k
unchanged so the requirement that εijk = −εjik means that εijk = 0 if any
two of its indices are equal.

The symbol is actually an antisymmetric tensor of rank 3, and is found
frequently in physical and mathematical equations. One example is in the
cross product of two 3-d vectors. If

c = a×b (1)
we can work out the components of c in the usual way by calculating the

determinant:

c =

∣∣∣∣∣∣
x̂1 x̂2 x̂3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ (2)

= (a2b3− b2a3) x̂1− (a1b3− b1a3) x̂2 +(a1b2− b2a1) x̂3 (3)

where I’ve used x̂1 = x̂, x̂2 = ŷ and x̂3 = ẑ.
Using εijk we can write this in the compact form

c = ∑
i,j,k

εijkx̂iajbk (4)

as can be verified by expanding the sum and comparing with 3.
The Levi-Civita symbol can be used to write a completely antisymmetric

wave function for a set of three fermions. Suppose the wave function for a
single fermion in state n with coordinate xa is Un (xa) (where both n and a

1
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can take values 1, 2 or 3). Then a completely antisymmetric wave function
is

ψA (x1,x2,x3) =
1√
6 ∑
i,j,k

εijkUi (x1)Uj (x2)Uk (x3) (5)

The factor of 1√
6

is for normalization and assumes that the Un are all
normalized wave functions.

Swapping the locations x1 and x2, for example, is equivalent to swapping
i and j in the sum, which produces the negative of the original sum. That is

ψA (x2,x1,x3) =
1√
6 ∑
i,j,k

εijkUi (x2)Uj (x1)Uk (x3) (6)

=
1√
6 ∑
i,j,k

εjikUi (x1)Uj (x2)Uk (x3) (7)

=− 1√
6 ∑
i,j,k

εijkUi (x1)Uj (x2)Uk (x3) (8)

=−ψA (x1,x2,x3) (9)

The same argument applies to swapping the other pairs of locations.
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We can now generalize our treatment of rotation, originally studied in two
dimensions, to three dimensions. We’ll view a 3-d rotation as a combination
of rotations about the x, y and z axes, each of which can be represented by
a 3×3 matrix. These matrices are as follows:

R (θx̂) =

 1 0 0
0 cosθ −sinθ
0 sinθ cosθ

 (1)

R (θŷ) =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 (2)

R (θẑ) =

 cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (3)

We’re interested in infinitesimal rotations, for which we retain terms up
to first order in the rotation angle εi, so that cosεi = 1 and sinεi = εi. This
gives the infinitesimal rotation matrices as

1
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R (εxx̂) =

 1 0 0
0 1 −εx
0 εx 1

 (4)

R (εyŷ) =

 1 0 εy
0 1 0

−εy 0 1

 (5)

R (εz ẑ) =

 1 −εz 0
εz 1 0
0 0 1

 (6)

We now consider the series of rotations as follows: first, a rotation by
εxx̂, then by εyŷ, then by −εxx̂ and finally by −εyŷ. Because the various
rotations don’t commute, we don’t end up back where we started. We can
calculate the matrix products to find the final rotation.

R=R (−εyŷ)R (−εxx̂)R (εyŷ)R (εxx̂) (7)

=

 1 0 −εy
0 1 0
εy 0 1

 1 0 0
0 1 εx
0 −εx 1

 1 0 εy
0 1 0

−εy 0 1

 1 0 0
0 1 −εx
0 εx 1


(8)

=

 1 εxεy −εy
0 1 εx
εy −εx 1

 1 εxεy εy
0 1 −εx

−εy εx 1

 (9)

=

 1+ ε2
y εxεy −ε2

xεy
−εxεy 1+ ε2

x 0
0 εxε

2
y 1+ ε2

x+ ε
2
y

 (10)

To get the third line, we multiplied the first two matrices in the second
line, and the last two matrices in the second line. In the final result, we can
discard terms containing ε2

x or ε2
y to get

R=

 1 εxεy 0
−εxεy 1 0

0 0 1

=R (−εxεy ẑ) (11)

Thus the result of the four rotations about the x and y axes is a single
rotation about the z axis.
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To convert this to quantum operators, we define the operator U [R] by
comparison with the procedure we used for 2-d rotations. That is, the op-
erator U is given by the corresponding angular momentum operator Lx, Ly

or Lz as

U [R (εxx̂)] = I− iεxLx

h̄
(12)

U [R (εyŷ)] = I−
iεyLy

h̄
(13)

U [R (εz ẑ)] = I− iεzLz

h̄
(14)

By comparing 7 and 11 we thus require these U operators to satisfy

U [R (−εyŷ)]U [R (−εxx̂)]U [R (εyŷ)]U [R (εxx̂)] = U [R (−εxεy ẑ)] (15)

We can get the commutation relation [Lx,Ly] by matching coefficients of
εxεy on each side of this equation. On the RHS, the coefficient is iLz

h̄ . On
the LHS, we can pick out the terms involving εxεy to get

− 1
h̄2 (LyLx−LyLx−LxLy+LyLx) =

1
h̄2 [Lx,Ly] (16)

The first term on the LHS comes from the εx term in the first U in 15
multiplied by the εy term in the second U (with the I term in the other two
Us); the second term on the LHS comes from the εx term in the first U in
15 multiplied by the εy term in the fourth U , and so on.

Matching the two sides, we get

[Lx,Ly] = ih̄Lz (17)

By comparison with the classical definitions of the three components of
L, we can write the quantum operators in terms of position and momentum
operators as

Lx = Y Pz−ZPy (18)
Ly = ZPx−XPz (19)
Lz = XPy−Y Px (20)

From the commutators of position and momentum [X,Px] = ih̄ and so
on, we can verify 17 from these relations as well.
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ANGULAR MOMENTUM IN THREE DIMENSIONS 4

[Lx,Ly] = [Y Pz−ZPy,ZPx−XPz] (21)

= [Y Pz,ZPx−XPz]− [ZPy,ZPx−XPz] (22)
=−ih̄Y Px+ ih̄PyX (23)

= ih̄(XPy−Y Px) (24)
= ih̄Lz (25)

The third line follows because [Y Pz,XPz] = [ZPy,ZPx] = 0. The other
two commutation relations follow by cyclic permutation of x, y and z:

[Ly,Lz] = ih̄Lx (26)
[Lz,Lx] = ih̄Ly (27)
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The operators for an infinitesimal rotation in 3-d are

U [R (εxx̂)] = I− iεxLx
h̄

(1)

U [R (εyŷ)] = I−
iεyLy
h̄

(2)

U [R (εz ẑ)] = I− iεzLz
h̄

(3)

If we have a finite (larger than infinitesimal) rotation about one of the
coordinate axes, we can create the operator by dividing up the finite rotation
angle θ into N small increments and take the limit as N →∞, just as we did
with finite translations. For example, for a finite rotation about the x axis,
we have

U [R (θx̂)] = lim
N→∞

(
I− iθLx

Nh̄

)N
= e−iθLx/h̄ (4)

What if we have a finite rotation about some arbitrarily directed axis?
Suppose we have a vector r as shown in the figure:

1
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The vector r makes an angle α with the z axis, and we wish to rotate
r about the z axis by an angle δθ. Note that this argument is completely
general, since if the axis of rotation is not the z axis, we can rotate the entire
coordinate system so that the axis of rotation is the z axis. The generality
enters through the fact that we’re keeping the angle α arbitrary.

The rotation by δθẑ ≡ δθθθ shifts the tip of r along the circle shown by
a distance (r sinα)δθ in a counterclockwise direction (looking down the z
axis). This shift is in a direction that is perpendicular to both ẑ and r, so the
little vector representing the shift in r is

δr = (δθθθ)× r (5)
Thus under the rotation δθθθ, a vector transforms as

r→ r+(δθθθ)× r (6)
Just as with translations, if we rotate the coordinate system by an amount

δθθθ, this is equivalent to rotating the wave function ψ (r) by the same angle,
but in the opposite direction, so we require

ψ (r)→ ψ (r− (δθθθ)× r) (7)
A first order Taylor expansion of the quantity on the RHS gives

ψ (r− (δθθθ)× r) = ψ (r)− (δθθθ× r) ·∇ψ (8)
The operator generating this rotation will have the form (in analogy with

the forms for the coordinate axes above):

U [R (δθθθ)] = I− iδθ
h̄
Lθ̂ (9)

where Lθ̂ is an angular momentum operator to be determined.
Writing out the RHS of 8, we have
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FINITE ROTATIONS ABOUT AN ARBITRARY AXIS IN THREE DIMENSIONS 3

ψ (r)− (δθθθ× r) ·∇ψ = ψ (r)− (δθyz− δθzy)
∂ψ

∂x
+(δθxz− δθzx)

∂ψ

∂y
− (δθxy− δθyx)

∂ψ

∂z
(10)

= ψ (r)− δθx
(
y
∂ψ

∂z
− z∂ψ

∂y

)
− δθy

(
z
∂ψ

∂x
−x∂ψ

∂z

)
− δθz

(
x
∂ψ

∂y
−y∂ψ

∂x

)
(11)

= ψ (r)− δθθθ · i
h̄

r×pψ (12)

= ψ (r)− i

h̄
δθθθ ·Lψ (13)

= U [R (δθθθ)]ψ (14)

Comparing this with 9, we see that

Lθ̂ = θ̂θθ ·L (15)

where θ̂θθ is the unit vector along the axis of rotation. Since all rotations
about the same axis commute, we can use the same procedure as above to
generate a finite rotation θθθ about an arbitrary axis and get

U [R (θθθ)] = e−iθθθ·L/h̄ (16)
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A vector operator V is defined as an operator whose components trans-
form under rotation according to

U† [R]ViU [R] = ∑
j

RijVj (1)

where R is the rotation matrix in either 2 or 3 dimensions. We’ve seen
that, for an infinitesimal rotation about an arbitrary axis δθθθ, a vector trans-
forms like

V→ V+ δθθθ×V (2)

This can be written more compactly using the Levi-Civita tensor, since
component i of a cross product is

(δθθθ×V)i = ∑
j,k

εijk (δθ)j Vk (3)

We get

∑
j

RijVj = Vi+∑
j,k

εijk (δθ)j Vk (4)

The operator U [R] is given by

U [R (δθθθ)] = I− i

h̄
δθθθ ·L (5)

where L is the angular momentum. Plugging this into 1, we have, to first
order in δθθθ (remembering that the components of L do not commute with
each other and, in general also do not commute with the components of V):

1
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(
I+

i

h̄
δθθθ ·L

)
Vi

(
I− i

h̄
δθθθ ·L

)
= Vi+

i

h̄∑
j

(δθjLj)Vi−
i

h̄
Vi∑

j

(δθjLj)

(6)

= Vi+
i

h̄∑
j

δθj [Lj ,Vi] (7)

Setting this equal to the RHS of 4 we have, equating coefficients of δθj :

i

h̄
[Lj ,Vi] = ∑

k

εijkVk (8)

[Vi,Lj ] = ih̄∑
k

εijkVk (9)

With V = L, we regain the commutation relations for the components of
angular momentum

[Lx,Ly] = ih̄Lz (10)
[Ly,Lz] = ih̄Lx (11)
[Lz,Lx] = ih̄Ly (12)

By the way, it is possible to write these commutation relations in the
compact form

L×L = ih̄L (13)
This looks wrong if you’re used to the standard definition of the cross

product for vectors whose components are ordinary numbers, since for such
a vector a, we always have a× a = 0. However, if the components of the
vector are operators that don’t commute, then the result is not zero, as we
can see:

(L×L)i = ∑
j,k

εijkLjLk (14)

If i= x, for example, then the sum on the RHS gives

(L×L)x = ∑
j,k

εxjkLjLk (15)

= LyLz−LzLy (16)
= [Ly,Lz] (17)

From 13, this gives

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.04.02.pdf
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[Ly,Lz] = ih̄Lx (18)

PINGBACKS

Pingback: Spherical tensor operators; commutators
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We’ve seen that, for a rotation by an infinitesimal angle εz about the z
axis, a scalar wave function transforms according to

ψ (x,y)→ ψ (x+ εzy,y− εzx) (1)

The meaning of this transformation can be seen in the figure:

The physical system represented by the wave function Ψ is rigidly rotated
by the angle εz, so that the value of Ψ at pointA is now sitting over the point
B. However, in the primed (rotated) coordinate system, the numerical value
of the coordinates of the point B in the figure are the same as the numerical
values that the point A had in the original, unrotated coordinates. That is

(
x′B,y

′
B

)
= (xA,yA) (2)

Just as B is obtained from A by rotating A by +εz, we can obtain A
from B by rotating by −εz. For any given point, the primed (rotated) and
unprimed (unrotated) coordinates are related by (all relations are to first
order in εz):

1
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x′ = x−yεz (3)
y′ = y+xεz (4)

The inverse relations are obtained by a rotation by −εz:

x = x′+y′εz (5)
y = y′−x′εz (6)

After rotation, the values of Ψ′ are related to the values Ψ before rotation
by rotating through the angle −εz, so that

Ψ
′ (x,y) = Ψ(x+yεz,y−xεz) (7)

Now suppose the wave function is a vector V = Vxx̂+Vyŷ. The situation
is as shown:

The initial unrotated vector V is the value of the wave function at point
A (and is entirely in the x direction for convenience). After rotation, the
vector gets moved to B and is also rotated so that it now makes an angle
εz with the original x axis. However, its direction is now along the x′ axis,
which makes an angle of εz with the original x axis.

In this case, each component of V still gets transformed in the same way
as the scalar function above, but the vector itself is also rotated. If the
components Vx and Vy of the vector were constants, then the rotated vector
is given by applying the 2-d rotation matrix

R=

[
1 −εz
εz 1

]
(8)

so we get V′ =RV, or, in components:

http://www.physicspages.com/2017/04/17/rotational-invariance-in-two-dimensions/
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V ′x = Vx−Vyεz (9)
V ′y = Vy+Vxεz (10)

If Vx and Vy vary from point to point, then we must apply the transfor-
mation 1 to each component, so that the overall transformation is

V ′x = Vx (x+ εzy,y− εzx)−Vy (x+ εzy,y− εzx)εz (11)

V ′y = Vy (x+ εzy,y− εzx)+Vx (x+ εzy,y− εzx)εz (12)

The operator that generates the transformation of a scalar function by an
infinitesimal angle δθθθ is

U [R (δθθθ)] = I− i

h̄
δθθθ ·L (13)

In this case, the rotation is about the z axis so

δθθθ = εz ẑ (14)
δθθθ ·L = εzLz (15)

Thus we have

Vx,y (x+ εzy,y− εzx) =
(
I− i

h̄
εzLz

)
Vx,y (x,y) (16)

Plugging this into 11 and keeping terms only up to order εz we have

V ′x =

(
I− i

h̄
εzLz

)
Vx−Vyεz (17)

V ′y =

(
I− i

h̄
εzLz

)
Vy+Vxεz (18)

In matrix form, this is[
V ′x
V ′y

]
=

([
1 0
0 1

]
− iεz

h̄

[
Lz 0
0 Lz

]
− εz

[
0 1
−1 0

])[
Vx
Vy

]
(19)

=

([
1 0
0 1

]
− iεz

h̄

[
Lz 0
0 Lz

]
− iεz

h̄

[
0 −ih̄
ih̄ 0

])[
Vx
Vy

]
(20)

=

(
I− iεz

h̄
Jz

)[
Vx
Vy

]
(21)

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.03.07(8)-(10).pdf
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This has the same form as 13, except that the angular momentum gen-
erator is now the sum of Lz and the final matrix on the RHS above, which
Shankar calls suggestively Sz, in anticipation of spin which at this stage he
hasn’t considered. That is,

Jz = Lz+Sz (22)

=

[
Lz 0
0 Lz

]
+

[
0 −ih̄
ih̄ 0

]
(23)

The eigenvalues of the second matrix here are just ±h̄, so we haven’t yet
encountered half-integral values of angular momentum.

PINGBACKS

Pingback: Total angular momentum - matrix elements and commutation
relations

Pingback: total angular momentum finite rotations
Pingback: kinematics of spin: hilbert space for an electron
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In Shankar’s Chapter 12 treatment of the eigenvalues of the angular mo-
mentum operators L2 and Lz, he retraces much of what we’ve already cov-
ered as a result of working through Griffiths’s book. He defines raising and
lowering operators for angular momentum as

L± ≡ Lx± iLy (1)

These operators can be used to discover the eigenvalues of L2 to be
`(`+1) h̄2, where `= 0, 1

2 ,1,
3
2 , . . . and the eigenvalues of Lz are mh̄ where

m ranges from −` to +` in integer steps. The eigenvalues of L± can also
be found to satisfy

L± |`m〉= h̄
√

(`∓m)(`±m+1) |`,m±1〉 (2)

When dealing with vector wave functions (as opposed to scalar ones) in
two dimensions, we found that a quantity Jz is the generator of infinitesimal
rotations about the z axis, where

Jz = Lz+Sz (3)

and the operator producing the rotation by εz is

U [R (εz ẑ)] = I− iεz
h̄
Jz (4)

For a scalar wave function in three dimensions, we found that the prop-
erties of two successive rotations by εx about the x axis and εy about the y
axis led to the commutations

1
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[Lx,Ly] = ih̄Lz (5)
[Ly,Lz] = ih̄Lx (6)
[Lz,Lx] = ih̄Ly (7)

For a vector wave function, the rotation is generated by Ji rather than Li

but because the effects of rotations are the same, the Ji must have the same
commutation relations, so that

[Jx,Jy] = ih̄Jz (8)
[Jy,Jz] = ih̄Jx (9)
[Jz,Jx] = ih̄Jy (10)

We can do the same analysis on J as we did above with L to define the
raising and lowering operators

J± ≡ Jx± iJy (11)
and get the same eigenvalue relations

J± |jm〉= h̄
√

(j∓m)(j±m+1) |j,m±1〉 (12)
The three components of J are then Jz and

Jx =
1
2
(J++J−) (13)

Jy =
1
2i

(J+−J−) (14)

Using these three equations, we can generate the matrix elements of the
components of J in the orthonormal basis |jm〉 (that is, the basis consisting
of eigenfunctions with total angular momentum number j and Jz number
m). These matrix elements are

〈
j′m′ |Jx|jm

〉
=

1
2
〈
j′m′ |J++J−|jm

〉
(15)

=
h̄

2

√
(j−m)(j+m+1)

〈
j′m′ |j,m+1

〉
+ (16)

h̄

2

√
(j+m)(j−m+1)

〈
j′m′ |j,m−1

〉
(17)

=
h̄

2

[√
(j−m)(j+m+1)δj′jδm′,m+1 +

√
(j+m)(j−m+1)δj′jδm′,m−1

]
(18)
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〈
j′m′ |Jy|jm

〉
=

1
2i
〈
j′m′ |J+−J−|jm

〉
(19)

=
h̄

2i

√
(j−m)(j+m+1)

〈
j′m′ |j,m+1

〉
− (20)

h̄

2i

√
(j+m)(j−m+1)

〈
j′m′ |j,m−1

〉
(21)

=
h̄

2i

[√
(j−m)(j+m+1)δj′jδm′,m+1−

√
(j+m)(j−m+1)δj′jδm′,m−1

]
(22)

〈
j′m′ |Jz|jm

〉
=mh̄δj′jδm′,m (23)

The full matrix for each component Ji is actually infinite-dimensional,
since j can be any half-integer from 0 up to infinity. However, the sub-
matrix for each value of j is completely orthogonal to all other sub-matrices
with different j values, so the complete matrix for each Ji is block-diagonal.
Shankar gives the matrices for Jx and Jy up to j= 1 in his equations 12.5.23
and 12.5.24. This means that the commutation relations 9 should be obeyed
for each set of sub-matrices corresponding to a particular j value.

For j= 1
2 we have for the 3 sub-matrices (we can copy these from Shankar

or use the above formulas to work them out). The values of m are +1
2 and

−1
2 in that order, from top to bottom and left to right.

J
(1/2)
x =

h̄

2

[
0 1
1 0

]
(24)

J
(1/2)
y =

h̄

2i

[
0 1
−1 0

]
(25)

=
ih̄

2

[
0 −1
1 0

]
(26)[

J
(1/2)
x ,J

(1/2)
y

]
=
ih̄2

4

([
1 0
0 −1

]
−
[
−1 0
0 1

])
(27)

ih̄2

2

[
1 0
0 −1

]
(28)

= ih̄J
(1/2)
z (29)

For j = 1 we have for the 3 sub-matrices
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J
(1)
x =

h̄√
2

 0 1 0
1 0 1
0 1 0

 (30)

J
(1)
y =

ih̄√
2

 0 −1 0
1 0 −1
0 1 0

 (31)

[
J
(1)
x ,J

(1)
y

]
=
ih̄2

2

 1 0 −1
0 0 0
1 0 −1

−
 −1 0 −1

0 0 0
1 0 1

 (32)

= ih̄2

 1 0 0
0 0 0
0 0 −1

 (33)

= ih̄J
(1)
z (34)

For j = 3
2 we need to work out the matrices from the formulas above for

the matrix elements. Ordering the values of m = 3
2 ,

1
2 ,−

1
2 ,

3
2 from left to

right (columns) and top to bottom (rows), we get
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J
(3/2)
x =

h̄

2


0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

 (35)

J
(3/2)
y =

h̄

2i


0

√
3 0 0

−
√

3 0 2 0
0 −2 0

√
3

0 0 −
√

3 0

 (36)

=
ih̄

2


0 −

√
3 0 0√

3 0 −2 0
0 2 0 −

√
3

0 0
√

3 0

 (37)

[
J
(3/2)
x ,J

(3/2)
y

]
=
ih̄2

4




3 0 −2
√

3 0
0 1 0 −2

√
3

2
√

3 0 −1 0
0 2

√
3 0 −3

−

−3 0 −2

√
3 0

0 −1 0 −2
√

3
2
√

3 0 1 0
0 2

√
3 0 3




(38)

= ih̄2


3
2 0 0 0
0 1

2 0 0
0 0 −1

2 0
0 0 0 −3

2

 (39)

= ih̄J
(3/2)
z (40)

Thus the commutation relation [Jx,Jy] = ih̄Jz is satisfied for these three
sets of sub-matrices.

PINGBACKS

Pingback: angular momentum in 3-d expectation values and uncertainty
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For 3-d angular momentum, we’ve seen that the components Jx and Jy
can be written in terms of raising and lowering operators

J± ≡ Jx± iJy (1)
In the basis of eigenvectors of J2 and Jz (that is, the states |jm〉) the

raising and lowering operators have the following effects:

J± |jm〉= h̄
√

(j∓m)(j±m+1) |j,m±1〉 (2)
We can use these relations to construct the matrix elements of Jx and Jy

in this basis. We can also use these relations to work out expectation values
and uncertainties for the angular momentum components in this basis.

First, since diagonals of both the Jx and Jy matrices have only zero ele-
ments,

〈Jx〉 = 〈jm |Jx|jm〉= 0 (3)
〈Jy〉 = 〈jm |Jy|jm〉= 0 (4)

To work out
〈
J2
x

〉
and

〈
J2
y

〉
, we can write these operators in terms of the

raising and lowering operators:

Jx =
1
2
(J++J−) (5)

Jy =
1
2i

(J+−J−) (6)

We can then use the fact that the basis states are orthonormal, so that〈
j′m′ |jm

〉
= δj′jδm′m (7)

1
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The required squares are

J2
x =

1
4
(
J2
++J+J−+J−J++J2

−
)

(8)

J2
y =−1

4
(
J2
+−J+J−−J−J++J2

−
)

(9)

=
1
4
(
−J2

++J+J−+J−J+−J2
−
)

(10)

The diagonal matrix elements
〈
jm
∣∣J2

x

∣∣jm〉 and
〈
jm
∣∣J2

y

∣∣jm〉 will get
non-zero contributions only from those terms that leave j and m unchanged
when operating on |jm〉. This means that only the terms that contain an
equal number of J+ and J− terms will contribute. We therefore have

〈
jm
∣∣J2

x

∣∣jm〉= 1
4
〈jm |J+J−+J−J+|jm〉 (11)

=
h̄

4

√
(j+m)(j−m+1)〈jm |J+|j,m−1〉+ (12)

h̄

4

√
(j−m)(j+m+1)〈jm |J−|j,m+1〉 (13)

=
h̄2

4

√
(j+m)(j−m+1)

√
(j−m+1)(j+m)+ (14)

h̄2

4

√
(j−m)(j+m+1)

√
(j+m+1)(j−m) (15)

=
h̄2

4
((j+m)(j−m+1)+(j−m)(j+m+1)) (16)

=
h̄2

4
(
j2−m2 + j+m+ j2−m2 + j−m

)
(17)

=
h̄2

2
(
j (j+1)−m2) (18)

From 10 we see that the only terms that contribute to
〈
jm
∣∣J2

y

∣∣jm〉 are
the same as the corresponding terms in

〈
jm
∣∣J2

x

∣∣jm〉, so the result is the
same:

〈
jm
∣∣J2

y

∣∣jm〉= h̄2

2
(
j (j+1)−m2) (19)

We can check that Jx and Jy satisfy the uncertainty principle, as derived
by Shankar. That is, we want to verify that

∆Jx ·∆Jy ≥ |〈jm |(Jx−〈Jx〉)(Jy−〈Jy〉)|jm〉| (20)

http://www.physicspages.com/2017/05/25/uncertainty-principle-shankars-more-general-treatment/
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On the LHS

∆Jx =

√
〈J2

x〉−〈Jx〉
2 (21)

=
√
〈J2

x〉 (22)

=

√
h̄2

2
(j (j+1)−m2) (23)

∆Jy =

√
h̄2

2
(j (j+1)−m2) (24)

∆Jx ·∆Jy =
h̄2

2
(
j (j+1)−m2) (25)

On the RHS

|〈jm |(Jx−〈Jx〉)(Jy−〈Jy〉)|jm〉|= |〈jm |JxJy|jm〉| (26)
Using the same technique as that above for deriving

〈
jm
∣∣J2

x

∣∣jm〉 we
have

〈jm |JxJy|jm〉=
1
4i
〈jm |(J++J−)(J+−J−)|jm〉 (27)

=
1
4i
〈jm |J−J+−J+J−|jm〉 (28)

=
h̄2

4i
((j−m)(j+m+1)− (j+m)(j−m+1)) (29)

=− h̄
2m

2i
(30)

We therefore need to verify that

j (j+1)−m2 ≥ |m| (31)
for all allowed values of m. We know that −j ≤m≤+j, so

j (j+1)−m2 ≥ j2 + j− j2 = j ≥ |m| (32)
Thus the inequality is indeed satisfied.
In the case |m|= j we have

j (j+1)− j2 = j = |m| (33)
so the inequality saturates (becomes an equality) in that case.
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For infinitesimal 3-d rotations, we’ve seen that the generator is θ̂θθ ·L where
θ̂θθ is a unit vector along the axis of rotation. Generalizing this to the total an-
gular momentum J we have the operator for a general 3-d rotation through
an infinitesimal angle:

U [R (δθθθ)] = I− iδθ
θθ ·J
h̄

(1)

In principle ’all’ we need to do to get the operator for a finite 3-d rotation
is take the exponential, in the form

e−iθθθ·J/h̄ (2)
The problem is that in this case, J is infinite dimensional, so the expo-

nential of such a matrix cannot be calculated. However, because the compo-
nents of J are block diagonal (see Shankar’s equations 12.5.23 and 12.5.24),
all powers of these components are also block diagonal, and thus so is the
exponential. For a given value of the total momentum quantum number
j, the corresponding block is a (2j+1)× (2j+1) sub-matrix J (j)

i (where
the suffix i refers to x, y or z), so the block in the exponential, defined as
D(j) [R (θθθ)] is calculated as

D(j) [R (θθθ)] =
∞

∑
n=0

1
n!

(
−iθ
h̄

)n(
θ̂θθ ·J
)n

(3)

This may still look pretty hopeless in terms of actual calculation, but for
small values of j, we can actually get closed-form solutions.

First, we look at the eigenvalues of θ̂θθ · J. If we review the calculations
by which we found that the eigenvalues of Lz (and thus also Jz) were
−j,−j+ 1, . . . , j− 1, j (multiplied by h̄), we see that there’s nothing spe-
cial about the fact that we chose the z direction over any other direction

1
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as the component of J for which we calculated the eigenvalues. We could,
for example, go through exactly the same calculations taking Lx to be the
chosen component. We would then define raising and lowering operators as
J± = Jy± iJz and come out with the conclusion that the eigenvalues of Lx
are also −j,−j+ 1, . . . , j− 1, j (multiplied by h̄). We can generalize even
further and choose the ’special’ direction to be the axis of rotation, however
that axis may be oriented in space. This would lead us to the conclusion
that the eigenvalues of θ̂θθ ·J are the same as those of Jz.

Now consider the operator (where J ≡ θ̂θθ ·J):

(J− jh̄)(J− (j−1) h̄)(J− (j−2) h̄) . . .(J+(j−1) h̄)(J+ jh̄) (4)

First, suppose that J = Jz (so that θ̂θθ is along the z axis). Then if we’re in
an eigenstate |jm〉 of Jz, the term (J−mh̄) in this operator will give zero
when operating on this state. Thus the operator 4 will always give zero when
operating on an eigenstate of Jz. However, since the set of eigenstates of Jz
span the space in which the total angular momentum number is j, any state
in this space can be expressed as a linear combination of eigenstates of Jz,
so when 4 operates on this state, there is always one factor in the operator
that gives zero for each term in the linear combination. Thus this operator
always gives zero when operating on any state with angular momentum j.
[Note that the order in which we write the factors in 4 doesn’t matter; the
only operator in the expression is J , so all the factors commute with each
other.] That is, we have

(J− jh̄)(J− (j−1) h̄)(J− (j−2) h̄) . . .(J+(j−1) h̄)(J+ jh̄) = 0
(5)

If we multiply out this operator, we get a polynomial of degree 2j+1 in
J . The highest power can thus be written as a linear combination of lower
powers:

J2j+1 =
2j

∑
n=0

anJ
n (6)

where the coefficients an can be found by expanding the formula (which
we won’t need to do here). But this implies that all higher powers of J
can also be written as linear combinations of powers up to J2j . To see this,
consider
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J2j+2 = J×J2j+1 (7)

=
2j

∑
n=0

anJ
n+1 (8)

=
2j

∑
n=1

an−1J
n+a2jJ

2j+1 (9)

=
2j

∑
n=1

an−1J
n+a2j

2j

∑
n=0

anJ
n (10)

Thus J2j+2 can be written as a linear combination of powers of J up
to J2j . By iterating this process, we can express all higher powers of J
as a linear combination of powers of J up to J2j . Here are a couple of
examples. [Shankar marks these as ’hard’, though I can’t see that they are
any more difficult than most of his other problems, so hopefully I’m not
missing anything.]

Consider D(1/2) [R], starting from 3. We first use 5 with j = 1
2 :

(
J− h̄

2

)(
J+

h̄

2

)
= 0 (11)

J2 =
h̄2

4
(12)

We can now iterate this formula as described above to get (to be accurate,
all the I and J terms should have a superscript (1/2) to indicate that they
refer to the subspace with j = 1

2 , but this would clutter the notation).

J0 = I (13)
J1 = J (14)

J2 =

(
h̄

2

)2

I (15)

J3 =

(
h̄

2

)2

J (16)

J4 =

(
h̄

2

)4

I (17)

... (18)

From 3 we have
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D(1/2) [R] =
∞

∑
n=0

1
n!

(
−iθ
h̄

)n
Jn (19)

We can consider the even and odd terms in this sum separately. For the
evens:

(
D(1/2) [R]

)
even

= ∑
n even

1
n!

(
−iθ
h̄

)n( h̄
2

)n
I (20)

= ∑
n even

1
n!

(
−iθ

2

)n
I (21)

=

[
1−
(
θ

2

)2 1
2!

+

(
θ

2

)4 1
4!
− . . .

]
I (22)

= I cos
θ

2
(23)

For the odds:

(
D(1/2) [R]

)
odd

= ∑
n odd

1
n!

(
−iθ
h̄

)n( h̄
2

)n−1

J (24)

=
2J
h̄ ∑

n odd

(−i)n

n!

(
θ

2

)n
(25)

=
2J
h̄

[
−θ

2
i+

(
θ

2

)3 i

3!
−
(
θ

2

)5 i

5!
+ . . .

]
(26)

=−2iJ
h̄

sin
θ

2
(27)

Thus we get

D(1/2) [R] = I cos
θ

2
− 2iJ

h̄
sin

θ

2
(28)

= I(1/2) cos
θ

2
− 2iθ̂θθ ·J(1/2)

h̄
sin

θ

2
(29)

(I’ve restored the superscript (1/2).)
Going through the same process for j = 1, we first look at 5 to get

(J− h̄)J (J+ h̄) = 0 (30)

J3 = h̄2J (31)



TOTAL ANGULAR MOMENTUM FINITE ROTATIONS 5

Again, by iterating we find the pattern:

J0 = I (32)
J1 = J (33)
J2 = J2 (34)
J3 = h̄2J (35)
J4 = h̄2J2 (36)

... (37)

We then have

D(1) [R] =
∞

∑
n=0

1
n!

(
−iθ
h̄

)n
Jn (38)

Again, we can consider evens and odds separately:

(
D(1) [R]

)
even

= ∑
n even

1
n!

(
−iθ
h̄

)n
Jn (39)

= I+ ∑
n=2,4,...

1
n!

(
−iθ
h̄

)n
h̄n−2J2 (40)

= I+
J2

h̄2 ∑
n=2,4,...

(−iθ)n

n!
(41)

= I+
J2

h̄2 (cosθ−1) (42)

For the odds:

(
D(1) [R]

)
even

= ∑
n odd

1
n!

(
−iθ
h̄

)n
h̄n−1J (43)

=
J

h̄ ∑
n odd

(−iθ)n

n!
(44)

= −iJ
h̄

sinθ (45)

We have
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D(1) [R] = I+
J2

h̄2 (cosθ−1)− iJ
h̄

sinθ (46)

= I(1)+

(
θ̂θθ ·J(1)

)2

h̄2 (cosθ−1)− iθ̂
θθ ·J(1)

h̄
sinθ (47)

[I’m not sure why Shankar restricts this problem to the x axis, or, for that
matter, why he expects us to use the matrix for Jx.]

PINGBACKS

Pingback: rotations in 3-d classical and quantum rotations compared
Pingback: rotations in 3-d euler angles
Pingback: spherical harmonics: rotation about the x axis
Pingback: Stern-gerlach experiment
Pingback: Spherical tensor operators; commutators
Pingback: Spherical tensor operators; a scalar operator
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http://physicspages.com/pdf/Shankar/Shankar Exercises 15.03.02.pdf
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browsers).]

This is an example of how risky it can be to attempt to derive quan-
tum behaviour by using logic based on classical mechanics. In classical
mechanics, if we have a system with some total angular momentum with
magnitude |J| and rotate this sytem through any angle, the magnitude of
the angular momentum remains the same (although, of course, its direction
changes). Based on this fact, we might think that if we start with a quantum
state such as |jm〉 (where j is the total angular momentum number and m
is the number for Jz), we should be able to obtain the other states with the
same total angular momentum number j by rotating this state through vari-
ous angles about the appropriate rotation axis. To see that this won’t work,
suppose we consider a state with j = 1 and m = 1, that is |jm〉 = |11〉.
Classically, such a system has its angular momentum aligned along the z
axis, so we might think that if we rotate this system by π

2 about, say, the x
axis, we should get a state with m= 0, since the angular momentum is now
aligned along the −y axis.

To see if this works, we can use the formula for a finite rotation for a
j = 1 state. Since j remains constant, a rotation of a state |jm〉 is given by

D(1) [R] |jm〉 (1)

where

D(1) [R] = I(1)+

(
θ̂θθ ·J(1)

)2

h̄2 (cosθ−1)− iθ̂
θθ ·J(1)

h̄
sinθ (2)

For a rotation by an angle θ about the x axis, this formula reduces to
1
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D(1) [R (θx̂)] = I(1)+

(
J
(1)
x

)2

h̄2 (cosθ−1)− iJ
(1)
x

h̄
sinθ (3)

We can copy the matrix J (1)
x from Shankar’s equation 12.5.23:

J
(1)
x =

h̄√
2

 0 1 0
1 0 1
0 1 0

 (4)

We therefore have

(
J
(1)
x

)2
=
h̄2

2

 1 0 1
0 2 0
1 0 1

 (5)

Plugging these into 3 we have

D(1) [R (θx̂)] =
1
2

 1+ cosθ −
√

2isinθ cosθ−1
−
√

2isinθ 2cosθ −
√

2isinθ
cosθ−1 −

√
2isinθ 1+ cosθ

 (6)

In the |jm〉 basis, the state |11〉 is represented by

|11〉=

 1
0
0

 (7)

Thus a rotation about the x axis rotates this state into:

|ψ〉=D(1) [R (θx̂)] |11〉 (8)

=
1
2

 1+ cosθ −
√

2isinθ cosθ−1
−
√

2isinθ 2cosθ −
√

2isinθ
cosθ−1 −

√
2isinθ 1+ cosθ

 1
0
0

 (9)

=
1
2

 1+ cosθ
−
√

2isinθ
cosθ−1

 (10)

If rotation by some angle θ could change |11〉 into the state |10〉, this

result would need to be a multiple of

 0
1
0

, so we’d need to find θ such

that both of the following equations are true:
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1+ cosθ = 0 (11)
cosθ−1 = 0 (12)

This is impossible, so no rotation about the x axis can change |11〉 into
the state |10〉.

However, there is still a correspondence between classical and quantum
mechanics if we compare the average values of the components of J. That
is, we want to find 〈J〉 for the state 10. To do this, we need the other two
matrix components J (1)

y and J (1)
z . We can get J (1)

y from Shankar’s equation
12.5.24:

J
(1)
y =

ih̄√
2

 0 −1 0
1 0 −1
0 1 0

 (13)

J
(1)
z is just the diagonal matrix:

J
(1)
z = h̄

 1 0 0
0 0 0
0 0 −1

 (14)

We can now calculate the averages for the state 10:
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〈
J
(1)
x

〉
=
〈
ψ
∣∣∣J (1)
x

∣∣∣ψ〉 (15)

=
h̄

4
√

2

[
1+ cosθ

√
2isinθ cosθ−1

] 0 1 0
1 0 1
0 1 0

 1+ cosθ
−
√

2isinθ
cosθ−1


(16)

=
h̄

4
[
isinθ

√
2cosθ isinθ

] 1+ cosθ
−
√

2isinθ
cosθ−1

 (17)

= 0 (18)〈
J
(1)
y

〉
=
〈
ψ
∣∣∣J (1)
y

∣∣∣ψ〉 (19)

=
ih̄

4
√

2

[
1+ cosθ

√
2isinθ cosθ−1

] 0 −1 0
1 0 −1
0 1 0

 1+ cosθ
−
√

2isinθ
cosθ−1


(20)

=
h̄

4
[
−sinθ −i

√
2 sinθ

] 1+ cosθ
−
√

2isinθ
cosθ−1

 (21)

=−h̄sinθ (22)〈
J
(1)
z

〉
=
〈
ψ
∣∣∣J (1)
z

∣∣∣ψ〉 (23)

=
h̄

4
[

1+ cosθ
√

2isinθ cosθ−1
] 1 0 0

0 0 0
0 0 −1

 1+ cosθ
−
√

2isinθ
cosθ−1


(24)

=
h̄

4
[

1+ cosθ 0 1− cosθ
] 1+ cosθ
−
√

2isinθ
cosθ−1

 (25)

= h̄cosθ (26)

Thus for the average, we have

〈J〉=−h̄sinθŷ+ h̄cosθẑ (27)

In this case, a rotation by θ = π
2 does indeed rotate 〈J〉 so that it points

along the −y axis, just as it would in classical mechanics.
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PINGBACKS

Pingback: rotations in 3-d euler angles
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Any 3-d rotation can be expressed in terms of the Euler angles. These
angles specify a sequence of three successive rotations about the rectangular
axes. There are various definitions of Euler angles involving different sets
of rotations, but the set used by Shankar in this problem consists of (1) a
rotation by γ about the z axis, followed by (2) a rotation by β about the y
axis and concluding with (3) a rotation by α about the z axis. The proof
that any rotation can be expressed this way would take us too far afield at
this point, so we’ll just accept this for now.

