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Abstract

A frontier challenge in quantum science and technology is the construction of scalable quan-

tum systems which can operate in regimes beyond classical simulatability. Such systems can

be used as tools for simulating and exploring complex phenomena in quantum physics; they

can also be used to benchmark and test quantum algorithms. Several experimental platforms,

based on a variety of quantum mechanical building blocks, are currently being pursued with

these goals in mind, with state-of-the-art systems capable of controlling up to around fifty par-

ticles.

In this thesis, we present the development of a new platform based on individually con-

trolled neutral atoms. In this approach, hundreds of individual atoms are trapped in an array

of optical tweezers, and they are sorted in real-time into programmable geometries in one and

two dimensions. After initialization of an array, atom interactions are switched on by coherent

excitation to highly excited Rydberg states, resulting in a rich spin Hamiltonian. We exper-

imentally advance several key aspects of this platform, developing new tools for controlling

strongly interacting atom arrays and probing novel quantum phases and non-equilibrium dy-

namics. We additionally utilize Rydberg interactions to entangle atoms, demonstrating high

fidelity universal quantum logic gates as well as the preparation of fully entangled Schrödinger

cat states. This work highlights the prospects for scalable quantum simulation and quantum

information processing beyond the limit of classical computation using neutral atom arrays.
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1
Introduction

1.1 Background

The theory of quantum mechanics underlies modern physics, science, and technology. Since its

development one hundred years ago, quantum mechanics has been used to make extraordinary

predictions about nature, and experimental verifications of these predictions have rendered

quantum mechanics to be among the most successful theories of physics. While quantum

theory underpins the modern understanding of the macroscopic world, it also makes counter-

intuitive predictions about nature: notions such as quantum superposition and entanglement

defy classical intuition [1–3], and are indeed impossible to observe in normal settings. To wit-
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ness these phenomena, it is necessary to study nature in exotic regimes: at ultracold tempera-

tures, or in carefully isolated, ultra-high vacuum environments. Pioneering work in the 1980s

and 1990s resulted in early measurements showing clear evidence of quantum superposition in

single particles, and soon afterwards the controlled entanglement of multiple particles [4–13].

A central modern research frontier is focused on learning how to better control the quantum

world using a wide variety of quantum mechanical building blocks, including ultracold atomic

gases, individually trapped atoms and ions, electron and nuclear spins confined in solid state

systems, individual photons, and superconducting circuits.

While this experimental field is exceptionally challenging due to the demanding require-

ments of observing quantum effects, it is motivated by a remarkable observation: it is hard

to predict how quantum systems will behave. This is exemplified by considering systems com-

posed of quantum bits, which are quantum objects that can exist in two states |0⟩ and |1⟩, or

any superposition thereof; this could, for example, describe a single electron spin, which can

be oriented in two opposite directions. Quantum mechanically, the state of a single qubit is

described by a state vector |ψ⟩ = α|0⟩ + β|1⟩, where α and β are complex numbers. In the

classical world, one would expect that the state of all qubits in a system could be described

in terms of the state of each qubit individually. Indeed, this encompasses the set of quantum

states which are so-called separable, or non-entangled. Since each qubit is described by two

coefficients, a system of N qubits which is separable would be described by 2N complex num-

bers.

But quantum mechanically, the most general description for a system of N qubits is as a

superposition of all possible N -qubit states: |ψ⟩ = α|0000 . . .⟩ + β|1000 . . .⟩ + γ|0100 . . .⟩ +

δ|1100 . . .⟩ + . . .. This state is described by 2N coefficients, α, β, γ, δ, . . ., which means that an

enormous amount of information is needed to represent the state of a quantum system with

3



even just a small number of particles. Even using supercomputers, simply keeping track of the

state of quantum systems beyond 50-60 particles is effectively impossible, let alone simulating

the evolution of these systems over time.

Since we cannot directly simulate the behavior of quantum systems, how can we learn

about them? In 1982, Richard Feynman proposed that the solution is to build toy model

quantum systems in the laboratory which can be programmed to mimic the behavior of more

complex quantum systems in nature [14]. This idea, termed quantum simulation, is based on

the notion that these laboratory systems may capture the essential features of various quan-

tum phenomena, but in a highly controlled setting in which the parameters of the system can

be widely tuned. Paradigmatic examples include the use of ultracold atoms to simulate the

behavior of electrons in condensed matter systems [15] and the study of quantum magnetism

using arrays of ions and atoms [16, 17]. In this spirit, quantum simulation enables experimen-

tal discoveries about how the rules of quantum mechanics play out in large, complex systems.

The computational challenge of simulating quantum systems motivates another experi-

mental direction: since these systems evolve in ways which we cannot otherwise predict, can

we program them such that their evolution results in the answer to some specific computa-

tional question? This is the notion of quantum information processing or quantum computing,

whereby classical computational problems are solved by quantum mechanical systems. Cen-

tral to this field of quantum computing is the question of which types of problems may be

solved more efficiently on quantum computers than on classical computers. Several exam-

ples of such problems are known, including the factoring of integers (Shor’s algorithm [18])

and the search through an unstructured database (Grover’s algorithm [19]). In these special

examples, the quantum algorithm offers a provable speedup over the best-known classical

algorithms. However, there are many other classes of problems, including combinatorial op-
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timization and random sampling from probability distributions, for which it is believed that

a quantum speedup may be possible, but such a speedup is hard to prove in general. In lieu

of mathematical proofs, experimental tests with real laboratory quantum computers will be

necessary to evaluate and explore new quantum algorithms. Of special current interest is the

question of how quantum algorithms will perform on real, near-term quantum devices with

hundreds of qubits but occasional errors – so-called NISQ (noisy intermediate-scale quantum)

devices [20].

With these applications towards quantum simulation and quantum information processing

in mind, there is an ongoing worldwide race to build quantum systems with upwards of fifty

particles, which are beyond the reach of classical simulatability. These devices constitute pow-

erful instruments for scientific research, opening the door for studying new physics in exotic

regimes; they also serve as valuable testbeds for probing the performance of quantum compu-

tation protocols. Recent experiments have claimed to provably surpass the limits of classical

simulatability for the first time, demonstrating so-called quantum advantage [21, 22]. More

such experiments will follow in the coming years, using a variety of experimental platforms

and studying a wide range of questions.

1.2 Neutral atom arrays

Quantum systems based on neutral atoms offer a unique route towards scalable quantum sim-

ulation and quantum information processing. In this approach, experiments are conducted in

ultra-high vacuum chambers and utilize a well-developed toolbox of lasers, microwaves, and

magnetic fields to control atoms. Each experiment begins by laser cooling millions of identical

atoms in a magneto-optical trap (MOT). Atoms are then loaded into optical tweezers, which

are tightly focused lasers that form trapping potentials at their focal points. Central to the op-

5



tical tweezer platform is the phenomenon of collisional blockade, which ensures that only one

atom is trapped in each tweezer [23]. The accessible system sizes that can be studied using

this approach is therefore given by the number of optical tweezers that can be created. Mod-

ern systems can produce hundreds or even thousands of tweezers, and simply increasing the

available laser power will enable scaling towards even larger arrays.

The optical tweezer platform benefits from rapid experimental cycle times and relative ex-

perimental simplicity. However, a major challenge is that the process of loading atoms from

the MOT into the optical tweezers is stochastic; after every loading attempt, each tweezer will

randomly be filled with a single atom with probability p ∼ 1/2. To circumvent this problem

and create deterministically filled arrays, we developed an atom-by-atom assembly procedure

in parallel with two other groups [24–26], whereby we take an image of the initial randomly

loaded tweezer array, and then use real-time feedback to move atoms around and prepare a

target defect-free geometry. This method is incredibly flexible and allows for initialization of

programmable atom arrays in a wide variety of geometries.

After initializing a target atom array, strong and tunable interactions can be introduced

by exciting atoms to highly excited atomic states known as Rydberg states [27–29]. Rydberg

interactions result in a rich quantum spin model that hosts many different quantum phases,

each of which emerge from the competition between interactions and coherent driving. These

interactions can additionally enable several classes of quantum information and entanglement

generation protocols.

The last several years have witnessed remarkable progress in the technical capabilities of

neutral atom systems based on tweezer arrays. Hundreds of atoms can now be readily trapped

and sorted within such tweezer arrays in two and three spatial dimensions [30–32]. Coherent

excitation to Rydberg states and high-fidelity quantum operations have been demonstrated
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[33, 34]. Trapping of more exotic species, such as alkaline earth atoms and molecules, addi-

tionally offers new opportunities based on more complex atomic structure [35–39, 37]. Optical

tweezer arrays constitute a powerful and exciting platform for quantum simulation of a wide

variety of quantum spin models and phenomena, as well as for state-of-the-art quantum opti-

mization algorithms with the largest system sizes available in any quantum computing plat-

form.

1.3 Overview of thesis

This thesis is divided into two parts. The first part focuses on the experimental methods

which were developed to expand the technical capabilities of tweezer arrays. Chapter 2 de-

scribes our approach to generating 1D and 2D arrays of optical tweezers, as well as our appa-

ratus for cooling, imaging, and characterizing trapped atoms. Chapter 3 introduces Rydberg

atoms, detailing in particular the newest generation laser system we use for coherent atomic

excitation to Rydberg states. Chapter 4 describes hyperfine qubit encoding in neutral atoms,

as well as new methods for coherent Raman driving of the hyperfine qubit transition. Chap-

ter 5 describes the experimental control infrastructure, including the real-time feedback pro-

cedure for rearranging atoms, automatic calibrations and alignment, and remote operation of

the experiment.

The second part of the thesis focuses on experimental results. Chapter 6 describes the de-

terministic preparation of programmable one-dimensional atom arrays using atom-by-atom

assembly. This technique forms the backbone of all experiments in this thesis, as each exper-

imental cycle begins by initializing a pre-programmed target arrangement of atoms. Chap-

ter 7 presents our first experimental results with Rydberg atoms, showing the tunable nature

of the Rydberg Hamiltonian and introducing quasi-adiabatic methods for many-body state
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control and the exploration of various quantum phases. This chapter additionally highlights

a surprising discovery about the dynamical response of the system to a rapid quench, where

we observe slow thermalization. This phenomenon has since been extensively studied theoret-

ically and recast in the language of quantum many-body scars. Chapter 8 studies in detail

the quantum phase transitions into various phases of the 1D Rydberg Hamiltonian, focusing

on the quantum critical properties of these transitions. Chapter 9 shows first results with an

upgraded 2D tweezer array, and uses hundreds of atoms to explore quantum phases of the

two-dimensional square lattice. Chapter 10 revisits the surprising non-equilibrium dynamics

observed in Chapter 7, and shows that an extension of the phenomenon exists in 2D arrays.

This chapter additionally presents a surprising twist on many-body scars, showing that these

scar trajectories can be further stabilized by periodic driving of the system. Chapter 11 intro-

duces the study of topological quantum phases that emerge when atoms are positioned on the

links of the kagome lattice. Topological order in the system is probed using highly nonlocal

string operators, enabling for the first time the direct detection of quantum spin liquid order-

ing. This exotic phase was first theoretically introduced in 1973 by Philip Anderson [40], and

has thus far evaded direct detection.

Finally, we turn to entanglement and quantum logic experiments. Chapter 12 describes

key improvements in coherent control over Rydberg atoms, and demonstrates a new record

in fidelity for Rydberg atom entanglement. Chapter 13 introduces a new protocol for many-

body state control, showing creation of a fully entangled Schrödinger cat state with 20 atoms.

Chapter 14 combines coherent control over Rydberg atoms with control over the hyperfine

qubit transition, and introduces and benchmarks a new protocol for universal multi-qubit

gates with neutral atoms.
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Part II

Experimental Methods
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2
Optical tweezer arrays

2.1 Overview of optical tweezer system

Optical trapping of neutral atoms is a powerful technique for isolating atomic systems in vac-

uum, enabling the study of quantum mechanical effects of atomic motion and spin. Based on

the AC Stark shift induced by light which is far detuned from atomic transitions, atoms are

trapped at local intensity maxima (or minima, depending on the sign of the laser detuning).

Optical tweezers utilize this principle by focusing a laser to a micron-scale waist, where indi-

vidual atoms are trapped at the focus.

Central to the optical tweezer platform is the simple and fast (< 100 ms) procedure for
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loading single atoms into the tweezers. This is accomplished by laser cooling thermal atoms

in a magneto-optical trap (MOT) which is overlapped with the tweezer array. Tightly focused

tweezers operate in a ‘collisional blockade’ regime, in which they load atoms from the MOT

but pairs of loaded atoms are ejected due to light-assisted collisions [23]. This mechanism en-

sures that tweezers are loaded with at most single atoms, but the loading is probabilistic: each

trap is loaded with a single atom with probability 50− 60%.

To prepare deterministic atom arrays, we utilize a real-time feedback procedure, in which

the randomly loaded atoms are identified and then rearranged into pre-programmed geome-

tries. Atom rearrangement requires moving atoms in tweezers which can be smoothly steered

to minimize heating. Acousto-optic deflectors (AODs) are incredibly effective tools for this

application, since they deflect a laser beam by a tunable angle which is controlled by the

frequency of a running acoustic wave in the AOD crystal. Dynamic tuning of the acoustic

frequency translates into smooth motion of an optical tweezer. Moreover, a multi-frequency

acoustic wave creates an array of laser deflections, which after focusing through a microscope

objective forms an array of optical tweezers with tunable position and amplitude, all con-

trolled by the acoustic waveform.

Our first generation of experiments utilized a single AOD for the creation of a one-dimensional

array of up to 100 dynamically movable optical tweezers. A detailed discussion of the 1D rear-

rangement procedure is presented in Chapter 6.

The second generation of experiments used a hybrid approach for creating programmable

two-dimensional arrays. A spatial light modulator (SLM) was used to imprint a programmable

phase hologram on the wavefront of a single laser field, such that after propagating to the fo-

cus of a microscope objective, the laser forms a flexible, programmable array of tweezers in

2D. This system, including a higher-power laser source, creates arrays of up to 1000 tweezers.

11



Figure 2.1: Experimental apparatus. Tweezer arrays generated by a spatial light modulator (SLM) and
crossed acousto-optic deflectors (AODs) are focused into our vacuum cell through a 0.5 NA microscope
objective. Tweezer light and atom fluorescence are collected through a second objective and separated with
a dichroic mirror: the 809 nm trap light is imaged on a CCD camera, while the 780 nm atomic fluorescence
is collected on an electron-multiplied CCD (EMCCD) camera. The tweezers are loaded from a magneto-
optical trap (MOT) which is formed to overlap with the tweezer array, created by three retroreflected MOT
beams (diameter of ≈ 1.5 cm). Individual atoms are imaged using a similar set of three retroreflected probe
beams (diameter of ≈ 1 mm) to reduce background fluorescence on the EMCCD images. An additional
laser aligned to the long axis of the cell is used for optical pumping.
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However, the tweezers are static and cannot be dynamically moved. To rearrange atoms in 2D,

we therefore use a second set of moving optical tweezers that are steered by a pair of crossed

acousto-optical deflectors (AODs) (Fig. 2.1). Details of this 2D setup are presented in Chap-

ter 9 and Appendix F.

2.2 Laser system for AOD tweezer arrays

The laser source for the optical tweezers generated by our acousto-optic deflector system is

based on an external-cavity diode laser at ≈ 809 nm which seeds a tapered amplifier (Moglabs,

MOA002). The resulting 1.8 W beam is coupled into a single-mode fiber, and passed through

three laser clean-up filters (Semrock LL01-808). This results in a 4 mm beam with ≈ 550 mW

of power, which is split into an array of beams by an acousto-optic deflector (AOD) (AA

Opto-Electronic model DTSX-400-800.850). These beams pass through a 1:1 telescope with

300 mm focal length and are then focused by a 0.5 NA microscope objective (Mitutoyo G Plan

Apo 50X, corrected for 3.5 mm glass thickness) into our vacuum chamber to form an array of

optical tweezers (Fig. 2.1). These tweezers have a waist of ≈ 900 nm, and contain ≈ 1 mW

of optical power, corresponding to a trap depth of ≈ 0.9 mK for 87Rb atoms. The spacing be-

tween tweezers is determined by the frequency separation of acoustic frequencies in the AOD.

The minimum usable spacing is ∼ 3 µm, corresponding to 0.5 MHz acoustic frequency sepa-

ration. For smaller trap spacings, we observe strong atom heating which is due to overlap in

the point spread function of adjacent traps, which beats at the difference frequency between

optical tweezers (equal to the difference frequency between corresponding acoustic tones). As

traps are moved closer, the point spread function overlap increases and the beat frequency

decreases, causing an increase in parametric heating of atoms.

13



Figure 2.2: Large arrays of optical tweezers. The experimental platform produces optical tweezer arrays
with up to ∼ 1000 tweezers and ∼ 50% loading probability per tweezer after 100 ms of MOT loading time.
a. Camera image of an array of 34×30 tweezers (1020 traps), including aberration correction. b. Sample
image of random loading into this tweezer array, with 543 loaded atoms. Atoms are detected on an EMCCD
camera with fluorescence imaging.

2.3 Laser system for SLM tweezer arrays

Our 2D tweezer array is generated by a free-running 810-nm Ti:Sapphire laser (M Squared, 18-

W pump). The laser illuminates a phase-control spatial light modulator (Hamamatsu X13138-

02), which imprints a computer-generated hologram on the wavefront of the laser field. The

phase hologram is calculated using the phase-fixed weighted Gerchberg-Saxton (WGS) algo-

rithm [41] to produce an arbitrary arrangement of tweezer spots after propagating to the fo-

cus of the same microscope objective. Using this method, we can create tweezer arrays with

roughly 1000 individual tweezers (Fig. 2.2). When calculating the phase hologram, we improve

trap homogeneity by pre-compensating for the variation in diffraction efficiency across the

tweezer array (roughly given by sinc2(π2 (θtrap/θmax)) where θ denotes the deflection angle from

zeroth order).
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Figure 2.3: Laser transitions for MOT loading, imaging, optical pumping, and pushout. (a) For
MOT loading and atom imaging, we use repumper light on the F = 1 → F ′ = 2 transition along with
cooling light which is red-detuned from F = 2 → F ′ = 3. Both laser frequencies are sent through all axes
of the MOT beams and probe beams. (b) For optical pumping into |F = 2,mF = −2⟩, we apply light only
on the optical pumping axis, which propagates parallel to the quantization axis and is σ− polarized. This
beam contains both repumper light and optical pumping light on the F = 2 → F ′ = 2 transition. (c) For
hyperfine state readout, we apply a pushout pulse on the F = 2 → F ′ = 3 transition using the optical
pumping axis to heat out atoms in the F = 2 ground state.

2.4 Laser system for atom cooling and imaging

We use two laser sources for cooling, imaging, and optical pumping of the 87Rb atoms. Fig-

ure 2.3 shows the relevant atomic structure and the driven transitions, and Figure A.1 shows

the optical setup used for both lasers. Both lasers are distributed Bragg reflector (DBR) lasers

from Photodigm (PH780DBR120TS), tuned to drive transitions on the D2 line from 5S1/2 to

5P3/2 with a wavelength of 780 nm. The first laser is the ‘repumper’: this laser is frequency

locked using saturated absorption spectroscopy in a Rubidium vapor cell. Specifically, the

laser is locked by frequency-modulation spectroscopy to the crossover peak between F = 1 →

F ′ = 1 and F = 1 → F ′ = 2. The repumper laser is then shifted by 78.5 MHz using an

acousto-optic modulator (AOM) to become resonant with the F = 1 → F ′ = 2 transition.

The repumper laser typically remains properly locked for several months at a time without

intervention.
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The second laser, the ‘cooling’ laser, is offset locked to the repumper laser and tuned to the

transitions from F = 2 → F ′ = 1, 2, 3. The offset lock uses Vescent phase locking electronics,

with a dynamically tunable reference frequency generated from a TimeBase radiofrequency

source which is frequency-multiplied by 32. The offset lock frequency can be adjusted from

∼ 5.7 − 7.3 GHz, covering a wide range including all transitions from F = 2 → F ′ = 1, 2, 3.

The offset lock stabilizes the frequency of the cooling laser using feedback on the laser diode

current, which enables fast frequency jumping over this range in ≲ 100 µs.

The MOT is formed using three intersecting retroreflected beams containing both cooling

light and repumper light (Fig. 2.1). One of these beams is perpendicular to the optical table,

and the other two are parallel to it (intersecting at an angle of ≈ 120◦ due to the geometric

restriction imposed by the high-resolution objectives). The MOT beams are ∼ 1.5 cm in diam-

eter, and each carry ≈ 1.5 mW of cooling light and ≈ 0.4 mW of repumping light. The MOT

is constructed with the cooling light detuned by 17 MHz from the F = 2 → F ′ = 3 transition,

with an additional applied magnetic field gradient of 9.7 G/cm. We additionally shine a UV

light from a 365 nm LED directly on the glass cell to speed up the MOT loading process [42].

An additional set of probe beams are overlapped with the MOT beams, and also contain

cooling and repumper light (with ≈ 50 times less power than the MOT beams). These beams

are ∼ 1 mm in diameter and are used for polarization gradient cooling and fluorescence imag-

ing of trapped atoms while minimizing background scatter. Despite the reduced background

scatter, we still find that scatter from the probe beams on the glass cell can contribute a sig-

nificant background signal to the EMCCD camera. We use Fourier filtering to reduce this

background signal by placing a thin wire in the Fourier plane, one focal length before the final

focusing lens onto the EMCCD camera. In this plane, the atom signal is large and collimated,

while the background scattered light is focused to a small spot; the wire therefore strongly
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suppresses the background signal while minimally reducing atom signal.