We can see how these work in quantum mechanics by considering the
special case of j = 1, for which we derived the formula for a finite rotation
here. A state |ψ〉 is transformed by a rotation θθθ according to

∣∣ψ′〉=D(1) [R] |ψ〉 (1)

=

I(1)+
(
θ̂θθ ·J(1)

)2

h̄2 (cosθ−1)− iθ̂
θθ ·J(1)

h̄
sinθ

 |ψ〉 (2)

For our purposes below, we’ll need the three components of J(1), which
can be copied from Shankar’s equations 12.5.23 and 12.5.24:

1
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J
(1)
x =

h̄√
2

 0 1 0
1 0 1
0 1 0

 (3)

J
(1)
y =

ih̄√
2

 0 −1 0
1 0 −1
0 1 0

 (4)

(
J
(1)
y

)2
=
h̄2

2

 1 0 −1
0 2 0
−1 0 1

 (5)

J
(1)
z = h̄

 1 0 0
0 0 0
0 0 −1

 (6)

(
J
(1)
z

)2
= h̄2

 1 0 0
0 0 0
0 0 1

 (7)

Evaluating 2 for the three Euler rotations, we have
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Dγ = I(1)+

(
J
(1)
z

)2

h̄2 (cosγ−1)− iJ
(1)
z

h̄
sinγ (8)

=

 cosγ− isinγ 0 0
0 1 0
0 0 cosγ+ isinγ

 (9)

=

 e−iγ 0 0
0 1 0
0 0 eiγ

 (10)

Dβ = I(1)+

(
J
(1)
y

)2

h̄2 (cosβ−1)− iJ
(1)
y

h̄
sinβ (11)

=
1
2

 1+ cosβ −
√

2sinβ 1− cosβ√
2sinβ 2cosβ −

√
2sinβ

1− cosβ
√

2sinβ 1+ cosβ

 (12)

Dα = I(1)+

(
J
(1)
z

)2

h̄2 (cosα−1)− iJ
(1)
z

h̄
sinα (13)

=

 cosα− isinα 0 0
0 1 0
0 0 cosα+ isinα

 (14)

=

 e−iα 0 0
0 1 0
0 0 eiα

 (15)

The complete rotation is the product of the three matrices:

Dtotal =DαDβDγ (16)

=Dα
1
2

 (1+ cosβ)e−iγ −
√

2sinβ (1− cosβ)eiγ√
2sinβe−iγ 2cosβ −

√
2sinβeiγ

(1− cosβ)e−iγ
√

2sinβ (1+ cosβ)eiγ

 (17)

=
1
2

 (1+ cosβ)e−iγe−iα −
√

2sinβe−iα (1− cosβ)eiγe−iα√
2sinβe−iγ 2cosβ −

√
2sinβeiγ

(1− cosβ)e−iγeiα
√

2sinβeiα (1+ cosβ)eiγeiα


(18)

In the |jm〉 basis, the state |11〉 is represented by
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|11〉=

 1
0
0

 (19)

Applying the rotation 18 to this state, we get

∣∣11′
〉
=Dtotal |11〉 (20)

=
1
2

 (1+ cosβ)e−iγe−iα −
√

2sinβe−iα (1− cosβ)eiγe−iα√
2sinβe−iγ 2cosβ −

√
2sinβeiγ

(1− cosβ)e−iγeiα
√

2sinβeiα (1+ cosβ)eiγeiα

 1
0
0


(21)

=
1
2

 (1+ cosβ)e−iγe−iα√
2sinβe−iγ

(1− cosβ)e−iγeiα

 (22)

=
e−iγ

2

 (1+ cosβ)e−iα√
2sinβ

(1− cosβ)eiα

 (23)

We can work out the average values of the components of J in the rotated
state in the same way as in the previous problem, by using 3, 4 and 6. Note
that γ disappears from the matrix elements as it enters only in an overall
phase factor. We get (I used Maple to do the tedious matrix multiplications):

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.05.06.pdf
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〈Jx〉=
〈
11′ |Jx|11′

〉
(24)

=
h̄

4
√

2

[
(1+ cosβ)eiα

√
2sinβ (1− cosβ)e−iα

] 0 1 0
1 0 1
0 1 0

 (1+ cosβ)e−iα√
2sinβ

(1− cosβ)eiα


(25)

= h̄sinβ cosα (26)

〈Jy〉=
〈
11′ |Jy|11′

〉
(27)

=
ih̄

4
√

2

[
(1+ cosβ)eiα

√
2sinβ (1− cosβ)e−iα

] 0 −1 0
1 0 −1
0 1 0

 (1+ cosβ)e−iα√
2sinβ

(1− cosβ)eiα


(28)

= h̄sinβ sinα (29)

〈Jz〉=
〈
11′ |Jz|11′

〉
(30)

=
h̄

4
[
(1+ cosβ)eiα

√
2sinβ (1− cosβ)e−iα

] 1 0 0
0 0 0
0 0 −1

 (1+ cosβ)e−iα√
2sinβ

(1− cosβ)eiα


(31)

= h̄cosβ (32)

Going back to 23, we can confirm our earlier result that it is impossible
to rotate the state |11〉 into just |10〉. To do so, the state in 23 would have

to be a multiple of

 0
1
0

 which could happen only if both 1+ cosβ and

1− cosβ were zero, which is impossible.
However, if we take β = π, then the rotated state 23 becomes

∣∣11′
〉
= ei(α−γ)

 0
0
1

= ei(α−γ) |1,−1〉 (33)

so apart from a phase factor, it is possible to rotate one eigenstate of Jz
into another.

The only values of β that produce zero elements in 23 are β = 0 and β =
π, (the values of α and γ produce only phase factors), so for any other value
of β, all three elements of 23 are non-zero. Thus a general rotation from
any starting state can always be made to produce a rotated state containing
all three eigenstates of Jz: |11〉, |10〉 and |1,−1〉.

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.05.06.pdf
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To calculate the eigenfunctions of angular momentum, we will need ex-
pressions for the raising and lowering operatorsL± in spherical coordinates.
We’ve seen one way of getting these by working with the gradient in spher-
ical coordinates from the start, but it is also possible to convert the rect-
angular forms of L± to spherical coordinates by using the chain rule from
calculus. This method is similar to one we used earlier in 2-d. To set the
scene, we need the conversion formulas between rectangular and spherical
coordinates:

x = r sinθ cosφ (1)
y = r sinθ sinφ (2)
z = r cosθ (3)

r =
√
x2 +y2 + z2 (4)

θ = arctan

√
x2 +y2

z
(5)

= arctan
q

z
(6)

φ = arctan
y

x
(7)

To simplify the notation, we’ve defined

q ≡
√
x2 +y2 = r sinθ (8)

We’ll also use shorthand notation for sines and cosines so that
1
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sθ ≡ sinθ (9)
cθ ≡ cosθ (10)

and similarly for φ. We’ll also use the notation ∂r to mean the partial
derivative with respect to r, with a similar notation for other derivatives.

The required derivatives are

∂x = ∂xr ·∂r+∂xθ ·∂θ+∂xφ ·∂φ (11)
∂y = ∂yr ·∂r+∂yθ ·∂θ+∂yφ ·∂φ (12)
∂z = ∂zr ·∂r+∂zθ ·∂θ (13)

The required derivatives are

∂xr =
x

r
(14)

∂yr =
y

r
(15)

∂zr =
z

r
(16)

∂xθ =
x/q

z
(

1+ q2

z2

) (17)

=
xz

qr2 (18)

∂yθ =
yz

qr2 (19)

∂zθ = − q

r2 (20)

∂xφ =
−y/x2

1+y2/x2 (21)

= − y

q2 (22)

∂yφ =
x

q2 (23)

∂zφ = 0 (24)

Plugging all these into 11 to 13 we have
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∂x =
x

r
∂r+

xz

qr2∂θ−
y

q2∂φ (25)

∂y =
y

r
∂r+

yz

qr2∂θ+
x

q2∂φ (26)

∂z =
z

r
∂r−

q

r2∂θ (27)

We can now calculate the components Lx and Ly:

Lx =−ih̄(y∂z− z∂y) (28)

=−ih̄
[
yz

r
∂r−

yq

r2 ∂θ−
yz

r
∂r−

yz2

qr2 ∂θ−
xz

q2 ∂φ

]
(29)

= ih̄

[(
yq

r2 +
yz2

qr2

)
∂θ+

xz

q2 ∂φ

]
(30)

= ih̄

[(
s2
θsφ+

sθsφc
2
θ

sθ

)
∂θ+

sθcθcφ

s2
θ

∂φ

]
(31)

= ih̄

(
sinφ

∂

∂θ
+ cosφcotθ

∂

∂φ

)
(32)

Ly =−ih̄(z∂x−x∂z) (33)

=−ih̄
[
xz

r
∂r+

xz2

qr2 ∂θ−
xz

r
∂r+

xq

r2 ∂θ−
yz

q2 ∂φ

]
(34)

= ih̄

[(
−xz

2

qr2 − xq

r2

)
∂θ+

yz

q2 ∂φ

]
(35)

= ih̄

[(
−
sθcφc

2
θ

sθ
−s2

θcφ

)
∂θ+

sθcθsφ

s2
θ

∂φ

]
(36)

= ih̄

(
−cosφ

∂

∂θ
+ sinφcotθ

∂

∂φ

)
(37)

From this we get the raising and lowering operators
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L± = Lx± iLy (38)

= ih̄

(
sinφ

∂

∂θ
+ cosφcotθ

∂

∂φ

)
∓ (39)

h̄

(
−cosφ

∂

∂θ
+ sinφcotθ

∂

∂φ

)
(40)

= h̄e±iφ
∂

∂θ
± ih̄e±iφ cotθ

∂

∂φ
(41)

= h̄e±iφ
(
∂

∂θ
± icotθ

∂

∂φ

)
(42)

[Admittedly, it’s probably easier and more elegant to use spherical coor-
dinates from the start, but it’s instructive to see how it’s done starting with
rectangular coordinates.]
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The total angular momentum operator L2 can be written in spherical co-
ordinates as

L2 =−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
(1)

As L2 is an observable, it should be Hermitian. We can verify this by
showing that 〈

ψ2
∣∣L2∣∣ψ1

〉
=
〈
ψ1
∣∣L2∣∣ψ2

〉∗
(2)

In spherical coordinates, this becomes

∫
ψ∗2
(
L2ψ1

)
dΩ =

[∫
ψ∗1
(
L2ψ2

)
dΩ

]∗
(3)

The element of solid angle dΩ = sinθ dθ dφ, so the full integral is∫
ψ∗2
(
L2ψ1

)
dΩ =

∫ 2π

0

∫ π

0
ψ∗2
(
L2ψ1

)
sinθ dθ dφ (4)

We can verify 3 by showing that it is true for each of the two terms in 1
separately. As usual for these sorts of integrals, we need to use integration
by parts. To simplify things, we’ll consider −L2/h̄2 so we can deal only
with the terms in the brackets in 1. We’ll also use the shorthand notation

s ≡ sinθ (5)
c ≡ cosθ (6)

Also, a prime indicates a derivative with respect to θ: ψ′1 ≡
∂ψ1
∂θ , etc.

For the first term, we have, considering only the integration over θ:
1
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∫ π

0
ψ∗2

1
s

∂

∂θ

(
s
∂ψ1

∂θ

)
s dθ =

∫ π

0

[
ψ∗2cψ

′
1 +ψ

∗
2sψ

′′
1
]
dθ (7)

= ψ∗2cψ1|π0 + ψ∗2sψ
′
1
∣∣π
0 − (8)∫ π

0

[
(ψ∗2)

′ cψ1−ψ∗2sψ1
]
dθ− (9)∫ π

0

[
(ψ∗2)

′ sψ′1 +ψ
∗
2cψ

′
1
]
dθ (10)

The second term in 8 is zero since sin0 = sinπ = 0, but we can’t ignore
the first term, which is not, in general, zero. Thus we are left with

∫ π

0
ψ∗2

∂

∂θ

(
s
∂ψ1

∂θ

)
dθ = ψ∗2cψ1|π0 − (11)∫ π

0

[
(ψ∗2)

′ cψ1−ψ∗2sψ1
]
dθ− (12)∫ π

0

[
(ψ∗2)

′ sψ′1 +ψ
∗
2cψ

′
1
]
dθ (13)

We can now integrate the last line by parts again to get rid of the deriva-
tives of ψ1:

−
∫ π

0

[
(ψ∗2)

′ sψ′1 +ψ
∗
2cψ

′
1
]
dθ =− (ψ∗2)

′ sψ1
∣∣π
0 − ψ

∗
2cψ1|π0 + (14)∫ π

0

[
ψ1 (ψ

∗
2)
′′ s+(ψ∗2)

′ cψ1
]
dθ+ (15)∫ π

0

[
ψ1 (ψ

∗
2)
′ c−ψ∗2sψ1

]
dθ (16)

=− ψ∗2cψ1|π0 + (17)∫ π

0

[
ψ1 (ψ

∗
2)
′′ s+(ψ∗2)

′ cψ1
]
dθ+ (18)∫ π

0

[
ψ1 (ψ

∗
2)
′ c−ψ∗2sψ1

]
dθ (19)

Inserting this back into 11 and cancelling terms, we have∫ π

0
ψ∗2

∂

∂θ

(
s
∂ψ1

∂θ

)
dθ =

∫ π

0

[
ψ1 (ψ

∗
2)
′′ s+(ψ∗2)

′ cψ1
]
dθ (20)

Comparing this with 7, we see that∫ π

0
ψ∗2

∂

∂θ

(
s
∂ψ1

∂θ

)
dθ =

[∫ π

0
ψ∗1

∂

∂θ

(
s
∂ψ2

∂θ

)
dθ

]∗
(21)
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Thus the first term in 1 is Hermitian. (As this first term involves no deriva-
tives with respect to φ, the integration over φ is automatically Hermitian.)

For the second term in 1, we need to consider only the integral over φ, so
we have ∫ 2π

0
ψ∗2

1
sin2 θ

∂2ψ1

∂φ2 sinθ dφ=
1
s

∫ 2π

0
ψ∗2
∂2ψ1

∂φ2 dφ (22)

(As we’re integrating over φ, terms in θ act as constants and can be taken
outside the integral.) The first integration by parts gives (where a prime now
indicates a derivative with respect to φ):

∫ 2π

0
ψ∗2ψ

′′
1 dφ= ψ∗2ψ

′
1
∣∣2π
0 −

∫ 2π

0
(ψ∗2)

′ψ′1 dφ (23)

=−
∫ 2π

0
(ψ∗2)

′ψ′1 dφ (24)

This time, we’re able to set the integrated term to zero, since φ = 0 and
φ= 2π refer to the same angle. A second integration by parts gives

−
∫ 2π

0
(ψ∗2)

′ψ′1 dφ=− (ψ∗2)
′ψ1
∣∣2π
0 +

∫ 2π

0
(ψ∗2)

′′ψ1 dφ (25)

=
∫ 2π

0
(ψ∗2)

′′ψ1 dφ (26)

=

[∫ 2π

0
ψ∗1ψ

′′
2 dφ

]∗
(27)

Thus both terms in 1 are Hermitian, so the complete operator L2 is also
Hermitian.
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The total angular momentum operator L2 can be written in spherical co-
ordinates as

L2 =−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
(1)

Since
[
L2,Lz

]
= 0, we can find a basis consisting of simultaneous eigen-

functions of L2 and Lz. Suppose we call these states |αβ〉, where α is the
eigenvalue of L2 and β is the eigenvalue of Lz. In spherical coordinates, we
know that

Lz =−ih̄
∂

∂φ
(2)

and that its eigenvalues are mh̄ for integer values of m. Thus we can
separate the θ and φ dependence in the eigenstates and write

ψαm (θ,φ) = Pmα (θ)eimφ (3)

We therefore have the eigenvalue equation

L2 |αm〉 = α |αm〉 (4)

L2ψαm (θ,φ) = αψαm (θ,φ) (5)

Combining 3 with 1, we have
1
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1
sinθ

∂

∂θ

(
sinθ

∂ψαm
∂θ

)
+

1
sin2 θ

∂2ψαm
∂φ2 = αψαm (6)

1
sinθ

∂

∂θ

(
sinθ

∂Pmα
∂θ

)
− m2

sin2 θ
Pmα +

α

h̄2P
m
α = 0 (7)

We’d like to show that solutions of this equation require that (1)

α = h̄2`(`+1) (8)
|m| ≤ ` (9)

for ` = 0,1,2, . . .. In the problem given in Shankar, we tackle the less
demanding case of m= 0 and demonstrate only the result for α. We begin
by transforming 7 using the variable substitution:

u≡ cosθ (10)
This gives us

du=−sinθ dθ (11)
so that 7 becomes

−sinθ
sinθ

∂

∂u

(
−sin2 θ

∂P 0
α

∂u

)
+
α

h̄2P
0
α = 0 (12)

∂

∂u

((
1−u2) ∂P 0

α

∂u

)
+
α

h̄2P
0
α = 0 (13)

(
1−u2) ∂2P 0

α

∂u2 −2u
∂P 0

α

∂u
+
α

h̄2P
0
α = 0 (14)

We can use a power series to solve this by defining

P 0
α (u) =

∞

∑
n=0

Cnu
n (15)

∂P 0
α

∂u
=

∞

∑
n=0

Cnnu
n−1 (16)

∂2P 0
α

∂u2 =
∞

∑
n=0

Cnn(n−1)un−2 (17)

=
∞

∑
n=0

Cn+2 (n+2)(n+1)un (18)
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Plugging these into 14 and collecting terms, we get

P 0
α (u) =

∞

∑
n=0

[
Cn+2 (n+2)(n+1)+Cn

(
−n(n−1)−2n+

α

h̄2

)]
un= 0

(19)
If a power series equals zero, the coefficient of each power of u must be

zero (power series theorem from math), so we get the recurrence relation

Cn+2 =
n(n−1)+2n− α

h̄2

(n+2)(n+1)
Cn (20)

=
n2 +n− α

h̄2

n2 +3n+2
Cn (21)

For large n we have

Cn+2→
n2

n2Cn = Cn (22)

Since u = cosθ, u ∈ [−1,1] and the series must converge for all these
values. Although the power series ∑

∞
n=0u

n converges if |u| < 1 (that’s the
standard geometric series), it clearly diverges if u= 1. Thus we require the
series to terminate, which imposes a condition on α:

α= `(`+1) h̄2 (23)

for some integer value ` = 0,1,2, . . .. Since choosing a value for ` can
be done only once in any given series, and the recursion relation relates
every second coefficient, this implies that either all even coefficients or all
odd coefficients must be zero. Thus P 0

α (u) is either a sum of even powers
(making it an even function) or of odd powers (making it an odd function)
only.

The first few values of P 0
α (u) are found by choosing values for C0 and

C1 and then generating all higher coefficients using 21. If we take

C0 = 1 (24)
C1 = 0 (25)

then if we choose `= 0 we get

P 0
0 = 1 (26)

Taking
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C0 = 0 (27)
C1 = 1 (28)

and `= 1 gives

P 0
1 = u= cosθ (29)

Reverting to an even series and taking `= 2 we have from 21

C2 =−
α

2h̄2C0 =−
`(`+1)

2
(1) =−3 (30)

P 0
2 = 1−3u2 = 1−3cos2 θ (31)

These values for P 0
` agree with the spherical harmonics Y 0

` apart from
the constant scaling factors in each case. See Shankar’s equation 12.5.39
for comparison.

PINGBACKS

Pingback: angular momentum and parity

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.05.12.pdf
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The raising and lowering operators for angular momentum are

L± ≡ Lx± iLy (1)

On a state |`m〉 in the basis of eigenstates of L2 and Lz, they have the
effect:

L± |`m〉= h̄
√

(`∓m)(`±m+1) |`,m±1〉 (2)

This means that, if we can find the top state |``〉, we can find the state for
all lower values of m by applying L− successively. To illustrate the process
we’ll derive the 3 states for `= 1. The top state |11〉 can be obtained by fol-
lowing the derivation given in Shankar from his equation 12.5.28 onwards.
In spherical coordinates, the raising and lowering operators have the form

L± =±h̄e±iφ
[
∂

∂θ
± icotθ

∂

∂φ

]
(3)

Applying L+ to the top state |11〉must give zero, so if ψ1
1 is the represen-

tation of this state in spherical coordinates, we must solve the differential
equation [

∂

∂θ
+ icotθ

∂

∂φ

]
ψ1

1 = 0 (4)

Since ψ1
1 is also an eigenfunction of Lz with eigenvalue h̄, we know that

ψ1
1 = U1

1 (r,θ)e
iφ (5)

Thus 4 becomes
1
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(
∂

∂θ
− cotθ

)
U1

1 = 0 (6)

This can be solved by writing it in the form

dU1
1

U1
1

=
d(sinθ)

sinθ
(7)

lnU1
1 = ln(sinθ)+ lnR (r)+ lnA (8)

where R is some unspecified function of r, and A is a constant. We
therefore have

U1
1 (r,θ) = R (r)(Asinθ) (9)

If we ignore R for now, we can normalize over the angular coordinates
by requiring ∫

|Asinθ|2 dΩ = 1 (10)

The element dΩ of solid angle is

dΩ = sinθ dφ dθ (11)
so we have

|A|2
∫ π

0

∫ 2π

0
sin3 θ dφ dθ = 2π |A|2

∫ π

0
sinθ

(
1− cos2 θ

)
dθ (12)

=
8π
3
|A|2 (13)

A=

√
3

8π
(14)

Thus the spherical harmonic Y 1
1 is (using Shankar’s normalization con-

vention of multiplying by (−1)`):

Y 1
1 =−

√
3

8π
sinθeiφ (15)

We can now get Y 0
1 by applying L− to Y 1

1 . From 2 we have

L−Y
1

1 = h̄
√
(1+1)(1−1+1)Y 0

1 (16)

=
√

2h̄Y 0
1 (17)

From 3 we have
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L−Y
1

1 =−h̄e−iφ
[
∂

∂θ
− icotθ

∂

∂φ

]
Y 1

1 (18)

=−h̄e−iφ
(
−
√

3
8π

)
[cosθ− icotθ (isinθ)]eiφ (19)

= 2h̄

√
3

8π
cosθ (20)

Comparing the last two results gives

√
2h̄Y 0

1 = 2

√
3

8π
cosθ (21)

Y 0
1 =

√
3

4π
cosθ (22)

Repeating the process, we get

L−Y
0

1 = h̄
√

(1+0)(1−0+1)Y −1
1 (23)

=
√

2h̄Y −1
1 (24)

Also

L−Y
0

1 =−h̄e−iφ
[
∂

∂θ
− icotθ

∂

∂φ

]
Y 0

1 (25)

=−h̄e−iφ
√

3
4π

(−sinθ−0) (26)

= h̄

√
3

4π
sinθe−iφ (27)

Thus

√
2h̄Y −1

1 = h̄

√
3

4π
sinθe−iφ (28)

Y −1
1 =

√
3

8π
sinθe−iφ (29)

Comparing these results with Shankar’s equation 12.5.39 we see that they
match. [This exercise is similar to one we did earlier, where we used the
raising operator to generate spherical harmonics with higher values of m.]
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The parity operator in 3-d reflects every point directly through the ori-
gin, so that a position vector r→−r. In rectangular coordinates this means
replacing each coordinate by its negative. In spherical coordinates, the an-
gular coordinates change according to

θ → π− θ (1)
φ → π+φ (2)

If this isn’t obvious, picture reflecting a vector r through the origin. If the
original vector makes an angle θ with the z (vertical) axis, then the reflected
vector makes an angle θ with the −z axis, which is equivalent to an angle
of π− θ with the +z axis. The azimuthal angle φ just gets rotated by π to
lie on the other side of the z axis.

Using this, we can see that the parity operator Π commutes with both
L2 and Lz, as follows. Since neither of these operators involves the radial
coordinate, we can consider their effect on a function f (θ,φ). Under parity,
we have

Πf (θ,φ)→ f (π− θ,π+φ) (3)

Thus the derivatives transform under parity according to

∂f (θ,φ)

∂θ
→ −∂f (π− θ,π+φ)

∂θ
(4)

∂f (θ,φ)

∂φ
→ ∂f (π− θ,π+φ)

∂φ
(5)

The angular momentum operators are
1
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L2 =−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
(6)

Lz =−ih̄
∂

∂φ
(7)

Thus the combined operation gives

L2
Πf (θ,φ)→−h̄2

[
1

sinθ
∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
f (π− θ,π+φ)

(8)

=−h̄2
[

1
sinθ

(
− ∂

∂θ

)(
sinθ

(
− ∂

∂θ

))
+

1
sin2 θ

∂2

∂φ2

]
f (π− θ,π+φ)

(9)

=−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
f (π− θ,π+φ)

(10)

= L2f (π− θ,π+φ) (11)

If we apply Π to L2, we have

Π
[
L2f (θ,φ)

]
=−h̄2

[
1

sin(π− θ)

(
− ∂

∂θ

)(
sin(π− θ)

(
− ∂

∂θ

))
+

1
sin2 (π− θ)

∂2

∂φ2

]
f (π− θ,π+φ)

(12)

=−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
f (π− θ,π+φ)

(13)

= L2f (π− θ,π+φ) (14)

Thus [
Π,L2]= 0 (15)

where in the first line we used sin(π− θ) = sinθ.
SinceLz involves only a derivative with respect to φwhich doesn’t change

under parity, we have

[Π,Lz] = 0 (16)

Since Π commutes with both L2 and Lz it is possible to find a set of
functions that are simultaneous eigenfunctions of all three operators. These
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functions turn out to be the same spherical harmonics that we’ve been using
all along. We can show this by starting with the top spherical harmonic

Y ll = (−1)l
√

(2l+1)!
4π

1
2ll!

eilφ sinl θ (17)

where we’ve included the (−1)l to be consistent with Shankar’s equation
12.5.32. Under parity, this transforms as

ΠY ll = (−1)l
√

(2l+1)!
4π

1
2ll!

eil(π+φ) sinl (π− θ) (18)

= (−1)l eilπ
√

(2l+1)!
4π

1
2ll!

eilφ sinl θ (19)

= (−1)lY ll (20)

where we used eilπ = (−1)l in the second line. Thus Y ll is an eigenfunc-
tion of Π with eigenvalue (−1)l.

To show that the other spherical harmonics are also eigenfunctions, we
can use the lowering operator L−. In spherical coordinates, we have

L−Y
m
l = h̄

√
(`+m)(`−m+1)Y m−1

l (21)
The operator can be expressed as

L− =−h̄e−iφ
[
∂

∂θ
− icotθ

∂

∂φ

]
(22)

Under parity, we can transform 22 using sin(π− θ)= sinθ and cos(π− θ)=
−cosθ, so that cot(π− θ) =−cotθ. We therefore have

ΠL− =−h̄e−i(π+φ)
[
− ∂

∂θ
+ icotθ

∂

∂φ

]
(23)

=−h̄e−iφ
[
∂

∂θ
− icotθ

∂

∂φ

]
(24)

= L− (25)

Thus L− is unchanged by parity, which means that from 21, Y m−1
l has

the same parity as Y ml . Starting with Y ll and using the lowering operator
successively to reduce the superscript index, we have therefore

ΠY ml = (−1)lY ml (26)
Thus all spherical harmonics are also eigenfunctions of parity.
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If we can express a 3-d quantum state in terms of the spherical harmonics,
we can calculate directly the probabilities of Lz having one of its eigenval-
ues. That is, if we can write a state ψ as

ψ (r,θ,φ) = f (r)∑
m

Cml Y
m
l (1)

for some constant coefficientsCml and f is some function of r alone, then

P (lz =mh̄) =

∣∣Cml ∣∣2
∑n

∣∣Cnl ∣∣2 (2)

As an example, suppose we have

ψ =N (x+y+2z)e−αr (3)
where N is a normalization constant. We start by expressing x, y and z

in terms of Y m1 . We have

Y ±1
1 = ∓

√
3

8π
sinθe±iφ (4)

Y 0
1 =

√
3

4π
cosθ (5)

Using standard spherical-to-rectangular conversions

x = r sinθ cosφ (6)
y = r sinθ sinφ (7)
z = r cosθ (8)

1
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Therefore

cosφ =
x

r sinθ
(9)

sinφ =
y

r sinθ
(10)

cosθ =
z

r
(11)

Plugging these into 4 we have

Y ±1
1 =∓

√
3

8π
sinθ (cosφ± isinφ) (12)

=∓
√

3
8π

x± iy
r

(13)

Y 0
1 =

√
3

4π
z

r
(14)

=
√

2

√
3

8π
z

r
(15)

Inverting these, we have

x =
1
2

√
8π
3
r
(
Y −1

1 −Y 1
1
)

(16)

y = − 1
2i

√
8π
3
r
(
Y −1

1 +Y 1
1
)

(17)

z =
1√
2

√
8π
3
rY 0

1 (18)

Thus 3 becomes

ψ =

√
8π
3
Nre−αr

[
Y 1

1

(
−1

2
− 1

2i

)
+Y −1

1

(
1
2
− 1

2i

)
+Y 0

1

√
2
]

(19)

Comparing with 1 we find

C1
1 = −1

2
− 1

2i
(20)

C−1
1 =

1
2
− 1

2i
(21)

C0
1 =

√
2 (22)
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We have

∑
n

|Cn1 |
2 =

1
2
+

1
2
+2 = 3 (23)

P (lz = 0) =

∣∣C0
l

∣∣2
∑n

∣∣Cnl ∣∣2 =
2
3

(24)

P (lz = h̄) =

∣∣C1
l

∣∣2
∑n

∣∣Cnl ∣∣2 =
1
6

(25)

P (lz =−h̄) =
∣∣C−1

l

∣∣2
∑n

∣∣Cnl ∣∣2 =
1
6

(26)

PINGBACKS

Pingback: spherical harmonics: rotation about the x axis
Pingback: Wigner-Eckart Theorem
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Here’s another example of using spherical harmonics to study the be-
haviour of wave functions in 3-d. Under a rotation by θx about the x axis,
the coordinates transform using the rotation matrix

R (θxx̂) =

 1 0 0
0 cosθx −sinθx
0 sinθx cosθx

 (1)

This results in the coordinate transformations

x → x (2)
y → y cosθx− z sinθx (3)
z → z cosθx+y sinθx (4)

Using similar techniques to those for translations, it is found that the
wave function ψ (x,y,z) transforms into the wave function at the position
obtained by rotating by−θx (that is, by rotating by θx in the opposite direc-
tion):

ψ (x,y,z)→ ψR = ψ (x,y cosθx+ z sinθx, z cosθx−y sinθx) (5)

Suppose we have a wave function given by

ψ = Aze−r
2/a2

(6)
for some constants a and A. Under this rotation, using 5 it transforms to

ψR = A(z cosθx−y sinθx)e−r
2/a2

(7)
[Note that r2 remains invariant under rotations about the origin, since the

distance of a point from the origin is not affected by a rotation. You can
1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.54.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 12.04.02.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 11.02.01 - 11.02.02.pdf


SPHERICAL HARMONICS: ROTATION ABOUT THE X AXIS 2

verify this directly if you like by working out r2 = x2 + y2 + z2 after the
rotation.]

Equatioin 7 differs from the equation given in Shankar, which is

ψR = A(z cosθx+y sinθx)e−r
2/a2

(8)

Curiously, in the errata for Shankar’s book (2006 edition) 7 is listed as
the incorrect version, which is ’corrected’ to 8. In my copy of the book
(which doesn’t have a date on the title page), 8 is printed, but I don’t think
this is right. In any case, we’ll proceed with the problem.

First, we write 6 in terms of spherical harmonics, using

x =
1
2

√
8π
3
r
(
Y −1

1 −Y 1
1
)

(9)

y = − 1
2i

√
8π
3
r
(
Y −1

1 +Y 1
1
)

(10)

z =

√
4π
3
rY 0

1 (11)

We have

ψ = A

√
4π
3
rY 0

1 e
−r2/a2

(12)

With the three spherical harmonics Y 1
1 , Y 0

1 and Y −1
1 as the basis, we can

write this in vector notation as

ψ = A

√
4π
3
re−r

2/a2

 0
1
0

 (13)

A rotation in 3-d for `= 1 is given by

D(1) [R] = I(1)+

(
θ̂θθ ·J(1)

)2

h̄2 (cosθ−1)− iθ̂
θθ ·J(1)

h̄
sinθ (14)

For θ̂θθ = θxx̂, this works out to

D(1) [R (θxx̂)] =
1
2

 1+ cosθx −
√

2isinθx cosθx−1
−
√

2isinθx 2cosθx −
√

2isinθx
cosθx−1 −

√
2isinθx 1+ cosθx

 (15)

We can use this to transform 13 to get
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ψR =D(1) [R (θxx̂)]ψ (16)

= A

√
4π
3
re−r

2/a2 1
2

 1+ cosθx −
√

2isinθx cosθx−1
−
√

2isinθx 2cosθx −
√

2isinθx
cosθx−1 −

√
2isinθx 1+ cosθx

 0
1
0


(17)

= A

√
π

3
re−r

2/a2

 −√2isinθx
2cosθx
−
√

2isinθx

 (18)

= Ae−r
2/a2


√

4π
3
r

 0
1
0

cosθx−
√

2π
3
risinθx

 1
0
0

+
 0

0
1


(19)

= Ae−r
2/a2

{√
4π
3
rY 0

1 cosθx+
1
2i

√
8π
3
r
(
Y 1

1 +Y −1
1
)

sinθx

}
(20)

= Ae−r
2/a2

(z cosθx−y sinθx) (21)

where we used 10 to get the last line. This result agrees with 7 and not
with the equation 8 given in Shankar, so (provided I got the signs right) it
looks like Shankar’s equation is wrong.
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In solving the Schrödinger equation for spherically symmetric potentials,
we found that we could reduce the problem to the equation[

− h̄
2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
UEl = EUEl (1)

where UEl (r) is related to the radial function by

REl (r) =
UEl (r)

r
(2)

For a free particle, V = 0 and E > 0, so we have[
− h̄

2

2µ
d2

dr2 +
l (l+1) h̄2

2µr2

]
UEl = EUEl (3)

Defining

k2 ≡ 2µE
h̄2 (4)

ρ ≡ kr (5)

we convert the equation to(
− d2

dρ2 +
l (l+1)
ρ2

)
Ul = Ul (6)

This equation can be solved by a method similar to that for the harmonic
oscillator and its raising and lowering operators. The entire solution is fairly
involved, so we’ll start out here by showing how the new raising and low-
ering operators are defined.

We define
1
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dl ≡
d

dρ
+
l+1
ρ

(7)

The adjoint is

d†
l =−

d

dρ
+
l+1
ρ

(8)

To see where the minus sign comes from on the RHS, we need to recall
that the momentum operator is defined in one dimension as

P =−ih̄ ∂
∂x

(9)

Since P is an observable, it is hermitian, so that P † = P . Under the
hermitian operation i→ −i, so we must also have ∂

∂x → −
∂
∂x . Thus the

first derivative with respect to a position variable is anti-hermitian. If this
doesn’t convince you, you can also work out the integral:

∫
∞

0
ψ∗2

d

dρ
ψ1dρ= ψ∗2ψ1|∞0 −

∫
∞

0
ψ1

d

dρ
ψ∗2dρ (10)

Under the usual assumption that ψ→ 0 at the limits, the integrated term
is zero and we have

∫
∞

0
ψ∗2

d

dρ
ψ1dρ = −

∫
∞

0
ψ1

d

dρ
ψ∗2dρ (11)

= −
[∫

∞

0
ψ∗1

d

dρ
ψ2dρ

]∗
(12)

In bracket notation, this is

〈
ψ2

∣∣∣∣ ddρψ1

〉
=−

〈
d

dρ
ψ2 |ψ1

〉
(13)

which shows that d
dρ is an anti-hermitian operator.

Returning to 7 and 8, we have

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 03.26.pdf
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dld
†
lUl =

(
d

dρ
+
l+1
ρ

)(
− d

dρ
+
l+1
ρ

)
Ul (14)

=

(
d

dρ
+
l+1
ρ

)(
−U ′l +

l+1
ρ

Ul

)
(15)

= −U ′′l −
l+1
ρ2 Ul+

l+1
ρ

U ′l −
l+1
ρ

U ′l +
(l+1)2

ρ2 Ul (16)

= −U ′′l +
l (l+1)
ρ2 Ul (17)

Comparing with 6 we see that

dld
†
lUl = Ul (18)

We can also show that

d†
l dlUl =

(
− d

dρ
+
l+1
ρ

)(
d

dρ
+
l+1
ρ

)
Ul (19)

=

(
− d

dρ
+
l+1
ρ

)(
U ′l +

l+1
ρ

Ul

)
(20)

= −U ′′l +
l+1
ρ2 Ul−

l+1
ρ

U ′l +
l+1
ρ

U ′l +
(l+1)2

ρ2 Ul (21)

= −U ′′l +
(l+1)2 + l+1

ρ2 Ul (22)

= −U ′′l +
(l+1)(l+2)

ρ2 Ul (23)

= dl+1d
†
l+1Ul (24)

Starting from 18 we multiply on the left by d†
l to get

d†
l dl

(
d†
lUl

)
= d†

lUl (25)

Comparing this with 24 we see that

d†
lUl = clUl+1 (26)

where cl is a constant.
Thus d†

l is a raising operator, in that it raises the angular momentum
number l by 1 when it acts on Ul. By convention, cl = 1 (any adjustments
to the constant can be made when normalizing).

We can start the process by looking at 6 with l = 0 which is
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d2

dρ2Ul =−Ul (27)

This has the two solutions

UA0 (ρ) = sinρ (28)

UB0 (ρ) = −cosρ (29)

The minus sign in front of cosρ is just conventional. Since we require
U0 (0) = 0, UB0 is unacceptable if the region we’re considering include ρ=
0, so we have

U0 (ρ) = sinρ (30)

For the general case that excludes ρ= 0, we must include the cosine term
as well.

From here, we can generate solutions for higher values of l by applying
26. Actually, the radial function that appears in the wave function is given
by 2, so it is Rl that we really want. That is, we want

Rl =
Ul
r

= k
Ul
ρ

(31)

As with the constant cl in 26, we can absorb k into normalization to be
done later, so we can generate functions

Rl =
Ul
ρ

(32)

Applying 26 we have

ρRl+1 = d†
l (ρRl) (33)

=

(
− d

dρ
+
l+1
ρ

)
(ρRl) (34)

= −Rl−ρR′l+(l+1)Rl (35)
= −ρR′l+ lRl (36)

Rl+1 =

(
− d

dρ
+
l

ρ

)
Rl (37)

= −ρl d
dρ

(
Rl
ρl

)
(38)

We can convert this into a general formula by writing
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Rl+1

ρl+1 =

(
−1
ρ

d

dρ

)
Rl
ρl

(39)

Starting at l = 0, we have

R1

ρ1 =

(
−1
ρ

d

dρ

)
R0

ρ0 (40)

For the next step, we have

R2

ρ2 =

(
−1
ρ

d

dρ

)
R1

ρ1 (41)

=

(
−1
ρ

d

dρ

)(
−1
ρ

d

dρ

)
R0

ρ0 (42)

=

(
−1
ρ

d

dρ

)2 R0

ρ0 (43)

Thus in general

Rl+1

ρl+1 =

(
−1
ρ

d

dρ

)l+1 R0

ρ0 (44)

Note that (
−1
ρ

d

dρ

)l+1

6=
(
−1
ρ

)l+1 dl+1

dρl+1 (45)

since the factor of 1
ρ has to be included when taking the derivative.

We’ll explore the nature of these solutions in the next post.
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The Schrödinger equation in 3-d for a potential that depends only on r is

− h̄
2

2µ

[
1
r2

∂

∂r

(
r2∂ψ

∂r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+

1
r2 sin2 θ

(
∂2ψ

∂φ2

)]
+V ψ=Eψ

(1)
The angular part of the operator on the LHS is essentially the angular

momentum operator L2 (times 1/2µr2):

L2 =−h̄2
[

1
sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2

]
(2)

, so we can write this as

− h̄2

2µ
1
r2

∂

∂r

(
r2∂ψ

∂r

)
+V ψ+

L2

2µr2ψ = Eψ (3)

Eigenfunctions in this equation satisfy

ψ =RElm (r)Y m
l (θ,φ) (4)

where the subscript Elm refers to the energy E and the angular momen-
tum quantum numbers l and m. Y m

l is a spherical harmonic and RElm is
the radial function which depends on the potential V . The eigenvalues of
L2 are l (l+1) h̄2 so 3 becomes

− h̄2

2µ
1
r2

∂

∂r

(
r2∂REl

∂r

)
+
l (l+1) h̄2

2µr2 REl+V REl = EREl (5)

We’ve dropped the m from RElm since, for a spherically symmetric po-
tential, the radial function is independent of m.

1
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Example. Suppose a particle is described by the wave function

ψE (r,θ,φ) = Ae−r/a0 (6)
where A and a0 are constants. What can we deduce about the system?
First, since ψE is independent of θ and φ we see from 2 that

L2ψE = 0 (7)
so the eigenvalue is l = 0 and the state has no angular momentum. From

3 we therefore have

− h̄2

2µ
1
r2

∂

∂r

(
r2∂ψ

∂r

)
+V ψ = Eψ (8)

Working out the derivatives, we have

1
r2

∂

∂r

(
r2∂ψ

∂r

)
=−A

r2
d

dr

(
r2

a0
e−r/a0

)
(9)

= Ae−r/a0

(
− 2
ra0

+
1
a2

0

)
(10)

Plugging this back into 8 and cancelling terms gives

− 2
ra0

+
1
a2

0
=

2µ
h̄2 (V −E) (11)

If V (r)→ 0 as r→ ∞ we have, in this limit

E =− h̄2

2µa2
0

(12)

The energy is constant at all values of r so we can now find V from 11

− 2
ra0

+
1
a2

0
=

2µ
h̄2

(
V (r)+

h̄2

2µa2
0

)
(13)

V (r) = − h̄2

µa0r
(14)
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The Schrödinger equation in 3-d for a potential that depends only on r is

− h̄2

2µ

[
1
r2

∂

∂r

(
r2∂ψ

∂r

)
+

1
r2 sinθ

∂

∂θ

(
sinθ

∂ψ

∂θ

)
+

1
r2 sin2 θ

(
∂2ψ

∂φ2

)]
+V ψ=Eψ

(1)
Eigenfunctions in this equation satisfy

ψ =RElm (r)Y ml (θ,φ) (2)
where the subscript Elm refers to the energy E and the angular momen-

tum quantum numbers l and m. Y ml is a spherical harmonic and RElm is
the radial function which depends on the potential V . With the substitution

REl (r) =
UEl (r)

r
(3)

the differential equation reduces to[
− h̄2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
UEl = EUEl (4)

The quantity in the square brackets is an operator which will call Dl (r):

Dl (r)≡− h̄2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2 (5)

Equation 4 is similar to the 1-d Schrödinger equation except that the vari-
able r goes from 0 to ∞ rather than from −∞ to ∞, and the potential is mod-
ified by the ’centrifugal term’ l(l+1)h̄2

2µr2 . Because r begins at 0 rather than
−∞, the usual boundary conditions on U (that it tend to zero at ±∞) must

1
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also be modified. We can get the new boundary conditions by imposing the
hermiticity condition, which says that

∫
∞

0
U∗

1 (DlU2)dr =

[∫
∞

0
U∗

2 (DlU1)dr

]∗
(6)

=
∫

∞

0
(DlU1)

∗U2dr (7)

The two terms V (r) + l(l+1)h̄2

2µr2 in 5 are real and multiplicative, so the
hermiticity condition is automatically satisfied for them. For the derivative
term, we can use the usual integration by parts.

∫
∞

0
U∗

1

(
d2

dr2U2

)
dr = U∗

1
dU2

dr

∣∣∣∣∞
0
−
∫

∞

0

dU∗
1

dr

dU2

dr
dr (8)

= U∗
1
dU2

dr

∣∣∣∣∞
0
− U2

dU∗
1

dr

∣∣∣∣∞
0
+
∫

∞

0
U2

(
d2

dr2U
∗
1

)
dr (9)

If we require

U∗
1
dU2

dr

∣∣∣∣∞
0
− U2

dU∗
1

dr

∣∣∣∣∞
0
= 0 (10)

then we have

∫
∞

0
U∗

1

(
d2

dr2U2

)
dr =

∫
∞

0
U2

(
d2

dr2U
∗
1

)
dr (11)

=

[∫
∞

0
U∗

2

(
d2

dr2U1

)
dr

]∗
(12)

and the hermiticity condition 6 is satisfied.
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Chapter 12, Exercise 12.6.5.
Post date: 28 Jun 2017
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

In solving the Schrödinger equation for spherically symmetric potentials,
we found that we could reduce the problem to the equation

[
− h̄

2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
UEl = EUEl (1)

where UEl (r) is related to the radial function by

REl (r) =
UEl (r)

r
(2)

We can write 1 as an eigenvalue equation for the operator Dl in the form

Dl (r)UEl = EUEl (3)

with

Dl (r)≡−
h̄2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2 (4)

We can show that, provided UEl (r)→ 0 as r→ 0, there are no degenerate
eigenstates (that is, any state UEl that is an eigenstate with energy E is
unique up to a scaling factor). The proof is similar to that in 1-d quantum
mechanics, and goes by contradiction.

We suppose that there are two different functions U1 and U2 that satisfy
1 for the same energy E (and same angular momentum number l). We then
have

1
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[
− h̄

2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
U1 = EU1 (5)[

− h̄
2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
U2 = EU2 (6)

Multiply the first by U2 and the second by U1 and subtract to get

U2U
′′
1 −U1U

′′
2 = 0 (7)

This expression is

U2U
′′
1 −U1U

′′
2 =

d

dr

(
U2U

′
1−U1U

′
2
)
= 0 (8)

which we can integrate to get

U2U
′
1−U1U

′
2 = C (9)

for some constant C. This relation is valid for all r, so we can choose
r = 0 where U2 (0) = U1 (0) = 0, which shows that C = 0. Therefore

U ′1
U1

=
U ′2
U2

(10)

Integrating gives us

lnU1 = lnU2 +K (11)
for some other constant K, so

U1 = eKU2 (12)
That is, any two eigenfunctions with the same eigenvalueE are multiples

of each other, so represent the same state, which is nondegenerate.
Note that the derivation didn’t rely on the value of U anywhere except at

r = 0, so there is no requirement that, for example, U → 0 as r→ ∞. Also,
the derivation is valid whatever the sign of E.
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In solving the Schrödinger equation for spherically symmetric potentials,
we found that we could reduce the problem to the equation[

− h̄
2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
UEl = EUEl (1)

where UEl (r) is related to the radial function by

REl (r) =
UEl (r)

r
(2)

For a free particle, V = 0 and E > 0, so we have[
− h̄

2

2µ
d2

dr2 +
l (l+1) h̄2

2µr2

]
UEl = EUEl (3)

Defining

k2 ≡ 2µE
h̄2 (4)

ρ ≡ kr (5)

we convert the equation to(
− d2

dρ2 +
l (l+1)
ρ2

)
Ul = Ul (6)

This equation can be solved by a method similar to that for the harmonic
oscillator and its raising and lowering operators. The entire solution is fairly
involved, so we’ll start out here by showing how the new raising and low-
ering operators are defined.

1
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We define

dl ≡
d

dρ
+
l+1
ρ

(7)

The adjoint is

d†
l =−

d

dρ
+
l+1
ρ

(8)

To see where the minus sign comes from on the RHS, we need to recall
that the momentum operator is defined in one dimension as

P =−ih̄ ∂
∂x

(9)

Since P is an observable, it is hermitian, so that P † = P . Under the
hermitian operation i→ −i, so we must also have ∂

∂x → −
∂
∂x . Thus the

first derivative with respect to a position variable is anti-hermitian. If this
doesn’t convince you, you can also work out the integral:

∫
∞

0
ψ∗2

d

dρ
ψ1dρ= ψ∗2ψ1|∞0 −

∫
∞

0
ψ1

d

dρ
ψ∗2dρ (10)

Under the usual assumption that ψ→ 0 at the limits, the integrated term
is zero and we have

∫
∞

0
ψ∗2

d

dρ
ψ1dρ=−

∫
∞

0
ψ1

d

dρ
ψ∗2dρ (11)

=−
[∫

∞

0
ψ∗1

d

dρ
ψ2dρ

]∗
(12)

In bracket notation, this is

〈
ψ2

∣∣∣∣ ddρψ1

〉
=−

〈
d

dρ
ψ2 |ψ1

〉
(13)

which shows that d
dρ is an anti-hermitian operator.

Returning to 7 and 8, we have
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dld
†
lUl =

(
d

dρ
+
l+1
ρ

)(
− d

dρ
+
l+1
ρ

)
Ul (14)

=

(
d

dρ
+
l+1
ρ

)(
−U ′l +

l+1
ρ

Ul

)
(15)

=−U ′′l −
l+1
ρ2 Ul+

l+1
ρ

U ′l −
l+1
ρ

U ′l +
(l+1)2

ρ2 Ul (16)

=−U ′′l +
l (l+1)
ρ2 Ul (17)

Comparing with 6 we see that

dld
†
lUl = Ul (18)

We can also show that

d†
l dlUl =

(
− d

dρ
+
l+1
ρ

)(
d

dρ
+
l+1
ρ

)
Ul (19)

=

(
− d

dρ
+
l+1
ρ

)(
U ′l +

l+1
ρ

Ul

)
(20)

=−U ′′l +
l+1
ρ2 Ul−

l+1
ρ

U ′l +
l+1
ρ

U ′l +
(l+1)2

ρ2 Ul (21)

=−U ′′l +
(l+1)2 + l+1

ρ2 Ul (22)

=−U ′′l +
(l+1)(l+2)

ρ2 Ul (23)

= dl+1d
†
l+1Ul (24)

Starting from 18 we multiply on the left by d†
l to get

d†
l dl

(
d†
lUl

)
= d†

lUl (25)

Comparing this with 24 we see that

d†
lUl = clUl+1 (26)

where cl is a constant.
Thus d†

l is a raising operator, in that it raises the angular momentum
number l by 1 when it acts on Ul. By convention, cl = 1 (any adjustments
to the constant can be made when normalizing).

We can start the process by looking at 6 with l = 0 which is
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d2

dρ2Ul =−Ul (27)

This has the two solutions

UA0 (ρ) = sinρ (28)

UB0 (ρ) = −cosρ (29)

The minus sign in front of cosρ is just conventional. Since we require
U0 (0) = 0, UB0 is unacceptable if the region we’re considering include ρ=
0, so we have

U0 (ρ) = sinρ (30)

For the general case that excludes ρ= 0, we must include the cosine term
as well.

From here, we can generate solutions for higher values of l by applying
26. Actually, the radial function that appears in the wave function is given
by 2, so it is Rl that we really want. That is, we want

Rl =
Ul
r

= k
Ul
ρ

(31)

As with the constant cl in 26, we can absorb k into normalization to be
done later, so we can generate functions

Rl =
Ul
ρ

(32)

Applying 26 we have

ρRl+1 = d†
l (ρRl) (33)

=

(
− d

dρ
+
l+1
ρ

)
(ρRl) (34)

=−Rl−ρR′l+(l+1)Rl (35)

=−ρR′l+ lRl (36)

Rl+1 =

(
− d

dρ
+
l

ρ

)
Rl (37)

=−ρl d
dρ

(
Rl
ρl

)
(38)

We can convert this into a general formula by writing
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Rl+1

ρl+1 =

(
−1
ρ

d

dρ

)
Rl
ρl

(39)

Starting at l = 0, we have

R1

ρ1 =

(
−1
ρ

d

dρ

)
R0

ρ0 (40)

For the next step, we have

R2

ρ2 =

(
−1
ρ

d

dρ

)
R1

ρ1 (41)

=

(
−1
ρ

d

dρ

)(
−1
ρ

d

dρ

)
R0

ρ0 (42)

=

(
−1
ρ

d

dρ

)2 R0

ρ0 (43)

Thus in general

Rl+1

ρl+1 =

(
−1
ρ

d

dρ

)l+1 R0

ρ0 (44)

Note that (
−1
ρ

d

dρ

)l+1

6=
(
−1
ρ

)l+1 dl+1

dρl+1 (45)

since the factor of 1
ρ has to be included when taking the derivative.

We’ll explore the nature of these solutions in the next post.
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The general solution for a free particle in spherical coordinates involves
the radial function, which turns out to be

Rl+1

ρl+1 =

(
−1
ρ

d

dρ

)l+1 R0

ρ0 (1)

where l is the total angular momentum quantum number and

k2 ≡ 2µE
h̄2 (2)

ρ ≡ kr (3)

We can rewrite this as

Rl = (−ρ)l
(

1
ρ

d

dρ

)l
R0 (4)

We saw earlier that the solutions for l = 0 are, with Ul = ρRl

UA0 (ρ) = sinρ (5)

UB0 (ρ) = −cosρ (6)

Thus the two solutions for l = 0 are

RA0 =
sinρ
ρ

(7)

RB0 = −cosρ
ρ

(8)

1
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From these starting points, we can generate all the solutions for higher
values of l using 4. These functions are

jl (ρ) = (−ρ)l
(

1
ρ

d

dρ

)l sinρ
ρ

(9)

nl (ρ) =−(−ρ)l
(

1
ρ

d

dρ

)l cosρ
ρ

(10)

and are known as spherical Bessel functions jl and spherical Neumann
functions nl.

The asymptotic behaviour is given by

jl −→
ρ→∞

1
ρ

sin
(
ρ− lπ

2

)
(11)

nl −→
ρ→∞

−1
ρ

cos
(
ρ− lπ

2

)
(12)

For ρ→ 0, we have

jl −→
ρ→0

ρl

(2l+1)!!
(13)

nl −→
ρ→0

−(2l−1)!!
ρl+1 (14)

We can verify the latter equation for jl for a couple of cases with small l.
From 9, we can generate a couple of jls:
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j0 =
sinρ
ρ

(15)

j1 =−ρ
1
ρ

d

dr

(
sinρ
ρ

)
(16)

=−ρ1
ρ

(
cosρ
ρ
− sinρ

ρ2

)
(17)

=
sinρ
ρ2 −

cosρ
ρ

(18)

j2 = (−ρ)2 1
ρ

d

dρ

[
1
ρ

d

dr

(
sinρ
ρ

)]
(19)

(−ρ)2 1
ρ

d

dρ

[
1
ρ

(
cosρ
ρ
− sinρ

ρ2

)]
(20)

=

(
3
ρ3 −

1
ρ

)
sinρ− 3cosρ

ρ2 (21)

We can get the limits for ρ→ 0 by expanding the sine and cosine. That
is, we use the limiting forms

sinρ → ρ− ρ
3

3!
+ . . . (22)

cosρ → 1− 1
2
ρ2 + . . . (23)

We need to retain enough terms for jl so that we get all the terms up to
the first power of ρ that doesn’t cancel out when we do the algebra. We get
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j0→ 1 =
ρ0

1!!
(24)

j1→
1
ρ
− ρ

6
− 1
ρ

(
1− 1

2
ρ2
)

(25)

=
ρ

3
=
ρ1

3!!
(26)

j2→
(

3
ρ3 −

1
ρ

)(
ρ− ρ

3

6
+

ρ5

120

)
− 3
ρ2

(
1− 1

2
ρ2 +

1
24
ρ4
)

(27)

→
(

1
6
+

1
40
− 1

8

)
ρ2 (28)

=
20+3−15

120
ρ2 (29)

=
ρ2

15
=
ρ2

5!!
(30)
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The radial function for a free particle can be either a spherical Bessel
function jl or a spherical Neumann function nl. If the solution space in-
cludes the origin, then only jl is acceptable since the nl functions diverge
as r→ 0.

In rectangular coordinates, a free particle wave function has the form

ψE (x,y,z) =
1

(2πh̄)3/2
eip·r/h̄ (1)

where the energy E is

E =
p2

2µ
=
h̄2k2

2µ
(2)

For a free particle travelling in the z direction, this becomes

ψE (r,θ,φ) =
1

(2πh̄)3/2
eikr cosθ (3)

since z = r cosθ.
Since the solutions of the free-particle Schrödinger equation in spherical

coordinations form a complete set, we must be able to express this wave
function as a linear combination of these solutions, so that

eikr cosθ =
∞

∑
l=0

l

∑
m=−l

Cml jl (kr)Y
m
l (θ,φ) (4)

where the Cml are constants. Because we’re looking at motion in the z
direction, there is no angular momentum about the z axis, which is reflected
in the fact that ψE does not depend on φ. Thus Lz =mh̄ = 0 and m = 0.
We therefore have

1
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eikr cosθ =
∞

∑
l=0

C0
l jl (kr)Y

0
l (θ,φ) (5)

=
∞

∑
l=0

√
2l+1

4π
C0
l jl (kr)Pl (cosθ) (6)

=
∞

∑
l=0

Cljl (kr)Pl (cosθ) (7)

where

Cl ≡
√

2l+1
4π

C0
l (8)

The problem, of course, is to find these constants. We can do this using
the identities given by Shankar in his problem 12.6.10, which are

∫ 1

−1
Pl (x)Pl′ (x)dx=

2δll′
2l+1

(9)

Pl (x) =
1

2ll!
dl
(
x2−1

)l
dxl

(10)

=
(−1)l

2ll!
dl
(
1−x2)l
dxl

(11)∫ 1

0

(
1−x2)m dx= (2m)!!

(2m+1)!!
(12)∫ 1

−1

(
1−x2)m dx= 2(2m)!!

(2m+1)!!
(13)

The last line follows because
(
1−x2)m is an even function and is there-

fore symmetric about x= 0.
We can use the standard procedure for isolating Cl by multiplying both

sides by Ca and using 9.

∫ 1

−1
Pa (x)e

ikrxdx =
∞

∑
l=0

Cljl (kr)
∫ 1

−1
Pa (x)Pl (x)dx (14)

=
2

2a+1
Caja (kr) (15)

This relation must be true for all values of r, so we can look at the limit
of small (but not zero, since both sides are then zero) r. We have the as-
ymptotic relation for the spherical Bessel functions

http://physicspages.com/pdf/Shankar/Shankar Exercises 12.06.07.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 12.06.07.pdf


FREE PARTICLE MOVING IN THE Z DIRECTION 3

jl −→
ρ→0

ρl

(2l+1)!!
(16)

We thus have∫ 1

−1
Pa (x)e

ikrxdx=−→
r→0

2
2a+1

kara

(2a+1)!!
Ca (17)

We can then look at the integral on the LHS and hope that, when we
expand the exponential, that the terms in (kr)n for n < a vanish. We can
then match the coefficients of (kr)a on both sides to find Ca.

We can see that this will work because the Legendre polynomials Pl are
a complete set of functions, and the polynomial Pl has degree l. This means
that any polynomial of degree a−1 can be written as a linear combination
of the Pl, where l = 0, . . . ,a−1. Because of 9, this means that∫ 1

−1
xlPa (x)dx= 0 if l < a (18)

Therefore, when we expand eikrx in a power series, we have

∫ 1

−1
Pa (x)e

ikrxdx=
∫ 1

−1
Pa (x)

(
1+ ikrx+

(ikrx)2

2!
+ . . .

)
dx (19)

=
∫ 1

−1
Pa (x)

(
(ikrx)a

a!
+ . . .

)
dx (20)

In the limit of small r, higher order terms in the sum on the RHS can be
ignored, so we get

(ikr)a

a!

∫ 1

−1
xaPa (x)dx=

2
2a+1

kara

(2a+1)!!
Ca (21)

Ca =
ia (2a+1)(2a+1)!!

2a!

∫ 1

−1
xaPa (x)dx (22)

Now consider the integral in the last line. Using 11 we have∫ 1

−1
xaPa (x)dx=

(−1)a

2aa!

∫ 1

−1
xa
da
(
1−x2)a
dxa

dx (23)

We can integrate by parts repeatedly until the derivative in the integrand
disappears. Note that the nth derivative of

(
1−x2)a will always contain

a factor of
(
1−x2) to some power for any n < a, and thus is zero at both

limits of integration. Since the integrated term in the integration by parts
always contains such a derivative, all integrated terms are zero at both limits.



FREE PARTICLE MOVING IN THE Z DIRECTION 4

We therefore integrate
da(1−x2)

a

dxa (a times) and differentiate xa (a times) and
keep only the residual integral after each iteration. The differentiation of xa

(a times) introduces a factor of a!. Since the sign of the residual integral
alternates as we perform each integration by parts, the final result is

∫ 1

−1
xaPa (x)dx=

(−1)2a

2aa!
a!
∫ 1

−1

(
1−x2)a dx (24)

=
1
2a

2(2a)!!
(2a+1)!!

(25)

where we used 13 in the last line. The double factorial in the numerator
can be written as

(2a)!! = (2a)(2a−2) . . .(4)(2) (26)
= 2aa(a−1) . . .(2)(1) (27)
= 2aa! (28)

We therefore have

∫ 1

−1
xaPa (x)dx =

1
2a

2×2aa!
(2a+1)!!

(29)

=
2a!

(2a+1)!!
(30)

Plugging this back into 22 we have

Ca = ia (2a+1) (31)
The wave function for a free particle moving in the z direction is therefore

ψE (r,θ,φ) =
1

(2πh̄)3/2

∞

∑
l=0

ia (2a+1)jl (kr)Pl (cosθ) (32)
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We’ve solved the 3-d isotropic harmonic oscillator before, so we’ve al-
ready solved most of Shankar’s exercise 12.6.11. We can quote the results
here. The solution has the form

ψElm =
UEl (r)

r
Y ml (θ,φ) (1)

The earlier solution uses notation from Griffiths’s book, but as the end
result is the same, it’s not worth going through the derivation again using
Shankar’s notation.

The potential is

V (r) =
1
2
mω2r2 (2)

The radial equation to be solved is

d2u

dρ2 =

(
−1+

l(l+1)
ρ2 +ρ2

0ρ
2
)
u (3)

If we define

κ2 ≡ 2µE
h̄2 (4)

ρ ≡ κr (5)

ρ0 ≡
µω

h̄κ2 =
h̄ω

2E
(6)

Taking the asymptotic behaviour of the radial function for small and large
r into account leads us to a solution of form

u(ρ) = ρl+1e−ρ0ρ
2/2v(ρ) (7)

1
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Note that Griffiths’s v is not the same as Shankar’s v, the latter of which
is defined by Shankar’s equation 12.6.49.

This gives a differential equation for Griffiths’s v

ρ
d2v

dρ2 +2
(
l+1−ρ0ρ

2) dv
dρ

+ρ(1−ρ0(2l+3))v = 0 (8)

The function v can be solved as a power series, giving

v(ρ) = ∑cjρ
j (9)

Substituting into 8 leads to the recursion relation

cq+2 =
ρ0(2q+2l+3)−1
(q+2)(q+2l+3)

cq (10)

with c1 = 0, so that cq = 0 for all odd q. The requirement that the series
terminates at some finite value of j leads to the quantization condition on
E:

E = h̄ω

(
qmax+ l+

3
2

)
(11)

or, defining n= qmax+ l,

En = h̄ω

(
n+

3
2

)
(12)

We worked out the degeneracies in the earlier post as well, so that the
degeneracy of En is

d(n) =
1
2
(n+1)(n+2) (13)

To complete Shankar’s exercise, we need to work out the eigenfunctions
for n= 0 and n= 1. For n= 0, qmax = l = 0, so only c0 6= 0 and we have

v (ρ) = c0 (14)

u(ρ) = c0ρe
−ρ0ρ

2/2 (15)

ψ000 =
u

r
Y 0

0 (16)

= c0κe
−ρ0ρ

2/2Y 0
0 (17)

= c0

√
2µ3ω
4πh̄

e−µωr
2/2h̄ (18)

where in the fourth line we used
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κ=

√
2µE
h̄

=

√
2µ3

2 h̄ω

h̄
=

√
3µω
h̄

(19)

Y 0
0 =

1√
4π

(20)

Normalizing this requires that

∫ 2π

0

∫ π

0

∫
∞

0
ψ2

000r
2 sinθdr dθ dφ = c2

0
6µω
h̄

∫
∞

0
e−µωr

2/h̄r2dr (21)

= 1 (22)

This is a standard Gaussian integral and can be done using software or
tables so we get

c0 =

√
6

3

(µω
πh̄

)1/4
(23)

This gives a wave function of

ψ000 =
(µω
πh̄

)3/4
e−µωr

2/2h̄ (24)

which agrees with the earlier result.
For n= 1, the degeneracy is, from 13

d(1) = 3 (25)

The three possibilities are m = 0,±1 which are reflected in the three
spherical harmonics Y 0,±1

1 . The radial function is the same in all cases, and
is obtained from qmax = 0, l = 1. From 7, this gives

v (ρ) = c0 (26)

u(ρ) = c0ρ
2e−ρ0ρ

2/2 (27)

ψ11m =
u

r
Y m1 (28)

= c0κ
2re−ρ0ρ

2/2Y m1 (29)

= c0
5µω
h̄
re−µωr

2/2h̄Y m1 (30)

Again, we work out c0 by imposing normalization. For example
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ψ111 = c0
5µω
h̄
re−µωr

2/2h̄Y 1
1 (31)

=−c0
5µω
h̄
re−µωr

2/2h̄

√
3

8π
sinθeiφ (32)

The normalization integral is

∫ 2π

0

∫ π

0

∫
∞

0
ψ2

111r
2 sinθdr dθ dφ= c2

0

(
5µω
h̄

)2 3
8π

2π
∫ π

0

∫
∞

0
e−µωr

2/h̄r4 sin3 θdr dθ

(33)

= c2
0

75
8

√
πh̄

µω
= 1 (34)

c0 =
2
√

6
15

(µω
πh̄

)1/4
(35)

I used Maple to do the integrals. This gives a wave function of

ψ111 =−
√
µω

h̄

(µω
πh̄

)3/4
re−µωr

2/2h̄ sinθeiφ (36)

We can work out the other two wave functions the same way (I used
Maple, so I won’t go into the details):

ψ11−1 =

√
µω

h̄

(µω
πh̄

)3/4
re−µωr

2/2h̄ sinθe−iφ (37)

ψ110 =

√
2µω
h̄

(µω
πh̄

)3/4
re−µωr

2/2h̄ cosθ (38)

The ψ110 here is the same as ψ001 in our rectangular solution set. The
other two are linear combinations of ψ100 and ψ010 from our rectangular
set, which were (the suffixes in these 2 equations stand for x, y and z, and
not n, l and m):

ψ100 =

√
2mω
h̄

(mω
πh̄

)3/4
e−mωr

2/2h̄r sinθ cosφ (39)

ψ010 =

√
2mω
h̄

(mω
πh̄

)3/4
e−mωr

2/2h̄r sinθ sinφ (40)

We have
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ψ111 =
1√
2
(ψ100 + iψ010) (41)

ψ11−1 =
1√
2
(ψ100− iψ010) (42)
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In solving the Schrödinger equation for spherically symmetric potentials,
we found that we could reduce the problem to the equation[

− h̄
2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
UEl = EUEl (1)

where UEl (r) is related to the radial function by

REl (r) =
UEl (r)

r
(2)

We’ve looked at some properties of UEl (which Griffiths calls u) for the
hydrogen atom, but we can also try to extract some information about UEl
in the more general case where we don’t need to specify the potential V
precisely. Here we’ll examine what happens as r→ ∞.

By looking at 1, we can see that the centrifugal barrier term (the last term
in the square brackets) disappears for large r, so the behaviour is determined
by the nature of the potential V . We might think that, provided V −→

r→∞
0,

we can just ignore the potential and solve the reduced equation

d2UE
dr2 =−2µE

h̄2 UE (3)

where we’ve dropped the subscript l since we’re ignoring the centrifugal
barrier, which is the only term in which l appears. In fact, this assumption
proves to be faulty, in that the analysis is valid only if V → 1

ra where a > 1,
or in other words, if rV (r)→ 0. To see why, we need to consider two cases:
E > 0 (so that the particle can escape to infinity, since we’re assuming V ≤ 0
everywhere, and thus that E can take on any positive value); E < 0, so that
the particle is bound, and there are discrete energy levels. Shakar treats the

1
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E > 0 case so we’ll look at the E < 0 case. In this case, 3 has the general
solution

UE = Ae−κr+Beκr (4)
where

κ=

√
−2µE

h̄2 =

√
2µ |E|
h̄2 (5)

In the most general case, the constants A and B can be anything, subject
to the usual constraint that the overall wave function is normalized. How-
ever, in order for this normalization to occur, we can’t have the eκr term,
since that terms blows up as r→ ∞. As we’ve seen in the specific exam-
ple of the hydrogen atom, when we express the radial function as a series
in powers of r, the series must terminate after a finite number of terms in
order to keep the wave function finite, and it is this that results in the quan-
tized energy levels. Although a direct link between the series solution and
the form 4 isn’t obvious, the net effect is that, when the energy has one of
the allowed discrete values, the term Beκr disappears from the asymptotic
solution.

The form 4 is valid only under the restriction that rV (r)→ 0 for large r.
To see why, suppose we write

UE = f (r)e±κr (6)
for some function f . If 4 is valid, then f should tend to a constant for

large r. We can plug 6 into 1 and ignore the centrifugal term since we’re
looking only at large r. This gives

d2UE
dr2 −

2µ
h̄2 V UE−κ

2UE = 0 (7)

Calculating the derivative, we have

dUE
dr

=
(
f ′±κf

)
e±κr (8)

d2UE
dr2 =

(
f ′′±κf ′±κf ′+κ2f

)
e±κr (9)

=
(
f ′′±2κf ′+κ2f

)
e±κr (10)

Plugging this into 7 we get

f ′′±2κf ′− 2µ
h̄2 V f = 0 (11)

http://physicspages.com/pdf/Griffiths QM/Hydrogen atom - series.pdf
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At this point, Shankar assumes that f is slowly varying for large r, which
seems reasonable, so we can disregard the second derivative, to get

f ′ =∓ µ

κh̄2V f (12)

or

df

f
=∓ µ

κh̄2V (r) dr (13)

If we integrate this from some constant lower value r0 up to an arbitrary
large value r, we have

f (r) = f (r0)exp
[
∓ µ

κh̄2

∫ r

r0

V
(
r′
)
dr′
]

(14)

The point now is that if V (r)→ 1
ra with a > 1, then the integral of V will

be an inverse power of r, and thus will go to zero as r→ ∞. In that case,
the RHS of 14 does indeed tend to a constant as r→ ∞, and the asymptotic
solution 4 is valid. However, if V =−e2

r (the Coulomb potential, as found
in the hydrogen atom), then the integral of V is a logarithm and does not
tend to zero for large r. In this case, we get

f (r) = f (r0)exp
[
±µe

2

κh̄2 ln
r

r0

]
(15)

=
[
r
∓µe2/κh̄2

0 f (r0)
]
r±µe

2/κh̄2
(16)

The quantity in square brackets is a constant, but the last factor is a power
of r which, for the positive exponent, continues to grow as r→∞. Thus the
asymptotic solution 4 is valid only for potentials that fall off faster than 1

r
for large r.

PINGBACKS

Pingback: hydrogen atom: radial function at large r
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In solving the Schrödinger equation for spherically symmetric potentials,
we found that we could reduce the problem to the equation[

− h̄
2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2

]
UEl = EUEl (1)

where UEl (r) is related to the radial function by

REl (r) =
UEl (r)

r
(2)

We’ve looked at some properties of UEl (which Griffiths calls u) for the
hydrogen atom, but we can also try to extract some information about UEl
in the more general case where we don’t need to specify the potential V
precisely. Here we’ll examine what happens as r→ 0.

The quantity in the square brackets in 1 is an operator which will call
Dl (r):

Dl (r)≡−
h̄2

2µ
d2

dr2 +V (r)+
l (l+1) h̄2

2µr2 (3)

If we require DL to be hermitian, this results in the condition that, for
two functions U1 and U2,

U∗1
dU2

dr

∣∣∣∣∞
0
− U2

dU∗1
dr

∣∣∣∣∞
0
= 0 (4)

If we require UEl to be normalizable then it must satisfy either

UEl −→
r→∞

0 (5)

which is valid for bound states where E > V as r→ ∞, or
1
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UEl −→
r→∞

eikr (6)

where

k =

√
2µE
h̄2 (7)

ifE >V as r→∞. In the latter case, we’re using the definition of normal-
ization for an oscillating function. If UEl −→

r→∞
0 then 4 is 0 at the upper limit.

Using the normalization condition for oscillating functions, if UEl −→
r→∞

eikr

then 4 is also zero (on average) at the upper limit. Thus in order for Dl to
be Hermitian, we must have

U∗1
dU2

dr

∣∣∣∣
0
− U2

dU∗1
dr

∣∣∣∣
0
= 0 (8)

at the lower limit as well.
One way of satisfying this condition is if

UEl −→
r→0

c (9)

Because the actual radial function is given by 2, a value of c 6= 0 would
give

R∼ U

r
∼ c

r
(10)

Such a function is still square integrable because an integral over all space
introduces a factor of r2 in the volume element:∫

R2r2 sinθdr dθ dφ (11)

Thus the integrand is still finite at r= 0 so the integral itself can be finite.
The problem with c 6= 0 is that the Laplacian of 1

r gives a delta function:

∇
2 1
r
=−4πδ3 (r) (12)

Unless the potential V has a delta function at the origin (which would
be quite unusual), the ∇2 in the Schrödinger equation can’t be allowed to
generate a delta function there, so we must have c= 0.

So far, everything is true for any potential. If we now assume that V is
less singular than 1

r2 (that is, V −→
r→0

1
ra where a < 2), the centrifugal barrier

term in 1 will dominate as r→ 0, so for small r, 1 reduces to the differential
equation
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U ′′l '
l (l+1)
r2 Ul (13)

The E in the suffix of U has been dropped because the term involving
E in 1 is negligible compared to the centrifugal barrier for r → 0. This
equation has solutions

Ul ∼ rα (14)
Plugging this into 13 we get

α (α−1) = l (l+1) (15)
This is a quadratic equation in α which has the two solutions

α=−l, l+1 (16)
If we are to have UEl → 0 as r→ 0, then we must discard the solution

Ul ∼ r−l, so we have that

UEl ∼ rl+1 (17)
All of this works only if l 6= 0 since in the case where l= 0 (zero angular

momentum), there is no centrifugal barrier and we must look at the form of
the potential. Shankar notes that the problems he considers in his book are
such that 17 is also valid for l = 0.
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In the radial equation for the infinite spherical well, we found the solu-

tions to involve the spherical Bessel functions jl and the spherical Neumann
functions nl. We saw in the last post that the general solution was

u(r) = Arjl (kr)+Brnl (kr) (1)
We can verify this explicity for l = 1 and u(r) = rj1 (r) by using the

derivative formula

j1 (x) = −x1
x

d

dx

(
sinx
x

)
(2)

=
sinx
x2 −

cosx
x

(3)

rj1 (kr) =
sinkr
k2r

− coskr
k

(4)

The radial equation for l = 1 is

d2u

dr2 −
(

2
r2 −k

2
)
u= 0 (5)

So we get (using Maple)

d2u

dr2 =
1

k2r3

[
sinkr

(
2−k2r2)+ coskr

(
k3r3−2

)]
(6)

−
(

2
r2 −k

2
)
u = − 1

k2r3

(
k2r2−2

)
(kr coskr− sinkr) (7)

Thus the first term cancels the second and the equation is satisfied.
For l = 0, the equation actually has a simple solution. We could either

solve the original ODE in this case, or use the formula for j0. From the
latter, we get

1
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u(r) = Arj0 (kr) (8)

=
A

k
sinkr (9)

One of the properties of the spherical Neumann functions is that they all
become infinite as x→ 0, so they have to be excluded from our general so-
lution. From the continuity of the wave function at the boundary r = a, we
must have

u(a) = 0 (10)
sinka = 0 (11)

from which we get

k =
nπ

a
(12)

√
2mE
h̄

=
nπ

a
(13)

E =
n2π2h̄2

2ma2 (14)

This is the same set of energies as in the one dimensional infinite square
well.

For higher values of l, as before, we have to exclude the nl as they become
infinite, so the general solution is

u(r) = Arjl (kr) (15)

To find the energies requires finding the zeroes of jl, which has to be
done numerically, since the condition jl (kr) = 0 gives rise to transcenden-
tal equations (involving both r and a trigonometric function of r). Rough
solutions can be found graphically, but a more accurate solution can be
found using software such as Maple.

Maple has a BesselJZeros function which will find the zeroes of the
Bessel functions of the first kind Jl (that’s a capital J). As noted in the last
post, these are not the same as the spherical Bessel functions we are using
here. However, the two functions are related by a simple formula:

jl(x) =

√
π

2x
Jl+ 1

2
(x) (16)
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This means that the zeroes of j1(x) are also the zeroes of Jn+1/2(x). With
this proviso, the first few zeroes can be found by calling Maple’s BesselJZe-
roes(index, number), where ’index’ is l+ 1

2 and ’number’ is the ordinal
number of the required zero (first, second, third, etc). The first three zeroes
of J 3

2
are at ka= 4.493, 7.725, 10.904. If we denote the nth zero as z1n, then

ka = zn; E1n = h̄2z2
1n/2ma2. Thus the energies are E11 = 20.187 h̄2

2ma2 ;

E12 = 59.676 h̄2

2ma2 ; E13 = 118.897 h̄2

2ma2 . The same method can obviously
be used to find the energy levels for larger l, where the graphical method
becomes a lot more difficult due to the complexity of the equations.

The function for which we are finding the zeroes is

j1(x) =
sinx
x2 −

cosx
x

(17)

where x≡ ka. Thus the zeroes are at

sinx
x
− cosx = 0 (18)

tanx = x (19)

For large n, we are looking at large x, so the first term becomes neg-
ligible, and we are essentially looking for the zeroes of cosx, which oc-
cur at ka = (2n+1)π/2 = π(n+ 1

2). Thus the energies are approximately
E1n ≈ h̄2π2(n+1/2)2/2ma2.
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A variant on the infinite spherical well is the finite spherical well, with

potential

V (r) =

{
−V0 r < a

0 r > a
(1)

This problem is superficially like that of the finite square well in one
dimension, but there is a crucial difference, which is that the variable r starts
at 0 rather than −a, so we can’t use the argument that the wave function
is even or odd. However, we have worked out a similar one-dimensional
problem with the hybrid square well, and we can adapt that solution to this
problem.

The wave function must be found in the two regions separately, and then
boundary conditions used to determine the energies.

For r < a, the radial equation is (with l = 0)

− h̄2

2m
d2u

dr2 −V0u = Eu (2)

d2u

dr2 = −2m
h̄2 (V0 +E)u (3)

≡ −µ2u (4)

where

µ=

√
2m(V0 +E)

h̄2 (5)

This has the general solution
1
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u(r) = C sinµr+D cosµr (6)
As with the infinite square well, we note that the actual radial function

is u(r)/r, so we must eliminate the cosine term to keep the radial function
finite at r = 0. Therefore

u(r) = C sinµr (7)
For r > a, the equation is

d2u

dr2 = k2u (8)

where

k ≡
√
−2mE

h̄2 (9)

Note that for a bound state, E is negative, so k is real. This equation has
a general solution

u(r) = Aekr+Be−kr (10)

and in order for the function to remain finite at infinity, we must set A = 0
so we have:

u(r) =Be−kr (11)
Now for the boundary conditions. We have only one boundary, at r =

a, so as with the square well in the one-dimensional case, we require the
function and its first derivative to be continuous at the boundary. These
conditions give us

C sinµa = Be−ka (12)
µC cosµa = −kBe−ka (13)

Eliminating the exponential by dividing these two equations gives us a
condition similar to that in the square well case:

− µ
k
= tanµa (14)

We can look for solutions graphically. As before we introduce two vari-
ables

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 02.29.pdf
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z ≡ µa (15)

z0 ≡
a

h̄

√
2mV0 (16)

Then ka=
√
z2

0− z2 and the equation to solve is

tanz =
−1√

z2
0/z

2−1
(17)

The number of solutions depends on the value chosen for z0. The plot
shows the situation for z0 = 8.

The green curve is −1√
z2

0/z
2−1

and the red curve is tanz. In this case we can

see there are 3 intersections, so here there are 3 bound states. The precise
values of the energies can be found by solving the equation numerically
using software such as Maple’s fsolve command.

The asymptote of −1√
z2

0/z
2−1

is at z= z0 so since the first asymptote for the

tangent is at z = π/2, clearly if z0 < π/2 the two curves will not intersect.
The following plot shows the situation for z0 = 1:
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The condition z0 < π/2 translates into

V0a
2 <

h̄2π2

8m
(18)

Incidentally, the intersection at z = 0 isn’t a physical solution, since it
implies E =−V0, which in turn means d2u/dr2 = 0 and µ= 0, giving u=
Cr+D, R= u/r = C+D/r. To avoid infinity at the origin, we must have
B = 0, and to satisfy continuity of the wave function and its derivative at
r = a (see above) gives C =Be−ka for the wave function and −kBe−ka =
0 for its derivative. The latter condition means B = 0 and hence C = 0,
meaning the wave function is zero everywhere and not normalizable.
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When we considered the solution of the Schrödinger equation in three di-
mensions, we found that the general solution separated neatly into a product
of three functions, one for each variable in spherical coordinates.

The Schrödinger equation in three dimensions can be written as

− h̄2

2m
∇

2
Ψ+VΨ = ih̄

∂Ψ

∂t
(1)

If we assume that the potential V = V (x,y,z) is independent of time,
we can use the same separation of variables method that we used in one
dimension to split off the time part of the solution to get

Ψ(x,y,z, t) = ψ(x,y,z)e−iEt/h̄ (2)

where, as before, the energyE takes on a set of discrete values for the bound
states and a set of continuous values for the scattering, or unbound, states.
The spatial wave function ψ satisfies the time-independent Schrödinger
equation:

− h̄2

2m
∇

2ψ+V ψ = Eψ (3)

So far, the analysis is the same as that for one dimension.
Using separation of variables in the form ψ(r,θ,φ) =R(r)Y (θ,φ) we got

two separated equations:
1
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1
R

∂

∂r

(
r2∂R

∂r

)
− 2mr2

h̄2 (V −E) = l(l+1) (4)

1
Y sinθ

∂

∂θ

(
sinθ

∂Y

∂θ

)
+

1
Y sin2 θ

(
∂2Y

∂φ2

)
= −l(l+1) (5)

where l(l+1) is a constant term.
We found that the angular equation could be solved and that the solutions

were the spherical harmonics:

Y ml (θ,φ) =

[
2l+1

4π
(p−m)!
(p+m)!

]1/2

eimφPml (cosθ) (6)

They obey the normalization condition

ˆ 2π

0

ˆ π

0
(Y ml )∗Y m

′
l′ sinθdθdφ= δll′δmm′ (7)

Returning to the radial function we find that we can actually make one
further transformation of the equation that makes it a bit easier to solve in
some cases. We can rewrite the equation using total derivatives, since R(r)
depends only on r:

d

dr

(
r2dR

dr

)
− 2mr2

h̄2 (V −E)R= l(l+1)R (8)

We can now make the substitution

u(r) ≡ rR (9)

R =
u

r
(10)

dR

dr
= − u

r2 +
u′

r
(11)

=
1
r2 (ru

′−u) (12)

d

dr

(
r2dR

dr

)
= u′+ ru′′−u′ (13)

= ru′′ (14)

The radial equation then becomes
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r
d2u

dr2 −
2mr
h̄2 (V −E)u = l(l+1)

u

r
(15)

− h̄2

2m
d2u

dr2 +

(
V +

h̄2

2m
l(l+1)
r2

)
u = Eu (16)

In this form, the equation looks like the original one-dimensional Schrödinger
equation with the wave function given by u and the potential given by

Vrad = V +
h̄2

2m
l(l+1)
r2 (17)

The extra term h̄2

2m
l(l+1)
r2 is called the centrifugal term. Classically, the

force due to this term is:

Fcent = − d

dr

h̄2

2m
l(l+1)
r2 (18)

=
h̄2

m

l(l+1)
r3 (19)

which is a force that tends to repel the particle from the origin (the force
gets larger the closer to the origin we are). Thus it is analogous to the
pseudo-force known as the centrifugal force in classical physics.
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We’ve seen that we can define a curious function called the Dirac delta

function in one dimension. Here we examine how this can be extended to
three dimensions, and how this extension is relevant to electrostatics.