An additional optical pathway is used for optical pumping of atoms into |F = 2,mF = −2⟩

(Fig. 2.1). This optical pumping path, containing both cooling and repumper light, is aligned

to the long axis of the glass cell, parallel to the bias magnetic field which defines our quan-

tization axis, and is circularly polarized to drive σ− transitions. Optical pumping typically

takes 20 − 50 µs, during which the cooling light is tuned to the F = 2 → F ′ = 2 transi-

tion and repumper light is simultaneously applied, causing population to accumulate in the

only dark state |F = 2,mF = −2⟩ (Fig. 2.3). Polarization impurities in this beam reduce

pumping fidelities and cause excess heating by residual photon scattering from the dark state.

We optimize polarization by applying a long optical pumping segment of a few milliseconds

to make the atoms far more sensitive to the quality of the dark state, and then adjusting the

beam polarization while monitoring atom heating. (We note that even for perfect polarization,

there will still be off-resonant scattering from the dark state due to off-resonant coupling from

F = 2 → F ′ = 3; this motivates driving the optical pumping coupling from F = 2 → F ′ = 2

around saturation intensity, or alternatively using the more favorable D1 transition at 795 nm

for optical pumping.)

2.5 Atom loading and imaging

Optical tweezers are loaded from the MOT in 50 − 100 ms while the cooling laser is tuned

17 MHz red-detuned from the F = 2 → F ′ = 3 transition. Afterwards, the MOT beams are

shuttered and the probe beams turn on for polarization gradient cooling-based fluorescence

imaging. Images are acquired on an EMCCD camera (Andor iXON3, EM Gain = 300) over

20 ms, during which the cooling laser is set to 30 MHz red-detuned of the bare atom F = 2 →

F ′ = 3 resonance. Cooling light from the probe beams is scattered by the atoms and collected
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Figure 2.4: Atom loading and imaging characterization. (a) Average of many experimental images
showing randomly loaded tweezers. We analyze this image to determine the position of the atom fluores-
cence signal from each trap, and draw red squares around each trap position to mark the pixels which are
binned. (b) We calculate the pixel sum within each red square in each image, and we construct a histogram
for the atom signal of each trap. Each histogram is bimodal, with a peak at low counts corresponding to no
atom, and a separate peak at high counts corresponding to a single atom. The black markers highlight the
fitted center of each mode of the distribution for each trap, and the gray marker shows the chosen threshold.
The color scale here is logarithmic to highlight the absence of counts in between the two modes. (c) Sample
bimodal distribution from a particular trap.

on the EMCCD, creating an image of the atoms in the array.

The collected photon statistics for each trap forms a bimodal distribution, corresponding

to the presence of 0 or 1 atom (Fig. 2.4). We fit the statistics for each tweezer to the sum of

two Poisson distributions, and set a threshold in between the two modes. Imaging infidelity

due to finite overlap of the Poisson distributions is at the 10−6 level; however, in practice, the

dominant error mechanism is a ∼ 0.2% probability of atom loss during imaging due to the

∼ 10 second vacuum limited lifetime. Repeated imaging of the same atoms with a 50 ms gap

between images shows a retention probability of 99− 99.5%.
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Figure 2.5: Measurement of optical tweezer light shifts and trap frequencies. (a) We coarse pump
atoms into the F = 2 ground state, and then apply a short laser pulse near the D2 transition from
F = 2 → F ′ = 2. When this pulse is resonant, it depumps atoms into the F = 1 ground state, which
is detected by a subsequent pulse which pushes out F = 2 atoms. Performing this measurement while the
traps are turned off (blue curve) and then again with the traps on (orange curve) gives a direct measure-
ment of the tweezer light shift on the F = 2 → F ′ = 2 transition. (b) We measure trap frequencies by
applying weak modulation of the trap intensity for several milliseconds at various modulation frequencies.
We observe parametric heating when the modulation frequency is twice the trap vibrational frequency. For
this measurement, the longitudinal trap frequency is 13 kHz and the radial trap frequency is 85 kHz.

When loading is optimized, we observe 55 − 60% loading probability across the entire array

for 50 ms of MOT loading time. However, we sometimes observe lower loading in certain parts

of the array, which can typically be corrected by adjusting the magnetic offset fields during

MOT loading to better center the MOT on the tweezer array.

2.6 Characterizing optical tweezer properties

2.6.1 Trap light shifts

We measure optical tweezer light shifts on the transition from |5S1/2, F = 2⟩ → |5P3/2, F
′ = 2⟩.

To measure this resonance, we initialize all atoms in the F = 2 ground state manifold by

applying the repumper laser. We then apply a 1 µs laser pulse coupling atoms from F = 2 →

F ′ = 2 at a variable detuning. Since the excited F ′ = 2 state can decay into the F = 1

ground state, scattering on this transition results in depumping into F = 1. Finally, we apply
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a resonant pulse on the F = 2 → F ′ = 3 transition to push out the remaining F = 2 atoms.

We perform this measurement both while keeping the traps on during the depumping pulse,

and also while briefly turning off the traps during the pulse (Fig. 2.5a). Comparing the two

measured resonances gives the differential light shift between the 5S1/2 ground state and the

5P3/2 excited state induced by the tweezers, which we measure to be ∼ 20 MHz for our typical

tweezer powers.

2.6.2 Trap frequencies

We measure the optical tweezer trap frequencies by modulating the tweezer intensity at vari-

able frequency ωmod. This trap modulation results in parametric heating when the modulation

frequency matches twice the trap frequency. We apply weak modulation over several millisec-

onds, and find a resonance at 26 kHz corresponding to the longitudinal heating and a reso-

nance at 170 kHz corresponding to radial heating, averaged across a two-dimensional array

of 600 tweezers (Fig. 2.5b). From this measurement, we extract an average longitudinal trap

frequency of 13 kHz and an average radial trap frequency of 85 kHz.

2.7 Correcting for optical aberrations

For two-dimensional optical tweezer arrays created using a spatial light modulator (SLM), we

additionally use the phase control of the SLM to correct for optical aberrations in the system

(Fig. 2.6). Aberrations reduce the peak intensity of focal spots (characterized by the Strehl

ratio), and correspondingly reduce the light shift of our tweezers on the atoms. In the SLM

plane, aberrations can be understood as errors in the phase of the wavefront. This phase error

across the wavefront can be decomposed into orthogonal functions known as Zernike polynomi-

als, each of which characterize a particular aberration in the system, such as primary spherical
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Figure 2.6: Correcting for aberrations in the SLM tweezer array. The aberration correction procedure
utilizes the orthogonality of Zernike polynomials and the fact that correcting aberrations increases tweezer
light shifts on the atoms. To independently measure and correct each aberration type, Zernike polynomials
are added with variable amplitude to the SLM phase hologram, with values optimized to maximize tweezer
light shifts. a. Two common aberration types: horizontal coma (upper) and primary spherical (lower), for
which ∼ 50 milliwaves compensation on each reduces aberrations and results in higher-depth traps. b. Cor-
recting for aberrations associated with the thirteen lowest order Zernike polynomials. The sum of all polyno-
mials with their associated coefficients gives the total aberrated phase profile in the optical system, which is
now corrected (total RMS aberration of ∼ 70 milliwaves). c. Trap depths across a 26 × 13 trap array be-
fore and after correction for aberrations. Aberration correction results in tighter focusing (higher trap light
shift) and improved homogeneity. Trap depths are measured by probing the light shift of each trap on the
|5S1/2, F = 2⟩ → |5P3/2, F

′ = 2⟩ transition. d. Aberration correction also results in higher and more homo-
geneous trap frequencies across the array. Trap frequencies are measured by modulating tweezer depths at
variable frequencies, resulting in parametric heating and atom loss when the modulation frequency is twice
the radial trap frequency. The measurement after correction for aberrations shows a narrower spectrum and
higher trap frequencies (averaged over the whole array).
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aberration or horizontal coma. We correct for these effects by adding Zernike polynomials

with optimized amplitudes to our SLM phase hologram. We optimize each polynomial ampli-

tude by measuring tweezer light shifts as a function of the correction amplitude (Fig. 2.6a).

Using this method, we compensate for 70 milliwaves of aberrations with the phase correc-

tion shown in Fig. 2.6b. We observe an increase of 18% in our trap light shifts (Fig. 2.6c),

and measure a corresponding reduction in the spread of trap frequencies across the array

(Fig. 2.6d). Aberration correction additionally allows us to place tweezers closer together,

reaching a minimum separation of 3 µm.

2.8 Optical pumping and microwave spectroscopy

After optically pumping atoms into particular hyperfine states, we use microwave spectroscopy

to characterize the resulting population distribution over the |F,mF ⟩ levels of 5S1/2. The mi-

crowave field is linearly polarized and perpendicular to our applied magnetic field, so it cou-

ples all six σ+ and σ− spin transitions, of which there are only four distinct resonance fre-

quencies (depicted in Fig. 2.7a). To perform microwave spectroscopy, we apply a fixed length

microwave pulse (20 µs) at variable frequency, followed by a push-out of F = 2 atoms.

We measure microwave spectroscopy in two configurations: first, we apply repumper only

on the F = 1 → F ′ = 2 transition to coarse pump atoms into all mF levels within F = 2.

In this configuration, we observe a microwave resonance for all transitions (Fig. 2.7b, upper

panel). If we instead apply both repumper and σ− optical pumping light on the F = 2 →

F ′ = 2 transition, then we polarize the atoms in |F = 2,mF = −2⟩. Here, microwave spec-

troscopy shows only a single peak at the lowest transition frequency (Fig. 2.7b, lower panel).

We estimate an optical pumping fidelity of ≳ 0.998.

For atoms trapped in optical tweezers, the coherence properties of magnetically sensitive
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Figure 2.7: Microwave spectroscopy. (a) We apply global microwaves which are linearly polarized and
drive σ+ and σ− spin transitions in the 5S1/2 ground state. (b) We apply a 20 µs microwave pulse at vari-
able frequency, during which the tweezers are turned off. Afterwards, an F = 2 pushout pulse is applied.
For experiments in which we coarse pump into all mF levels within F = 2, we observe four resonances, cor-
responding to all possible σ+ and σ− transitions (upper panel). (There are three additional π transitions
which we do not observe here.) For experiments in which we apply full pumping into |F = 2,mF = −2⟩,
we observe only one peak corresponding to the stretch microwave transition. (c) Zooming into the stretch
microwave peak, we observe a clean sinc functional form for the spectroscopy signal when the microwave
pulse is applied while the traps are turned off. (d) In the presence of the traps, the trapping potential for
the |F = 2,mF = −2⟩ state is displaced from the trapping potential for |F = 1,mF = −1⟩ due to
polarization breakdown near the focus of the tweezer which results in vector light shift gradients. The dis-
placed trapping potential results in a nonzero wave function overlap between the n-th vibrational level for
|F = 2,mF = −2⟩ and other n′ ̸= n levels for |F = 1,mF = −1⟩. This results in a modified microwave
spectrum which shows motional sidebands separated by the radial trap frequency. The red sidebands are
more cleanly resolved than the blue sidebands, likely due to anharmonicity in the traps. This measurement is
taken with a reduced microwave Rabi frequency to better resolve the sideband spectrum.
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hyperfine transitions (ie., not the mF = 0 → mF = 0 clock transition) are strongly sup-

pressed due to spin-motion coupling [43]. This coupling emerges from the breakdown of the

paraxial approximation near the focus of the tweezers, which produces a spatially varying ef-

fective elliptical polarization on either side of the focus, despite the traps being linearly polar-

ized [43]. Circularly polarized light induces vector light shifts, which act as a fictitious mag-

netic field – and since the polarization varies across the focus, the result is an effective mag-

netic field gradient. This gradient produces an mF -state-dependent displacement of the optical

tweezer minimum (denoted in Fig. 2.7c as ∆x displacement between the trapping potential for

|F = 2,mF = −2⟩ and |F = 1,mF = −1⟩).

The spin-motion coupling is cleanly demonstrated by comparing spectroscopy of the stretch

microwave transition in traps and out of traps. With the traps turned off for the duration of

the microwave pulse (order 20 µs), the spectroscopy response is a standard sinc function, indi-

cating coherent driving (Fig. 2.7c). With the traps on, however, we observe a resonance broad-

ened by distinct motional sidebands spaced by the radial trap frequency (Fig. 2.7d). Normally,

one expects to see motional sidebands only when the coupling field carries momentum, such as

in a Raman coupling with counter-propagating lasers. However, the state-dependent tweezer

potential results in sizable wavefunction overlap between vibrational level n for the first spin

state and n′ for the second state, allowing direct microwave coupling of these n → n′ tran-

sitions [44]. This effect is particularly strong in our tweezer array due to the relatively close-

detuned tweezer wavelength (809 nm), which increases the strength of vector light shits [43].

We thus observe many motional sidebands, some of which correspond to changing the vibra-

tional level by several quanta at once (ie., n→ n− 4).

Spin-motion coupling can be a useful tool for microwave-only sideband cooling and mo-

tional control [44]. Brief attempts in our experiment showed limited success, but not enough
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Figure 2.8: Drop-recapture curve. Measurements of atom loss probability as a function of trap-off time.
For short times of up to 4µs, the loss is dominated by finite trap lifetime (1% plateau). At larger trap-off
times, the atomic motion away from the tweezer introduces additional losses. The solid line is a Monte
Carlo simulation for a temperature of 11.8 µK.

to incorporate into any primary experiments in this thesis. In practice, spin-motion coupling

serves to broaden and complicate the microwave resonances. In most cases where microwave

spectroscopy is used to measure light shifts or as a diagnostic, we perform such measurements

out of traps to avoid this effect altogether, at the cost of a reduction in signal contrast due

to atoms not being recaptured when the tweezers are turned back on. Other approaches to

suppress spin-motion coupling by applying a strong orthogonal bias magnetic field are also

possible [43].

2.9 Atom temperature and drop-recapture measurements

Atoms are loaded into the optical tweezers and cooled using polarization gradient cooling. The

resulting atom temperatures are characterized using drop-recapture measurements (Fig. 2.8).

We compare these experimental measurements with Monte-Carlo simulations of atoms in free

flight to evaluate atom temperatures.

The measured drop-recapture curves depend on the tweezer depth from which we release

the atoms. In particular, if we perform this measurement with our normal tweezer depths that
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are used for loading and imaging, then we observe temperatures around 30 µK. However, by

ramping the trap power down prior to drop-recapture, we observe lower temperatures, which

can be understood as an “adiabatic cooling” that results from the populations of each vibra-

tional level remaining fixed during the ramp [45]. Of course, this holds only as long as the

trap depths are not lowered too dramatically, otherwise vibrational states will become no

longer bound, and atoms will be lost in the process. For experiments throughout this thesis,

we ramp trap depths to ∼ 1/4 their initial value prior to drop-recapture measurements and

Rydberg experiments, and estimate a temperature of ∼ 12 µK in this configuration (Fig. 2.8).
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3
Rydberg atoms

3.1 Introduction to Rydberg atoms

While Chapter 2 reviewed the optical tweezer platform for programmable atom arrays, a key

ingredient is missing for using these atom arrays to study many-body physics: interactions.

At the micrometer lengthscales separating optical tweezers, atoms in their ground electronic

states have negligible van der Waals interactions, and unlike optical lattice experiments, there

is no atom tunneling between tweezers. Fortunately, neutral atoms offer a remarkable way to

switch on strong interactions, through the coherent excitation to Rydberg states.

Rydberg states are highly-excited atomic states, with principal quantum number n ≫ 1.
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The properties of atomic states scale dramatically with principal quantum number∗, as de-

scribed in e.g. Refs. [27–29]. For the work in this thesis, of utmost importance is the strong

van der Waals interactions which arise between two atoms which are both excited to the same

Rydberg state. The interaction energy is given by V (R) = C6/R
6, where R is the interatomic

distance and the coefficient C6 scales with an incredible power law C6 ∝ n11. For commonly

used Rydberg states with principal quantum number 50 < n < 100, the interaction energies

are of scale megahertz or even gigahertz for atoms which are separated by several microns.

This is perfectly suited to optical tweezer arrays, and establishes a timescale on which interac-

tions play a strong role.

Also important is the lifetime of Rydberg states. While typical atomic excited states have

short lifetimes (i.e., ∼ 26 ns for 5P3/2), the radiative lifetime of Rydberg states scales as n3,

resulting in long lifetimes of hundreds of microseconds or even milliseconds for large n. Other

decay mechanisms, however, can emerge for Rydberg states: in particular, the dipole matrix

element between neighboring Rydberg states also grows with principal quantum number (∝

n2), and thermal blackbody radiation can stimulate transitions between these nearby levels.

The blackbody-limited lifetime scales as n2, becoming the dominant lifetime limitation for

high Rydberg states.

Finally, the dipole matrix element between the atomic ground state and a dipole-coupled

Rydberg state scales as n−3/2, reducing for large n due to the decreasing overlap between the

tightly bound ground state wavefunction and the weakly bound Rydberg wavefunction. This

gives a practical consideration: while higher Rydberg states have longer lifetimes and stronger

interactions, the laser excitation coupling is weaker, which can pose its own limitation. (An-
∗More accurately, the scaling is with respect to a modified principal quantum number n∗ which ac-

counts for screening effects of inner electrons; this is the so-called quantum defect theory, which takes
n∗ = n− δ. For Rydberg S states (angular momentum L = 0) of rubidium, δ ≈ 3.13 [46].
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other limitation: the strong interaction between Rydberg states is closely tied to large polar-

izability, which scales as n7 – this can result in unwanted sensitivity to stray electric fields at

large n.)

With these scaling considerations in mind, we work with the Rydberg state |70S1/2,mJ =

−1/2⟩ throughout this thesis. The C6 coefficient for this state is C6 = 2π × 874 GHz µm6,

which gives an interaction of 2π × 1.2 GHz at 3 micron separation, or 2π × 0.9 MHz at 10 mi-

cron separation [47]. The radiative lifetime of this Rydberg state is 410 µs, while room tem-

perature blackbody radiation reduces the lifetime to 147 µs [48].

3.2 Two-photon excitation to Rydberg states

Optical excitation from an atomic ground state to a target Rydberg state is a key ingredient

in Rydberg experiments. Several schemes have been used, with various advantages and dis-

advantages. The simplest is direct laser excitation with a single-photon transition. Due to

dipole selection rules, this couples ground S states to Rydberg P states. The wavelength for

these transitions is in the ultraviolet (i.e., the single-photon wavelength for 87Rb is 297 nm).

Ultraviolet lasers pose serious experimental challenges, due to material degradation, unavail-

ability of optical fibers and low-loss optics, and more. Additionally, Rydberg P states have

more structure, anisotropy, and sensitivity to external perturbations than Rydberg S states,

making them more challenging for coherent manipulation [49].

Alternatively, two-photon laser excitation can be used to couple ground S states to Ryd-

berg S states through an intermediate P state. For rubidium, there are two natural choices

for the intermediate state: 5P3/2 or 6P3/2. For the 5P intermediate state, the first excitation

step is at wavelength 780 nm and the second step is at 480 nm, whereas for the 6P intermedi-

ate state, the two wavelengths are 420 nm and 1013 nm. In comparing the two approaches, a

29



a) b)

420 nm

1013 nm

420 nm

1013 nm

Figure 3.1: Two-photon excitation scheme. (a) Starting from |5S1/2, F = 2,mF = −2⟩, the σ− 420 nm
laser couples to the intermediate state |6P3/2, F = 3,mF = −3⟩. The final σ+ 1013 nm laser couples to
the target Rydberg state |70S1/2,mJ = −1/2,mI = −3/2⟩. (b) Starting from |5S1/2, F = 2,mF = 0⟩,
the 420 nm laser couples to the intermediate states |6P3/2, F = 1, 2, 3,mF = −1⟩. The 1013 nm laser then
couples these states both to |70S1/2,mJ = −1/2,mI = +1/2⟩ and |70S1/2,mJ = +1/2,mI = −1/2⟩.
The two-photon Rabi frequency from mF = 0 to mJ = −1/2 is a factor of

√
2 smaller than the stretch

configuration in (a). The Rabi frequency from mF = 0 to mJ = +1/2 is an additional factor of 3 smaller.
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central consideration is how to achieve high single-photon Rabi frequencies on each leg of the

transition, which is optimal for minimizing intermediate state scattering relative to the two-

photon Rabi frequency. In the experiments in this thesis, we use the 6P intermediate state

due to the higher availability of optical power at the upper transition from the intermediate

state to the Rydberg state, since this transition has a significantly smaller dipole matrix ele-

ment and thus requires more optical power to drive with equivalent strength.

In this thesis, two different 87Rb ground state levels are coupled to the Rydberg state 70S1/2.

The first, which is used for all quantum simulation experiments, is the ground state |g⟩ =

|5S1/2, F = 2,mF = −2⟩. As shown in Fig. 3.1a, the 420 nm laser is applied with σ− polar-

ization, and couples to a single intermediate state |6P3/2, F = 3,mF = −3⟩. The 1013 nm

laser is applied with σ+ polarization, and couples the intermediate state to the Rydberg state

|70S1/2,mJ = −1/2,mI = −3/2⟩. Note that when labeling Rydberg states, the good quantum

numbers are mJ and mI , rather than F and mF ; this is because the hyperfine interaction is

very weak in Rydberg states (∼ 100 kHz for 70S [46]), and therefore even at small Gauss-scale

magnetic fields, the level structure is in the Paschen-Back regime [50]. For this “stretch” exci-

tation scheme, the F,mF labeling is equivalent to the mJ ,mI description, since all individual

angular momentum components are maximal: the ground state is |F = 2,mF = −2⟩ = |mJ =

−1/2,mI = −3/2⟩, the intermediate state is |F = 3,mF = −3⟩ = |mJ = −3/2,mI = −3/2⟩,

and the Rydberg state is |F = 2,mF = −2⟩ = |mJ = −1/2,mI = −3/2⟩. Moreover, we note

that the mJ and mI projections in the Rydberg state are the same as in the initial ground

state. This transition is therefore magnetic-field insensitive.

The second excitation scheme (shown in Fig. 3.1b) uses the ground state |g⟩ = |5S1/2, F =

2,mF = 0⟩ and the same σ− → σ+ polarization scheme. Here, several intermediate states

are coupled: |6P3/2, F = 1, 2, 3,mF = −1⟩. Unlike in the previous scheme, the upper tran-
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sition couples to both mJ = −1/2 and mJ = 1/2 within the Rydberg manifold. This can

be understood by recalling the selection rule that ∆mJ = +1 for a σ+ dipole transition.