The easiest way to define a three-dimensional delta function is just to
take the product of three one-dimensional functions:

δ3(r)≡ δ(x)δ(y)δ(z) (1)

The integral of this function over any volume containing the origin is
again 1, and the integral of any function of r is a simple extension of the
one-dimensional case:

ˆ
f(r)δ3(r−a)d3r = f(a) (2)

In electrostatics, there is one situation where the delta function is needed
to explain an apparent inconsistency involving the divergence theorem. If
we have a point charge q at the origin, the electric field of that charge is

E =
1

4πε0

q

r2 r̂ (3)

According to the divergence theorem, the surface integral of the field is
equal to the volume integral of the divergence of that field:

˛
E ·da =

ˆ
V

∇ ·Ed3r (4)

where the integral on the left is over some closed surface, and that on the
right is over the volume enclosed by the surface. In electrostatics, the in-
tegral on the right evaluates to the total charge contained in the volume
divided by ε0

ˆ
V

∇ ·Ed3r =
q

ε0
(5)

1
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Now for the catch. If we calculate ∇ ·E (in spherical coordinates) for
the point charge, we get, since only the radial component of the field is
non-zero:

∇ ·E =
1
r2

∂

∂r

(
r2Er

)
(6)

=
q

4πε0

1
r2
∂(1)
∂r

(7)

At this stage, we might be tempted to say that the derivative is zero (since
the derivative of any constant is zero), but the problem is that at r = 0 we
also have a zero in the denominator, so we have the indeterminate fraction
of zero-over-zero. Thus although it is true that ∇ ·E = 0 everywhere except
the origin, we know from the divergence theorem that

´
V ∇ ·Ed3r = q

ε0
so

we must have

ˆ
V

∇ ·
(

1
r2 r̂
)
d3r = 4π (8)

and

∇ ·
(

1
r2 r̂
)
= 0 if r 6= 0 (9)

These two conditions can be satisfied if

∇ ·
(

1
r2 r̂
)
= 4πδ3(r) (10)

Another useful formula is

∇
1
r

= ∇
1√

x2 +y2 + z2
(11)

= − 1

(x2 +y2 + z2)
3/2

[xx̂+yŷ+ zẑ] (12)

= −rr̂
r3 (13)

= − r̂
r2 (14)

Therefore, the Laplacian of 1
r gives a delta function:

∇
2 1
r
=−4πδ3 (r) (15)
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Example. Suppose we have some distribution of charge that gives a poten-
tial function

V (r) = A
e−λr

r
(16)

We can find the field by taking the gradient

E = −∇V (17)

= A
e−λr

r2 (1+λr) r̂ (18)

We can now find the charge distribution by taking the divergence, re-
membering what we’ve discussed above. Applying the divergence formula
in spherical coordinates directly gives

ρ=−ε0A

(
λ2e−λr

r

)
(19)

but this formula is valid only for r 6= 0. To get the full charge distribution
we need to incorporate the delta function. Using the product rule for the
divergence (∇ · (fA) = f∇ ·A+A ·∇f ):

∇ ·E = ∇ ·
[

r̂
r2Ae

−λr (1+λr)
]

(20)

= Ae−λr (1+λr)∇ ·
(

1
r2 r̂
)
+

r̂
r2 ·∇

(
Ae−λr (1+λr)

)
(21)

= Ae−λr (1+λr)(4πδ3(r))−A
(
λ2e−λr

r

)
(22)

= 4πAδ3(r)−A
(
λ2e−λr

r

)
(23)

ρ = Aε0

[
4πδ3(r)−

λ2e−λr

r

]
(24)

In the fourth line, we used the fact that f(r)δ3(r) = f(0)δ3(r), since the
delta function is zero everywhere except at r = 0.

From this, we can find the total net charge by integrating ρ:
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Q =

ˆ
V
ρd3r (25)

= Aε0

ˆ
V

4πδ3(r)d3r−Aε0

ˆ
V

λ2e−λr

r
d3r (26)

= 4πAε0−4πAε0λ
2
ˆ

∞

0

e−λr

r
r2dr (27)

= 4πAε0

(
1− λ

2

λ2

)
(28)

= 0 (29)

That is, the delta function contributes a point charge of +4πAε0 at the
origin, and the second term contributes a continuous charge distribution
smeared out over all space that sums up to −4πAε0.
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The wave function for the hydrogen atom can be obtained by a series so-
lution of the differential equation, leading to the result (which I’ve rewritten
in Shankar’s notation, although my original post used Griffiths’s notation):

ψnlm (r,θ,φ) =
UEl (r)

r
Y ml (θ,φ) (1)

Here, we have

UEl = e−ρvEl (2)

vEl = ρl+1
∞

∑
k=0

Ckρ
k (3)

ρ =

√
−2mE
h̄2 r (4)

The energy levels of the hydrogen atom are

E =− me4

2h̄2n2
(5)

where n = 1,2,3, . . .. The coefficients Ck in 3 are given by a recursion
relation

Ck+1 =
−e2λ+2(k+ l+1)

(k+ l+2)(k+ l+1)− l (l+1)
Ck (6)

λ=

√
− 2m
h̄2E

(7)

Combining λ and E, the formula becomes, for a given n
1
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Ck+1 =
2(k+ l+1)−2n

(k+ l+2)(k+ l+1)− l (l+1)
Ck

The coefficient C0 which starts everything off is determined by normal-
ization.

As an example, we can find the wave function ψ210. In this case n = 2
and l = 1 so the first term in the recursion, with k = 0 gives k+ l+ 1 = 2
and C1 = 0. The full wave function is then

ψ210 =
1
r
ρ2e−ρC0Y

0
1 (8)

To evaluate ρ we use the energy for n= 2:

E2 =−me
4

8h̄2 (9)

This gives

ρ=

√
2m2e4

8h̄4 r =
me2

2h̄2 r =
r

2a0
(10)

where a0 is the Bohr radius

a0 ≡
h̄2

me2 (11)

Plugging everything into 8, using Y 0
1 =

√
3

4π cosθ, we have

ψ210 =

√
3

4π
C0

4a2
0
re−r/2a0 cosθ (12)

Normalizing gives the condition∫ 2π

0

∫ π

0

∫
∞

0
ψ2

210r
2 sinθdr dθ dφ= 1 (13)

Working out the integral (using software or tables) gives

3
2
a0C

2
0 = 1 (14)

C0 =

√
2

3a0
(15)

So the final wave function is
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ψ210 =
1√

32πa3
0

r

a0
e−r/2a0 cosθ (16)

which agrees with Shankar’s equation 13.1.27.
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When solving the 3-d Schrödinger equation for a spherically symmetric
potential, the radial function has the asymptotic form for large r, and for the
energy E < 0:

UEl (r) −→
r→∞

Ar±me
2/κh̄2

e−κr (1)

where

κ≡

√
2m |E|
h̄2 (2)

For the hydrogen atom, the function UEl is obtained from a series solu-
tion of the differential equation with the result

UEl = e−ρvEl (3)

vEl = ρl+1
∞

∑
k=0

Ckρ
k (4)

ρ =

√
−2mE
h̄2 r (5)

= κr (6)

To keep the wave function finite at large r, we require the series to termi-
nate, which leads to the quantized energy levels, given by

En =−
me4

2h̄2n2
(7)

The series in 4 terminates at a value of k = n− l− 1, so the function
vEl is a polynomial in ρ, and thus in r, of degree n. Since the actual radial
function is

1
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Rnl =
UEl
r

(8)

we have that Rnl is a polynomial of degree n− 1 in r multiplied by the
exponential e−ρ = e−κr. That is, for large r

Rnl ∼ rn−1e−κr (9)
To show that this is consistent with 1, we use 7 and 2.

n =

√
me4

2h̄2 |En|
(10)

=

√
me4

2h̄2

√
2m
h̄2

1
κ

(11)

=
me2

κh̄2 (12)

Comparing this with 1, we see that

rn = rme
2/κh̄2

(13)
so the condition is satisfied.
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The energy levels of hydrogen, when calculated from the Coulomb po-
tential alone (ignoring various perturbations) depend only on the principal
quantum number n according to

E =− 1
n2
µe4

2h̄2 (1)

The quantization arises entirely from the requirement that the radial func-
tion remain finite for large r, and makes no mention of the angular quantum
numbers l andm. Thus each energy level (each value of n) has a degeneracy
of n2, with 2l+1 degenerate states for each l. Each symmetry is associated
with the conservation of some dynamical quantity, with the degeneracy in
m due to conservation of angular momentum.

Shankar points out that, in classical mechanics, any potential with a 1
r de-

pendence conserves the Runge-Lenz vector, defined for the hydregen atom
potential as

n =
p× `̀̀
µ
− e

2

r
r (2)

where I’ve used µ for the electron mass to avoid confusion with the Lz

quantum number m.
Although it doesn’t make sense to talk about the orbit of the electron

in quantum mechanics, classically we can see that the conservation of n
implies that the orbit is closed. We can see this as follows.

First, using

`̀̀ = r×p (3)

we have
1
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n =
1
µ

p× (r×p)− e
2

r
r (4)

=
1
µ

r× (p ·p)−p(r ·p)− e
2

r
r (5)

=

(
p2

µ
− e

2

r

)
r−p(r ·p) (6)

In the second line, we used the vector identity

A× (B×C) = B(A ·C)−C(A ·B) (7)
Since we’re dealing with a bound state, r must always remain finite, so it

must have a maximum value. At this point dr
dt = 0, which means that there

is no radial motion, which in turn means that all motion at that point must
be perpendicular to r. In other words

p · rmax = 0 (8)
Also, from conservation of energy, we have

E =
p2

2µ
− e

2

r
(9)

so at rmax we have

p2 = 2µ
(
E+

e2

rmax

)
(10)

Plugging these into 6, we get

n =

(
2E+

2e2

rmax
− e2

rmax

)
rmax (11)

=

(
2E+

e2

rmax

)
rmax (12)

Exactly the same argument applies to the case where r is a minimum:
again dr

dt = 0 so r ·p = 0 and we end up with

n =

(
2E+

e2

rmin

)
rmin (13)

If n is conserved (constant), then it must be parallel or anti-parallel to
both rmax and rmin, and the latter two vectors must therefore always have
the same direction. In other words, the particle reaches its maximum (and
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minimum) distance always at the same point in its orbit, meaning that the
orbit is closed.

In a general (elliptical) orbit, rmax > rmin so e2

rmax
< e2

rmin
. Since E < 0

for a bound orbit, we therefore must have

2E+
e2

rmax
< 0 (14)

2E+
e2

rmin
> 0 (15)

This in turn implies that n is anti-parallel to rmax and parallel to rmin.
For a circular orbit, both r and p are constant, so both the kinetic and

potential energies are also constant. From the virial theorem, we know that,
for V ∝

1
r

〈T 〉=−1
2
〈V 〉 (16)

Thus

E = T +V (17)

=
V

2
(18)

= − e
2

2r
(19)

Thus from 12, we see that n = 0 for a circular orbit.
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Due to the position-momentum uncertainty principle, if we wish to de-
termine the location of a particle to within a distance ∆X , the momentum
of the photon used to detect the particle must satisfy

∆P∆X ≥ h̄

2
(1)

This relation is valid in non-relativistic quantum mechanics, where we
are using position eigenkets |X〉 which define a particle’s position exactly.
To do this, however, would require a photon of infinite energy. In relativistic
quantum theory, if the energy of the photon is large enough, it is possible
to convert the energy into mass by creating a particle-antiparticle pair. If
we’re trying to determine the location of an electron, then if the energy of
the bombarding photon is around twice the rest energy of an electron, this
pair creation process can occur. Thus for practical purposes, the maximum
photon energy that we can use to detect the electron is finite, which means
that the electron’s position can be determined only approximately.

To get an idea of the ’radius’ of an electron using these ideas (I put ’ra-
dius’ in quotes because an electron doesn’t have a rigid boundary in quan-
tum theory), we can proceed as follows. We’ll work only to orders of mag-
nitude, rather than precise quantities.

From the uncertaintly relation, the photon’s momentum is about

∆P ∼ h̄

∆X
(2)

For a photon, the relativistic energy is related to the momentum by

∆E = ∆Pc (3)
where c is the speed of light. Therefore, the energy of the incident photon

is
1
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∆E ∼ h̄c

∆X
(4)

We therefore want to restrict this energy to less than twice the electron’s
rest energy, so

∆E . 2mc2 (5)

which leads to

h̄c

∆X
. 2mc2 (6)

∆X &
h̄

2mc
∼ h̄

mc
(7)

The latter quantity is the Compton wavelength of the electron. [When we
originally encountered the Compton wavelength is Carroll & Ostlie’s book
on astrophysics, they defined it as h/mc, so Shankar’s Compton wavelength
is 1

2π times that of Carroll & Ostlie. However, since we’re working with
orders of magnitude, this won’t matter much.]

Thus the Compton wavelength can be taken as a rough size of the elec-
tron. We can write this as a fraction of the Bohr radius a0 using

a0 ≡
h̄2

me2 (8)

so that

h̄/mc

a0
=

h̄

mc

me2

h̄2 =
e2

h̄c
= α≈ 1

137
(9)

where α is the famous fine structure constant. Since a0 is roughly the
radius of a ground-state hydrogen atom, the electron is about 100 times
smaller than this.

We can use similar arguments to do some rough calculations on other
particles.

Example 1. For example, the pion has a range of about 10−15 m as a me-
diator of the nuclear force, so if we take this as ∆X then

2mπc
2 ∼ h̄c

∆X
(10)

The rest energy of an electron is about 0.5 MeV, so we can get an esti-
mate of the rest energy of the pion as follows.

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 06.11.pdf
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mπc
2

mec2 =
∆Xe

∆Xπ
=
a0/137
10−15 (11)

The Bohr radius is about

a0 ≈ 5×10−11 m (12)
so

mπc
2 ≈ (0.5 MeV)

5×10−11

137×10−15 = 182 MeV (13)

The actual rest mass of a pion is around 140 MeV, so this estimate isn’t
too bad.

Example 2. The de Broglie wavelength of a particle is defined by

λ=
h

p
(14)

For an electron with kinetic energy 200 eV, we need to find its momentum
to calculate λ. The relativistic kinetic energy is

K =mc2 (γ−1) (15)
where

γ =
1√

1−v2/c2
(16)

We have

γ =
K

mc2 +1 =
200 eV

0.5×106 eV
+1 = 1.0004 (17)

Thus the electron is travelling at a non-relativistic speed, so to a good
approximation we can use Newtonian formulas. The speed is

v = c

√
2K
mc2 = c

√
2(200)

0.5×106 ≈ 0.03c (18)

p=mv =
(
9.1×10−31)(0.03)

(
3×108)= 7.7×10−24 kg m s−1 (19)

λ=
h

p
=

6.6×10−34

7.7×10−24 ≈ 10−10 m (20)



VIRIAL THEOREM IN 3-D

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Reference: Griffiths, David J. (2005), Introduction to Quantum Mechan-

ics, 2nd Edition; Pearson Education - Problem 4.40.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Chapter 13, Exercise 13.1.5.
Post date: 18 Jan 2013.
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

We’ve seen the virial theorem in one dimension, which states:

2〈T 〉=
〈
x
dV

dx

〉
(1)

where T is the kinetic energy.
We can derive the 3-d version of the virial theorem using a similar method.

From the formula for the rate of change of an observable, we have,

d

dt
〈r ·p〉= i

h̄
〈[Ĥ,r ·p]〉 (2)

assuming that the potential is time-independent. (This is what Shankar
refers to as Ehrenfest’s theorem.) In three dimensions, we have

r ·p = −ih̄x ∂
∂x
− ih̄y ∂

∂y
− ih̄z ∂

∂z
(3)

Ĥ = T +V (4)

= − h̄2

2m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
+V (5)

Since each term in the commutator (except for the potential V ) contains
only one of the three spatial coordinates, any derivative term commutes with
any other derivative term that contains a different variable. The remaining
three non-zero commutators, one for each coordinate, can be calculated in
the same way as in one dimension. We are therefore left with a simple
generalization of the result for one dimension.

1
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i

h̄
[Ĥ,r ·p] =− h̄

2

m

(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
−x∂V

∂x
−y∂V

∂y
− z∂V

∂z
(6)

d

dt
〈r ·p〉= 2〈T 〉−〈r ·∇V 〉 (7)

For stationary states the time derivative is zero, so

2〈T 〉= 〈r ·∇V 〉 (8)

For hydrogen,

V =− e2

4πε0

1
r

(9)

so since r =
√
x2 +y2 + z2,

∂V

∂x
=

e2

4πε0

x

r3 (10)

∂V

∂y
=

e2

4πε0

y

r3 (11)

∂V

∂z
=

e2

4πε0

z

r3 (12)

r ·∇V =
e2

4πε0

x2 +y2 + z2

r3 (13)

=
e2

4πε0

1
r

(14)

= −V (15)

Thus we have

2〈T 〉=−〈V 〉
But we know that the total energy for the hydrogen atom in quantum

state n is En = 〈T 〉+ 〈V 〉= 〈T 〉−2〈T 〉=−〈T 〉 so we get 〈T 〉=−En and
〈V 〉= 2En.

For the 3-d harmonic oscillator

V =
1
2
mω2r2 (16)

so
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∇V = mω2r (17)
r ·∇V = mω2r2 (18)

= 2V (19)

The total energy in state n is En = 〈T 〉+ 〈V 〉= 1
2(2〈V 〉)+ 〈V 〉= 2〈V 〉

so 〈V 〉= En/2 = 〈T 〉.
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We saw in an earlier post that the radial part of the three-dimensional
Schrödinger equation for the hydrogen atom can be reduced to the differen-
tial equation

ρ
d2v

dρ2 +2(l+1−ρ)dv
dρ

+(ρ0−2l−2)v = 0 (1)

where

u(ρ) = ρl+1e−ρv(ρ) (2)
u(r) ≡ rR(r) (3)

ρ = κr (4)

ρ0 =
me2

2πε0h̄
2κ

(5)

κ =

√
−2mE
h̄

(6)

and R(r) is the radial part of the three-dimensional wave function.
Our task here is to solve 1 by using the same method as for the harmonic

oscillator. We propose a solution of the form

v(ρ) =
∞

∑
j=0

cjρ
j (7)

1
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and attempt to determine the coefficients cj . The two derivatives needed in
the equation are

dv

dρ
=

∞

∑
j=0

jcjρ
j−1 (8)

d2v

dρ2 =
∞

∑
j=0

j(j−1)cjρj−2 (9)

We now plug these back into 1 and fiddle with the summation indexes so
that every term in every sum is a multiple of ρj .

∞

∑
j=0

j(j−1)cjρj−1+2(l+1)
∞

∑
j=0

jcjρ
j−1−2

∞

∑
j=0

jcjρ
j+(ρ0−2l−2)

∞

∑
j=0

cjρ
j = 0

(10)
The two terms containing ρj−1 can be converted to sums over ρj by shift-

ing the summation index from j to j+1. This means that the sum becomes

∞

∑
j=−1

(j+1)jcj+1ρ
j+2(l+1)

∞

∑
j=−1

(j+1)cj+1ρ
j−2

∞

∑
j=0

jcjρ
j+(ρ0−2l−2)

∞

∑
j=0

cjρ
j = 0

(11)
Note that the term with j =−1 in the first two sums is zero because of the

(j+1) factor, so we can start the sum at j = 0. Since ρj is now a common
factor in all sums we can write the overall sum as

∞

∑
j=0

[(j+1)jcj+1 +2(l+1)(j+1)cj+1−2jcj+(ρ0−2l−2)cj ]ρj = 0

(12)
Because each power series is unique (a mathematical theorem), the only

way this sum can be valid for all values of ρ is if all the coefficients are zero.
That is

(j+1)jcj+1 +2(l+1)(j+1)cj+1−2jcj+(ρ0−2l−2)cj = 0 (13)

This can be rewritten as a recursion relation:

cj+1 =
2(j+ l+1)−ρ0

(j+1)(j+2(l+1))
cj (14)

[This equation is essentially the same as Shankar’s 13.1.11 if you replace
j→ k and use Gaussian units in ρ0.]
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The argument at this point is again similar to that for the harmonic oscil-
lator: we examine the behaviour for large j. In that case, we can ignore the
l+1 and ρ0 terms and write

cj+1 ∼
2j

j(j+1)
cj (15)

=
2

j+1
cj (16)

(We could also ignore the 1 in the denominator, but keeping it makes
the argument easier, as we will see.) If we took this as an exact recursion
relation, then starting with some initial constant c0, we get

c1 =
2
1
c0 (17)

c2 =
22

2×1
c0 (18)

c3 =
23

3×2×1
c0 (19)

cj =
2j

j!
c0 (20)

v(ρ) = c0

∞

∑
j=0

2j

j!
ρj (21)

= c0e
2ρ (22)

In the last line we used the series expansion for the exponential function.
Returning for a moment to the original definition of v(ρ), we get

u(ρ) = ρl+1e−ρv(ρ) (23)

= c0ρ
l+1eρ (24)

Thus the infinite series solution gives a value for u that increases expo-
nentially for large ρ, which isn’t normalizable, so isn’t a valid solution. The
only way to resolve this problem is again the same as in the harmonic os-
cillator case, which is to require the series to terminate after a finite number
of terms. That is, we must have, for some value of j,

2(j+ l+1) = ρ0 (25)
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That is, ρ0 must be an even integer, which we can define as 2n. Recall-
ing the definition of ρ0 from above, we therefore have the condition which
quantizes the energy levels in the hydrogen atom:

ρ0 =
me2

2πε0h̄
2κ

(26)

= 2n (27)

so

κ=
me2

4πε0h̄
2n

(28)

But κ=
√
−2mE
h̄ , so for the energy levels, we get

E =− 1
n2

me4

2h̄2(4πε0)2
(29)

This is the Bohr formula (although Bohr got the formula without using
the Schrödinger equation) for the energy levels of hydrogen. [Again, this
is equivalent to Shankar’s 13.1.16 if you use Gaussian units, so that the
(4πε0)

2 factor becomes 1.]
The degeneracy of each energy level is found by noting that for a given

value of n, any value of l is possible such that j+ l+ 1 = n. Since j is
just the index on the series coefficient cj , this means that l can be any value
from 0 up to n−1. For each l, the z component of angular momentum can
have any value from m=−l up to m=+l, which gives 2l+1 possibilities
for each l. Thus the degeneracy for energy state En is

d(n) =
n−1

∑
l=0

(2l+1) (30)

= 2
1
2
(n−1)n+n (31)

= n2 (32)

where we’ve used the formula

N

∑
l=1

l =
1
2
N (N +1) (33)
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Before leaving the series solution, we need to point out that the polyno-
mials produced by 14, with the constraint that ρ0 = 2n, are known mathe-
matically as the associated Laguerre polynomials. They can be written as
derivatives. First we define the ordinary Laguerre polynomials Lq:

Lq(x) = ex
dq

dxq
(e−xxq) (34)

Now the associated Laguerre polynomials Lpq−p which depend on two
parameters can be defined in terms of the ordinary Laguerre polynomials:

Lpq−p(x) = (−1)p
dp

dxp
(Lq(x)) (35)

A more useful formula for the associated Laguerre polynomials is

Lkn(x) =
n

∑
j=0

(−1)j(n+k)!
(n− j)!(k+ j)!j!

xj (36)

In terms of associated Laguerre polynomials, the solution of 1 is (apart
from normalization)

v(ρ) = L2l+1
n−l−1(2ρ) (37)

We can verify that this is the solution of 1 by direct substitution. First,
we plug in the correct indexes into 36:

L2l+1
n−l−1(2ρ) =

n−l−1

∑
j=0

(−1)j2j(n+ l)!
(n− l− j−1)!(2l+ j+1)!j!

ρj (38)

Now we define the coefficients in the polynomial and show that the re-
currence relation 14 is valid:

cj =
(−1)j2j(n+ l)!

(n− l− j−1)!(2l+ j+1)!j!
(39)

cj+1

cj
=
−2(n− l−1− j)
(j+1)(2l+ j+2)

(40)

This is the same recurrence relation provided ρ0 = 2n. However, this
isn’t enough to verify the solution since other definitions of cj would give
the same relation (for example, we could leave out the (n+ l)! factor in
the numerator and still get the same recurrence relation). To verify that the
polynomials are in fact solutions, we can work out their derivatives and plug
them into 1 directly.

We get

http://physicspages.com/pdf/Mathematics/Laguerre normalization.pdf
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n−l−1

∑
j=0

[
cj(j−1)jρj−1 +2(l+1−ρ)cjjρj−1 +2(n− l−1)cjρj

]
=

(41)
n−l−1

∑
j=0

[
cj(j−1)jρj−1 +2(l+1)cjjρj−1 +−2jcjρj+2(n− l−1)cjρj

]
(42)

We can now shift the summation index for the first two terms so that we
sum over j+1 instead of j. This results in

n−l−2

∑
j=−1

[cj+1j(j+1)+2(l+1)(j+1)cj+1]ρ
j+

n−l−1

∑
j=0

[−2jcj+2(n− l−1)cj ]ρj

(43)
In the first sum, the j = −1 term is zero due to the (j+1) factor, so we

can start both sums from j = 0. Thus for all values of j from 0 to n− l−2,
we can examine the coefficient of ρj :

cj+1(j+1)(j+2l+2)+ cj(−2j+2n−2l−2) (44)
Using the relation between cj and cj+1 above, we get

cj+1

cj
(j+1)(j+2l+2)+(−2j+2n−2l−2) = 2(j+ l+1−n)+2(−j+n− l−1)

(45)
= 0 (46)

For the one remaining term in the second sum where j = n− l− 1 we
note that this term is zero on its own, since (−j+n− l−1) = 0 in this case.
Thus the overall sum satisfies the original differential equation 1.

PINGBACKS

Pingback: Hydrogen atom - radial function examples
Pingback: Hydrogen atom - Laguerre polynomials example
Pingback: Hydrogen atom - mean radius of electron position
Pingback: Hydrogen atom - spectrum
Pingback: Earth-Sun system as a quantum atom
Pingback: Momentum space in 3-d
Pingback: Hydrogen atom - complete wave function
Pingback: Hydrogen atom: probability of finding electron inside the nu-

cleus

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.10.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.12.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.13.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.16.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.17.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.42.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.43.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.45.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.45.pdf


HYDROGEN ATOM - SERIES SOLUTION AND BOHR ENERGY LEVELS 7

Pingback: Hydrogen atom: radial functions for large l
Pingback: Fine structure constant
Pingback: Feynman-Hellmann theorem: hydrogen atom mean values
Pingback: Spontaneous emission rates for the hydrogen atom
Pingback: Spontaneous emission from n=3 to n=1 in hydrogen
Pingback: Hydrogen atom - radial equation
Pingback: radial function for large r
Pingback: hydrogen atom: a sample wave function
Pingback: hydrogen atom: radial function at large r
Pingback: runge lenz vector and closed orbits
Pingback: Energy levels of hydrogen: Bohr’s semi-classical derivation
Pingback: Boltzmann equation for energy levels in stellar atmospheres
Pingback: Klein-Gordon equation with Coulomb potential
Pingback: Klein-Gordon equation with Coulomb potential - Hypergeo-

metric functions

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.46.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 06.11.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 06.33.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 09.10-11.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 09.14.pdf
http://physicspages.com/pdf/Griffiths QM/Hydrogen atom - radial.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 12.6 Radial function for large r.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 13.01.03.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 13.01.04.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 13.02.01.pdf
http://physicspages.com/pdf/Carroll & Ostlie/Carroll & Ostlie 05.08.pdf
http://physicspages.com/pdf/Carroll & Ostlie/Carroll & Ostlie 08.05-06.pdf
http://physicspages.com/pdf/Greiner RQM/Greiner RQM 01.09.02 Klein-Gordon equation Coulomb potential.pdf
http://physicspages.com/pdf/Greiner RQM/Greiner RQM 01.09.02 Klein-Gordon equation Coulomb potential - numeric solution.pdf
http://physicspages.com/pdf/Greiner RQM/Greiner RQM 01.09.02 Klein-Gordon equation Coulomb potential - numeric solution.pdf


KINEMATICS OF SPIN: HILBERT SPACE FOR AN ELECTRON

Link to: physicspages home page.
To leave a comment or report an error, please use the auxiliary blog.
Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 14.3.
Post date: 30 Jul 2017
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

We’ve looked at quantum mechanical spin before but Shankar’s treatment
is quite different to that of Griffiths, so it’s worth another look. Shankar be-
gins with a thought experiment in which an electron is prepared (don’t ask
how!) in a state with zero momentum. Since its momentum is known pre-
cisely, its position is completely uncertain, so we can take the wave function
in position space to be a constant, independent of position. Since the an-
gular momentum operator L that we’ve met before is defined by replacing
classical quantities by quantum operators in the classical relation L = r×p,
an electron in this state must have L = 0. (We can see this also from the re-
lation Lz =−ih̄ ∂

∂φ which gives zero since the wave function is independent
of position.) However, if we measure the angular momentum along some
direction such as z of an electron in such a state, we find that it always has
the values ± h̄2 .

If we want to construct a wave function that describes the electron, we
therefore need to consider a function that has a component that is indepen-
dent of position, but which has eigenvalues ± h̄2 when operated on by some
operator with the properties of an angular momentum operator. The key
to finding such a wave function is given by our example of a vector wave
function. In that example, which considered the behaviour of a 2-d vector
valued function under an infinitesimal rotation, we found that there were
two effects of such a rotation. (It might help the reader to refer back to our
earlier discussion at this point.) First, the rotation carries a vector V from
its initial location A to some other point B. Second, the original vector V
also gets rotated through the infinitesimal angle so that it now points in a
slightly different direction, giving the rotated vector V′. The components of
V′ are linear combinations of the components of the unrotated vector V.

The first effect (that of rotating the function at A into the new positionB)
is generated by the original angular momentum operator L. This rotation

1
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depends on the position coordinates, since we must know the coordinates
of the two points A and B to calculate the effect of the rotation. The second
effect (that of rotating the vector so it points in a different direction) does
not depend on the positions; rather, it depends only on the angle of rotation.
As we showed in the previous example (working in 2-d), the second effect
is generated by a 2×2 matrix Sz. We need a matrix rather than just a single
number since we need to form a linear combination of the two components
of the original vector to get the rotated vector.

In the special case of the 2-d rotation, the combined effect of these two
types of rotation are given by

Jz = Lz+Sz (1)

=

[
Lz 0
0 Lz

]
+

[
0 −ih̄
ih̄ 0

]
(2)

The transformation then becomes[
V ′1
V ′2

]
=

[
I− iεz

h̄
Jz

][
V1
V2

]
(3)

This equation is valid for the rotation of a vector wave function with two
components through an angle εz about the z axis, in two dimensions.

At this point, we can generalize this result to 3-d, and also to a wave
function with some arbitrary number n components. The dimension of the
matrix is determined by n, so if we again consider a rotation about the z
axis by some angle ε, we get

 ψ′1
...
ψ′n

=

[
I− iεz

h̄
Jz

] ψ1
...
ψn

 (4)

=


 1 0 0

0 . . . 0
0 0 1

− iεz
h̄

 −ih̄
∂
∂φ 0 0

0 . . . 0
0 0 −ih̄ ∂

∂φ

− iεz
h̄
Sz


 ψ1

...
ψn


(5)

Here, the actual form of Sz is yet to be determined.
Although we worked out this for the special case of a rotation about the z

axis, we can generalize it to a rotation about an arbitrary axis, and thus get
a vector operator:

J = L+S (6)
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The orbital angular momentum operator L operates on spatial coordinates
(and is the same operator on each of the n components), while the spin
operator S mixes the n components of the wave function (and not on the
spatial coordinates). As these two operators operate on different quantities,
they commute, which leads to the commutation relation

[Ji,Jj ] = ih̄∑
k

εijkJk (7)

which separates into the same commutation relations for each component
of J so we have

[Li,Lj ] = ih̄∑
k

εijkLk (8)

[Si,Sj ] = ih̄∑
k

εijkSk (9)

Shankar worked out the matrices that satisfy 7 in his equations 12.5.22
to 12.5.24 so we won’t go through that again here. What’s important to
remember is that these matrices are block diagonal matrices consisting of a
series of blocks of dimension (2j+1)× (2j+1) for j = 0, 1

2 ,1,
3
2 , . . .. Each

of these blocks satisfies 7 on its own, so we can pick the block with the right
dimension to satisfy the experimental result that the electron has two spin
states: ± h̄2 . That is, for the electron, we have the number of components in
the wave n = 2, so we choose j = 1

2 for the spin operators, which turn out
to be the familiar ones we’ve met before:

Sx =
h̄

2

[
0 1
1 0

]
(10)

Sy =
h̄

2

[
0 −i
i 0

]
(11)

Sz =
h̄

2

[
1 0
0 −1

]
(12)

The complete wave function of an electron is therefore the product of a
function of position with a two-component vector, called a spinor, which
represents the spin state. That is, we can write, in the position-spin basis

|ψ〉= ψ+ (r)
[

1
0

]
+ψ− (r)

[
0
1

]
(13)

In terms of Hilbert space, the spatial components are essentially the infinite-
dimensional vectors ψ+ and ψ− which have values defined at each point in
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3-d space, while the spinor components are 2-d vectors. Thus the complete
Hilbert space Ve of an electron is defined as

Ve = V0⊗Vs (14)
where V0 is the infinite-dimensional spatial component and Vs is the 2-d

spinor component. In terms of this space, we can create a unit operator as a
sum over a complete set of states:

1 = ∑
sz

∫
|xyzsz〉〈xyzsz|dx dy dz (15)

The normalization condition for a wave function thus becomes

1 = 〈ψ |ψ 〉= ∑
sz

∫
〈ψ |xyzsz 〉〈xyzsz |ψ 〉dx dy dz (16)

=
∫ (
|ψ+|2 + |ψ−|2

)
dx dy dz (17)

where we get the last line by substituting 13. The term∫
|ψ+|2 dx dy dz (18)

represents the probability that the electron will be found in the spin state
+ h̄

2 anywhere in space.
The important point to remember from this derivation is that spin is an

essentially new phenomenon with no classical analogue. Thus the wave
function for a particle that has spin is necessarily an expanded Hilbert space
where the extra subspace Vs is introduced to allow the extra spin states. The
two spaces V0 and Vs are completely separate from each other, with each
possessing its own operators, eigenstates and eigenvalues. Of course, it’s
possible to construct operators that are composed of other operators from
both spaces, but we’ll leave that until later.

One final point is worth making. The above derivation of the Hilbert
space for an electron relied on the experimental result that the electron has
exactly two spin states, thus leading to the 2× 2 spin matrices. This is the
best we can do in non-relativistic quantum theory. Shankar promises us that
when we study the Dirac equation, which arose out of the need to introduce
special relativity, the two spin states of the electron can actually be derived.
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The eigenvectors of the spin 1
2 matrix in an arbitrary direction are given

by

|n̂+〉=
[

cos θ2e
−iφ/2

sin θ
2e
iφ/2

]
(1)

|n̂−〉=
[
−sin θ

2e
−iφ/2

cos θ2e
iφ/2

]
(2)

where the direction vector is given by

n̂ = sinθ cosφx̂+ sinθ sinφŷ+ cosθẑ (3)

The corresponding spin operator is given by the matrix

n̂ ·S =
h̄

2

[
cosθ sinθe−iφ

sinθeiφ −cosθ

]
(4)

Any 2-component normalized spinor is an eigenvector of such a matrix.
To see this, suppose we have an arbitrary spinor written as

|χ〉= ρ1e
iφ1

[
1
0

]
+ρ2e

iφ2

[
0
1

]
(5)

=

[
ρ1e

iφ1

ρ2e
iφ2

]
(6)

where ρ1,2 and φ1,2 are arbitrary real numbers (so that the coefficients on
the RHS are arbitrary complex numbers). From normalization we have

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.30.pdf


EVERY SPIN-1/2 SPINOR IS AN EIGENKET OF SOME SPIN OPERATOR 2

〈χ |χ〉= 1 =
[
ρ1e
−iφ1 ρ2e

−iφ2
][ ρ1e

iφ1

ρ2e
iφ2

]
= ρ2

1 +ρ
2
2 (7)

Thus we can write ρ1 and ρ2 as the sine and cosine of some angle, which
we’ll call θ2 , giving

|χ〉=
[

cos θ2e
iφ1

sin θ
2e
iφ2

]
(8)

We can put this in the form 1 as follows. Since an overall phase doesn’t
affect the physics of the spinor, we can write

|χ〉= eiα
[

cos θ2e
−iφ/2

sin θ
2e
iφ/2

]
=

[
cos θ2e

iφ1

sin θ
2e
iφ2

]
(9)

We have the conditions

φ1 = α− φ
2

(10)

φ2 = α+
φ

2
(11)

Solving, we get

α =
φ1 +φ2

2
(12)

φ = φ2−φ1 (13)

giving

|χ〉= ei(φ1+φ2)/2
[

cos θ2e
−i(φ2−φ1)/2

sin θ
2e
i(φ2−φ1)/2

]
(14)

Thus |χ〉 as given by 6 is an eigenvector of the operator 4, where

n̂ = sinθ cos(φ2−φ1) x̂+ sinθ sin(φ2−φ1) ŷ+ cosθẑ (15)
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The three components of the spin operator S for spin 1
2 can be expressed

in terms of the Pauli matrices

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
(1)

as

Si =
h̄

2
σi (2)

As the trace of a matrix is the sum of its diagonal elements, it’s obvious
from their definitions that the σi are traceless, but for some reason Shankar
wants us to show this by a roundabout method.

We can show by direct calculation that the Pauli matrices anticommute
with each other. For example

σxσy =

[
0 1
1 0

][
0 −i
i 0

]
(3)

=

[
i 0
0 −i

]
(4)

=−
[
−i 0
0 i

]
(5)

=−
[

0 −i
i 0

][
0 1
1 0

]
(6)

=−σyσx (7)

In general, we have, for i 6= j:
1
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[σi,σj ]+ = 0 (8)
σiσj = −σjσi (9)

Also, by direct calculation (or by using the commutation relations for Si)
we can show that

[σx,σy] = σxσy−σyσx (10)
= 2σxσy (11)

= 2
[
i 0
0 −i

]
(12)

= 2iσz (13)

This gives the relation

σxσy = iσz (14)

and also for cyclic permutations of x, y and z. Also by direct calculation
we can see that

σ2
i = I (15)

We can write this more generally as

σiσj = δijI+ i∑
k

εijkσk (16)

where εijk is the Levi-Civita antisymmetric tensor.
Returning to the trace, we can use the theorem for the trace of a product:

Tr(AB) = Tr(BA) (17)

Applying this to 9 we have

Tr(σxσy) = Tr(σyσx) =−Tr(σyσx) (18)

Any quantity equal to its negative must be zero, so

Tr(σxσy) = 0 (19)

Thus from 14 we get

Trσz = 0 (20)

We can use the same argument for σx and σy by cyclic permutation.
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The three components of the spin operator S for spin 1
2 can be expressed

in terms of the Pauli matrices

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
(1)

We can derive an identity involving the Pauli matrices:

(A ·σσσ)(B ·σσσ) = (A ·B)I+ i(A×B) ·σσσ (2)

One way of proving this is to use the commutation relations for the Pauli
matrices. We have

[σi,σj ]+ = 2δijI (3)

[σi,σj ] = 2i∑
k

εijkσk (4)

where εijk is the Levi-Civita antisymmetric tensor.
We therefore have

σiσj =
1
2
(
[σi,σj ]++[σi,σj ]

)
(5)

= δijI+ i∑
k

εijkσk (6)

Using the summation convention where repeated indices are summed
from 1 to 3 (that is, over x, y and z):

1
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(A ·σσσ)(B ·σσσ) = AiσiBjσj (7)
= AiBjσiσj (8)

= AiBj
(
δijI+ iεijkσk

)
(9)

= AiBiI+ iεijkAiBjσk (10)

= (A ·B)I+ i(A×B) ·σσσ (11)

where the last term on the RHS follows from writing the vector cross
product in terms of εijk. [Note that in the second line, we’ve assumed that
B commutes with σσσ.]

Another way of deriving this result is as follows. First, we add the 2×2
identity matrix I to the set of Pauli matrices, calling it σ0 ≡ I . Then, be-
cause we have four independent matrices (Shankar shows they are linearly
independent in his equations 14.3.40-41) each with 4 entries, we can write
any 2×2 complex matrix as a linear combination of the σα (where a Greek
subscript ranges from 0 to 3). That is, for a general 2×2 matrix M

M = ∑
α

mασα (12)

From the trace identities

Tr
(
σασβ

)
= 2δαβ (13)

we can find mα by right-multiplying by σβ and taking the trace:

Tr
(
Mσβ

)
= ∑

α

mαTr
(
σασβ

)
(14)

= 2∑
α

mαδαβ (15)

= 2mβ (16)

Thus

mα =
1
2

Tr(Mσα) (17)

Returning to 2, we can identify (again using the summation convention):

M = (A ·σσσ)(B ·σσσ) (18)
= AiσiBjσj (19)
= mασα (20)

For α= 0 we have
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m0 =
1
2

Tr(Mσ0) (21)

=
1
2

Tr(M) (22)

=
1
2
AiBjTr(σiσj) (23)

=
1
2
AiBj (2δij) (24)

= AiBi (25)
= A ·B (26)

where we used 13 to get the fourth line. This gives us the first term on
the RHS of 2.

For the other three σi coefficients, we can use a similar argument. Con-
sider σx.

mx =
1
2

Tr(Mσx) (27)

=
1
2
AiBjTr(σiσjσx) (28)

From 6 we see that σiσj can always be written as a single Pauli matrix
σα. Thus the product of 3 Pauli matrices σiσjσx can be reduced to a product
of 2: ±σασx (the plus or minus sign is determined by the order in which
we multiply the two matrices σi and σj). However, from 13, we see that the
trace of σασx is non-zero only if α= x. The only way this can happen is if
either i= y and j = z or i= z and j = y. Therefore we have

mx =
1
2
AyBzTr(σyσzσx)+

1
2
AzByTr(σzσyσx) (29)

(Repeated indices are not summed here!) From 3 we have

σyσz =−σzσy = iσx (30)
Thus

Tr(σyσzσx) = iTr
(
σ2
x

)
= 2i

Therefore

mx = i(AyBz−AzBy) (31)
and mx is the x component of i(A×B). A similar argument gives my

and mz, so putting everything together we again arrive at 2.
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Hi!
I’d like to ask something in this page.
How do we go from eq. 22 to eq. 23? I.e., how do we know that when

we evaluate Tr(A_i s_i B_j s_j) we can take A_i and B_j out of the trace
operation?

Thank you so much!
================
A and B are ordinary vectors whose components are just numbers, not

matrices, so they can be taken outside the trace operation.
===============
Danyel Cavazos
Nov 13, 2017 5:15 PM
That’s what I imagined, but then that means that we should beware of

using this identity when A or B is replaced by vector operators like L or S,
right?