Since mJ is not a good quantum number for the intermediate states; these states, which have

mF = −1, include components of |mJ = −3/2,mI = 1/2⟩, |mJ = −1/2,mI = −1/2⟩, and

|mJ = 1/2,mI = −3/2⟩, and therefore can couple through ∆mJ = +1 transitions to both

mJ = −1/2 and mJ = +1/2. Another way to view this scheme is that the ground state level

|g⟩ = |F = 2,mF = 0⟩ = 1√
2
(|mJ = −1/2,mI = +1/2⟩ + |mJ = 1/2,mI = −1/2⟩).

The two-photon excitation with σ− → σ+ polarization must induce a total angular momen-

tum change of ∆mJ = 0 and ∆mI = 0 (for large intermediate state detuning relative to

the intermediate state hyperfine structure). The two components of the ground state there-

fore couple to the corresponding angular momentum states within the Rydberg manifold:

|mJ = −1/2,mI = +1/2⟩ and |mJ = +1/2,mI = −1/2⟩. For coherent excitation, this

scheme requires a sufficient magnetic field to frequency-resolve the excitation to one particular

Rydberg state. We use the mJ = −1/2 Rydberg state due to larger dipole matrix elements for

the chosen polarizations (Fig. 3.1 and caption).

3.3 Rydberg laser system

In all Rydberg experiments in this thesis, we couple the atomic 5S1/2 ground state to the

70S1/2 Rydberg state through the intermediate 6P3/2 state. The transition from ground to in-

termediate state is driven by a blue 420 nm laser, and the transition from the intermediate to

the Rydberg state is driven by an infrared 1013 nm laser. The single-photon Rabi frequency

of each coupling is labeled Ω420 and Ω1013, respectively. The lasers are detuned from the in-

termediate state by detuning δ ≫ Ω420,Ω1013 (Fig. 3.1), such that the dynamics are reduced

to an effective two-level system between the ground and Rydberg states which is driven by
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two-photon Rabi frequency Ω = Ω420Ω1013/2δ. The 420 and 1013 beams are applied counter-

propagating to one another along the axis of the array. An external magnetic field is addition-

ally applied on this axis (Fig. 2.1), and the beams are circularly polarized to drive σ− and σ+

transitions, respectively.

Several generations of Rydberg laser systems have been used for the experiments in this the-

sis. While details of the system used for each experiment are described in the corresponding

appendices, this section will describe the newest version of the laser system. An annotated

picture of the Rydberg laser locking setup is shown in Fig. A.2.

The 420 nm laser is a frequency-doubled Ti:Sapphire laser (M Squared, 15-W pump). We

stabilize the laser frequency by locking the fundamental (840 nm) to an ultra-low expansion

(ULE) reference cavity (notched cylinder design from Stable Laser Systems, free spectral range

1.5 GHz), with finesse F = 30, 000 at 840 nm. The fundamental light is phase modulated by

a high-frequency fiber modulator to generate tunable sidebands on the locking pathway; the

lock is applied to one of these sidebands to enable a tunable offset from the cavity resonance.

The 1013-nm laser source is an external-cavity diode laser (Toptica DL Pro), which is locked

to the same reference cavity (F = 50, 000 at 1013 nm). To suppress high-frequency phase

noise from this diode laser, we use the transmitted light through the cavity, which is filtered

by the narrow cavity transmission spectrum (30 kHz linewidth) (see Chapter 12). This filtered

light is used to injection lock another laser diode (Toptica, LD-1020-0400-2), whose output is

subsequently amplified to 10 W by a fiber amplifier (Azur Light Systems). We note that un-

like the 420 nm laser which can be locked at any tunable offset relative to a cavity resonance,

the 1013 nm must be locked directly on resonance, since we only use the transmitted light

through the cavity. This gives a rigid 1.5 GHz spacing of accessible lock-points; additional

tunability is achieved using AOMs for frequency shifting.
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Figure 3.2: Generating homogeneous Rydberg beams. a) Measured Gaussian-beam illumination on
the SLM for shaping the 420-nm Rydberg beam. A Gaussian fit to this data is used as an input for the
hologram optimization algorithm. b) Corrected and measured wavefront error through our optical system,
showing a reduction of aberrations to λ/100. c) Computer-generated hologram for creating the 420-nm top-
hat beam. d) Measured light intensity of the 420-nm top-hat beam (top), and the cross section along where
atoms are positioned (bottom). Vertical lines denote the 105-µm region where the beam should be flat. e)
Using the measured top-hat intensity, a phase correction is calculated for adding to the initial hologram. f)
Resulting top-hat beam after feedback shows significantly improved homogeneity.

3.4 Rydberg beam shaping

For experiments with one-dimensional atom arrays, the Rydberg lasers are Gaussian beams

which are focused along the array axis to globally illuminate the atoms. For two-dimensional

arrays, the beams are shaped into one-dimensional top-hats (light sheets) to illuminate the

plane of the atoms (Fig. 3.2). This beam shaping is accomplished by placing a phase spa-

tial light modulator (SLM) in the Fourier plane (e.g., one focal length before the final lens

which focuses the light onto the atoms). Ideally, we would like to produce a beam on the

atoms which has a top-hat intensity profile, and also a flat phase profile such that it propa-

gates cleanly across the array. However, phase-only control in the Fourier plane cannot give

arbitrary phase and amplitude control in the image plane.
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The resolution to this issue is that we target a particular phase and amplitude profile only

in the region of the image plane where the atoms are located, and we relax our constraints

elsewhere in the image plane. While ideally the field amplitude would be zero outside of the

top-hat, this constraint relaxation results in a substantial portion of light deflected into other

parts of the image plane, i.e., outside of the top-hat mode. Indeed, there is a necessary com-

promise between optimizing the efficiency of the hologram (i.e., what fraction of the light is

projected in the top-hat mode) and optimizing the homogeneity of the top-hat itself.

We generate the holograms using the conjugate gradient minimization algorithm [51]. The

resulting top-hat beams have a flat width of 105 µm and a perpendicular Gaussian width of

25 µm. The conversion efficiencies into the top-hat modes are 30% for the 420 nm laser and

38% for the 1013 nm laser.

Since holographic beam shaping relies on the intricate interplay of different high spatial fre-

quency components in the light field, it is extremely sensitive to optical aberrations. We cor-

rect for all aberrations up to the window of our vacuum chamber by measuring the amplitude

and phase of the electric field as it propagates through the optical beam path (Fig. 3.2a,b)

[52]. We do so by picking off a small portion of the Rydberg beam and observing it on a cam-

era with small pixel size and with sensor cover removed for high-fidelity beam characterization

(Imaging Source DMM 27UP031-ML). In this way, we reduce the wavefront error in our beam

down to λ/100, and also use the measured field profile as the starting guess in our hologram

generation algorithm (Fig. 3.2a,b). Furthermore, by imaging the top-hat beams we also cor-

rect for remaining inhomogeneities by updating the target field profile in our optimization

algorithm (Fig. 3.2e,f). Due to aberrations and imperfections of the vacuum windows, we ob-

serve slightly larger intensity variations on the atoms than expected (∼ 3% RMS, ∼ 10%

peak-to-peak).
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Figure 3.3: Experimental protocol. The experiment begins by loading a MOT, and then turning on probe
beams and acquiring a first EMCCD image to show the randomly loaded tweezer array. The image is pro-
cessed and atoms are rearranged into a target pattern, and then subsequently imaged a second time to ver-
ify that atoms are properly arranged. Afterwards, probe beams are turned off, the trap depth ramps down to
∼ 1/4 the initial value, and the magnetic field is turned on to define a quantization axis. Optical pumping
is applied to prepare atoms in |F = 2,mF = −2⟩. The 1013 nm Rydberg laser turns on first, and then the
420 nm is pulsed according to the desired Rydberg Hamiltonian evolution. The tweezers are briefly turned
off during the Rydberg pulse, and then turned back on at high power to push out Rydberg atoms. (Alter-
natively, tweezers can be turned back on at low power and a microwave pulse can be applied to increase
Rydberg detection fidelity.) The magnetic field is turned off, and a final image is taken for readout.

Using this beam shaping approach to homogeneously illuminate the atom array with both

Rydberg lasers, we achieve single-photon Rabi frequencies of up to Ω420 = 2π × 360 MHz and

Ω1013 = 2π × 50 MHz. Typical intermediate state detuning is δ = 2π × 1 GHz, resulting in

two-photon Rabi frequencies of several megahertz. The specific operating parameters used in

each experiment are available in the associated appendices.

3.5 Protocol for Rydberg experiments

The protocol for Rydberg experiments is shown in Fig. 3.3. The traps are loaded from a magneto-

optical trap (MOT), with single atom loading probabilities of ∼ 0.6. A fluorescence image of

the array is taken, and then atoms are rearranged into pre-programmed positions. Following
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the rearrangement procedure, another image of the array is taken such that we can postselect

on instances in which the prepared configuration is defect-free. After taking the second image,

we apply a magnetic field of ∼ 1.5 G along the axis of the array, and then we optically pump

all atoms into the target initial state (i.e., |F = 2,mF = −2⟩ using a σ−-polarized beam, see

Section 2.8). We then turn off the traps and pulse the Rydberg lasers on a timescale of a few

microseconds. In most cases, the 1013 nm laser turns on first, followed by the carefully shaped

pulse of the 420 nm laser, and then the 1013 nm turns off. This is because the 420 nm laser

is focused through a double-pass AOM for amplitude, frequency, and phase control with a

fast rise time of ∼ 10 ns, while the 1013 nm has a slower AOM rise time (we do not focus the

1013 nm as tightly through its AOM, since we instead optimize for AOM deflection efficiency).

After the Rydberg pulse, we turn the traps back on to recapture the atoms that are in the

ground state |g⟩ while pushing away the atoms in the Rydberg state |r⟩, and finally take a

third image. Because of their long lifetime, most of the Rydberg atoms escape from the trap-

ping region before they decay back to the ground state. This provides a convenient way to

detect them as missing atoms on the third image (see Section 3.7 for more details). The entire

experimental sequence, from MOT formation to the third image, takes ∼ 300ms. For some

experiments, we perform two rounds of rearrangement to improve the target array preparation

fidelity; in this case, we take four images per sequence rather than three, and the experimental

cycle time is ∼ 400 ms.

3.6 Calibration and alignment of Rydberg lasers

Both the 420 nm laser and the 1013 nm laser need to be properly aligned on the atoms for a

Rydberg signal to be visible. While the two-photon Rydberg signal can be used for calibra-

tion and alignment of each laser, this signal depends on both systems working properly, and
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requires using sparse arrays of isolated atoms. For this reason, we prefer to use independent

protocols to measure the intensity of each laser separately on the atoms by studying the light

shifts on atomic ground states. These signals are measured and integrated with automatic

beam alignment procedures to maximize each laser’s intensity on the atoms. This process is

described in Section 5.6.

3.6.1 Independent calibration of 420 nm laser

To measure and calibrate the effect of the 420 nm laser on the atoms, we measure the differ-

ential light shift induced by this laser on the microwave transition from |F = 2,mF = −2⟩

to |F = 1,mF = −1⟩ (Fig. 3.4a). For Rydberg excitation, the 420 nm laser is tuned around

1 GHz blue-detuned from the 6P intermediate state. This leads to a strong MHz-scale differ-

ential shift on these two ground state hyperfine levels which are separated by 6.8 GHz. We

can measure this light shift directly by measuring the microwave resonance with and without

the blue laser applied (Fig. 3.4b). However, in this approach, the 420 nm laser remains on for

the duration of the microwave pulse (20 µs), leading to non-negligible off-resonant scattering

and broadening of the microwave resonance. This necessitates working at relatively low blue

power to avoid significant broadening. Alternatively, we can measure the light shift on this

transition using a Ramsey sequence, in which the blue laser pulse is applied briefly in between

the two Ramsey microwave π/2 pulses (Fig. 3.4c,d). The Ramsey fringe frequency gives a di-

rect measurement of the differential light shift, which is proportional to 420 nm laser intensity

on the atoms. Moreover, by taking enough statistics to analyze each tweezer position inde-

pendently, we can assess homogeneity across the array. For two-dimensional arrays, the blue

laser illuminates the atoms from the side, so we characterize the light shift on each row in the

system (i.e., Fig. 3.4e).
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Figure 3.4: 420 nm light shift measurement. (a) We calibrate and align the 420 nm laser by measur-
ing its differential light shift on the hyperfine ground state levels. In particular, since this laser is detuned
close to the transition from F = 2 → 6P3/2, it exerts a strong light shift on the F = 2 ground states
and a weaker shift in the opposite direction on the F = 1 ground states. (b) We measure the stretch mi-
crowave resonance (from |F = 2,mF = −2⟩ to |F = 1,mF = −1⟩) with and without the 420 nm laser
and observe a megahertz-scale shift which is proportional to the intensity on the atoms. This is measured
with the tweezers turned off, and the 420 nm power is reduced to avoid scattering that would occur over the
long timescale of the microwave pulse. (c) Our standard approach is to measure the differential light shift
in a Ramsey sequence, where the 420 nm is pulsed only briefly (for time τ) in between two microwave π/2
pulses. (d) Sample Ramsey oscillation on the stretch transition. (e) When using a top-hat 420 nm beam to
address two-dimensional arrays, we analyze the light shift on each row of the system to characterize homo-
geneity, given by the flatness of the top-hat.
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Figure 3.5: 1013 nm light shift measurement. We calibrate and align the 1013 nm laser by measuring
its differential light shift on the hyperfine ground states. (a) The light shift on the stretch microwave transi-
tion (|F = 2,mF = −2⟩ to |F = 1,mF = −1⟩) is measured in a Ramsey sequence while traps are turned
off. This light shift is dominated by vector light shifts from the 1013 nm due to its σ+ polarization. (b) The
light shift on the clock transition (|F = 2,mF = 0⟩ to |F = 1,mF = 0⟩) is the differential scalar shift
and is of scale 100 Hz. We measure this using a spin-echo procedure over much longer timescales, while the
tweezers remain on. The reduced contrast is from decoherence in spin-echo over 30 ms.

3.6.2 Independent calibration of 1013 nm laser

While the high power 1013 nm laser induces a strong MHz-scale shift on the ground state lev-

els, the differential light shift on the various ground states is much smaller due to the large

detuning of 1013 nm from the D1 and D2 optical transitions at 795 nm and 780 nm. In this

regime, the differential scalar light shifts between the F = 1 and F = 2 ground states is of

order 100 Hz, while the differential vector light shifts on the stretch microwave transition is of

order 100 kHz (for σ± polarized light).

The stretch microwave transition is probed while optical tweezers are turned off to preserve

coherence between the |F = 2,mF = −2⟩ and |F = 1,mF = −1⟩ spin states (see Section 2.8).

This causes background loss of atoms which reduces the contrast of Ramsey fringes. For our

highest 1013 nm laser intensities used in one-dimensional array experiments, the differential

vector light shift on the stretch microwave transition is large enough to measure in standard
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Ramsey-type experiments with reasonable trap-off times of 20-30 µs (Fig. 3.5a). For lower

laser intensity, longer trap-off times are required, making this approach unfavorable.

Alternatively, the 1013 nm light shift can be measured on the clock transition from |F =

1,mF = 0⟩ to |F = 2,mF = 0⟩ while the tweezers remain on (Fig. 3.5b). Although the

differential scalar light shift is much smaller, the coherence can be probed on much longer

timescales while the atoms remain trapped. In this approach, we apply a spin-echo procedure

with a 30 ms gap between each of the two π/2 pulses and the middle π pulse, and we turn on

the 1013 nm for a variable duration during the first gap. The optical tweezer trap depths are

reduced during this coherent evolution to ∼ 1/4 the depths used for loading, which extends

the coherence time and improves the contrast of the Ramsey fringes (see Chapter 4).

3.7 Rydberg state detection

Each atom is identified as being in |g⟩ (or |r⟩) at the end of the Rydberg pulse by whether

it is (or is not) present in the third fluorescence image. Detection infidelity arises from acci-

dental loss of atoms in |g⟩ or accidental recapture of atoms in |r⟩. For an atom in state |g⟩,

detection fidelity is set by the finite trap lifetime and motion away from the tweezer while the

traps are off (i.e., as in Section 2.9). To quantify this error, we perform our normal experimen-

tal sequence while disabling only the 420 nm laser pulse. This keeps all atoms in state |g⟩, and

we measure the baseline loss probability. The precise fidelity depends on atom temperature,

trap lifetime, and the parameters of the tweezer turn-off procedure during the Rydberg pulse,

but is typically around 99%.

For an atom in state |r⟩, the optical tweezer yields an anti-trapping potential, but there is

a finite probability that the atom will decay back to the ground state and be recaptured by

the tweezer before it can escape the trapping region [53]. This recapture probability can be
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reduced by increasing the optical tweezer depth when recapturing atoms, as this more strongly

pushes Rydberg atoms away from the tweezer. Typical estimation of Rydberg detection fi-

delity is done by measuring Rabi oscillations between |g⟩ and |r⟩ and extracting the amplitude

of the oscillation. This simple approach assumes perfect initialization in |g⟩ as well as perfect

Rabi driving. A more careful analysis of Rydberg detection fidelity can be performed by vary-

ing the trap depth during recapture, as described in Section J.4, where the extracted detection

fidelity was found to be 0.9773(42).

For two-dimensional arrays created with a spatial light modulator (SLM), the tweezer push-

out approach is less effective because atoms which drift away from their initial traps can still

be recaptured in a large 3D trapping structure created by out-of-plane interference of tweezers.

Following an approach similar to Ref. [34], we increase the Rydberg detection fidelity using a

strong microwave (MW) pulse to enhance the loss of atoms in |r⟩ while leaving atoms in |g⟩

unaffected. This approach is described in Section F.6 of Appendix F.

3.8 Calibration of Rydberg resonance

We calibrate the Rydberg resonance at the beginning of each batch of experimental runs, typ-

ically at least once per day. To find resonance, we prepare arrays of isolated atoms, with sepa-

rations of at least 16 microns between atoms. The Rydberg laser detuning is controlled using

the acousto-optic modulator (AOM) on the 420 nm laser pathway. We measure Rabi oscilla-

tions on the isolated atoms at various frequency offsets, from which we extract the generalized

Rabi frequency as a function of detuning (Fig. 3.6a). The center of the fitted generalized Rabi

frequency curve gives the Rydberg resonance condition, including all light shifts from the Ry-

dberg lasers. We then measure Rabi oscillations on resonance to extract the two-photon Rabi

frequency (Fig. 3.6b).
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Figure 3.6: Calibration of Rydberg parameters. (a) We calibrate the Rydberg resonance by performing
Rabi oscillations at several laser detunings around where we expect to find resonance (upper panel). The
frequency of these oscillations is given by

√
Ω2 +∆2, so fitting the measured frequencies to this functional

form directly gives the resonance frequency. (b) After finding the resonance, we measure resonant Rabi
oscillations to extract the Rabi frequency. (c) We measure the 420 nm laser light shift on the Rydberg tran-
sition by performing a Ramsey measurement, where during the gap the 420 nm laser is off. This is used
to properly compensate for the 420 nm light shift in measurements where the laser intensity is dynamically
changed. This Ramsey measurement is ultimately limited in coherence by Doppler fluctuations on the Ryd-
berg transition to ∼ 5 µs for our atom temperatures, and may be additionally reduced by fluctuating laser
intensities (or, for high Rydberg states, fluctuating electric fields).
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While these calibrations are sufficient to drive resonant Rabi oscillations, in many experi-

ments we vary the two-photon Rabi frequency Ω by dynamically changing the 420 nm laser

power during the pulse. As the 420 nm power changes, the light shift on the atoms change.

We correct for this by compensating for this changing light shift with the AOM frequency. To

properly compensate, we first measure the total light shift induced by the 420 nm laser on the

Rydberg transition at maximum power by performing a Ramsey sequence (Fig. 3.6c). During

the gap time (with the 420 nm laser off), the atomic resonance is shifted due to the “missing”

420 nm light shift, and this results in phase accumulation. This measured value is then incor-

porated into the pulse programming for subsequent experiments (see Section 5.5).

3.9 Measurements of Rydberg interaction energies

Interactions between Rydberg atoms play a central role in many-body experiments through-

out this thesis. These interactions take the form of an energy shift for pairs of atoms that are

simultaneously excited. When this interaction shift V is larger than the strength of the excita-

tion coupling, excitation to doubly excited states |rr⟩ is suppressed; this is known as the Ry-

dberg blockade, and is discussed extensively throughout this thesis, particularly in Chapters 7

and 12. The Rydberg blockade effect is generally insensitive to the particular strength of the

interaction, as long as V ≫ Ω. Specifically, the first order corrections to the blockade involve

AC Stark shifts due to off-resonant coupling to the blockaded states, of order Ω2/V .