=============
You might be able to prove it for the case where A and B are matrices,

since any 2× 2 matrix can be written as a linear combination of the Pauli
matrices and the unit matrix, but it looks like it would get quite messy. I
guess we can just use the first proof above which seems to work in general.
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Any 2×2 matrix can be written as a linear combination of the three Pauli
matrices and the unit matrix. That is, for an arbitrary matrix M we have

M = ∑
α

mασα (1)

where the coefficients are found from

mα =
1
2

Tr(Mσα) (2)

We can write this out explicitly as follows

M =

[
α β
γ δ

]
(3)

We then get
1
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m0 =
1
2

Tr(Mσ0) (4)

=
1
2

Tr(MI) (5)

=
1
2

Tr(M) (6)

=
α+ δ

2
(7)

m1 =
1
2

Tr(Mσ1) (8)

=
1
2

Tr
([

α β
γ δ

][
0 1
1 0

])
(9)

=
1
2

Tr
([

β α
δ γ

])
(10)

=
β+γ

2
(11)

m2 =
1
2

Tr(Mσ2) (12)

=
1
2

Tr
([

α β
γ δ

][
0 −i
i 0

])
(13)

=
1
2

Tr
([

iβ −iα
iδ −iγ

])
(14)

= i
β−γ

2
(15)

m3 =
1
2

Tr(Mσ3) (16)

=
1
2

Tr
([

α β
γ δ

][
1 0
0 −1

])
(17)

=
1
2

Tr
([

α −β
γ −δ

])
(18)

=
α− δ

2
(19)

Thus, in more conventional notation

M =
1
2
[(α+ δ)I+(β+γ)σx+ i(β−γ)σy+(α− δ)σz] (20)
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Just as orbital angular momentum operator L is the generator of rotations,
the spin operator S can also be used as the generator of rotations in spin
space by means of the unitary operator

U [R (θθθ)] = e−iθθθ·S/h̄ = e−iθθθ·σσσ/2 (1)

where we’ve written the operator in terms of the Pauli matrices σσσ, the
components of which are

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
(2)

For a spin pointing the direction n̂, where n̂ is defined in terms of the
spherical angles as

n̂= sinθ cosφx̂+ sinθ sinφŷ+ cosθẑ (3)

the corresponding eigenvectors of the operator n̂ ·S are

|n̂+〉=
[

cos θ2e
−iφ/2

sin θ
2e
iφ/2

]
(4)

|n̂−〉=
[
−sin θ

2e
−iφ/2

cos θ2e
iφ/2

]
(5)

If we start with spin pointing in the +z direction, then it is in the state∣∣∣∣sz = h̄

2

〉
=
h̄

2

[
1
0

]
(6)

then it should be possible to rotate this state into the general state 4 by
applying the correct rotation operators in sequence.
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Suppose we first rotate the state by an angle θ about the y axis. This
rotates the axis of spin so that it lies in the xz plane in the first quadrant
(that is, positive x and positive z), making an angle θ with the z axis. We
can now rotate again by an angle φ about the (original) z axis. The axis of
spin now points in the direction given by n̂ in 3. That is, it should be true
that

|n̂+〉= U [R (φẑ)]U [R (θŷ)]
[

1
0

]
(7)

In order to verify this by direct calculation, we need an explicit form for
U . This is derived by Shankar in his equation 14.3.44 so we won’t repeat
the derivation here. Basically, it uses the fact that (n̂ ·σσσ)2 = I and expands
the exponential 1 as a power series, with the result

U [R (θθθ)] = cos
θ

2
I− isin

θ

2
(
θ̂ ·σσσ

)
(8)

We can use this formula to do the calculation.

U [R (θŷ)]
[

1
0

]
=

[
cos

θ

2
I− isin

θ

2
σy

][
1
0

]
(9)

=

[
cos θ2

0

]
− isin

θ

2

[
0 −i
i 0

][
1
0

]
(10)

=

[
cos θ2
sin θ

2

]
(11)

Applying the second rotation we get

U [R (φẑ)]
[

cos θ2
sin θ

2

]
=

[
cos

φ

2
I− isin

φ

2
σz

][
cos θ2
sin θ

2

]
(12)

=

[
cos θ2 cos φ2
sin θ

2 cos φ2

]
− isin

φ

2

[
1 0
0 −1

][
cos θ2
sin θ

2

]
(13)

=

 cos θ2
(

cos φ2 − isin φ
2

)
sin θ

2

(
cos φ2 + isin φ

2

)  (14)

=

[
cos θ2e

−iφ/2

sin θ
2e
iφ/2

]
(15)

which agrees with 4.
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Here are a few examples of calculations using the Pauli matrices σσσ, the
components of which are

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
(1)

From Shankar’s equation 14.3.44, we know that the unitary rotation op-
erator can be written as

U [R (θθθ)] = e−iθθθ·σσσ/2 (2)

= cos
θ

2
I− isin

θ

2
(
θ̂ ·σσσ

)
(3)

Example 1. Find (I+ iσx)
1/2. As usual, the square root of a matrix M is

the matrix M1/2 such that M1/2M1/2 =M . To solve this, we would like
to express I+ iσx in the form 2, from which we can find the square root by
simply dividing the exponent by 2. We first express it in the form 3, from
which we see that we need an angle θ such that

cos
θ

2
=−sin

θ

2
(4)

This is valid if

θ =
3π
2

(5)

cos
θ

2
= −

√
2

2
=−sin

θ

2
(6)

This gives
1
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U = −
√

2
2

(I+ iσx) (7)

I+ iσx = −
√

2eiσx3π/4 (8)

=
√

2eiπeiσx3π/4 (9)

Therefore

(I+ iσx)
1/2 = 21/4eiπ/2eiσx3π/8 (10)

= 21/4i

(
cos

3π
8
I− isin

3π
8
σx

)
(11)

We can check this by evaluating the cos and sin using the half-angle
formulas

sin
θ

2
=

√
1− cosθ

2
(12)

cos
θ

2
=

√
1+ cosθ

2
(13)

We therefore have

sin
3π
8

=
1
2

√
2+
√

2 (14)

cos
3π
8

=
1
2

√
2−
√

2 (15)

Plugging these into 11 we have

(I+ iσx)
1/2 =

1
23/4

[
i
√

2−
√

2
√

2+
√

2√
2+
√

2 i
√

2−
√

2

]
(16)

Squaring this gives

I+ iσx =
1

23/2

 −(2−
√

2
)
+2+

√
2 2i

√
2−
√

2
√

2+
√

2

2i
√

2−
√

2
√

2+
√

2 2+
√

2−
(

2−
√

2
)  (17)

=
1

2
√

2

[
2
√

2 2
√

2i
2
√

2i 2
√

2

]
(18)

=

[
1 i
i 1

]
(19)
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which is correct.
[Incidentally, 11 is different from Shankar’s answer in the back of the

book, but both are correct as can be verified by squaring Shankar’s answer.
Unlike ordinary complex numbers, a 2× 2 matrix can have more than 2
square roots.]

Example 2. Find (2I+σx)
−1. In principle, we could solve this the same

way as in Example 1, but this time we would need to find θ such that cos θ2 =
−2sin θ

2 . This doesn’t give a ’nice’ value of θ (that is, a value that is some
nice multiple of π). It seems easier to just calculate the matrix and then take
its inverse using the standard formula for the inverse of a 2×2 matrix. We
can then convert this back to a linear combination of Pauli matrices using
the formula for a matrix M :

M =

[
α β
γ δ

]
(20)

=
1
2
[(α+ δ)I+(β+γ)σx+ i(β−γ)σy+(α− δ)σz] (21)

We get

2I+σx =
[

2 1
1 2

]
(22)

The inverse of a matrix is given by[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
(23)

so

(2I+σx)
−1 =

[ 2
3 −1

3
−1

3
2
3

]
(24)

Using 21 we find

(2I+σx)
−1 =

1
6
(4I−2σx) =

1
3
(2I−σx) (25)

We can check this by multiplication

1
3
(2I−σx)(2I+σx) =

1
3
(
4I−σ2

x

)
(26)

=
1
3
(4I− I) (27)

= I (28)
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where we used σ2
x = I to get the second line.

Example 3. Find σ−1
x . Since σ2

x = I , σ−1
x = σx.
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Here are a couple of theorems concerning the Pauli matricesσσσ, the com-
ponents of which are

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
(1)

Both theorems arise from the fact that an arbitrary 2× 2 matrix can be
written as a linear combination of the Pauli matrices and the unit matrix:

M =

[
α β
γ δ

]
(2)

=
1
2
[(α+ δ)I+(β+γ)σx+ i(β−γ)σy+(α− δ)σz] (3)

We’ll also need the commutation and anticommutationsrelations

[σi,σj ]+ = 2δijI (4)

[σi,σj ] = 2i∑
k

εijkσk (5)

Theorem 1. Any matrix that commutes with σσσ (that is, it commutes with all
3 components of σσσ) is a multiple of the unit matrix.

Proof. First, since I commutes with every matrix, it commutes with σσσ.
Now, from 5, any one of the Pauli matrices does not commute with the
other two Pauli matrices, so M cannot have any component that is one of
the Pauli matrices. From 3, this means that

1
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β+γ = 0 (6)
β−γ = 0 (7)
α− δ = 0 (8)

The first two conditions say that β = γ = −γ which implies β = γ = 0
and the last condition gives us α = δ, so M must be a multiple of the unit
matrix. �

Theorem 2. There is no matrix (apart from the zero matrix) that anticom-
mutes with all 3 Pauli matrices.

Proof. Since I doesn’t anticommute with any matrix, M cannot contain a
component with I . From 4, the anticommutator of two Pauli matrices is
zero only if the two matrices are different. Therefore, if M contains a non-
zero component for any one, say σx, of the Pauli matrices then M will not
anticommute with σx. The same argument applies to the other two Pauli
matrices, so there is no M that anticommutes with all 3 Pauli matrices. �
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In classical electrodynamics, the torque on a magnetic moment µµµ in a
constant magnetic field B is given by (using Shankar’s notation):

T = µµµ×B (1)

We can relate the magnetic moment to the angular momentum of a (clas-
sically) spinning charged object by introducing the gyromagnetic ratio

γ ≡ µ

l
(2)

If we apply this to a single particle of charge q and mass m travelling at
constant speed v around a circular orbit, then its angular momentum is

l =mvr (3)

The magnetic moment can be calculated by taking the charge q to be
smeared out over the circumference of the circle, giving a linear charge
density of

λ=
q

2πr
(4)

Since the loop is spinning with speed v, the current (rate at which charge
passed a fixed point on the circle) is

I = λv =
q

2πr
rω =

q

2π
ω (5)

where

ω =
2π
P

=
2πv
2πr

=
v

r
(6)

1
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is the angular frequency (P is the period, or time it takes for one complete
orbit).

The magnetic moment is defined as

µµµ≡ I

c
a (7)

where a is the area of the loop, whose direction is determined by using
the right-hand rule on the direction of the current around the loop. Thus
if the current is travelling counterclockwise when viewed from above, a
points upwards. (The speed of light c enters because Shankar is using CGS
units.) The magnetic moment here is then

µµµ =
qv

2πr
πr2

c
â (8)

=
( q

2mc

)
(mvrâ) (9)

=
( q

2mc

)
l (10)

where l is the angular momentum vector. In this case, the gyromagnetic
ratio is

γ =
q

2mc
(11)

In this case, the torque 1 is given by

T = γl×B (12)
The interaction energy (between the angular momentum and magnetic

field) is given by

Hint =
∫
T (θ)dθ (13)

where the torque is given as a function of the angle between µµµ and B in
1, so that

T = µB sinθ (14)
Doing the integral (neglecting the constant of integration) we have

Hint =−µB cosθ =−µµµ ·B (15)
Hint is minimized when µµµ and B are parallel, so the torque’s effect is

to try to bring these two vectors into alignment. This assumes that the
magnetic moment doesn’t actually involve any angular momentum, which
obviously isn’t the case with our rotating loop example above. In that case,
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the torque causes a precession about the direction of B, which we can see
as follows.

The angular version of Newton’s law, relating torque and angular mo-
mentum, is

T =
dl
dt

= γl×B (16)

Since the cross product is perpendicular to both its constituent vectors,
the change in l is always perpendicular to l itself. The effect can be seen by
looking at Shankar’s Figure 14.2 (too much effort to reproduce that here),
in which we can see that

∆l = γ (l×B)∆t (17)
∆l = γlB sinθ∆t (18)

where θ is the angle between l and B, and ∆l is tangent to the circle
of radius l sinθ that lies in the plane perpendicular to B. The net effect is
that l precesses about the direction of B, so that the magnitude of angular
momentum remains constant, but its direction changes at a constant rate.
The change in azimuthal angle ∆φ in time ∆t is

∆φ=
−∆l

l sinθ
=−γB∆t (19)

where the minus sign is because the angular momentum precesses clock-
wise (as seen from above) around B. The angular frequency of precession
is therefore

ω0 =
∆φ

∆t
=−γB (20)

If we include the direction of the axis of precession, which is parallel to
B, then

ωωω0 =−γB (21)
We can see that these results transfer over to quantum mechanics if we

use Ehrenfest’s theorem. For an interaction hamiltonian 15, we can write it
as

H =−γL ·B (22)
We want to find the average of the angular momentum over time, so we

use Ehrenfest’s theorem to write

d〈L〉
dt

=− i
h̄
〈[L,H]〉 (23)

http://physicspages.com/pdf/Shankar/Shankar Exercises 06.01.01 Classical limit.pdf
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We can work out the RHS using the commutators of angular momentum:

[Li,Lj ] = ih̄∑
k

εijkLk (24)

As we’re dealing with a vector operator, we can work out each component
separately. For Lx we get, assuming that B is independent of position (and
thus commutes with L):

− i
h̄
[Lx,H] =

iγ

h̄
[Lx,LxBx+LyBy+LzBz] (25)

=
iγ

h̄
([Lx,Lx]Bx+[Lx,Ly]By+[Lx,Lz]Bz) (26)

=−γ (0+LzBy−LyBz) (27)

= γ (L×B)x (28)

= (µµµ×B)x (29)

The other two components work out similarly, so we have

− i

h̄
〈[L,H]〉= µµµ×B (30)

As B doesn’t depend on position, when we take the average over space
we get

d〈L〉
dt

= 〈µµµ〉×B (31)

Thus the mean of the quantum angular momentum also precessed about
B. Since the only assumption we made was that B was independent of po-
sition, and all that was used in the derivation was the commutation relations
of angular momentum, the result is also valid for spin angular momentum,
and time-varying magnetic fields, provided they are constant over all space.
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In classical electromagnetism, a magnetic moment precessesif placed in
a constant magnetic field whose direction is not parallel to that of the mag-
netic moment. For a magnetic moment µµµ in a constant field B0, the preces-
sion has a frequency of

ωωω0 =−γB0 (1)
where γ is the gyromagnetic ratio.
Now suppose we view this precession in a frame of reference that is ro-

tating about the same axis as ωωω0, but with a frequency ωωω that may not be the
same as ωωω0. The precession frequency will now appear to be

ωωωr = ωωω0−ωωω (2)
[Although this is a vector equation, all vectors in it have the same direc-

tion.] Comparing this with 1, we see that, in the rotating frame, the effective
magnetic field is

Br =−
1
γ
ωωωr = B0 +

ω

γ
(3)

Now suppose the magnetic field is taken to be constant in the z direc-
tion with component B0ẑ, but with a small oscillating component in the xy
plane, so that the total field is

B =B cosωtx̂−B sinωtŷ+B0ẑ (4)
where B�B0.
This is a magnetic field that precesses about the z axis, so it’s similar to

the case we treated earlier, although in the earlier post we were concerned
only with the behaviour of an electron in such a field, so we were interested
in the quantum mechanics. The present treatment is purely classical.

1
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If we place a magnetic moment in this field so that at t = 0 it’s pointing
in the +z direction, we want to find how the magnetic moment varies with
time. To analyze the problem, it’s easiest to transform to a rotating frame
with frequency ωωω = −ωẑ (minus, because it’s precessing in a clockwise
direction). Since the frame is rotating at the same rate as the magnetic field,
the field appears frozen in this rotating frame. For simplicity, we’ll assume
that the field’s horizontal component lies along the +x direction, so the field
lies in the xz plane. The z component of the field is thus effectively reduced
to

Bz =B0−
ω

γ
(5)

In this frame, we therefore have a constant magnetic field given by

Br =Bx̂+
(
B0−

ω

γ

)
ẑ (6)

The magnetic moment should then precess about Br. To get the fre-
quency ωωωr of this precession, we get the magnitude of the magnetic field:

Br =

√
B2 +

(
B0−

ω

γ

)2

(7)

The precession frequency is then

ωωωr =−γBr (8)

Refer to the following figure (similar to Shankar’s Fig. 14.3, but with a
few added points) for what follows.
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In the figure µµµ(0) is given by the vector OE, so it starts off pointing in
the +z direction. [Just as in Shankar’s figure, we’ve drawn this vector so it’s
not quite parallel to the z axis, although in the problem µµµ(0) does actually
point directly along the z axis. Drawing it this way makes the figure a bit
easier to follow.] To get the z component of µµµ as it precesses about Br,
suppose we look at µµµ at time t, when it has precessed through an angle
ωt, so µµµ now lies along the vector OD (I haven’t drawn the vector in the
diagram since it would get too cluttered, but you can imagine the vector.) To
get the z component of this vector, we look at its components parallel and
perpendicular to the plane followed by the tip of µµµ as it precesses. This is
the plane occupied by the circle in the diagram (well, ok, in the diagram it’s
an ellipse because we’re looking at the circle from an angle). If the angle
between µµµ and Br is α, then the components of µµµ(ωt) are

AD = µsinα (9)
OA = µcosα (10)

Note that the magnitude of µµµ is constant; only its direction changes by
precession. The angle α between µµµ and Br is also constant.

To get the projections of these two segments onto the z axis, we look first
at the projection of OA since OA always lies in the xz plane. From the
diagram

OAz = (µcosα)cosα= µcos2α (11)

To get the z projection of AD, we first project it onto the xz plane by
projecting it onto AE, giving the segment AC:

AC = AD cosωt (12)
= µsinαcosωt (13)

We then project AC onto the z axis. The line AC makes an angle α with
the x axis, so the projection introduces another factor of sinα:

ACz = AC sinα= µsin2αcosωt (14)

The z component of µµµ is therefore the sum of 11 and 14:

µz = µcos2α+µsin2αcosωt (15)

To get the final form, we need to eliminate α which we can do from 6,
since α is the angle between Br and the z axis. Therefore
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sinα =
B

Br
(16)

=
B√

B2 +
(
B0− ω

γ

)2
(17)

=
γB√

γ2B2 +(γB0−ω)2
(18)

cosα =
B0− ω

γ√
B2 +

(
B0− ω

γ

)2
(19)

=
γB0−ω√

γ2B2 +(γB0−ω)2
(20)

We can write this in terms of the frequency ω0 by which the magnetic
moment would precess if the field were constant, which is

ω0 = |ωωω0|= γB0 (21)
So we get

sinα =
γB√

γ2B2 +(ω0−ω)2
(22)

cosα =
ω0−ω√

γ2B2 +(ω0−ω)2
(23)

Plugging this into 15 we get

µz (t) = µz (0)

[
(ω0−ω)2

γ2B2 +(ω0−ω)2 +
γ2B2 cosωt

γ2B2 +(ω0−ω)2

]
(24)
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Classically, if a magnetic moment µµµ is placed in a magnetic field that
precesses about the z axis, the magnetic moment itself precesses. If the
field is given as

B =B cosωtx̂−B sinωtŷ+B0ẑ (1)

then in a frame that rotates with the same frequency as the field, the
magnetic field appears to be constant with value

Br =Bx̂r+
(
B0−

ω

γ

)
ẑ (2)

where

x̂r = cosωtx̂− sinωtŷ (3)

is a unit vector along the x axis in the rotating frame. We now want to
see how this result transfers into quantum mechanics.

We begin with the Schrödinger equation for the state |ψ (t)〉 in the lab
(non-rotating) frame, which is, as usual

ih̄
∂

∂t
|ψ (t)〉=H |ψ (t)〉 (4)

We’ll study the case where |ψ (t)〉 is a spin 1
2 state, for which the Hamil-

tonian is

H =−γS ·B (5)

We can analyze the situation in the rotating frame by applying a unitary
rotation operator to the lab state. That is

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.04.02.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.04.02.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.04.01.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.04.01.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.03.06.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.03.06.pdf


SPINOR IN OSCILLATING MAGNETIC FIELD - PART 1 2

|ψr (t)〉= e−iωtSz/h̄ |ψ (t)〉= e−iωtσz/2 |ψ (t)〉 (6)

=

[
cos

ωt

2
I− isin

ωt

2
σz

]
|ψ (t)〉 (7)

[It seems to me that this unitary operator is for a rotation by an angle
ωt, and since the rotation of the field in 1 is given by a frequency −ωẑ, we
should really be using the rotation operator eiωtσz/2. However if we do this
(I tried) we get the wrong answer, so presumably the transformation 6 is
correct.]

Our first goal is to find the Schrödinger equation for |ψr (t)〉, which in-
volves finding the corresponding Hamiltonian. The Schrödinger equation
is

ih̄
∂

∂t
|ψr (t)〉=Hr |ψr (t)〉 (8)

Inserting 6 into the LHS and differentiating, we get

ih̄
∂

∂t
|ψr (t)〉=

h̄ωσz
2

e−iωtσz/2 |ψ (t)〉+ ih̄e−iωtσz/2 ∂

∂t
|ψ (t)〉 (9)

=
h̄ωσz

2
|ψr (t)〉+ e−iωtσz/2H |ψ (t)〉 (10)

=
h̄ωσz

2
|ψr (t)〉− e−iωtσz/2γS ·B |ψ (t)〉 (11)

We would like the RHS to be in the form of the RHS of 8, but in the
second term, the problem is that e−iωtσz/2 does not commute with S so we
can’t just swap the e−iωtσz/2 and S ·B factors. We need to multiply out the
terms and see what simplifications we can do.

In what follows, it’s easier to work with the Pauli matrices defined by

S =
h̄

2
σσσ (12)

We’ll also need a few theorems involving σi

σiσj = −σjσi (13)

σiσj = δijI+ i∑
k

εijkσk (14)

We’ll also define some shorthand for the trig functions:

http://physicspages.com/pdf/Shankar/Shankar Exercises 14.03.03.pdf


SPINOR IN OSCILLATING MAGNETIC FIELD - PART 1 3

c ≡ cos
ωt

2
(15)

s ≡ sin
ωt

2
(16)

c1 ≡ cosωt (17)
s1 ≡ sinωt (18)

The standard double-angle formulas are

c1 = c2−s2 (19)
s1 = 2sc (20)

Using 1 and 7 we have

−e−iωtσz/2γS ·B = −γh̄
2

[B (c− isσz)(σxc1−σys1)+B0 (c− isσz)σz](21)

The last term on the RHS is in the correct form since there are no com-
mutation problems here. So we need to work on the first term, which we’ll
isolate here:

(c− isσz)(σxc1−σys1) = c1cσx+ ic1sσxσz−s1cσy− is1sσyσz (22)

We can now use the identities 13 and 14 and the trig identities above to
get

(c− isσz)(σxc1−σys1) =
(
c2−s2)cσx+ i(c2−s2)sσxσz−2sc2σy−2is2cσyσz

(23)

=
(
c2−s2)cσx+ i(c2−s2)sσxσz−2isc2σxσz+2s2cσx

(24)

=
(
c3−s2c+2s2c

)
σx+ i

(
−s3 + c2s−2sc2)σxσz

(25)

=
(
c2 +s2)cσx− i(c2 +s2)sσxσz (26)

= σx (c− isσz) (27)

= σxe
−iωtσz/2 (28)

Plugging this into 21 and then back into 11 we get
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ih̄
∂

∂t
|ψr (t)〉 =

h̄ωσz
2
|ψr (t)〉−

γh̄

2
[Bσx+B0σz]e

−iωtσz/2 |ψ (t)〉(29)

= [(ω−γB0)Sz−γBSx] |ψr (t)〉 (30)

Comparing this with 2, we see that we can write the result as

ih̄
∂

∂t
|ψr (t)〉=−γS ·Br |ψr (t)〉 (31)

Thus in the rotating frame, the Schrödinger equation has the same form
as the classical relation, with a time-independent magnetic field Br.

COMMENTS

From: Petra Axolotl, 3 Jul 2018, 00:37.
The transformation 6 is indeed correct, for the following reason. - At

time t, the rotating frame has rotated by −ωt relative to the rest frame. -
Therefore everything in the rest frame, including the wave function ψ (t),
should be rotated by +ωt to get ψr(t). - The unitary operator for a rotation
by +ωt is exp(−iωtSz/h).

Conclusion: ψr(t) = exp(−iωtSz/h)ψ(t).
This is in fact the same as in certain derivations regarding translational in-

variance, where moving the frame by −∆ means moving the wave function
by +∆ and ψ(x) becomes ψ(x−∆), or ψr(x) = exp(−i∆P/h)ψ(x).

PINGBACKS

Pingback: Spinor in oscillating magnetic field - part 2
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In the first part of this article, we saw that a particle with spin placed in
a precessing magnetic field can be analyzed by moving to a frame rotating
with the same frequency as the field. In this rotating frame, the magnetic
field is independent of time and looks like this:

Br =Bx̂r+
(
B0−

ω

γ

)
ẑ (1)

where x̂r is a unit vector along the rotating x axis. In this frame, the
Schrödinger equation has the form

ih̄
∂

∂t
|ψr (t)〉=−γS ·Br |ψr (t)〉 (2)

= [(ω−γB0)Sz−γBSx] |ψr (t)〉 (3)

where |ψr (t)〉 is the state vector in the rotating frame, in the Sz basis.
The Hamiltonian in the rotating frame is thus

H = (ω−γB0)Sz−γBSx (4)

=
h̄

2
(ω−γB0)σz−

h̄

2
γBσx (5)

Given the initial state |ψr (0)〉 we can find the state at other times if we
can find the propagator in the rotating frame

Ur (t) = e−iHt/h̄ (6)

The propagator is complicated by the fact that the Hamiltonian 5 con-
tains two operators (σx and σz) that don’t commute, so we can’t split the
exponential into the product of two simpler exponentials. However, if we

1
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expand the exponential in a power series, we see that it does actually have
a fairly simple form. We have

e−iHt/h̄ = e−i[(ω−γB0)σz−γBσx]t/2 (7)

= ei[(γB0−ω)σz+γBσx]t/2 (8)

We can expand this in a power series, but first it’s useful to introduce
some shorthand. We have

ω0 ≡ γB0 (9)

ωr ≡
√
(γB0−ω)2 +γ2B2 (10)

=

√
(ω0−ω)2 +γ2B2 (11)

We get

e−iHt/h̄ = I+
it

2
[(ω0−ω)σz+γBσx]+ (12)

− 1
2!
t2

22 ([(ω0−ω)σz+γBσx])2+ (13)

− 1
3!
it3

23 ([(ω0−ω)σz+γBσx])3 + . . . (14)

Consider the square term in the second line. Multiplying it out, we get

((ω0−ω)σz+γBσx)2 = (ω0−ω)2σ2
z+γ

2B2σ2
x+ (15)

(ω0−ω)γB (σzσx+σxσz) (16)

Using a couple of identities for Pauli matrices:

σ2
i = I (17)

[σz,σx]+ = 0 (18)

we see that the last term vanishes and the first two terms can be combined,
so we get

((ω0−ω)σz+γBσx)2 =
[
(ω0−ω)2 +γ2B2

]
I (19)

= ω2
rI (20)

http://physicspages.com/pdf/Shankar/Shankar Exercises 14.03.03.pdf
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This simple form means that all higher terms in the power series 12 are
easy to calculate. If we call the nth term in the series an, the terms with an
even exponent are

a2n = (−1)n
t2n

(2n)!22nω
2n
r I (21)

The (−1)n comes in because of the i in the exponent which gets raised
to successively higher powers in the series. The series of even terms is
therefore a cosine:

∞

∑
n=0

a2n = cos
ωrt

2
I (22)

For odd terms, we have

a2n+1 = (−1)n iω2n
r

t2n+1

(2n+1)!22n+1 [(ω0−ω)σz+γBσx] (23)

The series of odd terms comes out to

∞

∑
n=0

a2n+1 =
i

ωr
[(ω0−ω)σz+γBσx]

∞

∑
n=0

(−1)n t2n+1ω2n+1
r

(2n+1)!22n+1 (24)

=
i

ωr
[(ω0−ω)σz+γBσx]sin

ωrt

2
(25)

We can therefore write out U as a matrix by using the Pauli matrices:

σx =

[
0 1
1 0

]
; σz =

[
1 0
0 −1

]
(26)

Ur (t) =

[
cos ωrt2 + ω0−ω

ωr
isin ωrt

2
iγB
ωr

sin ωrt
2

iγB
ωr

sin ωrt
2 cos ωrt2 −

ω0−ω
ωr

isin ωrt
2

]
(27)

To rotate this back to the lab frame, we apply the inverse rotation operator

e+iωtSz/h̄ = eiωtσz/2 (28)

=

[
eiωt/2 0

0 e−iωt/2

]
(29)

For a particle that starts in the spin up state

|ψ (0)〉=
[

1
0

]
(30)
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Since the spin z direction is also the axis of rotation for the rotating frame,
we have (except for a phase factor that isn’t observable physically):

|ψr (0)〉= e−iωt/2
[

1
0

]
(31)

The general state at time t is

|ψ (t)〉= eiωtσz/2Ur (t) |ψr (0)〉 (32)

= e−iωt/2

[ [
cos ωrt2 + ω0−ω

ωr
isin ωrt

2

]
eiωt/2

iγB
ωr

sin ωrt
2 e−iωt/2

]
(33)

In the case ω = ω0 = γB0, we have ωr = γB from 11, so the state vector
becomes

|ψ (t)〉= e−iωt/2
[

cos γBt2 eiωt/2

isin γBt
2 e−iωt/2

]
(34)

If we compare this to the eigenvector |n̂+〉 for spin up along a general
direction given by the spherical angles θ and φ, which is

|n̂+〉=
[

cos θ2e
−iφ/2

sin θ
2e
iφ/2

]
(35)

we see that, apart from the extra i in the sine term, the state |ψ (t)〉 is the
spin-up state for polar angles θ= γBt, φ=−ωt. The probability of finding
an up or down state is

Pup =

∣∣∣∣cos
γBt

2
eiωt/2

∣∣∣∣2 = cos2 γBt

2
(36)

Pdown =

∣∣∣∣isin
γBt

2
e−iωt/2

∣∣∣∣2 = sin2 γBt

2
(37)

The spin oscillates between a pure up state when γBt/2 is a multiple of
π to a pure down state when γBt/2 is an odd multiple of π2 .

Finally, we can check that 〈µz (t)〉 agrees with the classical result

µz (t) = µz (0)

[
(ω0−ω)2

γ2B2 +(ω0−ω)2 +
γ2B2 cosωt

γ2B2 +(ω0−ω)2

]
(38)

To find 〈µz (t)〉 we evaluate as follows.
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〈µz (t)〉= 〈ψ (t) |µz|ψ (t)〉 (39)

= γ 〈ψ (t) |Sz|ψ (t)〉 (40)

=
γh̄

2
〈ψ (t) |σz|ψ (t)〉 (41)

=
γh̄

2

[ (
cos ωrt2 −

ω0−ω
ωr

isin ωrt
2

)
e−iωt/2 − iγBωr sin ωrt

2 eiωt/2
]
×

(42)[
1 0
0 −1

][ (
cos ωrt2 + ω0−ω

ωr
isin ωrt

2

)
eiωt/2

iγB
ωr

sin ωrt
2 e−iωt/2

]
(43)

We introduce shorthand for the trig functions:

c ≡ cos
ωrt

2
(44)

s ≡ sin
ωrt

2
(45)

Then we have (note that complex exponentials cancel out):

2
γh̄
〈µz (t)〉=

[ [
c− ω0−ω

ωr
is
]
e−iωt/2 − iγBωr se

iωt/2
][ 1 0

0 −1

][ [
c+ ω0−ω

ωr
is
]
eiωt/2

iγB
ωr
se−iωt/2

]
(46)[

c− ω0−ω
ωr

is − iγBωr s
][ c+ ω0−ω

ωr
is

− iγBωr s

]
(47)

= c2 +

(
ω0−ω
ωr

)2

s2−
(
γB

ωr

)2

s2 (48)

=
1
ω2
r

[
ω2
rc

2 +
(
(ω0−ω)2−γ2B2

)
s2
]

(49)

=
1
ω2
r

[(
(ω0−ω)2 +γ2B2

)
c2 +

(
(ω0−ω)2−γ2B2

)
s2
]

(50)

=
1
ω2
r

(
(ω0−ω)2 +γ2B2 (c2−s2)) (51)

where we used 11 in the fourth line.
Using the trig identity

cos2θ = cos2 θ− sin2 θ (52)
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we see that

c2−s2 = cos2 ωrt

2
− sin2 ωrt

2
= cosωrt (53)

So we have

〈µz (t)〉=
γh̄

2
(ω0−ω)2 +γ2B2 cosωrt

ω2
r

(54)

=
γh̄

2
(ω0−ω)2 +γ2B2 cosωrt

(ω0−ω)2 +γ2B2
(55)

This agrees with 38 provided µz (0) =
γh̄
2 , which is true, since the mag-

nitude of the magnetic moment is γh̄
2 and it starts in the spin up position so

µz (0) =
γh̄
2 .
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The fact that the rotation operator in 2-d spin space can be written in
terms of the Pauli matrices as

U [R (θθθ)] = e−iθθθ·σσσ/2 = cos
θ

2
I− isin

θ

2
(
θ̂ ·σσσ

)
(1)

allows us to do some calculations involving an electron in a magnetic
field. We’ve seen that placing a magnetic moment that is due to angular
momentum in a constant magnetic field causes the magnetic moment to
precess about the direction of the field. The Hamiltonian of an electron
with spin S in a constant field B is

H = −γS ·B (2)

= −γh̄
2
σσσ ·B (3)

where γ is the gyromagnetic ratio

γ =
−e
m

(SI) =
−e
mc

(CGS) (4)

= 1.76×1011 s−1T−1 (5)
= 1.76×107 s−1G−1 (6)

As an example, suppose we have an electron initially in the spin-up state,
with sz =+ h̄

2 and turn on a magnetic field of B = (100 G) x̂ at t= 0. As the
applied field is perpendicular to the initial spin, the precession will cause
the spin vector to rotate in the yz plane about the x axis. To find how long
it takes the spin to flip, we need the propagator, which is

1
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U (t) = e−iHt/h̄ (7)

= eiγσσσ·Bt/2 (8)

= eiγBtσx/2 (9)

Comparing with 1 we see that U (t) is equivalent to a rotation operator
with angle θ =−γBt. Thus we have

U (t) = cos
γBt

2
I+ isin

γBt

2
σx (10)

=

[
cos γBt2 isin γBt

2
isin γBt

2 cos γBt2

]
(11)

The electron’s state as a function of time is thus

|ψ (t)〉 = U (t) |ψ (0)〉 (12)

=

[
cos γBt2 isin γBt

2
isin γBt

2 cos γBt2

][
1
0

]
(13)

=

[
cos γBt2
isin γBt

2

]
(14)

The state first has a 100% probability of being found with spin down
when (using 6):

sin
γBt

2
= 1 (15)

t =
π

γB
(16)

=
π

(1.76×107)(100)
(17)

= 1.78×10−9 s (18)
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Returning to classical physics for this post, we recall that if we have
a magnetic moment µµµ placed in a constant magnetic field B0, then if we
move to a frame of reference that rotates with frequency ωωω which is parallel
to B0, the effective magnetic field as seen in the rotating frame is

Br = B0 +
ωωω

γ
(1)

where γ is the gyromagnetic ratio. However, suppose the rotating frame
has an axis of rotation that is not parallel to B0, that is ωωω is not parallel to
B0. In this case, we have the following situation.

Suppose we have some arbitrary vector V which changes by ∆V in time
interval ∆t, as viewed in the non-rotating frame. As we’ve seen earlier, if a
vector r that makes an angle α with the axis of rotation is rotated through an
angle ∆θθθ where the direction of ∆θθθ is the axis of rotation, then the change
in r is given by

r→ r+(δθθθ)× r (2)
In the rotating frame, in the time interval ∆t, the vector changes due to

two separate effects: the change ∆V that occurs in the lab frame plus the
change due to the angle δθθθ =−ωωω∆t that occurs due to the frame’s rotation.
(The minus sign arises because if the frame is rotating counterclockwise,
objects in the lab frame appear to be rotating clockwise as seen in the rotat-
ing frame.) If we take the vector to be at the same position in both frames
at time t, then our job is to find the relation between the changes to V that
occur in the two frames after interval ∆t.

In the inertial (lab) frame, we have

V(t+∆t) = V(t)+∆V (3)
1
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In the rotating frame, we have

Vr (t+∆t) = Vr (t)+∆Vr (4)
= V(t)+∆Vr (5)

where the last line follows because the two vectors are identical at the
initial time t.

Now by applying 2 to a rotation angle of δθθθ =−ωωω∆t we have

Vr (t+∆t) = V(t+∆t)−ωωω×V(t+∆t)∆t (6)

= V(t)+∆V−ωωω× [V(t)+∆V]∆t (7)

= Vr (t)+∆V−ωωω×V(t)∆t+O
(
(∆t)2

)
(8)

∆Vr = Vr (t+∆t)−Vr (t) (9)

= ∆V−ωωω×V(t)∆t (10)

where the last line drops higher order terms. Dividing through by ∆t and
taking the limit we get

dVr

dt
=
dV
dt
−ωωω×V (11)

If we now apply this to the precession of magnetic moments, we begin
with the relation between torque T and angular momentum `̀̀:

T =
d`̀̀

dt
= γ`̀̀×B0 (12)

In the rotating frame, we have

d`̀̀r
dt

=
d`̀̀

dt
−ωωω× `̀̀ (13)

= γ`̀̀×B0 + `̀̀×ωωω (14)

= γ`̀̀×
(

B0 +
ωωω

γ

)
(15)

Thus the effective field in the rotating frame is again

Br = B0 +
ωωω

γ
(16)

and this applies even if B0 and ωωω are not parallel.
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As an example of a density matrix, we can apply it to an ensemble of spin
1
2 particles. The density matrix is defined as

ρ≡∑
i

pi |i〉〈i| (1)

where pi is the probability of a single system being state |i〉. For a spin
1
2 particle, there are only 2 states, so the density matrix can be written as a
2× 2 matrix, once we define a basis for the states (for example, the basis
of Sz states where Sz = ± h̄2 ). Since any 2× 2 matrix can be written as a
linear combination of the Pauli matrices and the identity matrix, the density
matrix can be written as

ρ= a0I+A ·σσσ (2)

Since the trace of each of the Pauli matrices is zero, and TrI = 2, we have

Trρ= 2a0 (3)

However, we know that Trρ= 1, so we must have a0 =
1
2 , so we can write

ρ=
1
2
(I+a ·σσσ) (4)

for some vector a whose elements are complex numbers.
To find the average value

〈
Ω̄
〉

of an observable Ω in an ensemble, we can
use the density matrix in the form〈

Ω̄
〉
= Tr(Ωρ) (5)

To find 〈σ̄σσ〉, we can work out each component separately. For σx we
have, using the properties of the σi:

1
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〈σ̄x〉= Tr(σxρ) (6)

=
1
2

Tr
(
σxI+axσ

2
x+ayσxσy+azσxσz

)
(7)

=
1
2

Tr(σx+axI+ iayσz− iazσy) (8)

=
1
2
(0+2ax+0+0) (9)

= ax (10)

We can do similar calculations to get the other two components, with the
result

〈σ̄σσ〉= a (11)

Finally, suppose we have an ensemble of electrons in a constant magnetic
field B=Bẑ, and that this ensemble is in thermal equilibrium at temperature
T . A central result of statistical mechanics (which we haven’t covered yet)
is that particles in thermal equilibrium obey the Boltzmann distribution,
which states that the probability of finding a particle with energy E in the
ensemble is

pE ∝ e−E/kT (12)

where k is the Boltzmann constant. In this case, the energy is that of a
magnetic moment µµµ in a constant magnetic field B, which is

H =−µµµ ·B =−γS ·B =−γSzB (13)

There are only two states (Sz =± h̄2 ), so the probabilities are

p↑ =
1
P
eγBh̄/2kT (14)

p↓ =
1
P
e−γBh̄/2kT (15)

P = eγBh̄/2kT + e−γBh̄/2kT (16)

The density matrix is therefore

ρ=
1
P

(
eγBh̄/2kT |↑〉〈↑|+ e−γBh̄/2kT |↓〉〈↓|

)
(17)

In the Sz basis, this is
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ρ=
1
P

[
eγBh̄/2kT 0

0 e−γBh̄/2kT

]
(18)

We can work out the average magnetic moment for the ensemble as

〈µ̄µµ〉= Tr(µµµρ) (19)

=
ẑ
P

[
γh̄

2
eγBh̄/2kT − γh̄

2
e−γBh̄/2kT

]
(20)

=
eγBh̄/2kT − e−γBh̄/2kT

eγBh̄/2kT + e−γBh̄/2kT
γh̄

2
ẑ (21)

=
γh̄

2
tanh

γBh̄

2kT
ẑ (22)

=− eh̄

2mc
tanh

(
− eBh̄

2mckT

)
ẑ (23)

=
eh̄

2mc
tanh

eBh̄

2mckT
ẑ (24)
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We’ve dealt with the Zeeman effect in a lot of detail before, but Shankar
deals with it using the approximation of negelecting the coupling of the
proton’s magnetic moment to the external magnetic field B. Using classical
arguments, we can see why this is a reasonable approximation.