While many experiments are not sensitive to the exact interaction strength, it is helpful to

calibrate these interaction energies, especially to account for many-body systems wherein long-

range interactions are weaker and may be more comparable to Ω. We utilize a simple scheme

to measure pairwise interaction energies: first, we reduce the Rabi frequency Ω until we can

cleanly measure blockaded Rabi oscillations (i.e., as in Fig. 7.1 of Chapter 7). In this regime,
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Figure 3.7: Rydberg interaction spectroscopy. (a) We measure Rydberg interactions between pairs of
atoms which are globally coupled to the Rydberg state. (b) The collective driving couples the ground state
|gg⟩ to the symmetrically excited state |W ⟩ = (|gr⟩ + |rg⟩)/

√
2 with enhanced Rabi frequency

√
2Ω. Sim-

ilarly, the intermediate state is coupled to the doubly excited state |rr⟩, which is shifted by the Rydberg
interaction energy V . The Rydberg blockade regime is defined by V ≫ Ω, and results in effective two-level
system dynamics between |gg⟩ and |W ⟩. (c) We measure V in the blockade regime by applying a resonant
π pulse (at the enhanced Rabi frequency

√
2Ω to prepare the state |W ⟩. We then apply a second π pulse

at variable frequency, and monitor the probability of observing either |rr⟩ (upper plot) or |gg⟩ (lower plot).
If the second pulse is also on resonance, we observe a peak in the population of |gg⟩. At a separate reso-
nance frequency shifted by V , we observe a peak in the population of |rr⟩. This double-excitation peak is
broadened by fluctuations in the interaction energy V .
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after initializing two atoms in |gg⟩, they are coupled by global Rydberg driving to the sym-

metric excited state |W ⟩ = 1√
2
(|gr⟩+ |rg⟩), and the further coupling to the doubly excited

state |rr⟩ is far off-resonant since V ≫ Ω (Fig. 3.7b). We apply a calibrated π pulse at the

bare atom resonance to prepare |W ⟩. We then apply a second pulse at a variable detuning. If

the second pulse is also applied on bare atom resonance, we de-excite |W ⟩ and primarily ob-

serve |gg⟩ (Fig. 3.7c, lower panel). However, for a detuning ∆ = V , we find a second resonance

where we primarily observe double-excitation to |rr⟩ (Fig. 3.7c, upper panel). We note that

the double-excitation resonance is significantly broader than the de-excitation resonance; we

attribute this to fluctuations in the interaction energy due to thermal fluctuations in atom

positions.
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4
Hyperfine qubit control

4.1 Introduction

Trapped neutral atoms and atomic ions offer among the most pristine quantum coherence

properties of any platforms for quantum science. In such systems, quantum bits can be en-

coded in pairs of atomic levels which are defined in hyperfine ground state manifolds or on

narrow optical transitions from a single ground state to a metastable excited state. Hyper-

fine encoded qubits are particularly attractive due to their transition frequencies in the sev-

eral gigahertz range – for 87Rb in particular, the hyperfine splitting is 6.8346826 GHz [50].

These transitions can be readily driven by microwave fields, as demonstrated in Section 2.8.
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In practice, microwave driving of cold atoms is limited to 20 − 50 kHz Rabi frequencies, and

microwaves cannot be used to address individual atoms. An alternate approach based on two-

photon stimulated Raman transitions is in many cases favorable, enabling high megahertz-

scale Rabi frequencies [54, 55] as well as the opportunity for local addressing of individual

qubits separated by micrometer lengthscales.

A variety of experimental approaches have been used to drive stimulated Raman transi-

tions of hyperfine qubits. The canonical formulation of Raman driving uses two phase-locked

lasers, with a frequency difference equal to the hyperfine splitting. Alternatively, mode-locked

frequency comb lasers have been used in trapped ion systems, wherein pairs of frequency com-

ponents combine to drive Raman transitions [56–58]. In both cases, the frequency offsets must

be actively stabilized to the hyperfine frequency. Another approach is based on phase mod-

ulation of a single laser to produce low-noise sidebands at the hyperfine frequency. This ap-

proach, while experimentally convenient, necessitates additional interferometric filtering to

reduce destructive interference between sideband pairs, requiring both active stabilization as

well as loss of optical power.

In this chapter, we demonstrate a new method for Raman driving based on phase modula-

tion followed by reflection from a highly dispersive optical element. The dispersive element, a

chirped Bragg grating (CBG), changes the relative phases of the phase-modulated sidebands,

converting destructive interference to constructive interference. Moreover, we show that this

constructive interference, and Raman driving in general, can be understood as being driven

by laser amplitude modulation at the hyperfine frequency. In this framework, we show that

the dispersive approach offers high efficiency conversion from phase modulation to amplitude

modulation, enables scaling to high optical power, and is passively stable.

Finally, we benchmark the performance of our amplitude modulated laser system on an ar-
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ray of ∼ 300 neutral 87Rb atomic qubits trapped in optical tweezers. We show high-fidelity

hyperfine control across all atoms with global driving, and use this system to measure sev-

eral coherence metrics in the neutral atom array. These results demonstrate that this robust

approach to Raman driving enables scalable optical control of hyperfine qubits, with future

opportunities to integrate into local optical addressing technologies in both neutral atom and

trapped ion systems.

4.2 Raman transitions are driven by laser amplitude modulation

We begin by analyzing stimulated Raman transitions for a general drive field which couples

both hyperfine qubit states to an excited state (Fig. 4.1a). We will assume the drive field has

some bandwidth that is comparable to or larger than the hyperfine frequency ωq, but small

compared to the detuning ∆ from the intermediate excited state. While the canonical ap-

proach to evaluating the Raman Rabi frequency in this setup is to consider each pair of fre-

quency components in the drive field with frequency difference ωq, we will highlight that an

equivalent interpretation is to consider only the amplitude modulation of the laser field, as

would be measured on a photodetector, without considering its electric field spectrum. This

interpretation simplifies our understanding of Raman laser systems, and offers a simple way to

compare various approaches.

We consider first a three-level Λ system (Fig. 4.1a), with two ground levels |0⟩ and |1⟩ each

coupled to a mutual excited state |2⟩. We take both couplings to be driven by the same gen-

eral laser field with single-photon Rabi frequency Ω(t). This system is described by the follow-

ing Hamiltonian, given in the rotating frame for the excited state |2⟩:

H = ℏωq|1⟩ ⟨1|+ ℏ∆|2⟩ ⟨2| − ℏΩ(t)
2

(|2⟩ ⟨0|+ |2⟩ ⟨1|) + h.c (4.1)
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Figure 4.1: Amplitude modulation for driving Raman transitions. (a) Stimulated Raman transitions in
a Λ-type 3-level system. Adiabatic elimination of the excited state results in an effective Raman coupling be-
tween ground states |0⟩ and |1⟩. (b) Level structure for 87Rb, showing Raman driving of the clock transition
from |0⟩ = |F = 1,mF = 0⟩ to |1⟩ = |F = 2,mF = 0⟩. This transition is driven by a time-dependent σ+

polarized field Ω(t), which is far detuned by ∆ from the excited state (but not far detuned relative to the
splitting between the 5P1/2 and 5P3/2 excited states). (c) Several approaches for Raman driving, including
the dispersive approach presented here, operate by converting phase modulation to amplitude modulation at
the qubit frequency, which resonantly drives the Raman transition. (d) Comparison of methods for convert-
ing phase modulation to amplitude modulation. The coherence metric (described in Appendix B) is highest
for the dispersive approach, which is also passively stable since it does not rely on interferometric filtering.
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If the intermediate detuning ∆ is large compared to Ω(t) and its bandwidth, we can adiabat-

ically eliminate the excited state, resulting in an effective two-level Hamiltonian for states |0⟩

and |1⟩:

HTLS = ℏωq|1⟩ ⟨1| −
ℏΩTLS(t)

2
|1⟩ ⟨0|+ h.c (4.2)

with an effective coupling

ΩTLS(t) =
|Ω(t)|2

2∆
(4.3)

We highlight here that the Hamiltonian in eq. (4.2) describes a two-level system (TLS) with

splitting ωq and time-dependent coupling ΩTLS ∝ |Ω(t)|2. From this, it is apparent that the

intensity of the laser field produces an effective field which couples the two qubit states; ampli-

tude modulation of the laser field at the qubit frequency therefore drives the qubit transition,

akin to resonant driving of a spin transition directly using the rapidly oscillating magnetic

fields of microwave radiation. Interestingly, we note that in real atoms (i.e., level structure

for 87Rb as shown in Fig. 4.1b), the “effective field” which is proportional to the laser inten-

sity is the fictitious magnetic field associated with vector light shifts [59]. Specifically, an off-

resonant laser field induces vector light shifts which act as a fictitious magnetic field given

by Bfict ∝ Im [ϵ∗ × ϵ], where ϵ is the polarization vector of the laser field [60, 43]. For circu-

larly polarized light, i.e., ϵ+ = x̂ + iŷ, the resulting fictitious field is oriented along ẑ. The

off-resonant laser, therefore, introduces an effective magnetic field along the ẑ axis, which

couples π-polarized spin transitions – and thus laser amplitude modulation is equivalent to

π-polarized microwave radiation.

The connection between this interpretation and standard formulations summing over pairs

of frequency components is clearly illustrated by considering a field with regularly spaced fre-
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quency components, described by Ω(t) = Ω0
∑

n ane
inωt with normalized component ampli-

tudes such that
∑

n |an|2 = 1. For such a field, the intensity modulates at all harmonics of the

sideband spacing according to the sum of amplitude pairs:

|Ω(t)|2 = |Ω0|2
∑
n,m

a∗name
i(m−n)ωt (4.4)

= |Ω0|2
∑
k

eikωt

[∑
n

a∗nan+k

]
(4.5)

where in the second line the summation indices are changed from n,m to n, k with k = m− n.

The intensity modulation at the qubit frequency, driven by the term eiωqt (corresponding to

k = 1 if the component spacing is ω = ωq) is given by the usual expression [56] for combined

Raman Rabi frequency with many contributing pairs of components:

Ωeff =
|Ω0|2

2∆

∑
n

a∗nan+1 (4.6)

Importantly, for a field with a fixed amount of total power (characterized by |Ω0|2), the

amount of amplitude modulation is determined by how the power is distributed among fre-

quency components, and their relative phases. We encapsulate this in the amplitude modula-

tion efficiency, ηAM = |
∑

n a
∗
nan+1|. Laser fields with a higher amplitude modulation efficiency

have a higher ratio of Raman Rabi frequency (given by amplitude modulation) to optical

scattering (given by the average optical power). Amplitude modulation efficiency is bounded

above by ηAM < 1, where this bound is approached as the power is distributed among more

and more sidebands, as in mode-locked frequency comb lasers. On the other hand, the canon-

ical formulation with power split into two frequency components has efficiency ηAM = 1/2.

This offers a convenient metric for comparing various approaches for producing Raman laser
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systems, as detailed in Appendix B.

4.3 Dispersive optics for amplitude modulation

While laser amplitude modulation is necessary for Raman driving, the most accessible form

of high-frequency laser modulation is phase modulation using electro-optics. Sinusoidal phase

modulation produces frequency sidebands according to the Jacobi-Anger expansion:

Ω(t) = Ω0e
iβ sinωt = Ω0

∞∑
n=−∞

Jn(β)e
inωt (4.7)

where Jn is the Bessel function of the first kind, β is the modulation depth, and ω is the mod-

ulation frequency. Since the laser intensity is constant (|Ω(t)|2 = |Ω0|2), a phase modulated

laser cannot resonantly drive qubits. This can be seen also as destructive interference between

pairs of adjacent sidebands:
∑∞

n=−∞ Jn(β)
∗Jn+1(β) = 0 (see Section L.1 for a more explicit

proof).

There are several methods for modifying the sideband spectrum of a phase modulated laser

to produce amplitude modulation. These methods are primarily interferometric in nature,

since they act selectively on frequency components with only gigahertz scale separation. For

example, one approach is to use a Fabry-Perot cavity to filter out the carrier (n = 0) spectral

component [54]. Another method is to use a Mach-Zehnder interferometer to filter out all odd-

order sidebands. Yet another approach is a Mach-Zehnder intensity modulator [33], in which

the phase modulation occurs in one arm of an interferometer. These approaches are necessar-

ily inefficient, in that they discard some portion of the laser light by filtering out components,

and they are sensitive to path length fluctuations on wavelength scales. (Some fiber-based ver-

sions of these systems can be more robust, but they are limited to low optical power.) The
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performance of these approaches is compared in Fig. 4.1d and Table B.1.

Rather than filtering out specific spectral components, we consider here an approach to

change the relative phases of these spectral components using dispersive optics. We consider

in particular a dispersive element which has a nonzero group-delay dispersion (GDD), de-

fined as GDD = ∂2φ
∂ω2 . This element imparts a phase shift to frequency components which is

quadratic in their frequency; that is, it produces a modified electric field of the form

Ω(t) = Ω0

∞∑
n=−∞

Jn(β)e
inωteiαn

2 (4.8)

where α = GDD · ω2/2 describes the phase curvature as a function of sideband index. The

resulting amplitude modulation efficiency depends simply on the phase modulation depth β

and the dispersion curvature α according to a remarkable Bessel function identity (see Sec-

tion L.2):

ηAM = |J1(2β sinα)| (4.9)

For an optimal β sinα = 0.92 rad, the efficiency is maximized at J1(2β sinα) = 0.582, sur-

passing the efficiency of the standard bichromatic drive (ηAM = 1/2). However, in practice,

electro-optic phase modulation depth is limited to β ≲ π, requiring α ≳ π/4 to achieve reason-

able efficiency; this corresponds to an enormously large dispersion of GDD ≳ 8.5× 108 fs2. For

comparison, dispersion in a typical optical fiber is 4 × 104 fs2/meter. Even ultra-high disper-

sion chirped Bragg mirrors (mirrors with gradually varying Bragg layer thickness) offer only

up to 1300 fs2 from a single reflection (see Appendix B for further discussion).

Recently, new optical elements based on volumetric Bragg gratings have enabled a new level

of frequency selectivity and dispersion control [61]. These crystals have a weak modulation in
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Figure 4.2: Raman laser system using a chirped Bragg grating. (a) Optical setup. The chirped Bragg
grating (CBG) and the first mirror afterwards (in the shaded gray region) are mounted on a single rotation
mount. Spectral components separate after first reflection from the CBG, but recombine after the second
reflection. A scanning Fabry-Perot cavity measures the sideband spectrum, and a fast photodetector mea-
sures the amplitude modulation. (b) The amplitude modulation depends on both the dispersion of the CBG
as well as the phase modulation depth (see main text). We observe the expected Bessel function relation,
and can extract the dispersion coefficient. (c) As we scan the laser frequency across the CBG bandwidth, we
see effects associated with the nonuniform dispersion within the CBG bandwidth. While more uniform CBGs
can be used, the current device can be angle tuned to park at the peak, and is still sufficiently passively
stable even with a free-running laser.

their refractive index over a lengthscale of ∼ 1 cm. Devices for which the index modulation

wavelength changes as a function of depth have highly dispersive properties. We use a chirped

volumetric Bragg grating with GDD = 4× 108 fs2 (OptiGrate, CBG-795-95). Reflecting twice

from the grating doubles the dispersive effect; this allows us to reach an optimal amplitude

modulation efficiency with an easily accessible phase modulation depth β ∼ 1.3 rad. More-

over, the dispersive element does not waste optical power by filtering out components, and it

is passively stable: ultimately, it serves as an element which passively converts phase modu-

lation to amplitude modulation, so the effective Raman coupling field (phase, amplitude, and

frequency) is inherited from the microwave source of the phase modulator.
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4.4 Raman laser setup with a chirped Bragg grating

Our Raman laser system (shown in Fig. 4.2a) is sourced from a tapered amplifier system

which outputs up to 1.5 W of fiber-coupled optical power at 795 nm (Toptica TA Pro). This

light is phase modulated by a free-space resonant electro-optic modulator (EOM) from Qubig.

The EOM is driven by a 6.8 GHz microwave source, which consists of a local oscillator (Stan-

ford Research Systems, SG384) that is IQ-modulated by an arbitrary waveform generator

(Spectrum Instrumentation) to achieve arbitrary frequency, phase, and amplitude control of

the phase modulation signal. The laser is then reflected twice from a chirped Bragg grating

to convert phase modulation to amplitude modulation, and the output is gated by an acousto-

optic modulator (AOM) and coupled into a single-mode fiber. The phase modulation depth

β is measured by a pickoff onto a scanning Fabry-Perot cavity, and the resulting amplitude

modulation is characterized on a fast photodetector.

The operational bandwidth of the CBG is 50 GHz; angle tuning of the CBG around the

3◦ target angle of incidence allows shifting of this bandwidth relative to the laser frequency.

While the CBG nominally has a uniform dispersion within its bandwidth, we find that in prac-

tice the dispersion oscillates within its finite bandwidth; for this reason, it is helpful to have

fine control of the incident angle and to monitor the resulting amplitude modulation while

tuning the angle.

Proper retroreflection of the light following the first reflection from the CBG is important

to ensure that subsequent alignments remain correct while tuning the CBG angle. This is

made more challenging by the fact that the different spectral components of laser light pen-

etrate different depths within the CBG and therefore spatially separate; we want these com-

ponents to properly recombine after retroreflection and the second pass through the CBG.
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Our approach is to mount both the CBG and the following mirror on the same rotation stage,

where the entrance facet of the CBG is at the origin of the rotation stage. The final retrore-

flection mirror is aligned once and then fixed in place.

After optimizing the CBG angle to maximize amplitude modulation, we experimentally

measure the dependence of amplitude modulation on the phase modulation depth to confirm

the expected Bessel function relationship from eq. (4.9) and extract the dispersion coefficient

(Fig. 4.2b). Finally, at full modulation depth, we measure the amplitude modulation as we

scan the laser frequency across the bandwidth of the CBG to assess sensitivity to drifts of the

free-running laser (Fig. 4.2c).

4.5 Benchmarking Raman laser system on neutral atom arrays

We test our high-power Raman laser system on neutral 87Rb atoms which are randomly loaded

within an array of 600 optical tweezers in two dimensions, arranged in a 100-µm × 200-µm

rectangle (Fig. 4.3a). The optical tweezers are linearly polarized and have a wavelength of

809 nm. Atoms are imaged on an electron-multiplied CCD (EMCCD) camera to detect their

loaded positions, and their final states are read out by a second fluorescence image after push-

ing out atoms in F = 2 by cycling photons on the D2 transition F = 2 → F ′ = 3. During

loading and imaging, the tweezers have a trap depth of 14 MHz. During Raman driving, the

trap depths are lowered to 4 MHz and an 8.5-G magnetic field is applied.

The Raman laser illuminates the atom plane from the side and is cylindrically focused onto

the atoms, resulting in an elliptical beam with waists of 40 µm and 560 µm on the thin axis

and the tall axis, respectively, with a total average optical power of 150 mW on the atoms.

The large vertical extent ensures homogeneity across the atom plane without more compli-

cated beam-shaping techniques. The laser is σ+ polarized and tuned 100 GHz blue-detuned
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Figure 4.3: Raman driving of 87Rb atoms in an optical tweezer array. (a) Sample fluorescence image
of ∼ 300 atoms individually loaded into a 20x30 optical tweezer array. The Raman laser globally illuminates
the array. (b) Rabi oscillations, averaged over each row individually (upper panel) or over just the middle
four rows (lower panel). The measured Rabi frequency is 2π × 1.95 MHz. The decay is caused primarily by
inhomogeneous averaging across the system. (c) We use a CPMG pulse train to measure how many pulses
we can apply before scattering from the Raman laser causes T1-type decay. We compare two measurements
in which the final π/2 pulse is applied along +x (red) or −x (blue), and find that these curves converge
with a 1/e fit of 7852(76) pulses. This gives a scattering-limited π pulse fidelity of 0.999873(1).

of the 795-nm transition to the 5P1/2 excited state. By tuning the EOM drive frequency, the

Raman laser can resonantly drive π-polarized spin transitions in the ground state hyperfine

manifold. We use Raman-assisted optical pumping to prepare atoms in |0⟩ = |F = 1,mF = 0⟩

(see Section 4.6). Subsequently, the EOM drive frequency is tuned to the clock resonance, and

atoms are coupled from |0⟩ to |1⟩ = |F = 2,mF = 0⟩.

We globally drive the qubit array and measure Rabi oscillations across the array. We an-

alyze Rabi oscillations individually for each row (Fig. 4.3b, upper panel), as well as aver-

aged over the middle four rows (Fig. 4.3b, lower panel), where we find an average Ωeff =

2π × 1.95275(8) MHz. Rabi oscillations decay due to inhomogeneity across the array and small

(≲ 1%) power fluctuations.

For Raman driving of hyperfine qubits, there is a fundamental tradeoff between Raman

Rabi frequency (∝ Ω2/2∆) and incoherent scattering processes (∝ Γ
[
Ω2/4∆2

]
). For a given

target Rabi frequency, higher optical power enables working at a larger intermediate detun-

ing, increasing the ratio of Rabi frequency to scattering rate (proportional to the coherence
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Figure 4.4: Idle coherence of atoms in optical tweezers. (a) Ramsey measurement, taken with a 5 kHz
detuning between pulses. The atoms occupy several vibrational levels within the tweezers which have differ-
ent average differential light shifts on the qubit transition, resulting in dephasing. (b) Dynamical decoupling
sequence using XY16-256, with a total of 256 π pulses. The final π/2 pulse is applied about +x (red) or
−x (blue). These two curves converge with a fitted T2 = 303(13) ms.

metric tabulated in Fig. 4.1c). To evaluate this coherence limitation for our high-power sys-

tem, we apply a (π/2)x pulse followed by a train of πy pulses (Fig. 4.3c); this so-called CPMG

sequence [62] is robust to pulse miscalibrations that limit our observed Rabi coherence time.

By varying the total number of πy pulses, we observe a T1-type decay from scattering, with

a characteristic 1/e scale of 7852 ± 76 pulses. This decay constant sets a lower bound on our

scattering-limited π pulse fidelity of 0.999873(1).

4.6 Coherence properties of hyperfine qubits

We additionally use this system to characterize the idle coherence properties of the neutral

atoms in optical tweezers. We first benchmark the coherence in tweezers by measuring a Ram-
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Figure 4.5: T1 measurement. We initialize atoms in either |0⟩ = |F = 1,mF = 0⟩ or |1⟩ = |F = 2,mF =
0⟩ (blue and orange curves, respectively), and hold the atoms in the optical tweezers for a variable time
before pushing out the F = 2 population. These two curves converge with a fitted 1/e time of 0.45(1) s.
The tweezer depths are ramped down to ∼ 4 MHz during the hold time. We additionally turn off the F = 2
pushout to measure the background loss probability (gray), which is consistent with a 10 s vacuum-limited
lifetime.

sey T ∗
2 = 1.17(1) ms, limited by the finite atomic temperature and small differential light

shifts in the tweezers (Fig. 4.4a). By applying a train of π pulses, we dynamically decouple

the atomic qubits from noise sources such as the tweezer differential light shifts and extend

the coherence time to T2 = 303(13) ms, showing second-timescale coherence across hundreds

of qubits (Fig. 4.4b). The π pulses are applied according to the XY16-256 pulse sequence (256

total π pulses), which is robust against pulse imperfections for generic initial superposition

states.

This T2 coherence time is partially limited by off-resonant scattering from the optical tweez-

ers. Interestingly, however, this coherence time is actually longer than would be expected

given the calculated rate of off-resonant scattering in the tweezer, ≈ 17 Hz – and this is be-

cause not all scattering events cause qubit decoherence [63, 64]. In particular, for far-detuned

optical tweezers, the dominant scattering mechanism, so-called Rayleigh scattering, does not

change the spin state after the scattering event, and affects both qubit states approximately
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equally – and thus a single scattering event does not collapse the qubit state. Another scatter-

ing mechanism is Raman scattering, which describes photon scattering events that do change

the spin state and thus cause decoherence. With our 809 nm tweezers, we estimate a Rayleigh

scattering rate of 14.7 Hz, while the Raman scattering rate is only 2.1 Hz. Raman scattering

induces T1-type decay out of the qubit states, which we measure to be consistent with this

scattering timescale (Fig. 4.5). Notably, for tweezers which are far detuned relative to the ex-

cited state fine structure splitting, the Raman scattering rate scales very favorably as Ω2/∆4,

despite the total scattering rate scaling as Ω2/∆2 [65].

Since state-of-the-art Rydberg-based entangling operations are sub-microsecond timescale,

and Raman-based single-qubit rotations are also microsecond timescale, this coherence time

is sufficiently long for tens or hundreds of thousands of qubit operations before idle coherence

properties become limiting. Moreover, this coherence time should support new approaches

for quantum algorithms based on dynamically reconfigurable neutral atom arrays, all while

preserving coherence.

4.7 Optical pumping into mF = 0 states

Optical pumping into mF = 0 states is traditionally accomplished by applying π-polarized

optical pumping light on an F → F ′ = F optical transition, along with repumper light from

other ground state hyperfine levels. This approach utilizes the special selection rule which

forbids dipole transitions with ∆F = 0,mF = 0,m′
F = 0. The |F,mF = 0⟩ state is thus a dark

state to the optical pumping light, and accumulates population. This approach is challenging

because imperfection in the π polarization, which can come both from misalignment of the

beam propagation relative to the quantization axis or due to polarization impurity, reduces

the quality of the mF = 0 dark state.
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Figure 4.6: Raman laser spectroscopy and optical pumping. a) The Raman laser drives two-photon
transitions within the 5S1/2 ground state, and couples π spin transitions from |F = 1,mF ⟩ to |F = 2,mF ⟩.
After depumping all atoms into F = 1, we apply a Raman pulse at variable detuning to find resonances
for the three π transitions. These measurements are taken with an 8.5 G magnetic field. b) Raman-assisted
optical pumping. (i) We begin by coarse pumping into all three sublevels of F = 1, and apply a Raman
π-pulse to excite from |F = 1,mF = −1⟩ to |F = 2,mF = −1⟩ and from |F = 1,mF = +1⟩ to
|F = 2,mF = +1⟩. (ii) We then coarse pump back from F = 2 to F = 1. (iii) The net effect is to transfer
some population from |F = 1,mF = ±1⟩ to |F = 1,mF = 0⟩. We repeat this cycle N = 70 times and
achieve a net population of 99.3(1)% in |0⟩ = |F = 1,mF = 0⟩.

We instead use an active Raman-assisted optical pumping scheme to prepare atoms in

|0⟩ = |5S1/2, F = 1,mF = 0⟩. We apply a bias magnetic field of several Gauss (8.5 G for

experiments in Chapter 14), and make use of the Raman laser which drives effective π po-

larized spin transitions within the ground state hyperfine manifold (Fig. 4.1b and Fig. 4.6a).

As illustrated in Fig. 4.6b, we begin by coarse pumping of atoms into all mF states within

the |5S1/2, F = 1⟩ manifold by shining resonant light on the |5S1/2, F = 2⟩ to |5P3/2, F
′ =

2⟩ transition. We then apply a Raman π pulse at a detuning that drives population from

|F = 1,mF = −1⟩ to |F = 2,mF = −1⟩, and a second pulse to drive population from

|F = 1,mF = +1⟩ to |F = 2,mF = +1⟩ (Fig. 4.6a). The process then repeats by again coarse

pumping any population that was transferred to F = 2 back into the F = 1 manifold. The

net effect of one cycle is to transfer a portion of the population in |F = 1,mF = ±1⟩ into

|F = 1,mF = 0⟩. We repeat this cycle 70 times over a duration of 300 µs to achieve a |0⟩

preparation fidelity of 99.3(1)%.

This protocol does not require the π pulses on the mF = ±1 states to be perfect; the higher

the transfer probability, the faster the convergence into mF = 0. However, as discussed in

62



Section 2.8, these transitions for mF = ±1 are coupled to the atomic motion. For low Rabi

frequencies such as those typical with microwave driving (∼ 20 kHz), this decoherence strongly

suppresses the population transfer, and we therefore observe only limited optical pumping

fidelity of ∼ 90% when using microwaves to apply these transitions. However, for larger Rabi

frequencies such as those achieved with Raman driving (≳ 150 kHz), we can observe a few

coherent oscillations on these transitions, and have ≳ 95% population transfer for a single π

pulse.
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5
Experiment control infrastructure

Our experimental control infrastructure consists of a variety of modular tools for controlling

all the equipment in the lab. At the core is an Adwin processor (ADwin-Pro II), which imple-

ments precise timing control for 16 analog outputs and 32 digital outputs. This system con-

trols laser detunings and powers, magnetic field coils, acousto-optic modulators (AOMs), laser

shutters, microwave TTL switches, etc. The software for programming the sequence of volt-

ages and TTL settings for these outputs was developed by Peter Schauss and Stefan Kuhr at

the Max Planck Institute for Quantum Optics. Separate home-built software modules perform

real-time image analysis and atom rearrangement, stabilize laser beam alignments, calibrate

laser pulse parameters, and more. In this chapter, we detail key aspects of these modules, and
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then describe adaptations to the system to enable remote operation of the machine.

5.1 Image acquisition and analysis

All experimental sequences consist of a large number of cycles, each of which produces the

same number of atom fluorescence images (usually at least two images per cycle). After the

sequence is complete, analysis of the acquired images begins by evaluating the sum of the first

image from each cycle. While individual images show random loading of the tweezers, the

combined image displays atom signal from every optical tweezer in the system. This combined

image is therefore used to determine the position of the atom fluorescence signal from each

tweezer on the Andor EMCCD sensor. For all experiments described in this thesis, the signal

from each tweezer is evaluated by summing the pixel values in a small 3x3 bin centered at its

position on the sensor. More advanced techniques, such as deconvolution against the expected

atom point spread function, could further improve the signal to noise.

The signal for each tweezer in the first image per cycle forms a bimodal distribution, where

low values correspond to an empty tweezer and larger values correspond to a single loaded

atom (Fig. 2.4). A threshold is assigned in between the two modes for each tweezer in the

array. Comparing the analyzed signal from each tweezer in all acquired images to these de-

termined thresholds results in a binary array describing whether each tweezer was loaded or

empty in each image of the sequence; this forms the basis for all subsequent analysis. Addi-

tionally, the determined atom positions and signal thresholds can be saved in a configuration

file to be used for subsequent real-time analysis of images.
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Figure 5.1: Initial analysis of images. Upper panel: Each sequence is automatically analyzed after com-
pletion. Trap positions are converted into EMCCD pixel coordinates and locally optimized to encompass as
much atom signal as possible (red squares in the middle panel). Lower panel: Atom signal histograms for
each trap are shown in the upper middle and upper right plot; black markers highlight the fitted peaks of
the ’0 atom’ and ’1 atom’ distributions; gray markers indicate the assigned thresholds. We count the num-
ber of repetitions in which the atom signal is above the threshold to measure the average site occupation
probability (upper left panel). We typically observe 50-60% loading in the first image. In this example, we
simply re-image the same atoms, and plot the loss probability from the first to the second image (lower left).
The lower right two panels show average occupation in the first image, and average loss probability per site,
reshaped according to the array geometry.
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5.2 Real-time image analysis and live plotting of data

The atom array platform utilizes real-time rearrangement of atoms based on an acquired flu-

orescence image which reveals which optical tweezers are loaded with single atoms and which

tweezers are empty. Prior to performing experiments with rearrangement, an imaging calibra-

tion measurement is first run with ∼ 100 cycles, in which atoms are simply loaded and imaged.

This sequence is used to produce the calibration file describing the center pixel and threshold

for each tweezer.

Images are acquired and processed in real-time with a C++ program, using the Andor soft-

ware development kit (SDK). This program periodically checks if a new image has been ac-

quired by the Andor hardware; if so, and if this image is meant to be used for feedback, it is

analyzed using the prepared calibration file. Pixels corresponding to each tweezer are binned

and compared to their respective thresholds. The resulting list of binary values are sent over

the local network to a separate program which handles atom rearrangement (described in the

next section). While the image processing time is fast (< 1 ms), the main delay in this chain

is the acquisition of the image data from the camera, which takes 10-30 ms depending on the

camera region of interest. Other approaches for fast data acquisition from the camera (i.e.,

Camera Link) could reduce the latency of this image processing [66].

After the acquired images have been analyzed and reported (if being used for feedback),

they are displayed in visualization software which shows the most recently acquired images as

well as simple statistics of the loaded atoms (Fig. 5.2). This real-time tracking of data acqui-

sition is helpful in verifying that sequences are running correctly; additionally, parameters of

the experiment can be tweaked while tracking atom signals in real-time.

The first statistic tracks the number of loaded atoms in the first image of each experimental
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Figure 5.2: Live analysis. Images are displayed in real-time as they are acquired. Here, we show an ex-
ample snapshot from a sequence with four images per repetition. The first image shows a randomly loaded
array. The second shows the same atoms after doing an initial sorting. The third image shows atoms after a
second round of sorting, preparing an array of isolated atoms. The fourth image shows the remaining atoms
after a Rydberg laser pulse which drives Rabi oscillations. Basic analysis, including loading, losses, and atom
signal are plotted as a function of time to verify that the experiment is working properly, and in some cases
to align optics based on the real-time analysis.
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cycle. It is often useful to monitor loading while adjusting MOT loading parameters, such as

loading duration and magnetic field offsets.

The second statistic tracks the probability of atoms being lost between two sequential im-

ages of each cycle. Since atom loss is the primary readout mechanism in both Rydberg exper-

iments and hyperfine qubit experiments, this atom loss signal gives early insight into the data

quality before the sequence is finished. For example, Rabi oscillations are traced out visually

as they are acquired. Live monitoring of atom loss can also be integrated with alignment of

laser systems or optics; for example, the polarization of our optical pumping laser is fine-tuned

by cycling a sequence in which imperfect polarization results in excess heating and atom loss,

and then tweaking half-wave plates and quarter-wave plates while monitoring atom loss.

The last statistic that is reported live is the average brightness of the atoms. This is a use-

ful signal when optimizing the focus of the objectives.

5.3 Atom rearrangement infrastructure

Atom rearrangement is handled by a C++ program which generates real-time AOD wave-

forms. The waveforms are composed of one or more frequency components, each of which are

within the AOD bandwidth (75 MHz to 125 MHz) and correspond to an individual deflection

from the AOD. The waveforms are generated in the time-domain to keep careful track of the

amplitude, frequency, and phase of each component. Control of each component, and in par-

ticular the relative phases, is crucial due to considerations of intermodulations produced from

nonlinearities in the AOD and amplifier (see Section C.2). Additionally, phase continuity of

each frequency component in the waveform is important to avoid flicker in the output beams,

including while frequencies are being dynamically changed to steer the optical tweezers.

Our one-dimensional tweezer array used Software Defined Radio (SDR) (Ettus Research,
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model USRP X310, daughterboard UBX 160) to generate waveforms. The rearrangement

software generated the time-domain waveforms and streamed them to the SDR, which per-

forms digital-analog conversion, low-pass filtering, and subsequent analog IQ upconversion by

a frequency of ωup = 74 MHz. As a result, each frequency component was calculated in the

shifted band of 0 to 50 MHz. This is convenient since it enables the waveform to be sampled

at a lower sampling rate, speeding up calculations and easing the requirements on connection

speed between the computer and SDR. We sampled these waveforms at 100 MHz, whereas

≳ 250 MHz sampling rate is necessary to directly synthesize a 100 MHz waveform. For our

hardware setup, 100 MHz sampling rate was roughly the maximum that we could sustain by

streaming. We found that optical tweezers generated using the SDR caused excess heating on

atoms as compared with standard high-quality microwave sources (Appendix C).

For experiments with two-dimensional tweezer arrays, we use two crossed AODs, one of

which controls horizontal beam positions and the other controlling vertical positions. To gen-

erate waveforms for both AODs, we use a dual-channel arbitrary waveform generator (AWG)

(M4i.6631-x8 by Spectrum), operated in first-in first-out (FIFO) streaming mode. This PCI

Express interface enables higher streaming rates, so we directly synthesize the waveforms in

the 75 MHz - 125 MHz band, with a sampling rate of 333 MHz.

Since the waveforms for rearrangement are generated in real-time, any delay that comes

from the computation of the waveform translates to a slowdown of the experimental cycle

time, as well as a decrease in rearrangement fidelity (due to the background-limited lifetime

of atoms in tweezers). We therefore take care to optimize the calculation of waveforms. To-

wards this end, we precompute as much as possible prior to any real-time processing. Typi-

cally, this includes precomputing static frequency components at each frequency that we may

want to generate, and also time-dependent frequency chirped waveforms corresponding to in-
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dividual tweezer trajectories. For real-time summation, we utilize Advanced Vector Extensions

2 (AVX2) which offers a modest speed boost over straightforward addition of each sample sep-

arately. As sections of the rearrangement waveform are completed, they are streamed to the

AODs while later trajectories are still being calculated.

For experimental sequences with rearrangement of two-dimensional arrays, the primary bot-

tlenecks are image acquisition time (typically 20 ms), the time it takes for the image process-

ing software to receive the image from the camera hardware (up to ∼ 30 ms), and the actual

atom sorting time (20-40 ms, depending on system size). While these times are mainly lim-

ited by hardware and optics, additional software delays are the latency of the FIFO stream

(∼ 10 ms for the Spectrum AWG at 333 MHz sampling rate), as well as delays from waiting

for calculations of the rearrangement waveforms to finish (∼ 10 ms). While these software

delays do not currently pose a major limitation, future experimental upgrades to the camera

hardware and optics could be used to receive and process camera images with a significantly

lower latency [66], and other hardware-based approaches could be used to more quickly syn-

thesize and combine AOD waveforms.

5.4 Two-dimensional optical tweezer arrays

Our two-dimensional optical tweezer arrays are generated using a phase spatial light modula-

tor (SLM) from Hamamatsu (X13138-02). The SLM is connected to a lab computer using a

DVI interface, and is controlled as if it were an external monitor. The phase hologram is dis-

played using the Python PyQt interface in a window which is made full screen on the SLM

(with the toolbar and window border hidden).

We program our target optical tweezer arrays by defining an underlying grid structure, with

a specified number of rows and columns and corresponding row spacing and column spacing
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Figure 5.3: Spatial light modulator control software. The control software for our two-dimensional
tweezer array SLM includes several methods for defining target arrays of tweezers. Weighted Gerchberg-
Saxton (WGS) is performed to produce phase holograms, and Zernike polynomials are added to these holo-
grams to correct for optical aberrations in the system. The produced tweezer array is characterized on a
CCD camera, with a calibrated mapping between tweezer positions in SLM coordinates and pixel positions
on the camera (predicted tweezer positions marked in pink). This camera also serves as a position reference
to align AOD tweezers onto SLM tweezers.
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(Fig. 5.3). The target trap array is selected as an arbitrary subset of traps from this underly-

ing grid. These target positions are used to define a target intensity profile in the atom plane,

which is used in the phase-fixed weighted Gerchberg-Saxton (WGS) algorithm to generate the

phase hologram [41].

In the standard WGS algorithm, the Fourier plane is sampled according to the pixel dimen-

sions of the SLM, and the image plane is calculated by the discrete Fourier transform of the

Fourier plane. This defines an effective resolution in the image plane: if we perform WGS

with a particular target trap position, or with the closest neighboring target position, what

is the distance between these two spots in the atom plane? This is termed the ‘diffraction

unit’, and is our experimental unit for defining trap positions. However, the diffraction unit

is not the fundamental resolution limit of the SLM: in particular, adding small gradients to

the phase hologram can produce displacements in the image plane which are smaller than the

diffraction unit.

To achieve sub-diffraction unit positioning with WGS, we sample the Fourier plane in an

enlarged region around the SLM. We assume that the input Gaussian beam is still confined

to the central SLM region of the Fourier plane, but this enlarged Fourier plane results in an

image plane with finer resolution. We typically use a 10x enlarged Fourier plane, enabling

trap positioning with 0.1 diffraction-unit resolution. In our optical SLM setup, the diffraction

unit is 0.844 µm.

When calculating the phase hologram, we improve trap homogeneity by pre-compensating

for the variation in diffraction efficiency across the tweezer array (roughly given by η(θ) =

sinc2(π2 (θtrap/θmax)) where θ denotes the deflection angle from zeroth order). This compensa-

tion is incorporated by setting the WGS target intensities in the image plane to 1/η(θ). We

additionally add Zernike polynomials to the WGS-generated phase hologram to correct for
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aberrations in the optical system (see Section 2.7).

The SLM optical tweezer array is measured on a monitor CCD camera. While we have at

times performed additional homogenization of the trap array based on CCD-measured inten-

sities, we find that this is not typically necessary, and indeed this requires eliminating system-

atic variation on the CCD sensor that comes from etalon effects or inhomogeneous pixels.

5.5 Rydberg laser pulse programming

Many Rydberg experiments are based on many-body evolution under a time-dependent ground-

Rydberg coupling Ω(t), with time-dependent detuning ∆(t). To implement these programmable

pulses, we modulate the 420 nm laser using a double-pass AOM configuration. The AOM is

driven by an arbitrary waveform generator (M4i.6631-x8 by Spectrum). The AWG control

software contains implementations of common Rydberg pulse profiles, such as square pulses,

adiabatic sweeps, and various quench protocols; these pulse types can be established by net-

work commands defining the functional form, along with the key parameter values.

Importantly, this control software accounts for multiple calibration parameters when gen-

erating waveforms. For example, the 420 nm laser induces a light shift on the Rydberg tran-

sition which can be large (of scale 2π × 5 MHz). While the pulse intensity changes, this light

shift changes, modifying the detuning profile. We therefore correct the frequency profile as a

function of the pulse intensity to compensate this shift. Similarly, laser detuning profiles are

calculated relative to the most recently calibrated resonance frequency, and amplitude pro-

files are calibrated relative to the most recently measured Rabi frequency. Finally, the double-

pass AOM response to changing amplitudes and frequency is nonlinear, so we measure this

response and apply a feed-forward correction to obtain the target output intensity. We note

here that even close to resonance, we typically suppress the AOM power, to allow us to main-
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Figure 5.4: Rydberg AWG control. We implement programmable Rydberg laser pulses by modulating
the amplitude, frequency, and phase of the 420 nm laser using a double-pass AOM. The AOM is driven
by an amplified waveform from an AWG which is controlled using this interface. The target pulse profile is
described using a variety of flexible waveform functional forms, and displayed here. To implement this target
profile, we feed-forward to correct for several effects, including the changing AOM deflection efficiency as
we change frequency, the nonlinear AOM response to RF power, as well as the change in light shift on the
atoms when we change the 420 nm laser power.
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Figure 5.5: Rydberg beam alignment. Small portions of the 420 nm and 1013 nm Rydberg lasers are
picked off and focused onto monitor cameras, which mark the beam positions relative to the plane of the
atoms. The beams are steered to target pixel positions by actuating on motor-controlled mirrors in the op-
tical pathways. This alignment occurs continuously while the experiment is idle, and once every several
minutes during long experimental sequences.

tain constant power as we ramp the frequency across a large portion of the AOM bandwidth.

These steps ensure that the experimentally applied pulse is a faithful representation of the

desired profile.

5.6 Beam alignment stabilization

Proper alignment of both Rydberg lasers onto the atoms is crucial to keep stable Rabi fre-

quencies and stable light shifts. Since both lasers have long optical pathways (and final focus-

ing lenses with f = 25 cm for the 1013 nm and f = 40 cm for the 420 nm), these laser align-

ments drift with small thermal changes of the experimental apparatus. To minimize sensitivity

to such drifts, we perform intermittent feedback to keep both lasers aligned. Both lasers have

piezoelectric inertia “slip-stick” motor-controlled mirrors placed one focal length before their

focusing lenses, so computer control of these mirrors allows for control over beam positions in

the plane of the atoms.

The beam alignment protocol uses CCD cameras (Thorlabs) which serve as position refer-

ences for the atoms. A beam alignment software package (Fig. 5.5) extracts the beam posi-
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tions on the CCD cameras, and can steer the beams to arbitrary chosen positions using the

motor-controlled mirrors. Extraction of the beam position on the CCD sensor is done by

Gaussian fitting for simple Gaussian beams. For ‘top-hat’ beams used for two-dimensional

Rydberg experiments, we isolate the pixels which correspond to the main section of the top

hat (excluding light which is deflected to the outside of the top-hat) and evaluate the centroid

of those pixels.