The proton, like the electron, has both orbital and spin angular momen-
tum. The proton’s spin is h̄

2 , the same as the electron, so its spin magnetic
moment is given by

µps =
q

2Mc

h̄

2
(1)

where M is the proton’s mass. Since (apart from the sign) the proton and
electron have the same charge q and spin, the equivalent formula for the
electron is

µes =
q

2mc
h̄

2
(2)

where m is the electron mass. Thus

µps =
m

M
µes (3)

so that the proton’s spin magnetic moment is about 1
1836 times that of the

electron.
For the orbital magnetic moment, we can consider a classical system in

which the electron and proton are orbiting about their centre of mass. The
period T of the orbit is the same for both particles, and the radius of each
orbit is

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 06.21.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.04.01.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.04.01.pdf


COUPLING OF PROTON’S MAGNETIC MOMENT TO EXTERNAL FIELD 2

rp =
m

m+M
r ≈ m

M
r (4)

re =
M

m+M
r ≈ r (5)

where r is the distance between the two particles. The orbital magnetic
moment can be written as

µi =
qviri

2c
(6)

where the subscript i is either e or p. Since the proton moves in a smaller
orbit but at the same frequency as the electron, its velocity is smaller. We
have

vp =
2πrp
T

=
2πr
T

m

m+M
≈ 2πr

T

m

M
(7)

ve =
2πre
T

=
2πr
T

M

m+M
≈ 2πr

T
(8)

Therefore

µp ≈ πqr2

cT

(m
M

)2
(9)

µe ≈ πqr2

cT
(10)

Thus the orbital magnetic moment of the proton is about
(
m
M

)2 times that
of the electron.

PINGBACKS

Pingback: Stern-gerlach experiment
Pingback: Hyperfine interaction in hydrogen - a rough calculation
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Shankar derives the interaction Hamiltonian between a magnetic moment
and a magnetic field in quantum theory in his equations 14.4.11 to 14.4.15,
so we won’t repeat the derivation here. Rather we can summarize the main
points.

The starting point is the classical Hamiltonian for the electromagnetic
force

H =
|p− qA/c|2

2m
+ qφ (1)

In the current example, there is no electrostatic field, so φ = 0, and we
make the transition to quantum theory by interpreting p as the momentum
operator P. This gives

H =
|P|2

2m
− q

2mc
(P ·A+A ·P)+ q2 |A|2

2mc2 (2)

We then assume that we have a constant magnetic field that points along
the z axis, which can be produced by taking the vector potential A to be

A =
B

2
(−yx̂+xŷ) (3)

Using the standard relation between the vector potential and field, we
have

B = ∇×A =Bẑ (4)
Shankar then assumes that the field is fairly weak, so we can ignore the

last term in 2. He then shows that the middle term in 2 comes out to

H =−µµµ ·B (5)
1
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where the magnetic moment is defined as

µµµ≡ q

2mc
L (6)

where L is the orbital angular momentum.
For the hydrogen atom, this analysis leads to the prediction of energy

levels for the state |nlmmx〉 of

E =−Ry
n2 +

eBh̄

2mec
(m+2ms) (7)

Here, me is the mass of the electron, m is the z component of orbital
angular momentum (Shankar confusingly uses the same symbol m for the
electron mass and z component of orbital angular momentum) and ms is
the z component of spin (both in units of h̄). The Rydberg (Ry) has a value
of 13.6 eV and is the energy level of the ground state of hydrogen. Also,
note that all these equations use the Gaussian system of units (rather than
SI, which we used in both of Griffiths’s books). For calculation, it’s useful
to use the Bohr magneton for the electron, which is (using Gaussian units):

µB ≡
eh̄

2mec
(8)

=

(
4.8×10−10 esu

)(
1.05×10−27 erg s

)
2(9.1×10−28 g)(3×1010 cm s−1)

(9)

= 9.23×10−21 erg G−1 (10)

' 0.6×10−8 eV G−1 (11)

To see the effect of the level splitting on the ground state (this is the
Zeeman effect for l= 0, which we treated earlier), we have n= 1 andm= 0
with ms =

1
2 , so the size of the level splitting is

∆E = µBB (12)
For B = 1000 kG = 106 G we have ∆E ' 0.6×10−2 eV so the relative

size, compared to the ground state energy, is

∆E

E
=

0.6×10−2

13.6
= 4.4×10−4 (13)

[In Shankar’s answer at the back of the book, he says the relative size is
about one in a million, which seems much too small.]

We can also calculate the effect that we neglected by ignoring the |A|2
term in 2. If we assume that the electron is in a classical orbit of radius a0
(the Bohr radius), then from 3, we have
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|A|2 =
B2a2

0
4

(14)

The neglected term is therefore (using a0 ' 5.3×10−9 cm)

e2B2a2
0

8mc2 =

(
4.8×10−10 esu

)2
B2 (5.3×10−9 cm

)2

8(9.1×10−28 g)(3×1010 cm s−1)
2 (15)

' 10−32B2 erg (16)

= 6×10−19B2 eV (17)

Thus in order for this term to make much of a difference, it would need
to be the same order of magnitude as ∆E in 12. That is, we’re looking for
B such that

∆E '
e2B2a2

0
8mc2 (18)

µBB '
e2B2a2

0
8mc2 = 6×10−19B2 eV (19)

B ' µB
6×10−19 (20)

=
0.6×10−8

6×10−19 (21)

= 1010 G (22)
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The Stern-Gerlach experiment is the classic experiment that revealed the
existence of electron spin. Shankar describes the ideas behind the experi-
ment at the end of Chapter 14, so we’ll just summarize them here.

The idea is to pass a beam of particles possessing magnetic moments
through a non-uniform magnetic field B. The B field has a gradient along
the z axis and the beam of particles is fired into this field along the y axis.
The force exerted by this non-uniform field on a particle with magnetic
moment µµµ is given by

F =−∇H = µz
∂Bz
∂z

ẑ (1)

(see Shankar for the details of this calculation). If the magnetic moments
µz have a continuous spread (as would be expected classically), then the
force ranges continuously and we’d expect to see the particles smeared out
over a uniform strip on the detector. What is actually observed is that the
particles are deflected in discrete intervals, so we get a series of dots on the
detector rather than a continuous line. This is explained by the fact that the
magnetic moment (arising either from spin or orbital angular momentum)
is quantized.

Here are some examples of what the experiment would reveal.
If we start with a beam of spin-1

2 particles (such as electrons or neutral
hydrogen atoms where we can neglect the magnetic moment of the proton)
then, because the possible values of spin are ± h̄2 , we see the incident beam
split into two beams. If we block the lower beam, and allow the upper beam
through, then we have a beam containing particles all with spin up, or + h̄

2 .
If we pass this beam into a second appartus with a B field along the x axis
(so the field gradient is at an angle of π

2 relative to the first apparatus), this
second apparatus will also split the beam into two sub-beams. Because the

1
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spin operators Sz and Sx don’t commute, we can’t measure the spin com-
ponents in both directions simultaneously so, as far as the second apparatus
is concerned, the x component of spin is unknown and could be either ± h̄2 .
If we block the lower beam from the second apparatus, what fraction of the
particles will get through?

To answer this, recall that the eigenspinors for the x direction in the basis
of z spinors are

χ
(x)
+ =

1√
2

(
1
1

)
(2)

χ
(x)
− =

1√
2

(
1
−1

)
(3)

Thus a particle with x spin + h̄
2 is equally likely to be measured with

a z spin of ± h̄2 . We can apply this argument in reverse by swapping the
definitions of the x and z axes, so that if we send a beam of particles with z
spin + h̄

2 into the second apparatus, then a particle is equally likely to have a
spin of ± h̄2 in the x direction. In other words, on average, half the particles
being fed into the second apparatus will go into the latter’s ’up’ beam and
half into its ’down’ beam. Combining the two apparatuses, we’d expect
on average 1

4 of the incident particles to emerge in the upper beam of the
second apparatus.

Another way of saying this is that if we arrange a sequence of apparatuses
where each apparatus is rotated by π

2 relative to its predecessor and one of
the exit beams in each case is blocked, then the number of particles getting
through each apparatus is half the number that entered it.

Now suppose we return to the case where the first apparatus transmits
only spin z of + h̄

2 but the second (aligned along the x axis) transmits ev-
erything (no blocked beam) into a third apparatus, which is aligned again
along the z axis, but now transmits only particles with spin z of − h̄2 . In this
case, the middle (x axis) apparatus has no effect since it doesn’t filter the
particles at all, with the result that we’re feeding a stream of + h̄

2 particles
into an apparatus that detects only spin − h̄2 . In this case, nothing will get
through.

Now let’s look at a somewhat more complex situation. We now have a
stream of spin-1 particles moving along the y axis into an apparatus with
a B field aligned on the the z axis. Because m has three possible values
(±h̄,0), the output will be split into 3 beams. Suppose we take only the
+h̄ beam and feed it into a second apparatus in which the B field is rotated
by an angle θ relative to the first. What fraction of the particles will get
through?

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.29.pdf
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To solve this, we need the unitary rotation operator that relates the two
apparatuses. We worked this out before for both spin-1

2 and spin-1, and the
result we need is the matrix

U [R (θ)] =D(1) [R (θ)] = I(1)+

(
θ̂θθ ·J(1)

)2

h̄2 (cosθ−1)− iθ̂
θθ ·J(1)

h̄
sinθ (4)

Here, θ̂θθ is a unit vector along the axis of rotation and J(1) is the angular
momentum operator for spin-1. In our case, the rotation is around the y
axis, so

θ̂θθ = ŷ = (0,1,0) (5)

The components of J(1) are given in Shankar’s equations 12.5.23 and
12.5.24. We need only J (1)

y :

J
(1)
y =

ih̄√
2

 0 −1 0
1 0 −1
0 1 0

 (6)

We then have

θ̂θθ ·J(1)

h̄
=

i√
2

 0 −1 0
1 0 −1
0 1 0

 (7)

(
θ̂θθ ·J(1)

)2

h̄2 =
1
2

 1 0 −1
0 2 0
−1 0 1

 (8)

From 4 we have

U [R (θ)] =

 1+ cosθ−1
2

sinθ√
2

−cosθ−1
2

− sinθ√
2

cosθ sinθ√
2

−cosθ−1
2 − sinθ√

2
1+ cosθ−1

2

 (9)

=


1+cosθ

2
sinθ√

2
1−cosθ

2

− sinθ√
2

cosθ sinθ√
2

1−cosθ
2 − sinθ√

2
1+cosθ

2

 (10)
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The first column is the rotated version of the state

 1
0
0

, so a particle in

this rotated state has probability of
(1+cosθ

2

)2
of being in the +h̄ spin state,

so this is the fraction of particles leaving the first apparatus that will pass
the second. [As a check, note that the sums of the squares of the elements
in each column of 10 are 1.]

COMMENTS

Remark 1. I have some confusion about your solution to problem 14.05.03,
Principles of Quantum Mechanics, Shankar. (Link: http://physicspages.com/pdf/Shankar/Shankar%20Exercises%2014.05.03%20-
%2014.05.04.pdf ) “Now suppose we return to the case where the first ap-
paratus transmits only spin z of +h/2 but the second (aligned along the x
axis) transmits everything (no blocked beam) into a third apparatus, which
is aligned again along the z axis, but now transmits only particles with spin
z of -h/2. In this case, the middle (x axis) apparatus has no effect since it
doesn’t filter the particles at all, with the result that we’re feeding a stream
of +h/2 particles into an apparatus that detects only spin -h/2. In this case,
nothing will get through.” My opinion is: When the spin +z electrons pass
through the second SG (along x axis) apparatus, the outcome is electrons in
the +x and -x spin state. The state is no more +z spin. So when the +x and
-x spin electrons pass through the 3rd SG apparatus (along z axis) 50% of
them should get through.

===========
I originally thought the same thing, but I think the point is that we aren’t

allowed to look at the output of the middle detector, so we don’t ever mea-
sure a particle’s x-spin. In that case, all the particles remain in the +z state,
so they all get blocked in the third detector. I suspect you’re right that if
we did measure the x-spin in the middle detector that would place the par-
ticle in either the +x or −x state, with z-spin undetermined, so that 50% of
them would indeed get through the third detector. Shankar gives zero as the
answer at the back of the book, so my guess is that’s what’s happening.
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We’ve seen what the spin 1/2 matrices look like along the 3 rectangu-
lar coordinate axes. From this, we can derive an expression for the spin
component along an arbitrary direction r̂. The unit radius vector is

r̂ = sinθ cosφî+ sinθ sinφĵ+ cosθk̂ (1)
We can get Sr by combining Sx, Sy and Sz according to the formula for

the radius vector:

Sr = S · r̂ (2)
= sinθ cosφSx+ sinθ sinφSy+ cosθSz (3)

By using the forms for the matrices derived earlier, and cosφ± isinφ =
e±iφ we get

Sr =
h̄

2

(
cosθ sinθe−iφ

sinθeiφ −cosθ

)
(4)

The eigenvalues of this matrix are calculated in the usual way∣∣∣∣ h̄
2 cosθ−λ h̄

2 sinθe−iφ
h̄
2 sinθeiφ − h̄2 cosθ−λ

∣∣∣∣=− h̄2

4
[
cos2 θ+ sin2 θ

]
+λ2 = 0 (5)

We get λ=±h̄/2 as before so all is well at this stage.
To get the eigenspinors, we must solve

h̄

2

(
cosθ±1 sinθe−iφ

sinθeiφ −cosθ±1

)(
α
β

)
= 0 (6)

We get the equations
1
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(cosθ±1)α+ sinθe−iφβ = 0 (7)

sinθeiφα− (−cosθ±1)β = 0 (8)

The two solutions (one for each sign) are

β+ = −eiφ cosθ−1
sinθ

α+ (9)

β− = −eiφ cosθ+1
sinθ

α− (10)

We can use the double-angle trig identities to simplify these expressions:

sinθ = 2sin(θ/2)cos(θ/2) (11)

cosθ = cos2(θ/2)− sin2(θ/2) (12)

Substituting these together with cos2(θ/2)+ sin2(θ/2) = 1 and simplify-
ing leads to

β+ = eiφ
sin(θ/2)
cos(θ/2)

α+ (13)

β− = −eiφ cos(θ/2)
sin(θ/2)

α− (14)

The eigenspinors should be normalized, so

|β+|2 + |α+|2 = |α+|2
(

sin 2(θ/2)
cos2(θ/2)

+1
)

(15)

= |α+|2
(

sin2(θ/2)+ cos2(θ/2)
cos2(θ/2)

)
(16)

=
|α+|2

cos2(θ/2)
(17)

= 1 (18)

Thus we can take

α+ = cos
θ

2
(19)

Other answers are possible, since we can multiply α+ by any complex
exponential, as all that is important is that its magnitude is 1.

A similar calculation for the other solution leads to
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|α−|2

sin2(θ/2)
= 1 (20)

We can take

α− = sin
θ

2
(21)

These choices lead to

χ
(r)
+ =

(
cos(θ/2)
eiφ sin(θ/2)

)
(22)

χ
(r)
− =

(
sin(θ/2)

−eiφ cos(θ/2)

)
(23)

If we want the answer in Griffiths, we would choose α− = e−iφ sin θ
2 ,

which leads to the answer:

χ
(r)
+ =

(
cos(θ/2)
eiφ sin(θ/2)

)
(24)

χ
(r)
− =

(
e−iφ sin(θ/2)
−cos(θ/2)

)
(25)

The phase difference between the two components is the same in each
solution.

Shankar’s equations 14.3.28 use a slightly different phase, giving

|n̂+〉 =

[
cos θ2e

−iφ/2

sin θ
2e
iφ/2

]
(26)

|n̂−〉 =

[
−sin θ

2e
−iφ/2

cos θ2e
iφ/2

]
(27)

We can calculate 〈S〉 by using the spin matrices

Sx =
h̄

2

[
0 1
1 0

]
(28)

Sy =
h̄

2

[
0 −i
i 0

]
(29)

Sz =
h̄

2

[
1 0
0 −1

]
(30)

We have
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〈n̂+ |Sx| n̂+〉=
h̄

2
[

cos θ2e
iφ/2 sin θ

2e
−iφ/2

][ 0 1
1 0

][
cos θ2e

−iφ/2

sin θ
2e
iφ/2

]
(31)

=
h̄

2
[

cos θ2e
iφ/2 sin θ

2e
−iφ/2

][ sin θ
2e
iφ/2

cos θ2e
−iφ/2

]
(32)

=
h̄

2
sin

θ

2
cos

θ

2

(
eiφ+ e−iφ

)
(33)

=
h̄

2
sinθ cosφ (34)

〈n̂+ |Sy| n̂+〉=
h̄

2
[

cos θ2e
iφ/2 sin θ

2e
−iφ/2

][ 0 −i
i 0

][
cos θ2e

−iφ/2

sin θ
2e
iφ/2

]
(35)

=
ih̄

2
[

cos θ2e
iφ/2 sin θ

2e
−iφ/2

][ −sin θ
2e
iφ/2

cos θ2e
−iφ/2

]
(36)

=− h̄
2i

sin
θ

2
cos

θ

2

(
−eiφ+ e−iφ

)
(37)

=
h̄

2
sinθ sinφ (38)

〈n̂+ |Sz| n̂+〉=
h̄

2
[

cos θ2e
iφ/2 sin θ

2e
−iφ/2

][ 1 0
0 −1

][
cos θ2e

−iφ/2

sin θ
2e
iφ/2

]
(39)

=
h̄

2
[

cos θ2e
iφ/2 sin θ

2e
−iφ/2

][ cos θ2e
−iφ/2

−sin θ
2e
iφ/2

]
(40)

=
h̄

2

(
cos2 θ

2
− sin2 θ

2

)
(41)

=
h̄

2
cosθ (42)
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When adding two spins we can work in the product basis, which is the
vector space formed by the direct product of the two vector spaces which
correspond to the two spins, taken separately. For spin-1

2 , the single-spin
basis consists of two spinors

χ↑ =
h̄

2

[
1
0

]
(1)

χ↓ =
h̄

2

[
0
1

]
(2)

In this basis, the spin operator S is formed from the 3 Pauli matrices as

Si =
h̄

2
σσσ (3)

σx =

[
0 1
1 0

]
(4)

σy =

[
0 −i
i 0

]
(5)

σz =

[
1 0
0 −1

]
(6)

where the subscript i labels which particle we’re considering.
When we add two independent spins, we get a total spin operator S =

S1 +S2. However, if we use the product basis, the vector space in which
S resides is the direct product of the two vector spaces for the individual
spins:

1
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Vtot = V(1)⊗V(2) (7)

where V(i) is the 2-d vector space corresponding to spin i. We’ve seen in
an earlier post how to construct the components of S in this vector space, so
we’ll quote the results:

Sx = S1x+S2x =
h̄

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

 (8)

Sy = S1y+S2y =
h̄

2


0 −i −i 0
i 0 0 −i
i 0 0 −i
0 i i 0

 (9)

Sz = S1z+S2z = h̄


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 (10)

We also have, again working directly from the earlier results in the prod-
uct basis

S2
1 = S2

2 =
3h̄2

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=
3h̄2

4
I (11)

The square of the total spin operator in the product basis comes out to

S2 = h̄2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

 (12)

From these results, we see that (since S2
1 and S2

2 are multiplies of the
identity matrix) both Sz and S2 commute with S2

1 and S2
2 . We can also see

by direct calculation that
[
S2,Sz

]
= 0, so S2, Sz, S2

1 and S2
2 form a set of

4 mutually commuting matrices. Since the matrices are all hermitian (they
represent observable quantities), it must be possible to find a basis in which
all 4 are diagonal. The problem in this case is fairly simple, since in the
product basis, only S2 is not diagonal, so if we can find the unitary trans-
formation that diagonalizes S2, we should have our new basis. The desired

http://physicspages.com/pdf/Shankar/Shankar Exercises 15.01.01.pdf
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unitary transformation matrix is the matrix whose columns are the normal-
ized eigenvectors of S2. In the previous post we found these eigenvectors
to be

v0 =
1√
2


0
1
−1
0

 (13)

v2a =


1
0
0
0

 (14)

v2b =


0
0
0
1

 (15)

v2c =
1√
2


0
1
1
0

 (16)

The first eigenvector v0 corresponds to eigenvalue 0, and the other 3 to
eigenvalue 2. The unitary transformation matrix is then

U =


0 1 0 0
1√
2

0 0 1√
2

− 1√
2

0 0 1√
2

0 0 1 0

 (17)

By direct multiplication, we find that S2 in what Shankar calls the total-s
basis is

UTS2U =


0 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 (18)

The normalized eigenvectors are

http://physicspages.com/pdf/Shankar/MIT 8.05x 06.05.01 Diagonalization of matrices.pdf
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ui =


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 (19)

The first eigenvector corresponds to the singlet state and the last 3 to the
triplet state. We can verify by direct calculation that Sz, S2

1 and S2
2 are

unchanged by this transformation, remaining as given in 10 and 11.
The basis is related to the product basis by (using the notation |sszs1s2〉

for the vectors in the total-s basis):∣∣∣∣00
1
2

1
2

〉
=

1√
2
(|↑↓〉− |↓↑〉) (20)∣∣∣∣11

1
2

1
2

〉
= |↑↑〉 (21)∣∣∣∣10

1
2

1
2

〉
=

1√
2
(|↑↓〉+ |↓↑〉) (22)∣∣∣∣1−1

1
2

1
2

〉
= |↓↓〉 (23)

We can use either basis in practical calculations. The choice depends
on the form of the Hamiltonian: if it can be expressed entirely in terms of
S2,Sz, S2

1 and S2
2 then it makes sense to use the total-s basis.
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Although we’ve looked at the addition of two spins while working through
Griffiths’s book, this problem from Shankar is a nice exercise in dealing
with a direct product of two vector spaces, so we’ll analyze it that way.

The problem is to find the spin operator S obtained by adding two spin-
1
2 systems. Each spin comprises a vector space of dimension 2, and the
components can be written using the spin matrices

Sx =
h̄

2

[
0 1
1 0

]
; Sy =

h̄

2

[
0 −i
i 0

]
; Sz =

h̄

2

[
1 0
0 −1

]
(1)

Each spin resides in its own 2-dim vector space, so the vector space for
the combined system is formed by taking the direct product of the two spin
spaces. We can write the matrices for the combined space by following the
formulas we gave earlier. The notation we’ll use is to add a subscript 1 or
2 to indicate which particle we’re considering. In the product space, for
particle 1 we have

1
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S1x = S
(1)
x ⊗ I(2) (2)

=
h̄

2

[
0 1
1 0

]
⊗
[

1 0
0 1

]
(3)

=
h̄

2


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (4)

S1y = S
(1)
y ⊗ I(2) (5)

=
h̄

2

[
0 −i
i 0

]
⊗
[

1 0
0 1

]
(6)

=
h̄

2


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0

 (7)

S1z = S
(1)
z ⊗ I(2) (8)

=
h̄

2

[
1 0
0 −1

]
⊗
[

1 0
0 1

]
(9)

=
h̄

2


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (10)

For particle 2, we have
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S2x = I(1)⊗S(2)
x (11)

=
h̄

2

[
1 0
0 1

]
⊗
[

0 1
1 0

]
(12)

=
h̄

2


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 (13)

S2y = I(1)⊗S(2)
y (14)

=
h̄

2

[
1 0
0 1

]
⊗
[

0 −i
i 0

]
(15)

=
h̄

2


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 (16)

S2z = I(1)⊗S(2)
z (17)

=
h̄

2

[
1 0
0 1

]
⊗
[

1 0
0 −1

]
(18)

=
h̄

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (19)

Given these matrices, it’s just a matter of matrix multiplication and addi-
tion to obtain the overall operators. For the overall z component we have

Sz = S1z+S2z = h̄


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

 (20)

We can get S2 from the above components

S2 = (S1 +S2) · (S1 +S2) (21)

= S2
1 +S

2
2 +2S1 ·S2 (22)

We could just use brute force and calculate these by multiplying out the
matrices above. For example
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S2
1 = S2

1x+S
2
1y+S

2
1z (23)

and so on. However, if we use Shankar’s suggestion and remember that
S2

1 =S2
2 =

3
4 h̄

2I (where I refers to the identity matrix within the appropriate
vector space), then we need to work out the last term in 22. Using the raising
and lowering operators for spin

S± = Sx± iSy (24)

we have

S1+S2−+S1−S2+ = S1xS2x+S1yS2y+ i(−S1xS2y+S1yS2x)+ (25)

S1xS2x+S1yS2y− i(−S1xS2y+S1yS2x) (26)

= 2(S1xS2x+S1yS2y) (27)

We therefore get

2S1 ·S2 = S1+S2−+S1−S2++2S1zS2z (28)

We can work out the matrix forms of the raising and lowering operators
from the above matrices, and we have

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.18.pdf
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S1+ = S1x+ iS1y (29)

= h̄


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 (30)

S1− = S1x− iS1y (31)

= h̄


0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

 (32)

S2+ = S2x+ iS2y (33)

= h̄


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (34)

S2− = S2x− iS2y (35)

= h̄


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 (36)

For the products, we have

S1+S2− = h̄2


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 (37)

S1−S2+ = h̄2


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 (38)

2S1zS2z =
h̄2

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (39)

For the total, we have
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S2 = 2× 3h̄2

4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ h̄2


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

+ (40)

h̄2


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

+ h̄2

2


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (41)

= h̄2


2 0 0 0
0 1 1 0
0 1 1 0
0 0 0 2

≡ h̄2
Λ (42)

The eigenvalues and eigenvectors of the matrix in 42 are found in the
usual way, by calculating the characteristic determinant:

|Λ−λI|=

∣∣∣∣∣∣∣∣
2−λ 0 0 0

0 1−λ 1 0
0 1 1−λ 0
0 0 0 2−λ

∣∣∣∣∣∣∣∣= 0 (43)

This gives the polynomial

(2−λ)2
[
(1−λ)2−1

]
= 0 (44)

The roots (eigenvalues) are 0 (once) and 2 (3 times). The corresponding
normalized eigenvectors can be found from solving the equations:

For the eigenvalue λ= 0, we have for the eigenvector v0 =
[
a b c d

]T
Λv0 = 0 (45)
a = d= 0 (46)
b = −c (47)

Thus the normalized eigenvector is

v0 =
1√
2


0
1
−1
0

 (48)

This is the singlet state with s= 0, m= 0.
For the triply degenerate eigenvalue λ= 2, we have
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Λv2 = 2v2 (49)
0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0



a
b
c
d

=


0
0
0
0

 (50)

The normalized eigenvectors are then

v2a =


1
0
0
0

 (51)

v2b =


0
0
0
1

 (52)

v2c =
1√
2


0
1
1
0

 (53)

This gives us the triplet state, with s= 1 and m= 1,0,−1.
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We’ve looked at the hyperfine splitting and the resulting 21 cm line of
hydrogen in some detail before, but it’s worth doing Shankar’s approximate
treatment in this problem to get some experience with calculations using
the total-s basis for the addition of two spins.

The interaction between the spins of the proton and electron is due to the
interaction between their magnetic moments, and has the form

Hhf = AS1 ·S2 (1)

where A is some constant. The total Hamiltonian is thus the sum of the
dominant Coulomb interaction and Hhf . The Coulomb interaction gives
rise to the Bohr energy levels

En =− me4

2n2h̄2 (2)

The complete energy is

E = En+Hhf (3)

The perturbation Hhf can be written as

Hhf =
1
2
A
(
S2−S2

1 −S2
2
)

(4)

Because Hhf involves S2, S2
1 and S2

2 we can use the total-s basis, and
its four basis vectors, one of which is the singlet state

∣∣001
2

1
2

〉
and the other

three of which are the triplet states
∣∣111

2
1
2

〉
,
∣∣101

2
1
2

〉
,
∣∣1−11

2
1
2

〉
. All four

vectors are eigenvectors of both S2
1 and S2

2 with eigenvalue 3h̄2

4 . As s = 0
in the singlet state, S2

∣∣001
2

1
2

〉
= 0, while for the triplet states s = 1, so

1
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S2
∣∣111

2
1
2

〉
= s(s+1) h̄2 ∣∣111

2
1
2

〉
= 2h̄2 ∣∣111

2
1
2

〉
and similarly for the other

two triplet states.
Thus in the singlet state (we’ll take hydrogen to be in its ground state, so

n= 1):

E− =−me
4

2h̄2 +
A

2

(
0− 3h̄2

4
− 3h̄2

4

)
(5)

=−me
4

2h̄2 −
3h̄2A

4
(6)

and in the triplet states

E+ =−me
4

2h̄2 +
A

2

(
2h̄2− 3h̄2

4
− 3h̄2

4

)
(7)

=−me
4

2h̄2 +
h̄2A

4
(8)

To get a rough idea of the frequency of the photon that is emitted when the
atom jumps fromE+ toE−, we can approximate the atom as two interacting
dipoles separated by the Bohr radius a0. The interaction energy between
two magnetic dipoles is roughly the product of their magnetic moments
divided by the cube of the distance between them, so we have

Hhf '
µeµp

a3
0

(9)

The magnetic moments are

µe =
gee

2mc
h̄

2
=

2e
2mc

h̄

2
(10)

µp =
gpe

2Mc

h̄

2
=

5.6e
2Mc

h̄

2
(11)

wherem is the electron mass andM is the proton mass, and ge and gp are
the g factors for the electron and proton. The Bohr radius is (in Gaussian
units):

a0 =
h̄2

me2 (12)

so we get

http://physicspages.com/pdf/Shankar/Shankar Exercises 14.05.01.pdf
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Hhf '
2e

2mc
5.6e
2Mc

h̄2

4
=

2.8e2

mMc2a3
0

h̄2

4
(13)

Comparing with 8, we see that

A' 2.8e2

mMc2a3
0

(14)

The energy difference between the two hyperfine states 8 and 6 is

∆E = E+−E− (15)
= Ah̄2 (16)

=
2.8e2h̄2

mMc2a3
0

(17)

=
2.8e8m2

h̄4Mc2
(18)

In terms of the fine structure constant α= e2/h̄c= 1
137 , this energy is, as

a fraction of the Coulomb energy:

∆E

En
=

5.6e4m

h̄2Mc2
= 5.6

m

M
α2 (19)

Given that the ground state energy is E1 = −13.6 eV, and the electron-
proton mass ratio is 1

1836 , the energy of the hyperfine photon is

∆E = 5.6
m

M
α2 (13.6 eV) (20)

=
5.6

1836
1

1372 (13.6 eV) (21)

= 2.2×10−6 eV (22)
= 3.5×10−25 J (23)

From Planck’s formula relating energy to frequency, the frequency of the
photon is

ν =
∆E

h
=

3.5×10−25

6.6×10−34 = 5.3×108 s−1 (24)

This corresponds to a wavelength of

λ=
c

ν
= 0.56 m (25)
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The measured wavelength is 21.4 cm, so this estimate isn’t terribly accu-
rate, but it’s in the right order of magnitude.

Since the hyperfine energy is very small, it’s interesting to find the rela-
tive number of atoms that are in the two states at room temperature. Using
the Boltzmann factor, the number of atoms in an energy state E is propor-
tional to e−E/kT , so the ratio of atoms in the two states is

N+

N−
=

e−E+/kT

e−E−/kT
(26)

= e−∆E/kT (27)

At room temperature T = 293 K and Boltzmann’s constant is

k = 1.38×10−23 SI units (28)
so we have

N+

N−
= e−3.5×10−25/(293)(1.38×10−23) (29)

= 0.99991 (30)

That is, the ratio of number of atoms in the singlet state to one of the
triplet states is about 1:1. However, there are 3 states with the higher energy,
so the ratio of total number of atoms in the upper state to the number in the
lower state is 3 times this, which is essentially just 3.
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When we add two spins (or angular momenta) in quantum mechanics,
we can express the states in one of two ways. The first is in the vector space
which is the direct product of the two spaces for the two spins. This is called
the product space and formally is

Vp = V1⊗V2 (1)

where Vi is the vector space of the single spin i. If we’re interested in the
total spin J = J1 + J2, we could also use the total-j vector space, which is
the direct sum of the two spin spaces:

Vt = V1⊕V2 (2)

As each space is complete, we can express any state in terms of a basis
from either space. We’ve seen an example of this when adding two spin-1

2
systems.

In general, if we have two angular momenta J1 and J2, we would like
to be able to write a state in one space as a linear combination of states
from the other space. The Clebsch-Gordan coefficients allow us to this.
Calculating the C-G coefficients in general is quite complicated, but for
systems with small spins or angular momenta, Shankar gives a method that
is simpler than the more tedious brute-force method. We ground through
one of these brute-force calculations earlier for the addition of spin-1

2 and
another, arbitrary, spin.

In this post, we’ll work through Shankar’s method for the explicit case of
adding spin-1

2 and spin-1 so you can see how the calculations are done.
We have two sets of kets. In the product space, each ket is labelled by the

two spins and their z components, as in

Vp = {|j1m1;j2m2〉} (3)
1

http://physicspages.com
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The curly brackets here represent the set of all kets of form |j1m1;j2m2〉
where ji is the value (in units of h̄) of spin Ji and mi is its z component.

In the total-j space Vt, the labels are the total spin j, its z component m
and the two component spins j1 and j2:

Vt = {|jmj1j2〉} (4)

To work out the linear combinations, we start with the state where both
j and m are maximum, which occurs when m1 = j1 and m2 = j2, which
gives j = j1 + j2 and m = j1 + j2. There is only one member of the set 3
satisfying this condition, so we begin by stating that

|(j1 + j2)(j1 + j2)j1j2〉= |j1j1;j2j2〉 (5)

To get states with lower values ofm but the same value of j, we can apply
the lowering operator J− to the LHS of 5 and its equivalent in the product
space, which is J1−+J2−, to the RHS. We use the formula

J± |jmj1j2〉= h̄
√

(j∓m)(j±m+1) |j (m−1)j1j2〉 (6)

Shankar gives the details of this calculation in the general case; here we’ll
apply it to j1 = 1 and j2 =

1
2 . We begin with the top state, where j = 1+ 1

2 =
3
2 and m= 3

2 : ∣∣∣∣32 3
2

1
1
2

〉
t

=

∣∣∣∣11;
1
2

1
2

〉
p

(7)

In what follows, to simplify the notation, we’ll omit j1j2 from the total-j
kets (since they are always 11

2 ) and also omit j1 and j2 from the product
kets (again, because they are always 1 and 1

2 ). We’ll use a subscript t for a
total-j ket and p for a product space ket. In this notation 7 is∣∣∣∣32 3

2

〉
t

=

∣∣∣∣11
2

〉
p

(8)

Now we apply the lowering operator to both sides. On the LHS, we have

J−

∣∣∣∣32 3
2

〉
t

= h̄

√(
3
2
+

3
2

)(
3
2
− 3

2
+1
)∣∣∣∣32 1

2

〉
t

(9)

=
√

3h̄
∣∣∣∣32 1

2

〉
t

(10)

On the RHS, we have (remember that J1− operates only on spin 1 and
J2− only on spin 2):

http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.18.pdf
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(J1−+J2−)

∣∣∣∣11
2

〉
p

= h̄
√
(1+1)(1−1+1)

∣∣∣∣01
2

〉
p

+ (11)

h̄

√(
1
2
+

1
2

)(
1
2
− 1

2
+1
)∣∣∣∣1,−1

2

〉
p

(12)

=
√

2h̄
∣∣∣∣01

2

〉
p

+ h̄

∣∣∣∣1,−1
2

〉
p

(13)

Combining 10 and 13, we find∣∣∣∣32 1
2

〉
t

=

√
2
3

∣∣∣∣01
2

〉
p

+
1√
3

∣∣∣∣1,−1
2

〉
p

(14)

To get the next lower value of m, we apply lowering operators again:

J−

∣∣∣∣32 1
2

〉
t

= 2h̄
∣∣∣∣32 ,−1

2

〉
t

(15)

(J1−+J2−)

(√
2
3

∣∣∣∣01
2

〉
p

+
1√
3

∣∣∣∣1,−1
2

〉
p

)
=

√
2
3

√
2h̄
∣∣∣∣−1,

1
2

〉
p

+

(16)√
2
3
h̄

∣∣∣∣0,−1
2

〉
p

+
1√
3

√
2h̄
∣∣∣∣0,−1

2

〉
p

(17)

=
2√
3
h̄

∣∣∣∣−1,
1
2

〉
p

+2

√
2
3
h̄

∣∣∣∣0,−1
2

〉
p

(18)∣∣∣∣32 ,−1
2

〉
t

=
1√
3
h̄

∣∣∣∣−1,
1
2

〉
p

+

√
2
3
h̄

∣∣∣∣0,−1
2

〉
p

(19)

To get the bottom ket, we could apply the lowering operator again, but
it’s easier to notice that there is only one way of getting the state

∣∣3
2 ,−

3
2

〉
t

so we have ∣∣∣∣32 ,−3
2

〉
t

=

∣∣∣∣−1,−1
2

〉
p

(20)

This completes the states with j = 3
2 . There are two total-j states with

j = 1
2 : one withm=+1

2 and the other withm=−1
2 . To get the state

∣∣1
2

1
2

〉
t
,
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we observe that it must be a combination of the product kets
∣∣1,−1

2

〉
p

and∣∣0, 1
2

〉
p
. These are the same two kets that were combined to get

∣∣3
2 ,

1
2

〉
t

in
14. As usual, we’re looking for a mutually orthonormal sets of states, so∣∣1

2
1
2

〉
t

must be orthogonal to
∣∣3

2
1
2

〉
t

and also be normalized. By inspection,
we see that the state must be∣∣∣∣12 1

2

〉
t

=

√
2
3

∣∣∣∣1,−1
2

〉
p

− 1√
3

∣∣∣∣01
2

〉
p

(21)

[Actually, we could multiply this by any phase factor eiα for real α, but
by convention, the coefficients are taken to be real. A further convention
makes the coefficient of the product ket with m1 = j1 positive.]

To get the state
∣∣1

2 ,−
1
2

〉
t

we again use lowering operators:

J−

∣∣∣∣12 1
2

〉
t

= h̄

∣∣∣∣12 ,−1
2

〉
t

(22)

(J1−+J2−)

(√
2
3

∣∣∣∣1,−1
2

〉
p

− 1√
3

∣∣∣∣01
2

〉
p

)
=

√
2
3

√
2h̄
∣∣∣∣0,−1

2

〉
p

−

(23)
√

2√
3
h̄

∣∣∣∣−1,
1
2

〉
p

− 1√
3
h̄

∣∣∣∣0,−1
2

〉
p

(24)

=
h̄√
3

∣∣∣∣0,−1
2

〉
p

−
√

2
3
h̄

∣∣∣∣−1,
1
2

〉
p

(25)∣∣∣∣12 ,−1
2

〉
t

=
1√
3

∣∣∣∣0,−1
2

〉
p

−
√

2
3

∣∣∣∣−1,
1
2

〉
p

(26)

This completes the transformations.
From here, it’s actually not too hard to construct the matrix J2 in the

product basis. We first note that J2 in the total-j basis is diagonal, with the
diagonal entries being the eigenvalues, which are the values of j (j+1) for
the 6 states. If we list the states in the order∣∣∣∣32 3

2

〉
t

,

∣∣∣∣32 1
2

〉
t

,

∣∣∣∣12 1
2

〉
t

,

∣∣∣∣12 − 1
2

〉
t

,

∣∣∣∣32 ,−1
2

〉
t

,

∣∣∣∣32 ,−3
2

〉
t

(27)

then the eigenvalues are 15
4 h̄

2, 15
4 h̄

2, 3
4 h̄

2, 3
4 h̄

2, 15
4 h̄

2, 15
4 h̄

2 so we have
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J2
t =

3h̄2

4


5 0 0 0 0 0
0 5 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 5 0
0 0 0 0 0 5

 (28)

To construct J2
p , we observe that the kets 27 are the eigenvectors of J2 (in

both bases) and we know that the unitary matrix U whose columns are the
normalized eigenvectors of J2

p will diagonalize J2
p . In this case, we already

have the diagonalized form, which is just J2
t , so we know that

UTJ2
pU = J2

t (29)

Since U is unitary, UT = U−1, so we get

J2
p = UJ2

t U
T (30)

Using the eigenvector order given in 27 to order the columns of U , we
have

U =



1 0 0 0 0 0

0 1√
3

√
2
3 0 0 0

0
√

2
3 − 1√

3
0 0 0

0 0 0 1√
3
−
√

2
3 0

0 0 0
√

2
3

1√
3

0
0 0 0 0 0 1


(31)

We can now just do the matrix multiplications (I used Maple, since mul-
tiplying 6×6 matrices is quite tedious), and we find

J2
p = h̄2



15
4 0 0 0 0 0
0 7

4

√
2 0 0 0

0
√

2 11
4 0 0 0

0 0 0 11
4

√
2 0

0 0 0
√

2 7
4 0

0 0 0 0 0 15
4

 (32)

To finish, we return to the general results given by Shankar. First, for
the general state |j1j1;j2j2〉p we can find the total angular momentum by
operating with

http://physicspages.com/pdf/Shankar/MIT 8.05x 06.05.01 Diagonalization of matrices.pdf
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J2 = J2
1 +J

2
2 +2J1zJ2z+J1+J2−+J1−J2+ (33)

[This formula was derived earlier.] Since the state |j1j1;j2j2〉p has max-
imum values for m1 and m2, operating with J1+ or J2+ will give zero.
Therefore

J2 |j1j1;j2j2〉p =
(
J2

1 +J
2
2 +2J1zJ2z

)
|j1j1;j2j2〉p (34)

= [j1 (j1 +1)+ j2 (j2 +1)+2m1m2] h̄
2 |j1j1;j2j2〉p (35)

= [j1 (j1 +1)+ j2 (j2 +1)+2j1j2] h̄
2 |j1j1;j2j2〉p (36)

= [(j1 + j2)(j1 + j2 +1)] h̄2 |j1j1;j2j2〉p (37)

Thus the total j value is j = j1 + j2.
The second exercise is a bit messier, since we’re dealing with the top

ket whose j value is one unit less than the maximum, which is given by
Shankar’s equation 15.2.8.

|j1 + j2−1, j1 + j2−1〉t=
1√

j1 + j2

[√
j1 |j1, j2−1〉p−

√
j2 |j1−1, j2〉p

]
(38)

This time, operating with 33 must include the two terms with raising
operators, so we need to use 6. We’ll deal with these terms first. We note
that operating with J1+ on the first term in 38 gives zero, since m1 = j1,
and similarly for J2+on the second term. We’re left with

J1+J2− |j1−1, j2〉p =
√

2j2h̄J1+ |j1−1, j2−1〉p (39)

=
√

2j2h̄
2
√

2j1 |j1, j2−1〉p (40)

= 2
√
j1j2h̄

2 |j1, j2−1〉p (41)

J1−J2+ |j1, j2−1〉p = 2
√
j1j2h̄

2 |j1−1, j2〉p (42)

Combining these two results in 38 we have, for these terms

(J1+J2−+J1−J2+)
[√

j1 |j1, j2−1〉p−
√
j2 |j1−1, j2〉p

]
= (43)

2j1
√
j2h̄

2 |j1−1, j2〉p−2j2
√
j1h̄

2 |j1, j2−1〉p (44)

Now for the first 3 terms in 33. First, we apply them to the first term in
38:

(
J2

1 +J
2
2 +2J1zJ2z

)√
j1 |j1, j2−1〉p =

√
j1h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2j1 (j2−1)] |j1, j2−1〉p(45)

http://physicspages.com/pdf/Shankar/Shankar Exercises 15.01.01.pdf
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Combining this with 44 we get the coefficient of |j1, j2−1〉p to be√
j1h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2j1 (j2−1)−2j2] = (46)√
j1h̄

2 [(j1 + j2−1)(j1 + j2)] (47)

Now we apply
(
J2

1 +J
2
2 +2J1zJ2z

)
to the second term in 38:

−
(
J2

1 +J
2
2 +2J1zJ2z

)√
j2 |j1−1, j2〉p=−

√
j2h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2(j1−1)j2] |j1−1, j2〉p
(48)

Again, combining this with 44 we get the coefficient of |j1−1, j2〉p to be

−
√
j2h̄

2 [j1 (j1 +1)+ j2 (j2 +1)+2(j1−1)j2−2j1] = (49)

−
√
j2h̄

2 [(j1 + j2−1)(j1 + j2)] (50)

Thus the net result of operating on 38 with J2 is to multiply by (j1 + j2−1)(j1 + j2),
this state has angular momentum j1 + j2−1.
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Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 15.2; Exercises 15.2.2 - 15.2.3.
Post date: 12 Sep 2017
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

We’ve seen a detailed example of calculating Clebsch-Gordan coeffi-
cients by using the angular momentum lowering operator, where we cal-
culated the coefficients for the case of spin-1 combined with spin-1

2 . Here
we’ll give a slightly more involved example by combining two spin-1 sys-
tems.