The first calibration step, which is performed at least once per day, is to identify the loca-

tion on the CCD camera that corresponds to optimal alignment onto the atoms. This is done

by systematically displacing the beam to several different positions, and at each position mea-

suring the intensity on the atoms (see Section 3.6). We fit these measurements, along with

their corresponding positions on the CCD, to extract the optimal position. This procedure

takes 5 minutes. For the next several hours or until the next day, we keep the beam aligned

onto this position on the camera. This alignment is actively performed while the experiment is

idle. While long sequences are running, periodic breaks are inserted to realign the lasers every

∼ 10 minutes.

5.7 Raman laser pulse programming

The Raman laser used in hyperfine qubit experiments is controlled by an electro-optic phase

modulator (EOM) which is driven at or near the hyperfine qubit frequency of 6.835 GHz. The

phase modulation is converted to amplitude modulation using passive optics or interferometry

(Chapter 4), which then serves as the effective drive field for the qubit. Dynamic control over

the phase modulation signal therefore translates into dynamic control over the effective qubit

drive field.

The EOM is driven by an amplified, frequency-doubled microwave source (Stanford Re-
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Figure 5.6: Raman laser control. The Raman laser is controlled by an AWG which modulates the EOM
phase modulation signal, and also generates TTL signals to turn on and off the AOM which gates the laser.
The AWG waveform is constructed based on many parameters, detailing both the timing and frequencies
needed for optical pumping (left section of waveform), as well as the parameters for the target pulse se-
quence (right section of waveform).
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search Systems, SG384). The SRS is IQ modulated, and the I and Q ports are controlled

by two channels of an arbitrary waveform generator (AWG) from Spectrum Instrumenta-

tion. The IQ modulation is driven in single-sideband generation mode, where the Q port is

always π/2 out of phase with the I port. The AWG output is programmed according to a

time-dependent waveform which enables arbitrary frequency, phase, and amplitude control

of the microwave source (Fig. 5.6). The AWG also outputs a TTL signal which gates an AOM

to turn on/off the Raman laser, synchronously with the phase modulation signal.

Several parameters are calibrated and incorporated automatically into the AWG waveform.

Firstly, the Raman laser induces a light shift on the atoms, which must be accounted for as

the laser turns on and off. More subtly, the AOM which gates the Raman laser has a ∼ 1 µs

propagation delay, which results in an offset between the timing of the EOM drive and the

AOM pulsing. We measure the propagation delay, and automatically shift the timing of the

AOM TTL signal to pre-compensate for the offset.

Raman pulse sequences are constructed using simple instructions which encode arbitrary

qubit rotations; i.e., R[ϕ, τ, ∆] implements a pulse with relative phase ϕ, for duration τ ,

with a detuning ∆. Longer pulse sequences are constructed from such building blocks, and are

transmitted over the local network.

5.8 Remote operation of experiment

The experimental apparatus was constructed to be operated in-person. However, due to the

COVID-19 pandemic, in-person access to lab was significantly restricted starting in March

2020. We transitioned as much experiment control as possible to be remotely operable, and

most experiments performed since early 2020 have been conducted remotely.

The adaptations to remote operation have centered on remote control of the Rydberg laser
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Figure 5.7: Remote laser locking. The 420 nm laser lock is one of the main instabilities in the lab, and
requires periodic re-locking. When the lock is disabled, the laser frequency is ramped across the cavity res-
onance and the Pound Drever Hall (PDH) error signal is measured. The ramp is controlled by a computer-
controlled frequency synthesizer, and is tuned to center the error signal and then zoom in, after which the
lock is re-engaged. The noise on the error signal is monitored over time to automatically detect when the
lock breaks.
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systems. Both Rydberg laser locks utilize Vescent electronics (D2-125), which has a manual

flip-switch for engaging the lock. To adapt to remote re-locking, we keep the lock switch en-

gaged and use a TTL signal to remotely override and disable the lock when needed. With the

lock disabled, an external signal (generated by a Rigol DG1022) can be output to ramp across

the lock point. The error signal is tracked on an oscilloscope (Rigol DS1054Z), which is con-

nected to the lab local network. A software module reads the oscilloscope traces and adjusts

the ramp signal to center on the target lock point (Fig. 5.7). Using this tool, a remote user

controlling the lab computers can relock the Rydberg lasers in around one minute. This infras-

tructure is currently implemented only for the 420 nm laser system, since the 1013 nm laser

remains locked on several week timescales.

The 1013 nm source laser (Toptica DL Pro), which is locked to the ultra-low expansion ref-

erence cavity, is used to injection lock another laser diode. The injection locked laser diode

is driven by a Thorlabs current controller (LDC205C), which allows for external modulation

of the drive current. This external modulation signal is generated by a Rigol voltage supply

(DP831), which is connected to the lab local network and is remotely controllable. This allows

remote users to tune the laser diode current, which is necessary to periodically adjust to keep

the injection lock in the center of the locking window.

The 1013 nm injection locked diode is used to seed a high-power fiber amplifier (ALS-IR-

1015-10-A-SP by Azur Light Systems). The fiber amplifier output is tunable with an external

modulation input, and similarly to the injection lock, we use a computer-controlled power sup-

ply (Rigol DP831) to program the output power setpoint.

While much of the equipment can be connected to the local lab network for computer con-

trol or monitoring, several important instruments cannot be connected to the network. We

therefore installed several web cameras around the lab (Swann 12-camera 1080p DVR Surveil-
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lance System), which are used to check if laser frequency and power locks are stable, to mon-

itor water chillers, vacuum ion pump gauge, and other equipment interfaces. While the cam-

eras natively offer computer monitoring, we use an additional camera screen capture (Elgato

Game Capture HD60 S+) to view the images with reduced latency.
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Part III

Experimental Results
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6
Atom-by-atom assembly of defect-free

one-dimensional cold atom arrays

The detection and manipulation of individual quantum particles, such as atoms or photons, is

now routinely performed in many quantum physics experiments [67, 68]; however, retaining

the same control in large-scale systems remains an outstanding challenge. For example, ma-

jor efforts are currently aimed at scaling up ion-trap and superconducting platforms, where

high-fidelity quantum computing operations have been demonstrated in registers consisting

of several qubits [69, 70]. In contrast, ultracold quantum gases composed of neutral atoms

offer inherently large system sizes. However, arbitrary single atom control is highly demand-
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ing and its realization is further limited by the slow evaporative cooling process necessary to

reach quantum degeneracy. Only in recent years has individual particle detection [71, 72] and

basic single-spin control [73] been demonstrated in low entropy optical lattice systems. Here

we demonstrate atom-by-atom assembly of large defect-free 1D arrays of cold neutral atoms

[74, 75].

We use optical microtraps to directly extract individual atoms from a laser-cooled cloud

[23, 76, 77] and employ recently demonstrated trapping techniques [78–81] and single-atom

position control [82–84, 26] to create desired atomic configurations. Central to our approach

is the use of single-atom detection and real-time feedback [82, 26] to eliminate the entropy

associated with the probabilistic trap loading [23] (currently limited to ninety percent loading

probability even with advanced techniques [85–87]). Related to the fundamental concept of

“Maxwell’s demon” [74, 75], this method allows us to rapidly create large defect-free arrays,

and when supplemented with appropriate atom-atom interactions [80, 81, 88, 27, 89, 29, 90–

92] provides a potential platform for scalable experiments with individually controlled neutral

atoms.

6.1 Optical tweezer arrays

The experimental protocol is illustrated in Fig. 6.1A. An array of 100 tightly focused optical

tweezers is loaded from a laser-cooled cloud. The collisional blockade effect ensures that each

individual tweezer is either empty or occupied by a single atom [23]. A first high-resolution

image yields single-atom resolved information about the trap occupation, which we use to

identify empty traps and to switch them off. The remaining occupied traps are rearranged

into a regular, defect-free array and we detect the final atom configuration with a second high-

resolution image. Our implementation relies on fast, real-time control of the tweezer positions
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Figure 6.1: Protocol for creating defect-free arrays. (A) A first image identifies optical microtraps
loaded with a single atom, and empty traps are turned off. The loaded traps are moved to fill in the empty
sites and a second image verifies the success of the operation. (B) The trap array is produced by an acousto-
optic deflector (AOD) and imaged with a 1:1 telescope onto a 0.5 NA microscope objective, which cre-
ates an array of tightly focused optical tweezers in a vacuum chamber. An identical microscope objective
is aligned to image the same focal plane. A dichroic mirror allows us to view the trap light on a charge-
coupled-device camera (CCD) while simultaneously detecting the atoms via fluorescence imaging on an
electron-multiplied-CCD camera (EMCCD). The rearrangement protocol is realized through fast feedback
onto the multi-tone radio-frequency (RF) field driving the AOD.
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Figure 6.2: Assembly of regular atom arrays. (A) Single-shot, single-atom resolved fluorescence images
recorded with the EMCCD before (top) and after (bottom) rearrangement. Defects are identified and the
loaded traps are rearranged according to the protocol in Fig. 6.1, indicated by arrows for a few selected
atoms. (B) Two instances of successfully rearranged arrays (first two pictures), and one instance (last pic-
ture) where a defect is visible after rearrangement. (C) The final arrangement of atoms is flexible, and we
generate, e.g., clusters of two (top) or ten (bottom) atoms. Non-periodic arrangements and adjustable lat-
tice spacings are also possible. (D) High-resolution CCD image of trap array. Our default configuration for
loading atoms consists of an array of 100 tweezers with a spacing of 0.49 MHz between the RF-tones, corre-
sponding to a real-space distance of 2.6 µm between the focused beams (Appendix C).

(Fig. 6.1B), which we achieve by employing an acousto-optic deflector (AOD) that we drive

with a multi-tone radio-frequency (RF) signal.

This generates an array of deflected beams, each controlled by its own RF-tone [80, 81].

The resulting beam array is then focused into our vacuum chamber and forms an array of op-

tical tweezers, each with a Gaussian waist of ≈ 900 nm, a wavelength of 809 nm, and a trap

depth of U/kB ≈ 0.9 mK (kB, Boltzmann constant) that is homogeneous across the array

within 2% (Appendix C). The tweezer array is loaded from a laser-cooled cloud of Rubidium-

87 atoms in a magneto-optical trap (MOT). After the loading procedure, we let the MOT

cloud disperse and we detect the occupation of the tweezers with fluorescence imaging. Fast,

single-shot, single-atom resolved detection with 20 ms exposure is enabled by a sub-Doppler

laser-cooling configuration that remains active during the remainder of the sequence (Fig. 6.2A-

C, and Chapter 2). Our fluorescence count statistics show that individual traps are either

empty or occupied by a single atom [23], and we find probabilistically filled arrays with an
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average single atom loading probability of p ≈ 0.6 (see Fig. 6.2A and 6.3A).

6.2 Real-time rearrangement of atoms

The central part of our scheme involves the rearrangement procedure for assembling defect-

free arrays (see Fig. 6.1A). In the first step, unoccupied traps are switched off by setting the

corresponding RF-amplitudes to zero. In a second step, all occupied tweezers are moved to

the left until they stack up with the original spacing of 2.6 �m. This movement is generated

by sweeping the RF-tones to change the deflection angles of the AOD and lasts 3 ms (Ap-

pendix C). Finally, we detect the resulting atom configuration with a second high-resolution

image. These steps implement a reduction of entropy via measurement and feedback. The ef-

fect is immediately visible in the images shown in Fig. 6.2A,B. The initial filling of our array

is probabilistic, whereas the rearranged configurations show highly ordered atom arrays. Our

approach also allows us to construct flexible atomic patterns (Fig. 6.2C).

The rearrangement procedure creates defect-free arrays with high fidelity. This can be

quantified by considering the improvement of single atom occupation probabilities (Fig. 6.3A)

and the success probabilities, pN , for creating defect-free arrays of length N (Fig. 6.3B). The

single atom occupation probability in the left-most forty traps increases from ≈ 0.6 before

rearrangement to 0.988(3) after rearrangement, demonstrating our ability for high-fidelity

single-atom preparation. Furthermore, the success probabilities for creating defect-free arrays

show an exponential improvement. Prior to rearrangement, the probability of finding a defect-

free array of length N is exponentially suppressed with pN = pN where p ≈ 0.6 (blue circles,

Fig. 6.3B). After rearrangement, we find success probabilities as high as p30 = 0.75(1) and

p50 = 0.53(1) (red circles, Fig. 6.3B).

The same exponential improvement is observed by considering the average wait time for
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Figure 6.3: Quantifying the rearrangement performance. (A) The initial loading (blue circles) results in an
occupation probability of ≈ 0.6 for each trap in the array. After rearrangement (red circles), close to unity
filling is reached on the left side of the array. (B) In the initial image, the probability of finding a defect-
free length-N array (starting from the leftmost trap) falls off exponentially with N (blue circles). Following
the rearrangement of all loaded traps to form the largest possible array, we demonstrate strongly enhanced
success probabilities at producing defect-free arrays (red circles). Theory curves show limits set by the total
initial atom number (solid line), the background limited lifetime of τ = 6.2 s (dashed line) and the product
of both (dashed dotted line) (Appendix C). (C) Expected amount of time to wait on average to produce a
defect-free array of a given size taking into account the experimental cycle time of 200 ms (150 ms without
rearrangement). Without rearrangement, the wait time grows exponentially (blue circles). Employing the
rearrangement procedure, we can produce arrays of length 50 in less than 400 ms (red circles). All error bars
denote 68% confidence intervals, which are smaller than the marker size in (A) and (B).
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Figure 6.4: Creating and maintaining regular arrays using an atomic reservoir. (A) For a given tar-
get array size, surplus atoms are kept in a reservoir and used for repetitive reloading of the array. (B) A 20
atom target array with a reservoir of atoms on the right. Defects occasionally develop in the target array
and are replaced by atoms in the reservoir. The reservoir depletes as it is used to fill in defects. (C) By per-
forming repeated rearrangements (once every 50 ms) the probability to successfully produce a defect-free ar-
ray in any of these attempts increases and approaches the limit set by the number of initially loaded atoms
(dashed lines). We show data for targeting 40 (purple), 50 (yellow), and 60 (green) atom arrays. Solid lines
are guides to the eye. (D) Probing for defects and filling them once every 100 ms from the reservoir extends
the lifetime of a defect-free array. Shown is the success probability of maintaining arrays of 20 (circles) and
40 (triangles) atoms with (red) and without (blue) replenishing atoms from the reservoir. With replenish-
ing, the probability to maintain a defect-free array remains at a fixed plateau for as long as we have surplus
atoms in the reservoir. The initial plateau value is set by the probability that no atoms in the array are lost
in 100 ms (calculated value for 10 s single atom lifetime shown as the dotted line). All error bars denote
68% confidence intervals, which are smaller than the marker size in (C).

producing defect-free arrays, given by T/pN , where T = 200 ms is the cycling time of our ex-

periment (see Fig. 6.3B). For example, we are able to generate defect-free arrays of 50 atoms

with an average wait time of less than 400 ms (red circles, Fig. 6.3C).

6.3 Repeated rearrangement with an atomic reservoir

The success probabilities can be further enhanced through multiple repetitions of the rear-

rangement protocol. Figure 6.4 illustrates the procedure in which we target an atomic array

of fixed length and create a reservoir from surplus atoms in a separate zone. After the ini-

tial arrangement of atoms into the target and reservoir zones, we periodically take images to
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identify defects in the target array and pull atoms from the reservoir to fill in these defects.

This enhances our initial success probabilities at producing defect-free arrays within one MOT-

loading cycle to nearly the ideal limit (Fig. 6.4C).

Finally, a similar procedure can be used for correcting errors associated with atomic loss.

This becomes a significant limitation for large arrays because for a given lifetime of an indi-

vidual atom in the trap τ , the corresponding lifetime of the N atom array scales as τ/N . To

counter this loss, we repeatedly detect the array occupation after longer time intervals and

replenish lost atoms from the reservoir. This procedure leads to exponentially enhanced life-

times of our arrays (Fig. 6.4D).

6.4 Discussion and outlook

These results demonstrate the ability to generate and control large, defect-free arrays at a

fast repetition rate. The success probabilities are limited by two factors: the initial number of

loaded atoms and losses during rearrangement. For example, the average total atom number

in our array is 59 ± 5 (Appendix C), which results in the cutoff in the success probability in

Fig. 6.3B starting from N ≈ 50 (solid line). For shorter arrays, the fidelity is mostly limited

by losses during rearrangement. These losses are dominated by our finite vacuum-limited life-

time, which varies from τ ≈ 6 s to τ ≈ 12 s (depending on the setting of our atomic dispenser

source), and are only minimally increased by the movement of the atoms (Appendix C). The

single atom occupation probability is correspondingly reduced by a factor exp(−tr/τ), where

tr = 50 ms is the time for the whole rearrangement procedure (Appendix C). This results in

the success probabilities of creating length-N arrays scaling as exp(−trN/τ), which dominates

the slope for N ∼ 50 in Fig. 6.3B (dashed line). Currently, we reach vacuum limited lifetimes

only with sub-Doppler cooling applied throughout the sequence. However, the lifetime with-
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out cooling could be improved, for example, by using a different trapping laser and trapping

wavelength (Appendix C).

The size of the final arrays can be considerably increased by implementing a number of re-

alistic experimental improvements. For example, the initial loading probability could be en-

hanced to 0.9 [85–87] and the vacuum limited lifetime could be improved to τ ≈ 60 s in an

upgraded vacuum chamber. Increasing the number of traps in the current configuration is

difficult because of the AOD bandwidth of ≈ 50 MHz and strong parametric heating intro-

duced when the frequency spacing of neighboring traps approaches ≈ 450 kHz (Appendix C).

However, implementing two-dimensional (2d) arrays could provide a path towards realizing

thousands of traps, ultimately limited by the availability of laser power and the field of view

of high-resolution objectives. Such 2d configurations could be realized by either directly using

a 2d-AOD or by creating a static 2d lattice of traps (using spatial light modulators [79] or op-

tical lattices [77]) and sorting atoms with an independent AOD (Chapter 9 and Appendix C).

With increased loading efficiencies [85–87], realistic estimates for the rearrangement time tr in

such 2d arrays indicate that the robust creation of defect-free arrays of hundreds of atoms is

feasible (Appendix C). Finally, the repetitive interrogation techniques, in combination with

periodic reservoir reloading from a cold atom source (such as a MOT), could be used to main-

tain arrays indefinitely.

Atom-by-atom assembly of defect-free arrays forms a scalable platform with unique possi-

bilities. It combines features that are typically associated with ion trapping experiments, such

as single-qubit addressability [93, 94] and fast cycling times, with the flexible optical trapping

of neutral atoms in a scalable fashion. Furthermore, in contrast to solid-state platforms, such

atomic arrays are highly homogeneous (Appendix C) and mostly decoupled from their envi-

ronment. The homogeneity of our array should also allow for cooling of the atomic motion via
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simultaneous sideband cooling in all tweezers at once [95, 43].

These features provide an excellent starting point for multi-qubit experiments, studies of

quantum many body effects and for exploring future applications. The required interactions

between the atoms can be engineered using several approaches. Even without sideband cool-

ing, exciting the atoms into high-lying Rydberg states would introduce strong dipole interac-

tions that can be used for fast entangling gates [88, 27, 29]. The parallelism afforded by our

flexible atom rearrangement enables efficient diagnostics of such Rydberg-mediated entangle-

ment. These interactions may also enable approaches to quantum simulations that involve

both coherent coupling and engineered dissipation [89, 29], as well as large-scale entangled

quantum states for applications in precision measurements [96].

An alternative approach to engineering interactions involves the integration of atom ar-

rays with nanophotonic platforms as demonstrated previously [90, 91]. These enable photon-

mediated interactions that can be employed to couple the atoms within a local multi-qubit

register or for efficient communication between the registers using a modular quantum net-

work architecture [69]. Finally, our platform could enable new bottom-up approaches to study-

ing quantum many-body physics in Hubbard models [80, 81, 92], where atomic Mott insula-

tors with fixed atom number and complex spin patterns could be directly assembled. This

requires atom temperatures close to the ground state, coherent tunneling between the traps,

and sizable on-site interactions. With side-band cooling, ground state fractions in excess of

90% have already been demonstrated [95, 43], and can likely be improved via additional opti-

cal trapping along the longitudinal tweezer axes, which would also increase on-site interaction

strengths. Coherent tunneling of Rb atoms between similarly sized tweezers has been oserved

before by reducing the tweezer distance [80, 81]. The parametric heating, currently limiting

the minimal distance between our traps, could be reduced by working with shallower traps, as
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needed for tunneling, and by employing fewer traps to increase the frequency separation be-

tween neighboring traps. Eventually, this approach could be applied to create ultracold quan-

tum matter composed of exotic atomic species or complex molecules [97, 98] that are difficult

to cool evaporatively.
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7
Probing many-body dynamics on a 51-atom

quantum simulator

The realization of fully controlled, coherent many-body quantum systems is an outstand-

ing challenge in modern science and engineering. As quantum simulators, they can provide

unique insights into strongly correlated quantum systems and the role of quantum entangle-

ment [15], and enable realizations and studies of new states of matter, even away from equi-

librium. These systems also form the basis for the realization of quantum information proces-

sors [99]. While basic building blocks of such processors have been demonstrated in systems

of a few coupled qubits [69, 70, 100], the current challenge is to increase the number of coher-
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Figure 7.1: Experimental platform. a, Individual 87Rb atoms are trapped using optical tweezers and
arranged into defect-free arrays. Coherent interactions Vij between the atoms are enabled by exciting them
to a Rydberg state, with strength Ω and detuning ∆. b, A two photon process is used to couple the ground
state |g⟩ = |5S1/2, F = 2,mF = −2⟩ to the Rydberg state |r⟩ = |70S1/2, J = 1/2,mJ = −1/2⟩ via
an intermediate state |e⟩ = |6P3/2, F = 3,mF = −3⟩ using circularly polarized 420 nm and 1013 nm lasers
(typically δ ∼ 2π×560MHz ≫ ΩB ,ΩR ∼ 2π×60, 36MHz). c, The experimental protocol consists of loading
the atoms into a tweezer array (1) and rearranging them into a preprogrammed configuration (2). After this,
the system evolves under U(t) with tunable parameters ∆(t),Ω(t), Vij . This can be implemented in parallel
on several non-interacting sub-systems (3). We then detect the final state by fluorescence imaging (4). d,
For resonant driving (∆ = 0), isolated atoms (blue points) display Rabi oscillations between |g⟩ and |r⟩.
Arranging the atoms into fully blockaded clusters of N = 2 (green) and N = 3 (red) atoms results in
only one excitation being shared between the atoms in the cluster, while the Rabi frequency is enhanced by√
N . The probability to detect more than one excitation in the cluster is ≤ 5%. Error bars indicate 68%

confidence intervals (CI) and are smaller than the marker size.
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ently coupled qubits to potentially perform tasks that are beyond the reach of modern classi-

cal machines.

A number of physical platforms are currently being explored to reach these challenging

goals. Systems composed of about 10-20 individually controlled atomic ions have been used

to create entangled states and explore quantum simulations of Ising spin models [101, 102].

Similarly sized systems of programmable superconducting qubits have been recently imple-

mented [103]. Quantum simulations have been carried out in larger ensembles of over 100

trapped ions without individual readout [104]. Strongly interacting quantum dynamics have

been explored using optical lattice simulators [105]. These systems are already addressing

computationally difficult problems in quantum dynamics [106] and the fermionic Hubbard

model [107]. Larger-scale Ising-like machines have been realized in superconducting [108] and

optical [109] systems but these realizations lack either coherence or quantum nonlinearity that

are essential for achieving full quantum speedup.

7.1 Strongly interacting atom arrays

A promising avenue for realizing strongly interacting quantum matter involves coherent cou-

pling of neutral atoms to highly excited Rydberg states [88, 89] (Fig. 7.1a). This results in

repulsive van der Waals interactions (Vij = C/R6
ij, C > 0) between Rydberg atom pairs at a

distance Rij [88]. Such interactions have recently been used for realizing quantum gates [110–

112], implementing strong photon-photon interactions [113] and studying quantum many-

body physics of Ising spin systems in optical lattices [114–116] and in probabilistically loaded

dipole trap arrays [117]. Our approach combines such strong, controllable interactions with

atom-by-atom assembly of cold neutral 87Rb atom arrays [25, 24, 26]. The quantum dynam-
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ics of this system is governed by the Hamiltonian

H
ℏ

=
∑
i

Ωi

2
σix −

∑
i

∆ini +
∑
i<j

Vijninj , (7.1)

where ∆i are the detunings of the driving lasers from the Rydberg state (Fig. 7.1b), σix =

|gi⟩⟨ri| + |ri⟩⟨gi| describes the coupling between the ground state |g⟩ and the Rydberg state

|r⟩ of an atom at position i, driven at Rabi frequency Ωi, and ni = |ri⟩⟨ri|. Here, we focus on

homogeneous coherent coupling (|Ωi| = Ω,∆i = ∆), controlled by changing laser intensities

and detunings in time. The interaction strength Vij is tuned by either varying the distance

between the atoms or coupling them to a different Rydberg state.

The experimental protocol that we implement is depicted in Fig. 7.1c (see also D.1). First,

atoms are loaded from a magneto-optical trap into a tweezer array created by an acousto-

optic deflector (AOD). We then use a measurement and feedback procedure that eliminates

the entropy associated with the probabilistic trap loading and results in the rapid produc-

tion of defect-free arrays with over 50 laser cooled atoms as described previously [24]. These

atoms are prepared in a preprogrammed spatial configuration in a well-defined internal ground

state |g⟩ (Appendix D). We then turn off the traps and let the system evolve under the uni-

tary time evolution U(Ω,∆, t), which is realized by coupling the atoms to the Rydberg state

|r⟩ = |70S1/2⟩ with laser light along the array axis (Fig. 7.1a). The final states of individual

atoms are detected by turning the traps back on, and imaging the recaptured ground state

atoms via atomic fluorescence, while the anti-trapped Rydberg atoms are ejected. The atomic

motion in the absence of traps limits the time window for exploring coherent dynamics. For a

typical sequence duration ∼ 1µs used in this work, the resulting atom loss probability is below

1% (see 2.8 of Chapter 2).
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The strong, coherent interactions between Rydberg atoms provide an effective coherent

constraint that prevents simultaneous excitation of nearby atoms into Rydberg states. This

is the essence of the so-called Rydberg blockade [88], demonstrated in Fig. 7.1d. When two

atoms are sufficiently close so that their Rydberg-Rydberg interactions Vij exceed the effective

Rabi frequency Ω, then multiple Rydberg excitations are suppressed. This defines the Ryd-

berg blockade radius, Rb, for which Vij = Ω (Rb = 9µm for |r⟩ = |70S1/2⟩ and Ω = 2π× 2MHz

as used here). In the case of resonant driving of atoms separated by a = 23µm, we observe

Rabi oscillations associated with non-interacting atoms (blue curve on Fig. 7.1d). However,

the dynamics change significantly as we bring multiple atoms close to each other (a = 2.87µm

< Rb). In this case, we observe Rabi oscillations between the ground state and a collective

W-state with exactly one excitation ∼
∑

iΩi|g1...ri...gN ⟩ with the characteristic
√
N -scaling of

the collective Rabi frequency [118, 119, 117]. These observations allow us to quantify the co-

herence properties of our system (see Appendix D for details and Fig. D.2). In particular, the

contrast of Rabi oscillations in Fig. 7.1d is mostly limited by the state detection fidelity (93%

for |r⟩ and ∼ 98% for |g⟩, see Chapter 3 and Appendix D). The individual Rabi frequencies

are controlled to better than 3% across the array, while the coherence time is ultimately lim-

ited by the small probability of spontaneous emission from the intermediate state |e⟩ during

the laser pulse (scattering rate 0.022/µs, Appendix D).

7.2 Programmable quantum simulator

In the case of homogeneous coherent coupling considered here, Hamiltonian (1) closely re-

sembles the paradigmatic Ising model for effective spin-1/2 particles with variable interac-

tion range. Its ground state exhibits a rich variety of many-body phases that break distinct

spatial symmetries (Fig. 7.2a). Specifically, at large, negative values of ∆/Ω, its ground state
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Figure 7.2: Phase diagram and buildup of crystalline phases. a, The schematic ground-state phase
diagram of Hamiltonian (7.1) displays phases with various broken symmetries depending on the interaction
range Rb/a (Rb blockade radius, a trap spacing) and detuning ∆ (see main text). Shaded areas indicate
potential incommensurate phases (diagram adapted from [120]). Shown is the experimentally accessible
region with further details to be found in [120–122]. b,The buildup of Rydberg crystals on a 13 atom array
is observed by slowly changing the laser parameters as indicated by the red arrows in a (see also Fig. 7.3a).
The bottom panel shows a configuration where the atoms are a = 5.74µm apart which results in a nearest
neighbor interaction of Vi,i+1 = 2π × 24MHz and leads to a Z2 order where every other atom is excited to
the Rydberg state |r⟩. The right bar plot displays the final, position-dependent Rydberg probability (error
bars denote 68% CI). The configuration in the middle panel (a = 3.57µm, Vi,i+1 = 2π × 414.3MHz) results
in Z3 order and the top panel (a = 2.87µm, Vi,i+1 = 2π × 1536MHz) in a Z4 ordered phase. For each
configuration, we show a single-shot fluorescence image before (left) and after (right) the pulse. Red circles
highlight missing atoms, which are attributed to Rydberg excitations.
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corresponds to all atoms in the state |g⟩, corresponding to paramagnetic or disordered phase.

As ∆/Ω is increased towards large positive values, the number of atoms in |r⟩ rises and inter-

actions between them become significant. This gives rise to spatially ordered phases where

Rydberg atoms are regularly arranged across the array, resulting in ‘Rydberg crystals’ with

different spatial symmetries [120, 123], as illustrated in Fig. 7.2a. The origin of these corre-

lated states can be understood intuitively by first considering the situation when Vi,i+1 ≫

∆ ≫ Ω ≫ Vi,i+2, i.e. blockade for neighboring atoms but negligible interaction between

next-nearest neighbors. In this case, the ground state corresponds to a Rydberg crystal break-

ing Z2 translational symmetry that is analogous to antiferromagnetic order in magnetic sys-

tems. Moreover, by tuning the parameters such that Vi,i+1, Vi,i+2 ≫ ∆ ≫ Ω ≫ Vi,i+3 and

Vi,i+1, Vi,i+2, Vi,i+3 ≫ ∆ ≫ Ω ≫ Vi,i+4, we obtain arrays with broken Z3 and Z4 symmetries,

respectively (Fig. 7.2).

To prepare the system in these phases, we dynamically control the detuning ∆(t) of the

driving lasers to adiabatically transform the ground state of the Hamiltonian from a product

state of all atoms in |g⟩ into crystalline states [123, 115]. In contrast to prior work where Ry-

dberg crystals are prepared via a sequence of avoided crossings [123, 115, 124], the operation

at a finite Ω and well-defined atom separation allows us to directly move across a single phase

transition into the desired phase [122].

In the experiment, we first prepare all atoms in state |g⟩ = |5S1/2, F = 2,mF = −2⟩

by optical pumping. We then switch on the laser fields and sweep the two-photon detuning

from negative to positive values using a functional form shown in Fig. 7.3a. Fig. 7.2b displays

the resulting single atom trajectories in a group of 13 atoms for three different interaction

strengths as we vary the detuning ∆. In each of these instances, we observe a clear transi-

tion from the initial state |g1, ..., g13⟩ to an ordered state of different broken symmetry. The
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Figure 7.3: Comparison with a fully coherent simulation. a, The laser driving consists of a square
shaped pulse Ω(t) with a detuning ∆(t) that is chirped from negative to positive values. b, Time evolu-
tion of Rydberg excitation probability for each atom in a N = 7 atom cluster (colored points), obtained
by varying the duration of laser excitation pulse Ω(t). The corresponding curves are theoretical single atom
trajectories obtained by an exact simulation of quantum dynamics with (7.1), the functional form of ∆(t)
and Ω(t) used in the experiment, and finite detection fidelity. c, Evolution of the seven most probable many-
body states. The target state is reached with 54(4)% probability (77(6)% when corrected for finite detec-
tion fidelity). Error bars denote 68% CI.

distance between the atoms determines the interaction strength which leads to different crys-

talline orders for a given final detuning. To achieve a Z2 order, we arrange the atoms with

a spacing of 5.74µm, which results in a measured nearest neighbor interaction (see D.3) of

Vi,i+1 = 2π × 24MHz ≫ Ω = 2π × 2MHz, while the next-nearest neighbor interaction is small

(2π × 0.38MHz). This results in a buildup of antiferromagnetic order where every other trap

site is occupied by a Rydberg atom (Z2 order). By reducing the spacing between the atoms to

3.57µm and 2.87µm, Z3- and Z4- orders are respectively observed (Fig. 7.2b).

We benchmark the performance of the quantum simulator by comparing the measured Z2

order buildup with theoretical predictions for a N = 7 atom system, obtained via exact nu-

merical simulations. As shown in Fig. 7.3, this fully coherent simulation without free param-

eters yields excellent agreement with the observed data when the finite detection fidelity is
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Figure 7.4: Scaling behavior. a, Preparation fidelity of the crystalline ground state as a function of cluster
size. The red dots are the measured values and the blue dots are corrected for finite detection fidelity (Ap-
pendix D). Error bars denote 68% CI. b, Number of observed many-body states per number of occurrences
out of 18439 experimental realizations in a 51-atom cluster. The most occurring state is the ground state of
the many-body Hamiltonian.

accounted for. The evolution of the many-body states in Fig. 7.3c shows that we measure the

perfect antiferromagnetic state with 54(4)% probability. When corrected for the known de-

tection infidelity, we find that the desired many-body state is reached with a probability of

p = 77(6)%.

To investigate how the preparation fidelity depends on system size, we perform detuning

sweeps on arrays of various sizes (Fig. 7.4a). We find that the probability of observing the

system in the many-body ground state at the end of the sweep decreases as the system size is

increased. However, even at system sizes as large as 51 atoms, the perfectly ordered crystalline

many-body state is obtained with p = 0.11(2)% (p = 0.9(2)% when corrected for detection

fidelity). These probabilities compare favorably with those measured previously for smaller

systems [102, 125] (see also D.5) and are remarkably large in view of the exponentially large

251-dimensional Hilbert space of the system. Furthermore, we find that the state with perfect

Z2 order is by far the most commonly observed many-body state (Fig. 7.4b). The observations

of perfectly ordered states resulting from the dynamical evolution across the phase transition

indicate that a substantial degree of quantum coherence is preserved in our 51 atom system

over the entire evolution time.
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Figure 7.5: Quantifying Z2 order in a N = 51 atom array after slow detuning sweep. a, Single-shot
fluorescence images of a 51 atom array before applying the adiabatic pulse (top row) and after the pulse
(bottom three rows correspond to three separate instances). Red circles mark missing atoms, which are at-
tributed to Rydberg excitations. Domain walls are identified as either two neighboring atoms in the same
state or a ground state atom at the edge of the array (Appendix D), and are indicated with ellipses. Long
Z2 ordered chains between domain walls can be observed. b, Blue points show the mean of the domain wall
density as a function of detuning during the sweep. Error bars show the standard error of the mean, and are
smaller than the marker size. The red points are the corresponding variances, where the error bars represent
one standard deviation. The onset of the phase transition is witnessed by a decrease in the domain wall den-
sity and a peak in the variance (see main text for details). Each point is obtained from ∼ 1000 realizations.
The solid blue curve is a fully coherent MPS simulation without free parameters (bond dimension D = 256),
taking measurement fidelities into account. c, Domain wall number distribution for ∆ = 2π × 14MHz, ob-
tained from 18439 experimental realizations (blue bars, top plot). Error bars indicate 68% CI. Owing to the
boundary conditions, only even numbers of domain walls can appear (Appendix D). Green bars in the bot-
tom plot show the distribution obtained by correcting for finite detection fidelity using a maximum likelihood
method (Appendix D), which results in an average number of 5.4 domain walls. Red bars show the distri-
bution of a thermal state with the same mean domain wall density (Appendix D). d, Measured correlation
function (7.2) in the Z2 phase.

7.3 Quantum dynamics across a phase transition

We next present a detailed study of the transition into the Z2 phase in an array of 51 atoms,

which allows us to minimize edge effects and study properties of the bulk. We first focus on

analyzing the atomic states resulting from a slow sweep of the laser detuning across the reso-

nance, as described in the previous section (Fig. 7.5). In single instances of the experiment, af-

ter such a slowly changing laser pulse, we observe long ordered chains where the atomic states

alternate between Rydberg and ground state. These ordered domains can be separated by do-

main walls that consist of two neighboring atoms in the same electronic state (Fig. 7.5a) [126].
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We note that these features cannot be observed in the average excitation probability of the

bulk (see D.9a).

The domain wall density can be used to quantify the transition from the disordered phase

into the ordered Z2 phase as a function of detuning ∆. As the system enters the Z2 phase,

ordered domains grow in size, leading to a substantial reduction in the domain wall density

(blue points in Fig. 7.5b). Consistent with expectations for an Ising-type second-order quan-

tum phase transition [126], we observe domains of fluctuating lengths close to the transition

point between the two phases, which is reflected by a pronounced peak in the variance of the

density of domain walls. Consistent with predictions from finite-size scaling analysis [120, 121],

this peak is shifted towards positive values of ∆/Ω. The measured position of the peak is ∆ ≃

0.5Ω. The observed domain wall density is in excellent agreement with fully coherent simu-

lations of the quantum dynamics based on 51-atom matrix product states (MPS, blue line);

however, these simulations underestimate the variance at the phase transition (see D.9b).

At the end of the sweep, deep in the Z2 phase (∆/Ω ≫ 1) we can neglect Ω such that the

Hamiltonian (7.1) becomes essentially classical. In this regime, the measured domain wall

number distribution allows us to directly infer the statistics of excitations created when cross-

ing the phase transition. From 18439 experimental realizations we obtain the distribution

depicted in Fig. 7.5c with an average of 9.01(2) domain walls. From a maximum-likelihood

estimation we obtain the distribution corrected for detection fidelity (see D.4), which corre-

sponds to a state that has on average 5.4 domain walls. These domain walls are most likely

created due to non-adiabatic transitions from the ground state when crossing the phase transi-

tion [127], where the energy gap depends on the system size (scaling of ∼ 1/N) [121]. In addi-

tion, the preparation fidelity is also limited by spontaneous emission during the laser pulse (an

average number of 1.1 photons is scattered per µs for the entire array, see Appendix D).
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Figure 7.6: Emergent oscillations in many-body dynamics after sudden quench. a, Schematic se-
quence (top, showing ∆(t)) involves adiabatic preparation and then a sudden quench to single-atom reso-
nance. The heat map shows the single atom trajectories for a 9 atom cluster. We observe that the initial
(left inset) crystal with a Rydberg excitation at every odd trap site collapses after the quench and a crys-
tal with an excitation at every even site builds up (middle inset). At a later time the initial crystal revives
with a frequency of Ω/1.38(1) (right inset). Error bars denote 68% CI. b, Density of domain walls after the
quench. The dynamics decay slowly on a timescale of 0.88 µs. Shaded region represents the standard er-
ror of the mean. Solid blue line is a fully coherent MPS simulation with bond dimension D = 256, taking
into account measurement fidelity. c, Toy model of non-interacting dimers (see main text). d, Numerical
calculations of the dynamics after a quench starting from an ideal 25 atom crystal, obtained from exact
diagonalization. Domain wall density as a function of time (red), and growth of entanglement entropy of
the half chain (13 atoms) (blue). Dashed lines take into account only nearest neighbor blockade constraint.
Solid lines correspond to the full 1/R6 interaction potential.

To further characterize the created Z2 ordered state, we evaluate the correlation function

g
(2)
ij = ⟨ninj⟩ − ⟨ni⟩⟨nj⟩ (7.2)

where the average ⟨· · ·⟩ is taken over experimental repetitions. We find that the correlations

decay exponentially over distance with a decay length of ξ = 3.03(6) sites (see Fig. 7.5d and

Appendix D). We note that this length does not fully characterize the system as discussed

below (see also D.6).
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Finally, Fig. 7.6 demonstrates that our approach also enables the study of coherent dynam-

ics of many-body systems far from equilibrium. Specifically, we focus on the quench dynamics

of Rydberg crystals initially prepared deep in the Z2 ordered phase, as we suddenly change

the detuning ∆(t) to the single-atom resonance ∆ = 0 (Fig. 7.6a). After such a quench, we

observe oscillations of many-body states between the initial crystal and a complementary crys-

tal where each internal atomic state is inverted (Fig. 7.6a). We find that these oscillations are

remarkably robust, persisting over several periods with a frequency that is largely independent

of the system size. This is confirmed by measuring the dynamics of the domain wall density,

signaling the appearance and disappearance of the crystalline states, shown in Fig. 7.6b for ar-

rays of 9 and 51 atoms. We find that the initial crystal repeatedly revives with a period that

is slower by a factor of 1.38(1) compared to the Rabi oscillation period for independent, non-

interacting atoms.

7.4 Discussion

Several important features of these experimental observations should be noted. First of all,

our Z2 ordered state cannot be characterized by a simple thermal ensemble. More specifically,

if an effective temperature is estimated based on the experimentally determined, corrected

domain wall density of 0.1, the corresponding thermal ensemble predicts a correlation length

ξth = 4.48(3), which is significantly longer than the measured value ξ = 3.03(6) (Appendix D).

Such a discrepancy is also reflected in distinct probability distributions for the number of do-

main walls (Fig. 7.5c). These observations suggest that the system does not thermalize within

the timescale of the Z2 state preparation.

Even more striking is the coherent and persistent oscillation of the crystalline order after

the quantum quench. With respect to the quenched Hamiltonian (∆ = 0), the energy density
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of our Z2 ordered state corresponds to that of an infinite-temperature ensemble within the

manifold constrained by Rydberg blockade. Also, our Hamiltonian does not have any explicit

conserved quantities other than total energy. Nevertheless, the oscillations persist well beyond

the natural timescale of local relaxation ∼ 1/Ω as well as the fastest timescale, 1/Vi,i+1.

To understand these observations, we consider a simplified model where the effect of long-

range interactions is neglected, and nearest-neighbor interactions are replaced by hard con-

straints on neighboring excitations of Rydberg states [120]. In this limit, the qualitative be-

havior of the quench dynamics can be understood in terms of dimerized spins (Fig. 7.6c);

owing to the blockade constraint, each dimer forms an effective spin-1 system with three

states |rg⟩, |gg⟩, and |gr⟩, where the resonant drive “rotates” the three states over the pe-

riod
√
2(2π/Ω), close to that observed experimentally. While this qualitative picture does

not take into account the strong interactions (constraints) between neighboring dimers, it can

be extended by considering a minimal variational ansatz for the many-body wave function

based on matrix product states that respect all blockade constraints (Appendix D). Using

the time-dependent variational principle, we derive analytical equations of motion and ob-

tain a crystalline-order oscillation with frequency ∼ Ω/1.51 (see D.7), which is within 10%

of the experimental observations. These considerations are supported by various numerical

simulations. Indeed, the exact numerics predict that this simplified model exhibits crystal os-

cillations with the observed frequency, while the entanglement entropy grows at a rate much

smaller than Ω, indicating that the oscillation persists over many cycles (Fig. 7.6d and Ap-

pendix D). The addition of long-range interactions leads to a faster decay of the oscillations,

with a timescale that is determined by ∼ 1/Vi,i+2, in good agreement with experimental ob-

servations (Fig. 7.6b), while the entanglement entropy also grows on this time scale (Fig. 7.6d,

see also D.8).
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Thus, our observations and analysis indicate that the decay of crystal oscillation is governed

by weak next-nearest-neighbor interactions. This relatively slow thermalization is rather unex-

pected, since our Hamiltonian, with or without long-range interactions, is far from any known

integrable systems [120], and features neither strong disorder nor explicitly conserved quan-

tities [128]. Instead, our observations are likely associated with constrained dynamics due to

Rydberg blockade and large separations of timescales Vi,i+1 ≫ Ω ≫ Vi,i+2 [129] that result in

an effective Hilbert space dimension determined by the golden ratio ∼ (1+
√
5)N/2N [130, 131].