Shankar gives the conditions satisfied by the CG coefficients, so we’ll
apply these here. We start with the combined system with the maximum
values of j (the total angular momentum number) and m (the z component
of the total angular momentum), which here means we have j =m= 2. As
there is only one member of the product space (m1 = m2 = 1) satisfying
this condition, we have

|22〉t = |11〉p (1)

As in the previous post, we give the ket in the total-j space as |jm〉t
(subscript t for ’total-j’) and in the product space as |m1m2〉p (subscript p
for ’product’). The two individual spins j1 and j2 are always the same in all
cases, so we omit them from the notation.

We now apply the lowering operator to both sides to generate the next
state. This operator is, in the total-j space:

J− |jm〉t = h̄
√
(j+m)(j−m+1) |j (m−1)〉t (2)

In the product space, we have

(J1−+J2−) |m1m2〉p = h̄
√
(j1 +m1)(j1−m1 +1) |(m1−1)m2〉p+

(3)

h̄
√
(j2 +m2)(j2−m2 +1) |m1 (m2−1)〉p (4)

1

http://physicspages.com
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In what follows, we’ll omit the h̄ since it always occurs in every term on
both sides of the equation, so it always cancels out in the final result.

Starting from 1 we have

J− |22〉t = 2 |21〉t (5)

(J1−+J2−) |11〉p =
√

2 |01〉p+
√

2 |10〉p (6)

|21〉t =
1√
2
|01〉p+

1√
2
|10〉p (7)

For the next state, we have

J− |21〉t =
√

6 |20〉t (8)
1√
2
(J1−+J2−)

(
|01〉p+ |10〉p

)
=

1√
2

(√
2 |−11〉p+

√
2 |00〉p

)
+ (9)

1√
2

(√
2 |00〉p+

√
2 |1,−1〉p

)
(10)

= |−11〉p+2 |00〉p+ |1,−1〉p (11)

|20〉t =
1√
6
|−11〉p+

√
2
3
|00〉p+

1√
6
|1,−1〉p

(12)

[The last line equates the first line with the fourth line.]
To get the states with negative m, we can use equation 15.2.11 in Shankar:

〈m1m2 |jm〉= (−1)j1+j2−j 〈−m1,−m2 |j,−m〉 (13)
Here, the bracket 〈m1m2 |jm〉 is the CG coefficient that multiplies |m1m2〉

in the expansion of |jm〉. For example, in 12

〈−11 |20〉 =
1√
6

(14)

〈00 |20〉 =

√
2
3

(15)

〈1,−1 |20〉 =
1√
6

(16)

Using 13 and 7, we have j1 + j2− j = 1+1−2 = 0, so

|2,−1〉t =
1√
2
|0,−1〉p+

1√
2
|−10〉p (17)

The final ket in the column with j = 2 is
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|2,−2〉t = |−1,−1〉p (18)

For the next column, we have j = 1 and the top entry therefore has m= 1.
This total-j state |11〉t must be a combination of the product states |10〉p and
|01〉p, must be orthogonal to 7 and the coefficient of the term with m1 = j1
is by convention positive. By inspection, we have

|11〉t =−
1√
2
|01〉p+

1√
2
|10〉p (19)

Note that m1 = j1 = 1 in the second term, so it’s the positive one.
To get the next ket, we apply the lowering operator again:

J− |11〉t =
√

2 |10〉t (20)
1√
2
(J1−+J2−)

(
|01〉p−|10〉p

)
=− 1√

2

(√
2 |−11〉p+

√
2 |00〉p

)
+

(21)
1√
2

(√
2 |00〉p+

√
2 |1,−1〉p

)
(22)

=−|−11〉p+ |1,−1〉p (23)

|10〉t =−
1√
2
|−11〉p+

1√
2
|1,−1〉p (24)

We apply 13 to get the final entry in this column. This time j1+j2−j = 1
so

|1,−1〉t =
1√
2
|0,−1〉p−

1√
2
|−10〉p (25)

Finally, there is one total-j ket in the third column, where j=m= 0. This
time, the ket |00〉t must be a combination of |−11〉p, |00〉p and |1,−1〉p, and
must be orthogonal to both 12 and 24. Suppose

|00〉t = a |−11〉p+ b |00〉p+ c |1,−1〉p (26)

Then the orthogonality conditions tell us that

a√
6
+

√
2
3
b+

c√
6

= 0 (27)

− a√
2
+

c√
2

= 0 (28)

We can solve these to find
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c = a (29)
2a+2b = 0 (30)

b = −a (31)

We can find a from the normalization condition

a2 + b2 + c2 = 1 (32)
3a2 = 1 (33)

Thus we have

a= c=
1√
3

(34)

b=− 1√
3

(35)

|00〉t =
1√
3
|−11〉p−

1√
3
|00〉p+

1√
3
|1,−1〉p (36)

These CG coefficients agree with those given in Griffiths’s Table 4.8, for
example.

A final comment on the dimensionality of the various spaces. If we com-
bine two single spins j1 and j2, then the dimensionality of the product space
j1⊗ j2 is (2j1 +1)(2j2 +1), since there are 2ji+1 possible mi values for
spin ji. In the above example, both j1 and j2 are 1, so the dimensionality
of 1⊗1 is 3×3 = 9. The dimensionality of the corresponding total-j space
is the sum of the dimensions for each possible value of j within this space.
For 1⊗1, there are 5 states with j = 2, 3 states with j = 1 and 1 state with
j = 0, for a total of 5+3+1 = 9.

If we combine more than 2 spins, we can apply the same argument, pro-
vided we count the number of total-j states properly. For 1

2 ⊗
1
2 ⊗

1
2 , the

product space contains 2×2×2 = 8 dimensions, so the total-j space must
also contain 8 dimensions. In the total-j space, j can be 3

2 or 1
2 . We have 4

states with j = 3
2 . For j = 1

2 , we can have m=±1
2 . Consider the ket

∣∣1
2

1
2

〉
t
.

It must be a combination of product states where two spins are up and one
is down (that is, two of the mi are +1

2 and one is −1
2 ), so we have∣∣∣∣12 1

2

〉
t

= a |↑↑↓〉+ b |↑↓↑〉+ c |↓↑↑〉 (37)

The only constraints we have on a, b and c are (1) the state
∣∣1

2
1
2

〉
t

must
be orthogonal to

∣∣3
2

1
2

〉
t

and (2) the state must be normalized. As we have
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only 2 constraints on 3 unknowns, the subspace occupied by
∣∣1

2
1
2

〉
t

is two-
dimensional. The same argument applies to

∣∣1
2 ,−

1
2

〉
t

so it, too, is two-
dimensional. Thus the total dimensionality of the total-j space is 4+2+2=
8, or in other words, 1

2 ⊗
1
2 ⊗

1
2 = 3

2 ⊕
1
2 ⊕

1
2 .
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Shankar, R. (1994), Principles of Quantum Mechanics, Plenum Press.

Section 15.2; Exercise 15.2.4.
Post date: 18 Sep 2017
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

We’ve looked at the problem of adding spin-1
2 to another arbitrary spin

s2 before, but Shankar provides a different method to get this result. In
Shankar’s book, the problem is to add a general angular momentum L to a
spin-1

2 system. In the product space, there are four states in such a system.
In all of these states ` and s= 1

2 are always the same. We wish to construct
the total-j state for a given total angular momentum J = L+S and a speci-
fied z component of total angular momentum m from these four states. In a
given product state, the z component of spin is eitherms =±1

2 and since we
must have m =m`+ms, the orbital z component must be m` =m−ms.
Therefore, for a given m, the two possible total-j states are

∣∣∣∣`+ 1
2
,m

〉
t

= α

∣∣∣∣m− 1
2
,
1
2

〉
p

+β

∣∣∣∣m+
1
2
,−1

2

〉
p

(1)∣∣∣∣`− 1
2
,m

〉
t

= α′
∣∣∣∣m− 1

2
,
1
2

〉
p

+β′
∣∣∣∣m+

1
2
,−1

2

〉
p

(2)

As usual, a subscript t on a ket indicates a total-j state and a subscript p
indicates a product state. We’ve omitted ` and s in the product states since
they are always the same.

The coefficients α, β, α′ and β′ can be determined by applying several
constraints. The two states must be orthonormal which gives us three con-
straints

α2 +β2 = 1 (3)
α′2 +β′2 = 1 (4)
αα′+ββ′ = 0 (5)

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.51.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 15.01.01 Change of basis.pdf
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[As usual for Clebsch-Gordan coefficients, we’re taking them to be real,
so we don’t need to indicate norms in these equations.] To get a fourth
constraint, we can apply the total angular momentum operator J2 in the
form

J2 = (L+S)2 (6)

= L2 +S2 +2L ·S (7)
= L2 +S2 +2LzSz+L−S++L+S− (8)

Applying this operator to the LHS of 1 and 2, we have

J2
∣∣∣∣`+ 1

2
,m

〉
t

= h̄2
(
`+

1
2

)(
`+

3
2

)∣∣∣∣`+ 1
2
,m

〉
t

(9)

J2
∣∣∣∣`− 1

2
,m

〉
t

= h̄2
(
`− 1

2

)(
`+

1
2

)∣∣∣∣`− 1
2
,m

〉
t

(10)

On the RHS, we need the formulas for the raising and lowering operators
(which also apply if we replace J by L or S):

J± |jm〉p = h̄
√

(j∓m)(j±m+1) |j (m−1)〉p (11)

To apply this formula to 1, for example, we see that L−S+
∣∣m− 1

2 ,
1
2

〉
p
=

0 since ms is at its maximum value so applying the raising operator to that
state gives zero. To calculate L−S+

∣∣m+ 1
2 ,−

1
2

〉
p

we need to consider the
two operators in turn.

We have

http://physicspages.com/pdf/Shankar/Shankar Exercises 15.02.01.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 15.02.01.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 15.02.01.pdf
http://physicspages.com/pdf/Griffiths QM/Griffiths Problems 04.18.pdf
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S+

∣∣∣∣m+
1
2
,−1

2

〉
p

= h̄
√
(s−ms)(s+ms+1)

∣∣∣∣m+
1
2
,
1
2

〉
p

(12)

= h̄

√(
1
2
+

1
2

)(
1
2
− 1

2
+1
)∣∣∣∣m+

1
2
,
1
2

〉
p

(13)

= h̄

∣∣∣∣m+
1
2
,
1
2

〉
p

(14)

L−h̄

∣∣∣∣m+
1
2
,
1
2

〉
p

= h̄2
√
(`+m`)(`−m`+1)

∣∣∣∣m− 1
2
,
1
2

〉
p

(15)

= h̄2

√(
`+m+

1
2

)(
`−m− 1

2
+1
)∣∣∣∣m− 1

2
,
1
2

〉
p

(16)

= h̄2

√(
`+

1
2

)2

−m2

∣∣∣∣m− 1
2
,
1
2

〉
p

(17)

Similarly we have L+S−
∣∣m+ 1

2 ,−
1
2

〉
p
= 0 and

S−

∣∣∣∣m− 1
2
,
1
2

〉
p

= h̄
√

(s+ms)(s−ms+1)
∣∣∣∣m− 1

2
,−1

2

〉
p

(18)

= h̄

√(
1
2
+

1
2

)(
1
2
− 1

2
+1
)∣∣∣∣m− 1

2
,−1

2

〉
p

(19)

= h̄

∣∣∣∣m− 1
2
,−1

2

〉
p

(20)

L+h̄

∣∣∣∣m− 1
2
,−1

2

〉
p

= h̄2
√
(`−m`)(`+m`+1)

∣∣∣∣m+
1
2
,−1

2

〉
p

(21)

= h̄2

√(
`−m+

1
2

)(
`+m− 1

2
+1
)∣∣∣∣m+

1
2
,−1

2

〉
p

(22)

= h̄2

√(
`+

1
2

)2

−m2

∣∣∣∣m+
1
2
,−1

2

〉
p

(23)

Therefore (I’ll drop the factor of h̄2 from now on, since it cancels out in
the end):
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[
L2 +S2 +2LzSz+L−S++L+S−

][
α

∣∣∣∣m− 1
2
,
1
2

〉
p

+β

∣∣∣∣m+
1
2
,−1

2

〉
p

]
=

(24)[
`(`+1)+

3
4

][
α

∣∣∣∣m− 1
2
,
1
2

〉
p

+β

∣∣∣∣m+
1
2
,−1

2

〉
p

]
+

(25)[
α

(
m− 1

2

)∣∣∣∣m− 1
2
,
1
2

〉
p

−β
(
m+

1
2

)∣∣∣∣m+
1
2
,−1

2

〉
p

]
+

(26)√(
`+

1
2

)2

−m2

[
β

∣∣∣∣m− 1
2
,
1
2

〉
p

+α

∣∣∣∣m+
1
2
,−1

2

〉
p

]
=

(27)

α

(`(`+1)+
3
4
+

(
m− 1

2

))∣∣∣∣m− 1
2
,
1
2

〉
+

√(
`+

1
2

)2

−m2

∣∣∣∣m+
1
2
,−1

2

〉
p

+
(28)

β

(`(`+1)+
3
4
−
(
m+

1
2

))∣∣∣∣m+
1
2
,−1

2

〉
p

+

√(
`+

1
2

)2

−m2

∣∣∣∣m− 1
2
,
1
2

〉
p

=

(29)(
`+

1
2

)(
`+

3
2

)[
α

∣∣∣∣m− 1
2
,
1
2

〉
p

+β

∣∣∣∣m+
1
2
,−1

2

〉
p

]
(30)

where the last equality comes from equating the result with 9.
Thanks to Petra
Axolotl for
corrections to my
original post.

Equating coefficients in the last equation gives us

(
`(`+1)+

3
4
+

(
m− 1

2

))
α+

√(
`+

1
2

)2

−m2β =

(
`+

1
2

)(
`+

3
2

)
α

(31)√(
`+

1
2

)2

−m2α+

(
`(`+1)+

3
4
−
(
m+

1
2

))
β =

(
`+

1
2

)(
`+

3
2

)
β

(32)

Dividing the first equation by α we get
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β

α
=

(
`+ 1

2

)(
`+ 3

2

)
−
(
`(`+1)+ 3

4 +
(
m− 1

2

))√(
`+ 1

2

)2−m2
(33)

We can simplify this by noting that

`(`+1)+
3
4
+

(
m− 1

2

)
=

(
`+

1
2

)2

+m (34)(
`+

1
2

)(
`+

3
2

)
=

(
`+

1
2

)2

+

(
`+

1
2

)
(35)

so that

β

α
=

(
`+ 1

2

)
−m√(

`+ 1
2

)2−m2
(36)

=
`+ 1

2 −m√
`+ 1

2 +m
√
`+ 1

2 −m
(37)

=

√
`+ 1

2 −m
`+ 1

2 +m
(38)

The other equation 32
gives the same result
for β

α .

From here, we can use 3 to get

α2 +β2 = α2
(

1+
β2

α2

)
(39)

= α2

(
1+

`+ 1
2 −m

`+ 1
2 +m

)
(40)

= α2 2`+1
`+ 1

2 +m
= 1 (41)

α=

√
`+ 1

2 +m

2`+1
(42)

β = α

√
`+ 1

2 −m
`+ 1

2 +m
(43)

=

√
`+ 1

2 −m
2`+1

(44)
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We can get α′ and β′ from 4 and 5:

β′

α′
=−α

β
=−

√
`+ 1

2 +m

`+ 1
2 −m

(45)

A bit of algebra gives

α′ = −

√
`+ 1

2 −m
2`+1

(46)

β′ =

√
`+ 1

2 +m

2`+1
(47)

The sign of α′ is determined from the convention that the coefficient of
the product ket with the highestm is positive. Combining these results gives
Shankar’s equation 15.2.20:

∣∣∣∣`± 1
2
,m

〉
t

=±

√
`+ 1

2 ±m
2`+1

∣∣∣∣m− 1
2
,
1
2

〉
p

+

√
`+ 1

2 ∓m
2`+1

∣∣∣∣m+
1
2
,−1

2

〉
p

(48)

PINGBACKS

Pingback: Symmetry of states formed from two equal spins

http://physicspages.com/pdf/Shankar/Shankar Exercises 15.02.07.pdf
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Section 15.2; Exercise 15.2.5.
Post date: 15 Sep 2017
[If some equations are too small to read easily, use your browser’s mag-

nifying option (Ctrl + on Chrome, probably something similar on other
browsers).]

We’ve seen projection operators in a formal mathematical sense, but in
this post, we’ll see a practical example of projection operators in spin space.
We look at a system of two spin-1

2 particles, with spin operators S1 and S2
for each of the two particles. Now consider the operators

P1 =
3
4
I+

1
h̄2 S1 ·S2 (1)

P2 =
1
4
I− 1

h̄2 S1 ·S2 (2)

A projection operator projects an arbitrary vector onto a subscape of the
vector space in which that vector resides. The two projection operators here
project onto orthogonal subspaces, which means if we project some vector
V first with P1 and then with P2 (or vice versa), we’ll end up with the zero
vector. Also, if we project V twice (or more) with the same projection
operator, all projections after the first have no further effect. That is

PiPj = δijPj (3)

To show that this is true for the two projection operators above, we can
make use of an identity derived earlier:

(A ·σσσ)(B ·σσσ) = (A ·B)I+ i(A×B) ·σσσ (4)

which is valid if A and B commute with σσσ.
Here A and B are vector operators that commute with the Pauli matrices

σσσ.
First, we’ll look at P1P2:

1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Shankar/MIT 8.05x 04.02.02 Projection operators.pdf
http://physicspages.com/pdf/Shankar/Shankar Exercises 14.03.04.pdf
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P1P2 =

[
3
4
I+

1
h̄2 S1 ·S2

][
1
4
I− 1

h̄2 S1 ·S2

]
(5)

=

[
3
4
I+

1
4
σσσ1 ·σσσ2

][
1
4
I− 1

4
σσσ1 ·σσσ2

]
(6)

=
3

16
I− 2

16
σσσ1 ·σσσ2−

1
16

(σσσ1 ·σσσ2)
2 (7)

We can write the last term as

(σσσ1 ·σσσ2)
2 = (σσσ1 ·σσσ2)(σσσ1 ·σσσ2) (8)

We see that this has the same form as 4 with A = B = σσσ1 and σσσ = σσσ2.
Since σσσ1 and σσσ2 refer to different spins, they commute, so the identity is
valid. We get

(σσσ1 ·σσσ2)
2 = σσσ1 ·σσσ1I+ i(σσσ1×σσσ1) ·σσσ2 (9)

The first term is (using the fact that the square of each Pauli matrix is I):

σσσ1 ·σσσ1I =
(
σ2
x1 +σ

2
y1 +σ

2
z1
)
I (10)

= 3I2 (11)
= 3I (12)

The cross product is just a shorthand way of writing the commutation
relations. To see this, work out the x component, for example:

(σσσ1×σσσ1)x = σy1σz1−σz1σy1 = 2iσx1 (13)
We can write this as

(σσσ1×σσσ1) = iσσσ1 (14)
Plugging this into 9 we have

(σσσ1 ·σσσ2)
2 = 3I−2σσσ1 ·σσσ2 (15)

This gives, from 7

P1P2 =
3

16
I− 2

16
σσσ1 ·σσσ2−

3
16
I+

2
16
σσσ1 ·σσσ2 = 0 (16)

A similar calculation shows that

P2P1 = 0 (17)
We can also calculate

http://physicspages.com/pdf/Shankar/Shankar Exercises 14.03.03.pdf
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P1P1 =

[
3
4
I+

1
h̄2 S1 ·S2

][
3
4
I+

1
h̄2 S1 ·S2

]
(18)

=

[
3
4
I+

1
4
σσσ1 ·σσσ2

][
3
4
I+

1
4
σσσ1 ·σσσ2

]
(19)

=
9

16
I+

6
16
σσσ1 ·σσσ2 +

1
16

(σσσ1 ·σσσ2)
2 (20)

=
12
16
I+

4
16
σσσ1 ·σσσ2 (21)

=
3
4
I+

1
4
σσσ1 ·σσσ2 (22)

= P1 (23)

A similar calculation shows that

P2P2 = P2 (24)

To find the subspace to which each projection operator projects, we can
use the explicit matrix forms in the product basis for the projections. We
have

P1 =
3
4
I+

1
h̄2 S1 ·S2 (25)

=
3
4
I+

1
h̄2

(
1
2
S1+S2−+

1
2
S1−S2++S1zS2z

)
(26)

=
3
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ 1
2


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

+ (27)

1
2


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

+ 1
4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (28)

=


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1

 (29)

Similarly

http://physicspages.com/pdf/Shankar/Shankar Exercises 15.01.01.pdf
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P2 =
1
4
I− 1

h̄2 S1 ·S2 (30)

=
3
4
I− 1

h̄2

(
1
2
S1+S2−+

1
2
S1−S2++S1zS2z

)
(31)

=
1
4


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− 1
2


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

− (32)

1
2


0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

− 1
4


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 (33)

=


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

 (34)

If we apply these projections to an arbitrary vector V , we have

P1V = P1


a
b
c
d

=


1 0 0 0
0 1

2
1
2 0

0 1
2

1
2 0

0 0 0 1



a
b
c
d

 (35)

=


a

1
2 (b+ c)
1
2 (b+ c)

d

 (36)

= a


1
0
0
0

+ 1√
2
(b+ c)


0
1√
2

1√
2

0

+d


0
0
0
1

 (37)

Thus P1 projects V into the subspace spanned by the basis vectors of the
3-dimensional spin-1 subspace.

For P2 we have
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P2V = P2


a
b
c
d

=


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0



a
b
c
d

 (38)

=


0

1
2 (b− c)

1
2 (−b+ c)

0

 (39)

=
1√
2
(b− c)


0
1√
2

− 1√
2

0

 (40)

Thus P2 projects onto the 1-dimensional spin-0 subspace.
In the total-j basis

S2 = (S1 +S2)
2 = S2

1 +S
2
2 +2S1 ·S2 (41)

S1 ·S2 =
1
2
(
S2−S2

1 −S2
2
)

(42)

In both the spin-1 and spin-0 states, the eigenvalues of S2
1 and S2

2 are
equal to s1 (s1 +1) h̄2 = 3h̄2

4 . For spin-1, s= 1 and for the three basis states
with m=±1,0, we have, since all operators are diagonal in this space:

(S1 ·S2) |s= 1,m=±1,0〉= 1
2
(
S2−S2

1 −S2
2
)
|s= 1,m=±1,0〉 (43)

=
h̄2

2

(
s(s+1)− 3

2

)
I |s= 1,m=±1,0〉

(44)

=
h̄2

4
|s= 1,m=±1,0〉 (45)

For the spin-0 state, there is only one basis state with m= 0, so
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(S1 ·S2) |s= 0,m= 0〉= 1
2
(
S2−S2

1 −S2
2
)
|s= 0,m= 0〉 (46)

=
h̄2

2

(
s(s+1)− 3

2

)
|s= 0,m= 0〉 (47)

=−3h̄2

4
|s= 0,m= 0〉 (48)

Therefore, on any spin-1 state, we have

P1 |s= 1,m=±1,0〉=
(

3
4
I+

1
h̄2 S1 ·S2

)
|s= 1,m=±1,0〉 (49)

=

(
3
4
+

1
4

)
I |s= 1,m=±1,0〉 (50)

= |s= 1,m=±1,0〉 (51)

P2 |s= 1,m=±1,0〉=
(

1
4
I− 1

h̄2 S1 ·S2

)
|s= 1,m=±1,0〉 (52)

=

(
1
4
− 1

4

)
I |s= 1,m=±1,0〉 (53)

= 0 (54)

On the spin-0 state

P1 |s= 0,m= 0〉=
(

3
4
I+

1
h̄2 S1 ·S2

)
|s= 0,m= 0〉 (55)

=

(
3
4
− 3

4

)
I |s= 0,m= 0〉 (56)

= 0 (57)

P2 |s= 0,m= 0〉=
(

1
4
I− 1

h̄2 S1 ·S2

)
|s= 0,m= 0〉 (58)

=

(
1
4
+

3
4

)
I |s= 0,m= 0〉 (59)

= |s= 0,m= 0〉 (60)

Since the four kets |s= 1,m=±1,0〉 and |s= 0,m= 0〉 form a basis in
the total-j space, any state can be written as a linear combination of them,
and thus the projection operator P1 projects an arbitrary vector onto the
|s= 1,m=±1,0〉 subspace and P2 onto the |s= 0,m= 0〉 subspace.
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We can generalize the calculation made earlier where we found the pro-

jection operators that project an arbitrary vector onto the spin-1 and spin-0
subspaces of the space where two spin-1

2 systems are added. Here, we’ll
consider adding a spin-1

2 system to a system with an arbitrary orbital angu-
lar momentum L. In our earlier calculation, we found that the projection
operators for adding two spin-1

2 systems are

P1 =
3
4
I+

1
h̄2 S1 ·S2 (1)

P2 =
1
4
I− 1

h̄2 S1 ·S2 (2)

In the more general case, we’ll assume that the projection operators have
the forms

P+ = aI+
b

h̄2 L ·S (3)

P− = cI+
d

h̄2 L ·S (4)

where the constants a,b,c and d are to be determined. The operator P+

should project a vector onto the j = l+ 1
2 subspace and P− should project

onto the j = l− 1
2 subspace. Consider P+ first. We must therefore have

P+

∣∣∣∣l+ 1
2

〉
=

∣∣∣∣l+ 1
2

〉
(5)

First, we need a useful identity:

J2 = (L+S)2 = L2 +S2 +2L ·S (6)

L ·S =
1
2
(
J2 −L2 −S2) (7)

Inserting 3 we have
1

http://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Shankar/Shankar%20Exercises%2015.02.05.pdf
http://physicspages.com/pdf/Shankar/MIT%208.05x%2004.02.02%20Projection%20operators.pdf
http://physicspages.com/pdf/Shankar/MIT%208.05x%2004.02.02%20Projection%20operators.pdf


PROJECTION OPERATORS FOR GENERAL L + SPIN-1/2 2

P+

∣∣∣∣l+ 1
2

〉
=

(
aI+

b

h̄2 L ·S
)∣∣∣∣l+ 1

2

〉
(8)

= (a+ b [j (j+1)− l (l+1)−s(s+1)])
∣∣∣∣l+ 1

2

〉
(9)

=

(
a+ b

[(
l+

1
2

)(
l+

3
2

)
− l (l+1)− 3

4

])∣∣∣∣l+ 1
2

〉
(10)

=

(
a+

bl

2

)∣∣∣∣l+ 1
2

〉
(11)

Operating with P+ on the state
∣∣l− 1

2

〉
must give zero, since this state is

orthogonal to
∣∣l+ 1

2

〉
, so

P+

∣∣∣∣l− 1
2

〉
= 0 (12)

We therefore have

P+

∣∣∣∣l− 1
2

〉
=

(
aI+

b

h̄2 L ·S
)∣∣∣∣l− 1

2

〉
(13)

= (a+ b [j (j+1)− l (l+1)−s(s+1)])
∣∣∣∣l− 1

2

〉
(14)

=

(
a+ b

[(
l− 1

2

)(
l+

1
2

)
− l (l+1)− 3

4

])∣∣∣∣l− 1
2

〉
(15)

=

(
a− b(l+1)

2

)∣∣∣∣l− 1
2

〉
(16)

We thus have the two equations

a+
bl

2
= 1 (17)

a− b(l+1)
2

= 0 (18)

Solving these, we find

a=
l+1

2l+1
(19)

b=
2

2l+1
(20)

The projection operator is therefore
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P+ =
1

2l+1

[
(l+1)I+

2
h̄2 L ·S

]
(21)

We can follow the same procedure to find P−. This yields the same re-
sults when we operate on the two states

∣∣l+ 1
2

〉
and

∣∣l− 1
2

〉
, with a replaced

by c and b by d, but now we require that

P−

∣∣∣∣l+ 1
2

〉
= 0 (22)

P−

∣∣∣∣l− 1
2

〉
=

∣∣∣∣l− 1
2

〉
(23)

This gives us the equations

c+
dl

2
= 0 (24)

c− d(l+1)
2

= 1 (25)

with solutions

c=
l

2l+1
(26)

d=− 2
2l+1

(27)

Thus the projection operator is

P− =
1

2l+1

[
lI− 2

h̄2 L ·S
]

(28)

As a check we see that 21 and 28 reduce to the correct forms 1 and 2when
l = 1

2 .
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When we combine two states with angular momenta J1 and J2 we get a

state with a total angular momentum J = J1 + J2 where the total angular
momentum quantum number (that is, the angular momentum in units of h̄)
can take on values from a maximum of j = j1 + j2 down to either 1

2 or
zero. The general expression uses the Clebsch-Gordan coefficients to write
the compound state (in the total-j space) as a linear combination of product
states.

Although the calculation of Clebsch-Gordan coefficients can get quite
complicated in the general case, we can explore a couple of interesting prop-
erties in the case where the two component spins (I’ll refer to the angular
momenta as spins for brevity, although the argument applies to the addition
of angular momenta in general) are equal, so that j1 = j2.

[Note that in my edition of Shankar’s book, there are a couple of typos in
exercise 15.2.7, only one of which is corrected in the errata. The problem
should ask us to show that states with with j = 2j1 (not j = 2j1− 1) are
symmetric, and states with j = 2j1−1 are antisymmetric.]

We’ll consider first the case where the z-component is maximum, so that
m= 2j1. In this case, we have

|2j1,2j1〉t = |j1j1, j1j1〉p (1)

The subscript t refers to a total-j ket and p to a product ket. Thus the ket
|2j1,2j1〉t is a total-j ket with j = 2j1 and m = 2j1, while |j1j1, j1j1〉p is
a product ket where both particles have total spin j1 and z-component j1.
Clearly if we swap the two particles in the product ket, it remains unchanged
so this is a symmetric state. We would like to show that all states with
j = 2j1 (that is, for all values of m) are also symmetric.

To see this, we can follow Shankar’s procedure of applying the lowering
operator J− = JI−+JII− to the original state. To clarify the notation, I’ve
used roman numerals I and II to refer to the particle number, while the term
j1 just refers to the (common) angular momentum number. It gets a bit
confusing since in Shankar’s formulas, the two particles were also assumed

1
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to have different angular momenta so he could use the subscripts 1 and 2
to refer both to the particle number and the angular momentum numbers.
In our case, the two angular momenta are the same, but there are still two
particles that we want to keep track of.

When the lowering operator is applied to 1 we get the state which can be
obtained from Shankar’s equation 15.2.7 with j1 = j2:

|2j1,2j1−1〉= 1√
2
(|j1 (j1−1) , j1j1〉+ |j1j1, j1 (j1−1)〉) (2)

By inspection, the state on the RHS is also symmetric when we swap the
two particles. What happens if we carry on applying the lowering operator?
To get an idea, consider the possible mI and mII values for each value of
total z-component m.

m mI ,mII

2j1 j1
2j1−1 j1, j1−1
2j1−2 j1, j1−1, j1−2
2j1−a j1, j1−1, . . . , j1−a

In the last line, we’ve given the mI and mII values for an arbitrary value
a, where a = 0, . . . , j1. In each case, the ket |2j1,2j1−a〉 is formed from
a sum of product kets, where the two particles in each product ket must
be chosen so that mI +mII = m. From the first line in the table we get
1 and from the second we get 2. If we apply the lowering operator J− =
JI−+JII− to 2, we can see the following pattern. Note that the two kets
on the RHS are swapped versions of each other. If we apply JI− to the
first ket on the RHS and JII− to the second ket, we get two kets that are
again swapped versions of each other, except now one of the particles has a
z-component of j1 and the other has j1−2. These two kets are symmetric
with respect to swapping.

Now if we apply JI− to the second ket and JII− to the first, we get
two kets, in both of which the z-components of the two particles are both
equal to j1− 1. Thus these two kets are again symmetric with respect to
each other. (Actually, of course, we can combine them into a single ket of
form |(j1−1)(j1−1) ,(j1−1)(j1−1)〉 with some numerical coefficient,
but for the purposes of our argument, it’s better to keep them as two separate
symmetric kets.)

We can see that the same pattern occurs as we continue the lowering
process. In each case we apply JI− to one member of a symmetric pair of
kets and JII− to the other member of the same pair. This always produces
another pair of kets that are also symmetric. Thus the lowering process
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retains the symmetric property of the original ket 1 that was at the top of
the column.

The lowering operators introduce numerical coefficients since they have
the form

J− |jmj1j2〉= h̄
√

(j+m)(j−m+1) |j (m−1)j1j2〉 (3)
However, these coefficients will be the same for each pair of symmetric

states. Let’s do an explicit example to see how this works. Suppose we look
at one symmetric pair in one line of the above table so we have the two kets

|j1 (m− b) , j1b〉+ |j1b,j1 (m− b)〉 (4)
We assume that these two kets have the same numerical coefficient at this

stage. If we look at 2 we see this is true for the case b = 1, so we can take
this as an anchor step in an inductive proof.

We now apply JI− to the first ket and JII− to the second ket in this pair.
This gives

JI− |j1 (m− b) , j1b〉+JII− |j1b,j1 (m− b)〉=
(5)

h̄
√

(j1 +m− b)(j1−m+ b+1) [|j1 (m− b−1) , j1b〉+ |j1b,j1 (m− b−1)〉]
(6)

Thus the numerical coefficient is the same for both kets. The other sym-
metric pair is obtained by swapping the two lowering operators, so we have

JII− |j1 (m− b) , j1b〉+JI− |j1b,j1 (m− b)〉=
(7)

h̄
√

(j1 + b)(j1− b+1) [|j1 (m− b) , j1 (b−1)〉+JII− |j1 (b−1) , j1 (m− b)〉]
(8)

This results in another symmetric pair of kets.
Now consider states where j = 2j1−1. The top member of this column

can be obtained from Shankar’s equation 15.2.8 with j1 = j2:

|2j1−1,2j1−1〉= 1√
2
(|j1j1, j1 (j1−1)〉− |j1 (j1−1) , j1j1〉) (9)

Swapping the two particles on the RHS gives the negative of the origi-
nal state, so this is an antisymmetric state. We can apply exactly the same
argument as above to see that all states with lower values of m are also anti-
symmetric. In each case, we apply JI− to one member of an antisymmetric

http://physicspages.com/pdf/Griffiths%20QM/Griffiths%20Problems%2004.18.pdf
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pair and JII− to the other, resulting in another antisymmetric pair with a
value of m one lower than before. In this case, however, all states where
mI = mII will cancel out, since such states must be their own negatives.
This is just the Pauli exclusion principle for antisymmetric states.
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We can write a rank-1 spherical tensor operator T q1 in terms of a 3-d

vector V as follows:

T±1
1 =∓

Vx± iVy√
2

(1)

T 0
1 = Vz (2)

Shankar provides the example of the position operator Rq1 in spherical
coordinates, but (to me, at least) the example needs a bit of clarification.
First, we see that Rq1 can be written in terms of the rectangular position
coordinates as

R±1
1 =∓x± iy√

2
(3)

R0
1 = z (4)

We’ve seen earlier that the spherical harmonics can be written as

Y ±1
1 =∓

√
3

4π
x± iy√

2r
(5)

Y 0
1 =

√
3

4π
z

r
(6)

Therefore, we have

Rq1 =

√
4π
3
rY q1 (7)

Now suppose we calculate the matrix elements of Rq1 in the basis of an-
gular momentum eigenstates |αlm〉. Here, we’re assuming that the total
angular momentum is orbital so J = L, and α represents quantities that de-
pend on things other than angular momentum. If the potential in the Hamil-
tonian is spherically symmetric, then the wave function can be written as

1
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the product of a radial function Rαl (r) and a spherical harmonic Y ml (θ,φ).
The radial function depends only on r, and its precise form depends on the
potential function V (r). The spherical harmonic depends only on the an-
gular coordinates θ and φ, and is independent of the potential. Using these
facts, we can write the matrix element as

〈
α2l2m2

∣∣Rq1∣∣α1l1m1
〉
=
∫
R∗α2l2

(
Y m2
l2

)∗√4π
3
rY q1 Rα1l1Y

m1
l1
r2dr dΩ

(8)
In this equation, I’ve omitted the explicit functional dependences of the

functions on the coordinates to save space, and dΩ is an increment of solid
angle, so dΩ = sinθdθ dφ. This integral splits into the product of two sepa-
rate integrals: one over r only and the other over angles only. That is

〈
α2l2m2

∣∣Rq1∣∣α1l1m1
〉
=

√
4π
3

∫
R∗α2l2

rRα1l1r
2dr×

∫ (
Y m2
l2

)∗
Y q1 Y

m1
l1
dΩ

(9)
The first integral is known as the reduced matrix element, and is written

as

〈α2l2 ||R1||α1l1〉 ≡
√

4π
3

∫
R∗α2l2

rRα1l1r
2dr (10)

Notice that this factor is independent of the tensor index q, which appears
only in the angular integral. That is, the radial integral is the same for all 3
values of q.

The angular integral is written as

〈l2m2 |1q, l1m1 〉 (11)
Shankar claims that this is (up to a numerical factor independent ofm1,m2

and q) a Clebsch-Gordan coefficient, although he doesn’t derive this, so
we’ll accept it at this point.

This result is a special case of the more general Wigner-Eckart theorem,
which states that, for any spherical tensor operator T qk , its matrix elements
can be written as the product of two factors, one of which is the reduced
matrix element. That is

〈
α2j2m2

∣∣T qk ∣∣α1j1m1
〉
= 〈α2j2 ||Tk||α1j1〉〈j2m2 |kq,j1m1 〉 (12)

All the dependence of the matrix element on spatial orientation (that is,
on θ and φ) is contained in the second factor, which can be written in terms
of Clebsch-Gordan coefficients.

http://physicspages.com/pdf/Griffiths%20QM/Griffiths%20Problems%2004.36.pdf
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A spherical tensor operator is defined to be an object T q

k with integer
indices q and k. The rank of the tensor is k, and the other index q ranges in
integer steps from −k to +k, giving T q

k 2k+ 1 components. Its definition
includes a requirement that it transform under a rotation according to

U [R]T q
kU

† [R] = ∑
q′
D

(k)
q′qT

q′

k (1)

where D(k) is the k-th block in the block diagonal matrix formed from
the angular momentum operators J . For a rotation through an angle θ about
an axis θ̂, we have

D(k) [R (θθθ)] =
∞

∑
n=0

1
n!

(
−iθ
h̄

)n(
θ̂θθ ·J(k)

)n
(2)

where J(k) is the angular momentum vector obtained from the k-th block
in each of Jx, Jy and Jz (see Shankar section 12.5 for details).

The series can be written in closed form for some small values of k, but
we won’t need these forms here.

For a set of angular momentum kets |kq〉 (Shankar changes the notation
here, in that |kq〉 refers to a state with total angular momentum number k
and z component q, rather than the more familiar |jm〉), the matrix elements
of D(k) are

D
(k)
q′q =

〈
kq′ |U [R]|kq

〉
(3)

Note that 〈
k′q′ |U [R]|kq

〉
=D

(k)
q′q δk′k (4)

This follows because a rotation cannot change the total angular momen-
tum of a state, so U [R] |kq〉 will always result in a state whose total angular
momentum number is also k. From this fact, we can write the rotation of an
angular momentum ket as

1
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U [R] |kq〉= ∑
k′

∑
q′

∣∣k′q′〉〈k′q′ |U [R]|kq
〉

(5)

= ∑
k′

∑
q′

∣∣k′q′〉D(k)
q′q δk′k (6)

= ∑
q′
D

(k)
q′q

∣∣kq′〉 (7)

Comparing this result with 1, we see that a passive transformation of
the tensor operator T q

k works in the same way as a rotation of an angular
momentum eigenstate |kq〉.

We can use 1 to work out the commutators of T q
k with the components of

the angular momentum operator J. We use the fact that angular momentum
is the generator of rotations and consider an infinitesimal rotation δθθθ about,
say, the x axis. In this case, working to first order in δθ:

U [R] = I− iδθJx
h̄

(8)

U† [R] = I+
iδθJx
h̄

(9)

U [R]T q
kU

† [R] =

(
I− iδθJx

h̄

)
T q
k

(
I+

iδθJx
h̄

)
(10)

= T q
k −

iδθ

h̄

[
Jx,T

q
k

]
(11)

On the RHS of 1 we can use 3 to first order in δθ:

D
(k)
q′qT

q′

k =

〈
kq′
∣∣∣∣I− iδθJxh̄

∣∣∣∣kq〉T q′

k (12)

=
〈
kq′ |kq|

〉
T q′

k −
iδθ

h̄

〈
kq′ |Jx|kq

〉
T q′

k (13)

= T q
k −

iδθ

h̄

〈
kq′ |Jx|kq

〉
T q′

k (14)

Combining the last two results, we have[
Jx,T

q
k

]
= ∑

q′

〈
kq′ |Jx|kq

〉
T q′

k (15)

We could do the same analysis for the y and z components, and we’d get
the same result, so we have

http://physicspages.com/pdf/Shankar/Shankar%20Exercises%2011.02.01%20-%2011.02.02.pdf
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[
Jy,T

q
k

]
= ∑

q′

〈
kq′ |Jy|kq

〉
T q′

k (16)

[
Jz,T

q
k

]
= ∑

q′

〈
kq′ |Jz|kq

〉
T q′

k (17)

We can simplify the last equation, since the ket |kq〉 is an eigenket of Jz
with eigenvalue qh̄. We therefore have

∑
q′

〈
kq′ |Jz|kq

〉
T q′

k = ∑
q′

〈
kq′ |kq

〉
h̄qT q′

k (18)

= h̄qT q
k (19)

To deal with the other two components, we can combine the results in 15
and 16 and use the raising and lowering operators.

J± = Jx± iJy (20)

J± |kq〉= h̄
√

(k∓ q)(k± q+1) |k,q±1〉 (21)

We have

[
J±,T

q
k

]
= ∑

q′

〈
kq′ |J±|kq

〉
T q′

k (22)

= h̄
√
(k∓ q)(k± q+1)∑

q′

〈
kq′ |k,q±1

〉
T q′

k (23)

= h̄
√
(k∓ q)(k± q+1)T q±1

k (24)

where we’ve again used the orthogonality of the eigenkets to get the last
line.

Example. Suppose we construct a spherical tensor out of the components
of a vector operator V so that we have a rank 1 tensor given by

T±1
1 =∓

Vx± iVy√
2

(25)

T 0
1 = Vz (26)

Vector operators obey the commutation rules

[Vi,Jj ] = ih̄∑
k

εijkVk (27)

Applying this gives us, for example

http://physicspages.com/pdf/Griffiths%20QM/Angular%20momentum%20-%20raising%20and%20lowering%20values.pdf
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[
T 1

1 ,Jx
]
=− 1√

2
([Vx,Jx]+ i [Vy,Jx]) (28)

=− 1√
2
(0+ h̄Vz) (29)

=−h̄ Vz√
2

(30)[
T 1

1 ,Jy
]
=− 1√

2
([Vx,Jy]+ i [Vy,Jy]) (31)

=− 1√
2
(ih̄Vz+0) (32)

=−ih̄ Vz√
2

(33)

Combining these results, we have

[
T 1

1 ,J+
]
=
[
T 1

1 ,Jx
]
+ i
[
T 1

1 ,Jy
]

(34)

=−h̄ Vz√
2
+ h̄

Vz√
2

(35)

= 0 (36)

This agrees with 24 with k = q = 1.
We also have

[
T 1

1 ,J−
]
=
[
T 1

1 ,Jx
]
− i
[
T 1

1 ,Jy
]

(37)

=−h̄ Vz√
2
− h̄ Vz√

2
(38)

=−
√

2h̄Vz (39)

=−
√

2h̄T 0
1 (40)

This also agrees with 24 with k = q = 1 (since
[
T 1

1 ,J−
]
=−

[
J−,T

1
1
]
).

We can do similar calculations to find that

[
T−1

1 ,J+
]
=−
√

2h̄T 0
1 (41)[

T−1
1 ,J−

]
= 0 (42)

Finally, we have
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[
T 1

1 ,Jz
]
=− 1√

2
([Vx,Jz]+ i [Vy,Jz]) (43)

=− 1√
2
(−ih̄Vy− h̄Vx) (44)

=
h̄√
2
(Vx+ iVy) (45)

=−h̄T 1
1 (46)[

Jz,T
1
1
]
= h̄T 1

1 (47)

which is again consistent with 19 with q = 1. Similar calculations can be
done to verify the other commutation relations.
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A spherical tensor operator is defined by the way it transforms under

rotation:

U [R]T q
kU

† [R] = ∑
q′
D

(k)
q′qT

q′

k (1)

where D(k) is the k-th block in the block diagonal matrix formed from
the angular momentum operators J . We can form an operator Ω from two
spherical tensor operators:

Ωk ≡∑
q

(−1)qSq
kT
−q
k (2)

For k= 1 we can write a spherical tensor operator in terms of a 3-d vector
operator. We’ll use lower-case letters to represent the vector operator, so we
have

S±1
1 =∓

sx± isy√
2

(3)

S0
1 = sz (4)

T±1
1 =∓

tx± ity√
2

(5)

T 0
1 = tz (6)

Plugging these into 2 with k = 1 we have

Ω1 =
1
2
(sx+ isy)(tx− ity)+sztz+

1
2
(sx− isy)(tx+ ity) (7)

= sxtx+syty+sztz (8)
= s · t (9)

Thus Ω1 is the scalar product of the two vectors, and is therefore a scalar
operator.

1
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To prove this for any k, we can let Ωk operate on an angular momentum
eigenket |jm〉 and then rotate this state, using 1. To simplify things, I’ll
write the unitary rotation operator U [R] without the explicit R dependence,
so it’s just U .

UΩk |jm〉= U∑
q

(−1)qSq
kT
−q
k |jm〉 (10)

= ∑
q

(−1)qUSq
kU

†UT−qk U†U |jm〉 (11)

= ∑
q,a,b,c

(−1)qD(k)
aq S

a
kD

(k)
−b,−qT

−b
k D

(j)
cm |jc〉 (12)

Each of the lower indices in D(k)
m,m′ can take values −k, . . . ,+k, so a sum

over m is the same as a sum over −m. That is

UT−qk U† = ∑
b

D
(k)
b,−qT

b
k = ∑

b

D
(k)
−b,−qT

−b
k (13)

We can now use Shankar’s hint (which I tried to prove, but couldn’t,
although it’s probably something simple):

D
(k)
−b,−q = (−1)b−q

(
D

(k)
bq

)∗
(14)

Using this, we have

UΩk |jm〉= ∑
q,a,b,c

(−1)qD(k)
aq S

a
k (−1)b−q

(
D

(k)
bq

)∗
T−bk D

(j)
cm |jc〉 (15)

= ∑
a,b,c

∑
q

[
D

(k)
aq

(
D

(k)
bq

)∗]
(−1)bSa

kT
−b
k D

(j)
cm |jc〉 (16)

Because D(k)
aq is a unitary matrix (it’s the matrix elements of the uni-

tary rotation operator D(k)
aq = 〈ka |U [R]|kq〉) its rows are orthonormal (see

Shankar, Theorem 8 in chapter 1), so the sum over q is

∑
q

D
(k)
aq

(
D

(k)
bq

)∗
= δab (17)

Therefore, the rotated state is
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UΩk |jm〉= ∑
a,b,c

δab (−1)bSa
kT
−b
k D

(j)
cm |jc〉 (18)

=

[
∑
b

(−1)bSb
kT
−b
k

][
∑
c

D
(j)
cm |jc〉

]
(19)

= ΩkU [R] |jm〉 (20)

In other words, the operator Ωk is unchanged by rotation, as the same
operator operates on the rotated state U [R] |jm〉. Therefore, Ωk is a scalar
for all k.
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The Wigner-Eckart theorem says that for any spherical tensor operator

T q1 we can write its matrix elements in the basis of angular momentum
eigenstates |αlm〉 as a product of two factors:

〈
α2j2m2

∣∣T qk ∣∣α1j1m1
〉
= 〈α2j2 ||Tk||α1j1〉〈j2m2 |kq,j1m1 〉 (1)

where the first factor on the RHS is the reduced matrix element, and is
independent of m1,m2 and the tensor index q. Our earlier example went
through the calculation for the position operator Rq1, and this involved inte-
grals over spatial coordinates. The theorem also applies to cases where the
matrix elements depend only on angular momentum parameters.

First, we’ll look at the rank-1 tensor Jq1 which represents total angular
momentum. The tensor components are

J±1
1 =∓

Jx± iJy√
2

=∓ J±√
2

(2)

J0
1 = Jz (3)

where J± are the usual raising and lowering operators.
According to 1, we can write the matrix elements as

〈
α2j2m2

∣∣Jq1 ∣∣α1j1m1
〉
= 〈α2j2 ||J1||α1j1〉〈j2m2 |1q,j1m1 〉 (4)

Since the factor 〈α2l2 ||J1||α1l1〉 does not depend on q, the equation must
be true for the case q = 0, so the LHS becomes

〈
α2j2m2

∣∣J0
1
∣∣α1j1m1

〉
= 〈α2j2m2 |Jz|α1j1m1〉 (5)

=m1h̄〈α2j2m2 |α1j1m1 〉 (6)
=m1h̄δα2α1δj2j1δm2m1 (7)

where the δs arise because the kets are orthonormal. Now suppose that
we take m1 =m2 = j1 = j, and we use the hint given by Shankar that

1
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〈jj |jj,10〉=

√
j

j+1
(8)

Then, from 4 we have

〈α2j2 ||J1||α1j1〉=
〈
α2j2j

∣∣J0
1

∣∣α1jj
〉

〈jj |jj,10〉
(9)

= h̄jδα2α1δj2j

√
j+1
j

(10)

=
√
j (j+1)h̄δα2α1δj2j (11)

Now suppose we consider a more general case where the tensor operator
is J ·A, where A is some arbitrary vector. We’ve seen earlier that the scalar
product of two vectors can be written as

J ·A = ∑
q=±1,0

(−1)q Jq1A
−q
1 (12)

where the tensors in the sum on the RHS are formed the same way as in
2. Writing out this sum gives the hint in Shankar’s question, which is that
we can write the scalar product as

J ·A = JzAz+
1
2
(J−A++J+A−) (13)

In what follows, we’ll also need the fact that

J†
± = J∓ (14)

J†
z = Jz (15)

and that

J± |α,j,m〉= h̄
√
(j∓m)(j±m+1) |α,j,m±1〉 (16)

Now let’s take the matrix element of J ·A, although this time things are
made a bit easier since we take j2 = j1 = j, so the total angular momentum
is the same in all matrix elements. We have

http://physicspages.com/pdf/Shankar/Shankar%20Exercises%2015.03.02.pdf
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〈
α′jm′ |J ·A|αjm

〉
=
〈
α′jm′ |JzAz|αjm

〉
+ (17)

1
2
(〈
α′jm′ |J−A+|αjm

〉
+
〈
α′jm′ |J+A−|αjm

〉)
(18)

=
〈
Jzα

′jm′ |Az|αjm
〉
+ (19)

1
2
(〈
J+α

′jm′ |A+|αjm
〉
+
〈
J−α

′jm′ |A−|αjm
〉)

(20)

=m′h̄
〈
α′jm′ |Az|αjm

〉
+ (21)

h̄

2

(√
(j−m′)(j+m′+1)

〈
α′j,m′+1 |A+|αjm

〉
+

(22)√
(j+m′)(j−m′+1)

〈
α′j,m′−1 |A−|αjm

〉)
(23)

From 2, we have that A+ =−
√

2A1
1, A− =

√
2A−1

1 and Az = A0
1, so we

have

〈
α′jm′ |J ·A|αjm

〉
=m′h̄

〈
α′jm′

∣∣A0
1
∣∣αjm〉+ (24)

h̄√
2

(
−
√

(j−m′)(j+m′+1)
〈
α′j,m′+1

∣∣A1
1
∣∣αjm〉+

(25)√
(j+m′)(j−m′+1)

〈
α′j,m′−1

∣∣A−1
1

∣∣αjm〉)
(26)

However, from 1 we know that

〈
α′jm′

∣∣Aq1∣∣αjm〉= 〈α′j ||A1||αj
〉〈
jm′ |1q,jm

〉
(27)

where the first factor is the same for all q. Therefore, we can write 24 as

〈
α′jm′ |J ·A|αjm

〉
= c
〈
α′j ||A1||αj

〉
(28)

where
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c=m′h̄
〈
jm′ |10, jm

〉
+ (29)

h̄√
2

(√
(j+m′)(j−m′+1)

〈
j,m′−1 |1,−1, jm

〉
− (30)√

(j−m′)(j+m′+1)
〈
j,m′+1 |11, jm

〉)
(31)

which is independent of α and α′.
To work out c explicitly, we need to find the bracket terms in its expres-

sion. We can do this by going back to 9 with j1 = j2 = j. We have

〈
jm′

∣∣Jq1 ∣∣jm〉= 〈j ||J1||j〉
〈
jm′ |1q,jm

〉
(32)

From 11 we have

〈
jm′ |1q,jm

〉
=

〈
jm′

∣∣Jq1 ∣∣jm〉
h̄
√
j (j+1)

(33)

We can work out the matrix elements
〈
jm′

∣∣Jq1 ∣∣jm〉 by using 2 and the
raising and lowering operators. We get
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〈
jm′ |10, jm

〉
=
〈jm′ |Jz|jm〉
h̄
√
j (j+1)

(34)

=
mh̄

h̄

〈jm′ |jm〉√
j (j+1)

(35)

=
m√

j (j+1)
δmm′ (36)

〈
j,m′−1 |1−1, jm

〉
=

1√
2
〈j,m′−1 |J−|jm〉

h̄
√
j (j+1)

(37)

=
1√
2
〈J+j,m′−1 |jm〉
h̄
√
j (j+1)

(38)

=

√
(j−m′+1)(j+m′)√

2
√
j (j+1)

〈
jm′ |jm

〉
(39)

=

√
(j−m+1)(j+m)√

2
√
j (j+1)

δmm′ (40)

〈
j,m′+1 |11, jm

〉
=− 1√

2
〈j,m′+1 |J+|jm〉

h̄
√
j (j+1)

(41)

=− 1√
2
〈J−j,m′+1 |jm〉
h̄
√
j (j+1)

(42)

=−
√

(j+m′+1)(j−m′)√
2
√
j (j+1)

〈
jm′ |jm

〉
(43)

=−
√

(j+m+1)(j−m)√
2
√
j (j+1)

δmm′ (44)

Putting everything together, we have

c=
h̄δmm′√
j (j+1)

[
m2 +

1
2
(j−m+1)(j+m)+

1
2
(j+m+1)(j−m)

]
(45)

=
h̄δmm′√
j (j+1)

(
j2 + j

)
(46)

= h̄
√
j (j+1)δmm′ (47)

We can combine these results to get an expression for the matrix elements
of Aq1. From 27, 28, 33 and 47 we have
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〈
α′jm′

∣∣Aq1∣∣αjm〉= 〈α′j ||A1||αj
〉〈
jm′ |1q,jm

〉
(48)

=
1
c

〈
α′jm′ |J ·A|αjm

〉〈
jm′ |1q,jm

〉
(49)

=
〈α′jm′ |J ·A|αjm〉

h̄2j (j+1)

〈
jm′

∣∣Jq1 ∣∣jm〉 (50)
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The Wigner-Eckart theorem says that for any spherical tensor operator

T q
1 we can write its matrix elements in the basis of angular momentum

eigenstates |αlm〉 as a product of two factors:

〈
α2j2m2

∣∣T q
k

∣∣α1j1m1
〉
= 〈α2j2 ||Tk||α1j1〉〈j2m2 |kq,j1m1 〉 (1)

where the first factor on the RHS is the reduced matrix element, and is
independent of m1,m2 and the tensor index q.

We can apply this to the case where we have a particle such as a proton
or electron with both orbital and spin angular momentum. Such a particle
has a magnetic moment

µµµ= γ1J1 +γ2J2 (2)

Here γi are the gyromagnetic ratios for the two angular momenta. Sup-
pose we want to find 〈µµµ〉 for a particle in a state |jm,j1j2〉, where this
ket represents a state with the two component momenta j1 and j2 and to-
tal angular momentum j with z component m. [This is different from the
notation that Shankar uses in most of Chapter 15, where |j1m1, j2m2〉 rep-
resents a state with the two components j1 and j2 and their corresponding z
components.] We can use the formula derived earlier

〈
α′jm′

∣∣Aq
1

∣∣αjm〉
=
〈α′jm′ |J ·A|αjm〉

h̄2j (j+1)

〈
jm′

∣∣Jq
1

∣∣jm〉
(3)

We can work out 2 by applying this formula to each momentum compo-
nent separately. As we’re concerned only with angular momentum we can
omit α (since it represents other parameters) and set m′ =m. The notation
can be a bit confusing, since in this problem, the subscript 1 or 2 represents
a label for a particular angular momentum and not the rank of a tensor. With
A = J1 we have

1
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〈jm,j1j2 |J1i|jm,j1j2〉=
〈jm,j1j2 |J ·J1|jm,j1j2〉

h̄2j (j+1)
〈jm,j1j2 |Ji|jm,j1j2〉

(4)
The subscript i represents the component x, y or z. We can workout the

middle matrix element using

J ·J1 = J2
1 +J2 ·J1 (5)

= J2
1 +

1
2
(
J2−J2

1 −J2
2
)

(6)

=
1
2
(
J2 +J2

1 −J2
2
)

(7)

Therefore

〈jm,j1j2 |J ·J1|jm,j1j2〉=
h̄2

2
(j (j+1)+ j1 (j1 +1)− j2 (j2 +1)) (8)

Applying the same calculation for J ·J2 we have

〈jm,j1j2 |J ·J2|jm,j1j2〉=
h̄2

2
(j (j+1)+ j2 (j2 +1)− j1 (j1 +1)) (9)

We also have

〈jm,j1j2 |Jz|jm,j1j2〉=mh̄ (10)

From the raising and lowering operators we have

Jx =
1
2
(J++J−) (11)

Jy =
1
2i

(J+−J−) (12)

Because kets with different m values are orthogonal and J± raises or
lowers the m value, we have

〈jm,j1j2 |J±|jm,j1j2〉= 0 (13)

Therefore

〈jm,j1j2 |Jx,y|jm,j1j2〉= 0 (14)

Putting these into 2 gives

http://physicspages.com/pdf/Griffiths%20QM/Griffiths%20Problems%2004.18.pdf
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〈µx〉= 〈µy〉= 0 (15)

〈µz〉=
h̄2

2h̄2j (j+1)
[γ1 (j (j+1)+ j1 (j1 +1)− j2 (j2 +1))+ (16)

γ2 (j (j+1)+ j2 (j2 +1)− j1 (j1 +1))] h̄m (17)

=
h̄m

2

[
γ1 +γ2 +(γ1−γ2)

j1 (j1 +1)− j2 (j2 +1)
j (j+1)

]
(18)

For a proton in the state 2P1/2, the orbital angular momentum is j1 = 1
(from the P ), the spin is j2 = 1

2 (from 2S+ 1 = 2) and the total angular
momentum is j = 1

2 (from the subscript). The orbital gyromagnetic ratio is
(Shankar, eqn 14.4.7)

γ1 =
e

2Mc
(19)

The spin gyromagnetic ratio is (Shankar, p. 391):

γ2 = 5.6
e

2Mc
(20)

Plugging these into 18 we get

〈µz〉= 0.53m
eh̄

2Mc
(21)

The z component of total angular momentum can take values of ±1
2 for

j = 1
2 , so we have

〈µz〉=±0.267
eh̄

2Mc
(22)

where eh̄
2Mc is the nuclear Bohr magneton.

For an electron in the state 2P1/2 everything is the same except that the
spin gyromagnetic ratios are

γ1 =−
e

2mec
(23)

γ2 =−
e

mec
(24)

Plugging these into 18 gives

〈µz〉=±
1
3

eh̄

2mec
(25)

where eh̄
2mec

is electron Bohr magneton.
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Finally, we can note a condition of the matrix elements of a general spher-
ical tensor T q

k , which we can see from 1. If j1 = j2 = j and m1 =m2 =m
we have (disregarding α):〈

jm
∣∣T q

k

∣∣jm〉
= 〈j ||Tk||j〉〈jm |kq,jm〉 (26)

The factor 〈jm |kq,jm〉 is a Clebsch-Gordan coefficient (up to a numer-
ical factor), which means that it must be possible to form the angular mo-
mentum in the bra by adding the two angular momenta in the ket. This gives
the condition that

|k− j| ≤ j ≤ k+ j (27)
If k > j this gives the condition

0≤ k ≤ 2j (28)
Any values of k > 2j give a zero Clebsch-Gordan coefficient, so

〈
jm

∣∣T q
k

∣∣jm〉
=

0 for k > 2j.
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We’ve covered the variational principle before while studying Griffiths’s

book, but Shankar provides a few new examples which are worth going
through. In this example, we look at the harmonic oscillator and use the
trial function

ψ = Ae−αx
2

(1)

where A is the normalization constant and α is the parameter to be varied
in an attempt to get the best estimate for the ground state energy. [Of course,
we already know that the exact ground state wave function has this form,
so this exercise can be viewed more as a demonstration that the variational
principle can give the exact answer if the right form of trial function is used.]

First we find A from the condition∫
∞

−∞

ψ2dx= A2
∫

∞

−∞

e−2αx2
dx= 1 (2)

This is a standard Gaussian integral, but I’ve used Maple to do the inte-
grals here. We have

∫
∞

−∞

e−2αx2
dx=

√
π

2α
(3)

so

A=

(
2α
π

)1/4

(4)

We can now apply the variational principle. We must find

〈ψ |H|ψ〉=
√

2α
π

∫
∞

−∞

e−αx
2

(
− h̄2

2m
d2ψ

dx2 +
1
2
mω2x2e−αx

2

)
dx (5)

The first term in the integrand is
1
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− h̄2

2m
d2ψ

dx2 =− h̄
2α

m

(
2αx2−1

)
e−αx

2
(6)

Thus

〈E〉= 〈ψ |H|ψ〉=
√

2α
π

∫
∞

−∞

e−2αx2

[
− h̄

2α

m

(
2αx2−1

)
+

1
2
mω2x2

]
dx

(7)

=

√
2α
π

[(
1
2
mω2− 2h̄2α2

m

)∫
∞

−∞

x2e−2αx2
dx+ (8)

h̄2α

m

∫
∞

−∞

e−2αx2
dx

]
(9)

=
h̄2α

2m
+
mω2

8α
(10)

where I used Maple to do the integrals and simplify the result to get the
last line. If you want to do them by hand, the two integrals are standard
Gaussian integrals so you should be able to do them by looking them up in
tables.

We now find the optimum value of α by differentiating:

d〈E〉
dα

=
h̄2

2m
−mω

2

8α2 = 0 (11)

Solving, we find

α0 =
mω

2h̄
(12)

(There is also a negative root, but we know α > 0 to prevent the wave
function blowing up at infinity.)

Substituting into 10 we get the energy as

E0 =
1
2
h̄ω (13)

which is the exact ground state energy.
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Although we’re looking at the variational principle, the example in this

post isn’t technically an application of this, as there isn’t anything to vary.
However, the idea behind the variational principle is that if we take any
wave function ψ then, for a given Hamiltonian H , the ground state energy
E0 is bounded by

E0 ≤
〈ψ |H|ψ〉
〈ψ |ψ 〉

(1)

Given this, then we don’t need to vary a parameter in the wave function
in order to get an upper bound on the ground state energy. As an example,
suppose we look at the infinite square well. The exercise in Shankar uses
the square well centred on the origin, so that

V (x) =

{
0 −a < x < a

∞ otherwise
(2)

We know that the exact normalized ground state wave function is

ψ1 (x) =
1√
a

cos
(πx

2a

)
(3)

and the corresponding ground state energy is

E1 =
π2h̄2

8ma2 (4)

Suppose we didn’t know this, but guessed that the wave function was
peaked at x = 0 and went to 0 at x = ±a. We might then try a parabolic
function such as

ψ = (x+a)(x−a) = x2−a2 (5)
Although ψ actually has a minimum at x = 0, we could convert it into a

function with a maximum at x = 0 by taking the negative, which amounts
1
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to multiplying by a phase factor of eiπ, so has no effect on physical mea-
surements.

In this case, 1 gives us

〈ψ |ψ 〉=
∫ a

−a

(
x2−a2)2

dx (6)

=
16
15
a5 (7)

〈ψ |H|ψ〉=− h̄2

2m

∫ a

−a

(
x2−a2) d2

dx2

(
x2−a2)dx (8)

=− h̄
2

m

∫ a

−a

(
x2−a2)dx (9)

=
4h̄2a3

3m
(10)

The ground state energy estimate is then

E1,est ≤
5h̄2

4ma2 (11)

Comparing with the exact answer 4 we see that

E1,est

E1
=

10
π2 ≈ 1.013 (12)

Thus the estimate of E1 using this parabolic wave function is actually not
too bad.

The fact that d
2ψ
dx2 is discontinuous at the boundaries x=±a doesn’t affect

the energy since ψ= 0 at the boundaries, so the particle is never found there.
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Here we’ll apply the variational principle to the delta function well, with

potential

V =−aV0δ (x) (1)

where a and V0 are positive constants. As we’ve seen earlier, there is a
single bound state with energy

E =−
ma2V 2

0

2h̄2 (2)

[In the earlier treatment, based on Griffiths’s book, V = −αδ (x) for a
positive constant α.] The exact wave function has a discontinuous derivatve
at x = 0, and decays exponentially on both sides of x = 0. To apply the
variational principle, we’ll use a Gaussian as a trial function, so that

ψ (x) = Ae−bx
2

(3)

for some constants A and b. From normalization, we can find A:∫
∞

−∞

ψ2dx= A2
∫

∞

−∞

e−2bx2
dx= 1 (4)

Evaluating the Gaussian integral we have

∫
∞

−∞

e−2bx2
dx=

√
π

2b
(5)

This gives

A=

(
2b
π

)1/4

(6)

To apply the variational principle, we need to work out the integral
1
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〈ψ |H|ψ〉=
√

2b
π

∫
∞

−∞

e−bx
2

(
− h̄2

2m
d2

dx2 −aV0δ (x)

)
e−bx

2
dx (7)

We calculate the derivative:

d2

dx2 e
−bx2

= 2b
(
2bx2−1

)
e−bx

2
(8)

We therefore have (using Maple to integrate the first term; the delta func-
tion integral is easy)

〈H〉= 〈ψ |H|ψ〉= h̄2

2m
b−a

√
2b
π
V0 (9)

We now want the value of b that minimizes the energy, so we take the
derivative

d〈H〉
db

=
h̄2

2m
− aV0√

2π
b−1/2 = 0 (10)

b0 =
2a2V 2

0 m
2

πh̄4 (11)

Substituting b= b0 into 9 we get

E0 =−
ma2V 2

0

πh̄2 (12)

Comparing this with 2 we see that the variational estimate is

E =
π

2
E0 ≈ 1.57E0 (13)

Note that E0 still provides an upper bound on E since the energy is neg-
ative. In this case, the Gaussian estimate isn’t that good.
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Here we’ll apply the variational principle again to the harmonic oscilla-

tor, this time with potential

ψ (x) =

{
(x−a)2 (x+a)2 x≤ |a|
0 |x|> a

(1)

Here a is the parameter to be varied, and we can see that it controls the
width of the trial wave function as well as its height. We first find the
normalization constant

N ≡ 〈ψ |ψ 〉=
∫ a

−a
(x−a)4 (x+a)4 dx (2)

=
256
315

a9 (3)

where I used Maple to do and simplify the integral. If you want to do
it by hand, it’s probably easiest to use the substitution u = x− a before
multiplying out the factors in the integrand.

The energy estimate is then obtained by minimizing

E =
〈ψ |H|ψ〉
〈ψ |ψ 〉

(4)

where the Hamiltonian contains the harmonic oscillator potential:

H =− h̄2

2m
d2

dx2 +
1
2
mω2x2 (5)

To calculate 〈ψ |H|ψ〉 requires integrating a sixth-degree polynomial which
is straightforward but very tedious to do by hand if you like (which is prob-
ably why the exercise is marked as ’optional’ in Shankar), but again I used
Maple to get

1
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d2ψ

dx2 = 12x2−4a2 (6)

〈ψ |H|ψ〉=
∫ a

−a
(x−a)2 (x+a)2

[
− h̄2

2m
(
12x2−4a2)+ (7)

1
2
mω2x2 (x−a)2 (x+a)2

]
dx (8)

=
128

3465

(
a11mω2 +33

h̄2a7

m

)
(9)

The expression to minimize is therefore

E =
128

3465

(
a11mω2 +33

h̄2a7

m

)
× 315

256a9 (10)

=
1

22

(
a2mω2 +

33h̄2

m
a−2

)
(11)

Taking the derivative, we need to solve

dE

da
=

1
11

(
amω2− 33h̄2

m
a−3

)
= 0 (12)

This gives an optimum value for a:

a0 = 331/4

√
h̄

mω
(13)

Substituting into 11 we get the estimate of the ground state energy

E0 =

√
33

11
h̄ω ' 0.522h̄ω (14)

The exact ground state energy for the harmonic oscillator is 1
2 h̄ω so this

estimate is reasonably good.
This answer agrees with the back-of-the-book answer in Shankar, since

√
33

11
=

1
2

√
4×33
11

=
1
2

√
12×11

11
=

1
2

√
12
11

(15)
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Here we’ll apply the variational principle to the hydrogen atom. In the

problem, Shankar asks us to look at the l = 1 states but does not specify
the principal quantum number n, so I’ll assume he wants us to solve the
problem for the lowest value of n for which we can have an l = 1 state,
which is n= 2.

To review, the wave function for hydrogen is given as

ψnlm (r,θ,φ) = Rnl (r)Y
m
l (θ,φ) (1)

unl(ρ) = ρl+1e−ρvnl(ρ) (2)
unl(r) ≡ rRnl(r) (3)

ρ = κr (4)

ρ0 =
me2

2πε0h̄
2κ

(5)

κ =

√
−2mE
h̄

(6)

The solution was expressed as a series:

vnl(ρ) =
∞

∑
j=0

cjρ
j (7)

with the coefficients cj satisfying a recursion relation:

cj+1 =
2(j+ l+1)−ρ0

(j+1)(j+2(l+1))
cj (8)

To keep the wave function finite as r→ ∞, the series for vnl must ter-
minate, which gives rise to the quantization condition n = j+ l+ 1. If we
specify n and l, then we get the maximum value of jmax = n− l− 1 that
appears in the series 7. If we take n = 2 and l = 1, then jmax = 0, which
means that v21 is a constant. The wave function therefore has the form

1
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ψ21m (r,θ,φ) =R21 (r)Y
m

1 (θ,φ) (9)

=
u21 (r)

r
Y m1 (θ,φ) (10)

= Are−arY m1 (θ,φ) (11)

for constants A (determined by normalization) and a. Since the quantum
number m (for the z component of angular momentum) appears only in the
form eimφ in the spherical harmonic Y m1 (θ,φ), it will disappear when we
calculate matrix elements.

The trial function given by 11 incorporates the required limiting be-
haviour of the wave function, since it behaves as r as r→ 0 and as e−ar

as r→ ∞. The number of nodes in the wave function is determined by the
degree of the polynomial vnl and since this is constant, there are no nodes.
(If we wanted to solve the system for, say, n = 3 and l = 1, then jmax = 1
in 7 and we would have a single node.)

To apply the variational principle, we first need to find 〈ψ |ψ 〉. Since the
spherical harmonics are normalized already and are the only place where
the angular variables occur, we can ignore them in what follows and just
concentrate on the radial bits. Our trial function is therefore

R= Are−ar (12)

Therefore

〈ψ |ψ 〉=
∫

∞

0

(
Are−ar

)2
r2dr (13)

=
3A2

4a5 (14)

where as usual I’m using Maple to do the integrals.
The function R (r) satisfies the radial equation which is

− h̄2

2m
1
r2

d

dr

(
r2dR

dr

)
+

(
h̄2

2m
l (l+1)
r2 +V (r)

)
R= ER (15)

In our case, l = 1 and V =−e2

r so we have

− h̄2

2m
1
r2

d

dr

(
r2dR

dr

)
+

(
h̄2

m

1
r2 −

e2

r

)
R= ER (16)

If we call the operator on the LHS HR then the matrix element is
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〈HR〉= 〈R |HR|R〉 (17)
The derivative term is (Maple again):

− h̄2

2m
1
r2

d

dr

(
r2dR

dr

)
=− h̄2

2m
A
e−ar

r

(
a2r2−4ar+2

)
(18)

Therefore (again, remember that the angular integral comes out to 1):

〈ψ |HR|ψ〉= A2
∫

∞

0
re−ar

[
− h̄2

2m
e−ar

r

(
a2r2−4ar+2

)
+ (19)(

h̄2

m

1
r2 −

e2

r

)
re−ar

]
r2dr (20)

=
3
8
A2ah̄

2−me2

ma4 (21)

Our estimate for the energy is therefore

〈E〉= 〈ψ |HR|ψ〉
〈ψ |ψ 〉

(22)

=

(
h̄2a−me2)a

2m
(23)

To find the bound on the energy, we take the derivative and solve

d〈E〉
da

=
h̄2a

m
− e

2

2
= 0 (24)

a0 =
me2

2h̄2 (25)

Plugging this back into 23 we find

E0 ≤−
me4

8h̄2 (26)

This is, in fact, the exact answer for n= 2, which isn’t terribly surprising,
since our choice for the trial function is in fact the correct form of the exact
equation.
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The Dirac equation arose out of the need for a quantum mechanical wave

equation that treats position and time on an equal basis. The first attempt
at such an equation resulted in the Klein-Gordon equation, in which both
time and position occur as second derivatives. However, the wave function
in this equation is a scalar, meaning that it does not incorporate spin, which
requires the wave function to have at least two components (in the case of
spin-1

2 ; more components for higher spin).
Dirac began with the relativistic equation for the energy of a particle,

which is

E =
√
p2c2 +m2c4 (1)

where p is the momentum and m is the rest mass. The usual quantum
mechanical prescription for converting the energy to an operator therefore
requires replacing the numerical momentum p by its operator equivalent
P , and doing this results in a square root containing an operator. It’s not
obvious how this can be handled.

Dirac’s solution was essentially to turn the problem on its head. Rather
than trying to find the square root of an existing quantity, he postulated that
the quantity inside the square root is the perfect square of an expression that
is linear in the momentum. That is, he proposed

P 2c2 +m2c4 =
(
cαxPx+ cαyPy+ cαzPz+βmc

2)2
(2)

=
(
cααα ·P+βmc2)2

(3)

The problem is then to find the quantities αi and β. We can do this by
substituting

P = Pxx̂+Pyŷ+Pz ẑ (4)

on the LHS of 3 and then matching terms. The LHS becomes
1
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LHS = P 2c2 +m2c4 = P ·Pc2 +m2c4 (5)

=
(
P 2
x +P

2
y +P

2
z

)
c2 +m2c4 (6)

The RHS becomes

RHS = c2
∑

i=x,y,z

α2
iP

2
i + c

2 [(αxαy+αyαx)PxPy + (7)

(αxαz+αzαx)PxPz+(αyαz+αzαy)PyPz]+ (8)

mc3
∑

i=x,y,z

(αiβ+βαi)Pi+β
2m2c4 (9)

Notice that this expansion assumes that ααα and β commute with P, since
we’ve factored out the terms involving Pi. This is equivalent to assuming
that ααα and β do not depend on position, since the P operator contains deriva-
tives with respect to position. For a free particle, this is reasonable, since
such a particle is not localized anywhere in space. Note also that we do not
assume that the αis and β commute with each other, which is why we’ve
written out the terms with these objects in a particular order.

In fact, if we require the LHS equal the RHS above, the αis and β cannot
commute. This is so because all the terms on the RHS except for the first
and last terms must be zero. That is

[αi,αj ]+ = αiαj +αjαi = 0 if i 6= j (10)

[αi,β]+ = αiβ+βαi = 0 (11)

α2
i = β2 = 1 (12)

where []+ denotes an anticommutator.
Thus the αis and β cannot be just numbers (real or complex), as all num-

bers commute. We can find ααα and β if we take them to be matrices. Since
cααα ·P+ βmc2 is to represent the Hamiltonian, it must be hermitian and,
since P is hermitian (it’s the momentum, which is observable), then ααα and
β must also be hermitian.

To find them, we recall some properties of hermitian matrices. For her-
mitian matrices that satisfy

M iM j +M jM i = 2δijI (13)
we found that their eigenvalues are ±1, they have zero trace and must be

even-dimensional.
Our first thought is that the αis and β are 2× 2 matrices. This would

be especially nice since it would then imply that the wave function ψ has
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two components which is just what we need to describe particles such as
the electron with spin-1

2 . However, we know that any 2× 2 matrix can
be written as a linear combination of the Pauli matrices and the 2× 2 unit
matrix and that there is no non-zero matrix that commutes with all three
Pauli matrices. Thus there is no way to satisfy both 10 and 11 with 2× 2
matrices. We are therefore forced to try the next simplest type of even-
dimensional matrices, which are 4×4.

The most commonly used such matrices are given by

ααα=

[
0 σσσ
σσσ 0

]
(14)

β =

[
I 0
0 −I

]
(15)

where σσσ represents the vector of 3 Pauli matrices, 0 represents a 2× 2
zero matrix and I is the 2×2 unit matrix.

These aren’t the only matrices that satisfy the conditions, since we can
apply a unitary transformation with a unitary operator S. For example if we
transform as follows:

α′i = S†αiS (16)

β′ = S†βS (17)

then we have, since S† = S−1:

[
α′i,α

′
j

]
+
= α′iα

′
j +α

′
jα
′
i (18)

= S†αiSS
†αjS+S†αjSS

†αiS (19)

= S†αiαjS+S†αjαiS (20)

= S† [αi,αj ]+S (21)
= 0 (22)

Putting everything together, we get the Dirac equation

ih̄
∂ |ψ〉
∂t

=
(
cααα ·P+βmc2) |ψ〉 (23)

In this equation, since ααα and β are 4×4 matrices, the wave function |ψ〉
must be a 4-component vector. We’ll see later how to make this consistent
with a wave function describing a 2-component object such as an electron.

Finally, we can show that the Dirac equation still allows us to interpret
ψ†ψ as a probability density, provided we define the probability current
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appropriately. Conservation of probability requires the probability density
ρ satisfies the continuity equation

∂ρ

∂t
+∇ · j = 0 (24)

where j is the probability current. Starting with

ρ= ψ†ψ (25)
we have (note that sinceψ is now a vector, we need to maintain the correct

order of terms):

∂ρ

∂t
=
∂ψ†

∂t
ψ+ψ†∂ψ

∂t
(26)

=
1
−ih̄

[(
cααα† ·P† +β†mc2

)]
ψ† +ψ† 1

ih̄

[(
cααα ·P+βmc2)]ψ (27)

Since ααα and β are hermitian, we have, using P =−ih̄∇ and P† = ih̄∇:

∂ρ

∂t
=

1
−ih̄

[(
ih̄cααα ·∇+βmc2)ψ†

]
ψ+ψ† 1

ih̄

[(
−ih̄cααα ·∇+βmc2)ψ]

(28)

=−c
(
ααα ·∇ψ†

)
ψ−ψ†c(ααα ·∇ψ)− 1

ih̄
βmc2ψ†ψ+

1
ih̄
βmc2ψ†ψ (29)

=−c
(
ααα ·∇ψ†

)
ψ−ψ†c(ααα ·∇ψ) (30)

=−c∇
(
ψ†αααψ

)
(31)

We can therefore identify as the probability current

j = cψ†αααψ (32)

PINGBACKS

Pingback: Dirac equation: gamma matrices and
Pingback: Dirac equation: set of independent matrices
Pingback: Dirac equation: linear independence of matrices
Pingback: Dirac equation: nonuniqueness of solutions
Pingback: Gamma matrices in Dirac-Pauli representation
Pingback: Lagrangian for the Dirac field
Pingback: Hermitian Lagrangian for the Dirac field

http://physicspages.com/pdf/Griffiths%20QM/Griffiths%20Problems%2004.41.pdf
http://physicspages.com/pdf/Lahiri QFT/Lahiri & Pal Problems 04.01.pdf
http://physicspages.com/pdf/Lahiri QFT/Lahiri & Pal Problems 04.02.pdf
http://physicspages.com/pdf/Lahiri QFT/Lahiri & Pal Problems 04.03.pdf
http://physicspages.com/pdf/Lahiri QFT/Lahiri & Pal Problems 04 Nonuniqueness of solutions.pdf
http://physicspages.com/pdf/Lahiri QFT/Lahiri & Pal Problems 04.13.pdf
http://physicspages.com/pdf/Lahiri QFT/Lahiri & Pal Problems 04.22.pdf
http://physicspages.com/pdf/Lahiri QFT/Lahiri & Pal Problems 04.23.pdf
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