The evolution within such a constrained Hilbert space gives rise to the so-called quantum

dimer models, that are known to possess non-trivial dynamics [132].While these considera-

tions provide important insights into the origin of robust emergent dynamics, we emphasize

that our results challenge conventional theoretical concepts and warrant further studies.

7.5 Outlook

Our observations demonstrate that Rydberg excitation of neutral atom arrays constitutes an

exceptionally promising platform for studying quantum dynamics and quantum simulations

in large systems. Our method can be extended and improved in a number of ways. Individ-

ual qubit rotations around the z-axis can be implemented using light shifts associated with

trap light, while a second AOD can be used for individual control of coherent rotations around

other directions. Further improvement in coherence and controllability can be obtained by en-

coding qubits into hyperfine sublevels of the electronic ground state and using state-selective

Rydberg excitation [116]. Implementing two-dimensional (2d) arrays could provide a path to-

wards realizing thousands of traps. Such 2d configurations could be realized by directly using

a 2d-AOD or by creating a static 2d lattice of traps and sorting atoms with an independent

AOD, as demonstrated recently [25]. With increased loading efficiencies [86], the robust cre-
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ation and control of arrays composed of hundreds of atoms is feasible.

While our current observations already allow us to gain unique insights into the physics as-

sociated with transitions into ordered phases and to explore novel many-body phenomena in

quantum dynamics, they can be directly extended along several directions [89]. These include

studies of various aspects of many-body coherence and entanglement in large arrays [133],

investigation of quantum critical dynamics and tests of the quantum Kibble-Zurek hypoth-

esis [127], and the exploration of stable non-equilibrium phases of matter [134]. Further ex-

tension may allow for studies of the interplay between long-range interactions and disorder,

quantum scrambling [135], topological states in spin systems [136], dynamics of Fibonacci

anyons [130, 131], and investigation of chiral clock models associated with transitions into

exotic Z3 and Z4 states [137]. Finally, we note that our approach is well suited for the realiza-

tion and testing of quantum optimization algorithms [138, 139] with system sizes that cannot

be simulated by modern classical machines.
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8
Quantum Kibble-Zurek mechanism and

critical dynamics

8.1 Quantum phase transitions and the quantum Kibble-Zurek mechanism

Quantum phase transitions (QPTs) involve transformations between different states of mat-

ter that are driven by quantum fluctuations [126]. These fluctuations play a dominant role

in the quantum critical region surrounding the transition point, where the dynamics are gov-

erned by the universal properties associated with the QPT. While time-dependent phenomena

associated with classical, thermally driven phase transitions have been extensively studied in
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Figure 8.1: Quantum Kibble-Zurek mechanism (QKZM) and phase diagram. a, Illustration of the
QKZM. As the control parameter approaches its critical value, the response time, τ , given by the inverse
energy gap of the system, diverges. When the temporal distance to the critical point becomes equal to the
response time, as marked by red crosses, the correlation length, b, stops growing due to nonadiabatic ex-
citations. c, Numerically calculated ground-state phase diagram. Circles (diamonds) denote numerically
obtained points along the phase boundaries calculated using (infinite-size) Density-Matrix Renormalization
Group techniques (see Appendix E). The shaded regions are a guide to the eye. Dashed lines show the ex-
perimental trajectories across the phase transitions determined by the pulse diagram shown as an inset. d,
Measured (circles) density-density Rydberg correlations with fits to the expected ordered pattern (solid lines)
consistent with Z4- (orange), Z3- (purple) and Z2-ordered (green) states. Error bars denote the standard
error of the mean (s.e.m.) and are smaller than the marker size.

systems ranging from the early universe to Bose Einstein Condensates [140–143], understand-

ing critical real-time dynamics in isolated, non-equilibrium quantum systems is an outstanding

challenge [144]. Here, we use a Rydberg atom quantum simulator with programmable inter-

actions to study the quantum critical dynamics associated with several distinct QPTs. By

studying the growth of spatial correlations while crossing the QPT, we experimentally verify

the quantum Kibble-Zurek mechanism (QKZM) [145, 127, 146] for an Ising-type QPT, explore

scaling universality, and observe corrections beyond QKZM predictions. This approach is sub-

sequently used to measure the critical exponents associated with chiral clock models [147, 148],

providing new insights into exotic systems that have not been understood previously, and

opening the door for precision studies of critical phenomena, simulations of lattice gauge theo-

ries [149, 89] and applications to quantum optimization [150, 151].
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The celebrated Kibble-Zurek mechanism [140, 141] describes nonequilibrium dynamics and

the formation of topological defects in a second-order phase transition driven by thermal fluc-

tuations, and has been experimentally verified in a wide variety of physical systems [142, 143].

Recently, the concepts underlying the Kibble-Zurek description have been extended to the

quantum regime [145, 127, 146]. Here, the typical size of the correlated regions, ξ, after a dy-

namical sweep across the QPT scales as a power-law of the sweep rate, s, with an exponent,

µ, determined entirely by the QPT’s universality class. Specifically, QKZM postulates that

when the time scale over which the Hamiltonian changes becomes faster than the character-

istic response time, τ , determined by the inverse of the energy gap between the ground and

excited states, nonadiabatic excitations prevent the continued growth of correlated regions

(Figs. 8.1a,b). The resulting scaling exponent, µ = ν/(1 + νz), is determined by a combi-

nation of the critical exponent ν, that characterizes the divergent correlation length, and the

dynamical critical exponent z, that characterizes the relative scaling of space and time close

to the critical point [126]. While QKZM has many important implications, e.g. in quantum

information science [150], its experimental verification is challenging due to the coupling of

many-body systems to the environment [151]. Recently, experimental control over isolated

quantum systems enabled the observation of scaling behavior across quantum phase transi-

tions described by mean-field theories [152, 153]. While important aspects of QPTs have al-

ready been explored in strongly correlated systems [154], experimental observation of quan-

tum critical phenomena beyond mean-field in real-time dynamics remains an outstanding chal-

lenge [155, 156, 151].
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8.2 1D Rydberg Hamiltonian phase diagram

We probe quantum criticality using a reconfigurable 1D array of 87Rb atoms with programmable

interactions [157]. In our system, 51 atoms in the electronic ground state |g⟩, evenly separated

by a controllable distance, are homogeneously coupled to the excited Rydberg state |r⟩, in

which they experience van der Waals interactions with a strength that decays as V (r) ∝ 1/r6,

where r is the interatomic distance. This system is described by the many-body Hamiltonian,

H
ℏ

=
Ω

2

∑
i

(|gi⟩ ⟨ri|+ |ri⟩ ⟨gi|)−∆
∑
i

ni +
∑
i<j

Vijninj , (8.1)

where ni = |ri⟩ ⟨ri| is the projector onto the Rydberg state at site i, ∆ and Ω are the detuning

and Rabi frequency of the coherent laser coupling between |g⟩ and |r⟩, and Vij is the interac-

tion strength between atoms in the Rydberg state at sites i and j. For negative values of ∆,

the many-body ground state corresponds to a state in which all atoms are in the electronic

ground state |g⟩, up to quantum fluctuations, and belongs to a so-called “disordered” phase

with no broken spatial symmetry. For ∆ > 0, several spatially ordered phases arise from

the competition between the detuning term, which favors a large Rydberg fraction, and the

Rydberg blockade, which prohibits simultaneous excitation of atoms separated by a distance

smaller than the blockade radius, RB, defined via V (RB) ≡ Ω. As illustrated in Fig. 8.1c,d,

we probe different QPTs into states breaking various symmetries by choosing the interatomic

spacing, and sweeping the control parameter, ∆, across the phase boundary.
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Figure 8.2: Quantum Kibble-Zurek mechanism for a quantum phase transition (QPT) into the Z2-
ordered phase. a, Single-shot images of the atom array before and after a fast (orange arrow) and a slow
(blue arrow) sweep across the phase transition, showing larger average sizes of correlated domains for the
slower sweep. Green spots (open circles) represent atoms in |g⟩ (|r⟩). Blue rectangles mark the position of
domain walls, and the red and gray colored regions above highlight the extent of the correlated domains.
b, Correlation length growth and saturation as the system crosses the QPT at different rates. The gray
dashed line indicates the critical detuning. c, Dependence of correlation length on inverse sweep rate across
the phase transition with experimentally measured (green) and matrix product state-simulated results (red).
The length is extracted from fitting the modulus of the correlation data to an exponential decay. Error bars
denote fit uncertainty. The dashed line indicates a power-law fit with a scaling exponent µ = 0.50(3) for the
experiment.

8.3 (1+1)D Ising quantum phase transition

We first focus on the QPT into the antiferromagnetic phase with broken Z2 symmetry, which

is known to belong to the Ising universality class [126]. Using an interatomic spacing, a, such

that RB/a ∼ 1.69, we create an array of 51 atoms in the electronic ground state, and slowly

turn on Ω at ∆ < 0, adiabatically preparing the system in the ground state of the disordered

phase. The detuning is then increased at a constant rate, s, up to a final value ∆f , at which

point Ω is slowly turned off (see inset of Fig. 8.1c), and the state of every atom is measured.

We examine the dynamical development of correlations between the atoms, characterized by

the Rydberg density-density correlation function:

G(r) =
∑
i

(⟨nini+r⟩ − ⟨ni⟩⟨ni+r⟩)/Nr, (8.2)
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where the normalization Nr is the number of pairs of sites separated by distance r. By fitting

an exponential decay to the modulus of the correlation function, we extract the correlation

length. The experimental results show growth of the correlation length as the detuning ap-

proaches the critical point, followed by saturation once the detuning is swept past the criti-

cal point into the ordered phase (Fig. 8.2b). From the individual images, it is apparent that,

while for fast sweeps the ordered domains are frequently interrupted by defects (domain walls),

for slow ramps, significantly longer domains are observed (Fig. 8.2a). A systematic analysis

of the final correlation lengths after crossing into the ordered phase shows that a power-law

scaling model ξ(s) = ξ0(s0/s)
µ with µ = 0.50(3) accurately describes our measurements

(Fig. 8.2c). These results are consistent with numerical simulations (red points) of the coher-

ent evolution of the system using Matrix Product States (MPS).

The QPT into the Z2-ordered phase is in the Ising universality class [126], with critical ex-

ponents in 1D of z = 1, ν = 1, and consequently, µIsing = 0.5. Our observations are consistent

with these quantitative predictions, and are quite distinct from those associated with a mean-

field Ising transition, described by z = 1, ν = 1/2, and yielding µmf = 1/3 [126, 152]. These

results offer the first experimental verification of the quantum Kibble-Zurek mechanism in an

isolated quantum system that defies a mean-field description.

A key concept associated with critical phenomena is that of universality, which is mani-

fested by the collapse of correlations to a universal form when rescaled according to the cor-

responding critical exponents [126]. Such a signature is a strong test of an underlying univer-

sal scaling law, and in connection with the QKZM, should appear upon rescaling lengths by

(s/s0)
µ [158]. Fig. 8.3a shows that the rescaled correlations for RB/a ∼ 1.81 indeed collapse

onto two smooth branches, which in turn collapse on top of each other when the correlations

are rectified as (−1)rG(r) (inset in Fig. 8.3a), according to the Z2 order parameter.
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While the quantum Kibble-Zurek mechanism is a coarse-grained description predicting

the mean density of defects, the shape of the correlation function gives further access to mi-

croscopic details of the system. Detailed inspection of the rescaled correlation functions re-

veals nontrivial deviations from a simple exponential decay. In particular, the correlations in

Fig. 8.3a become negative for a range of distances, which implies complex dynamics in the

formation and spreading of defects. The observed corrections to simple QKZM predictions

are consistent with recent theoretical analyses [158, 159] and are in good agreement with nu-

merical simulations using MPS (Fig. 8.3c). Finally, applying the universal rescaling to the

correlation growth shown in Fig. 8.2b allows us to independently estimate the values of critical

exponents (Fig. E.7), showing that our results are consistent with z = ν = 1 associated with

the Ising QPT.

8.4 Critical scaling beyond Ising transition

Having established the validity of the QKZM, as well as its limitations, for a QPT in the Ising

universality class, we now explore transitions into more complex ZN -ordered phases, where

Rydberg excitations are evenly separated by N > 2 sites (see Fig. 8.1c). The correlation func-

tions at smaller interatomic spacings after slow detuning sweeps reflect the spatial ordering of

the Z3- and Z4-ordered phases (Fig. 8.1d). In addition, we determine the probability of find-

ing two Rydberg excitations separated by N -sites, for each value of N and RB (Fig. 8.4b).

Combining these measurements with the numerically obtained critical points (see Fig. 8.1c),

we experimentally identify approximate boundaries for the regions consistent with the Z2-, Z3-

, and Z4-ordered phases in Fig. 8.4b. Within these regions, the dominant type of order is the

one associated with the corresponding phase, while the second most prevalent type of order

arises from the lowest-energy (most probable) defects. In particular, we observe that in the
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Z3-ordered phase, the most-likely defect changes from Z2-like for smaller values of RB/a, to

Z4-like as RB/a increases.

We test for a power-law scaling behavior of the correlation length growth as a function of

ramp speed at different interaction strengths in Fig. 8.4c. To consistently compare the results

for all interaction strengths, we fit the correlation function to an exponentially decaying den-

sity wave with a period set by the underlying order (as opposed to the modulus of the cor-

relation function used in Fig. 8.2c). The scaling is extracted through a power-law fit to the

resulting correlation lengths. In parameter regimes far away from regions of competing order,

we observe three stable plateaus for the regions consistent with Z2, Z3, and Z4 order, respec-

tively. For interaction strengths where there is a strong competition between different types

of order, we do not observe the formation of long-range correlations (pale points in Fig. 8.4c).

In these cases, the detuning sweeps either do not fully cross the phase boundary into the or-

dered phases (see Appendix E) or potentially enter theoretically predicted incommensurate

phases [148, 120].

8.5 Discussion

To understand these observations, we compare them to finite-size scaling analyses of ground-

state properties [160–162], as well as MPS-based numerical simulations of our experimental

protocol for the full Hamiltonian (8.1). For the transitions into the Z2-ordered phase, some of

the extracted values of µ are slightly larger than the expected exponent from the Ising model

µIsing = 0.5. We attribute these deviations, to a combination of the long-ranged interactions,

finite-size and/or time effects, and systematic effects related to the inversion of the alternating

pattern (Fig. 8.3a,c, see also Appendix E).

Quantum phase transitions associated with the breaking of a Z3 symmetry are more com-
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Figure 8.4: Power-law scaling for different interactions. a, Experimental realization of the chiral clock
model [160]. The top row shows a single fluorescence image of a state in the Z3-symmetry broken phase
(RB/a ∼ 2.16), with four Z2-type defects displacing the Rydberg atoms in one direction (counter-clockwise
chirality). The bottom rows display a system with stronger interactions (RB/a ∼ 2.43), where Z4-type
defects are favored, and the Rydberg atoms are displaced in the opposite direction (clockwise chirality).
The colored regions highlight the extent of the correlated domains, labeled by clock orientations in con-
nection to the chiral clock model. b, Fraction of the final state consistent with the different ZN -ordered
states observed in the experiment (left, circles) and in numerical simulations (right, diamonds). Within the
Z3-ordered region, the most dominant type of defect changes from Z2- to Z4-type as the interaction range
increases. The higher contrast in the calculated domain probabilities in Fig. 8.4b is due to finite detection
fidelity, which does not affect the extracted value of µ. c, Scaling exponent, µ, as a function of RB/a ob-
tained from experimental data (left, circles), and matrix product state simulations (right, diamonds). Pale
blue points indicate instances where the measured correlation lengths do not grow beyond the size of RB/a.
Shaded areas indicate the regions consistent with Z2- (green), Z3- (purple), and Z4-ordered (orange) phases.
The solid green line corresponds to µIsing, the purple dashed lines represent the upper [160], and lower [161]
bounds of µCCM, while the purple dotted line is the value of µCCM obtained from the best numerical es-
timates of z [160] and ν [162]. Error bars represent the 68% confidence interval (b), and uncertainty of
the power-law fit (c), which is dominated by systematic effects in the extraction of individual correlation
lengths.
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plex due to competition between the different types of defects that can be formed. In our

system, the defects correspond to two different types of domain walls, where the distance be-

tween neighboring Rydberg excitations is 2 sites and 4 sites (see Fig. 8.4a). For the exper-

imentally accessible parameter regimes, the different associated excitation energies lead, in

general, to an asymmetry between these defects (see also Fig. 8.4b). Correspondingly, the Z3-

symmetry breaking is believed to be in the universality class of the 3-state chiral clock model

(CCM) (Fig. 8.4a, Appendix E, and [160]).

The exact nature of such phase transitions has been a subject of intense theoretical research

for the past three decades [147, 148, 163, 160–162]. Only very recently, numerical studies of

equilibrium scaling properties [160–162] provided evidence for a direct transition [162] along

some paths across the phase boundary, where the expected range of values of the scaling ex-

ponent is µ < 0.45 [160], and µ > 0.25 [161]. Our experimental results are consistent with

a direct CCM phase transition over a range of interaction strengths with µ ∼ 0.38, in agree-

ment with the theoretical value obtained by combining the results of the most extensive nu-

merical finite-size scaling studies [160, 162] (dashed line in Fig. 8.4c). Further evidence for a

direct chiral QPT is provided by the universal scaling behavior into the Z3-ordered phase (see

Fig. 8.3b,d).

The transition into the Z4-ordered phase is even more involved. At present, complete un-

derstanding of this transition is lacking, in particular due to the potential presence of an inter-

mediate gapless incommensurate phase [148, 163]. Our experimental results in this region are

reasonably consistent with power-law scaling with µ ∼ 0.25. While recent theoretical work

shows that QKZM scaling may still hold on quenching through a gapless phase, albeit with a

modified (system-specific) power-law exponent [164], detailed theoretical understanding of our

experimentally observed exponents in the Z4 regime requires further studies.
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Detailed comparison of our experimental results across all phases to the numerical simu-

lation of the Hamiltonian dynamics using MPS are presented in Figure 8.4. While qualita-

tively similar, they display clear discrepancies. Most significant is a systematic offset in the

extracted values of µ between experiment, finite-size scaling analysis and time-dependent MPS

simulations. While it can be potentially attributed to experimental imperfections and subtle

differences between the experimental system and the model used for the numerical simulations

(see Appendix E), the disagreement of MPS with both experimental results and finite-size

scaling analyses of equilibrium properties highlights the difficulty in approximately modeling

complex nonequilibrium dynamics of many-body systems.

8.6 Outlook

Our observations demonstrate a novel approach for probing quantum critical phenomena and

provide new insights into the physics of exotic QPTs that do not lend themselves to simple

theoretical analyses. Increasing the system size, improving atomic coherence properties, and

exploring wider parameter regimes may allow for more precise probing of exotic QPTs into

both ordered and incommensurate phases [148, 120, 160, 162] in various models. In particu-

lar, the present approach is well suited for simulations of lattice gauge theories [89]. Whereas

the system studied here is formally equivalent to a quantum link model on a ladder [165],

two- and three-dimensional systems, realized using novel trapping techniques [30, 166], can be

used to simulate a wide variety of non-trivial lattice gauge models [149]. Finally, the methods

demonstrated in this work can be used to effectively encode and explore solutions to compu-

tationally difficult combinatorial optimization problems such as finding the Maximum Inde-

pendent Set [167]. Detailed understanding of quantum dynamics in such systems might have

direct applications for exploring quantum speedup in both adiabatic and dynamical quantum
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optimization algorithms [150].
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9
Quantum Phases of Matter on a 256-Atom

Programmable Quantum Simulator

Recent breakthroughs have demonstrated the potential of programmable quantum systems,

with system sizes reaching around fifty trapped ions [168–170] or superconducting qubits

[171, 172, 21], for simulations and computation. Correlation measurements with over seventy

photons have been used to perform boson sampling [22], while optical lattices with hundreds

of atoms are being used to explore Hubbard models [173, 174, 107]. Larger-scale Ising spin

systems have been realized using superconducting elements [175], but they lack the coherence

essential for probing quantum matter.
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Figure 9.1: Programmable two-dimensional arrays of strongly-interacting Rydberg atoms. a. Atoms
are loaded into a 2D array of optical tweezer traps and rearranged into defect-free patterns by a second set
of moving tweezers. Lasers at 420 nm and 1013 nm drive a coherent two-photon transition in each atom
between ground state |g⟩ = |5S1/2, F = 2,mF = −2⟩ and Rydberg state |r⟩ = |70S1/2,mj = −1/2,mI =
−3/2⟩. b. Fluorescence image of initial random loading of atoms, followed by rearrangement to a defect-
free 15×15 (225 atoms) square array. After this initialization, the atoms evolve coherently under laser ex-
citation with Rabi frequency Ω(t) and detuning ∆(t), and long-range interactions Vij . Finally, the state of
each atom is read out, with atoms excited to |r⟩ detected as loss and marked with red circles. Shown on
the far right is an example measurement following quasi-adiabatic evolution into the checkerboard phase.
c, d. Similar evolution on honeycomb and triangular lattices result in analogous ordered phases of Rydberg
excitations with filling 1/2 and 1/3, respectively.

Neutral atom arrays have recently emerged as a promising platform for realizing programmable

quantum systems [17, 117, 157]. Based on individually trapped and detected cold atoms in op-

tical tweezers with strong interactions between Rydberg states [176], atom arrays have been

utilized to explore quantum dynamics in one- and two-dimensional systems [157, 177–181],

to create high-fidelity [35] and large-scale [182] entanglement, to perform parallel quantum

logic operations [34, 33], and to realize optical atomic clocks [183, 36]. While large numbers of

atoms have been trapped [36] and rearranged in two and three dimensions [184, 166, 32, 30],

coherent manipulation of programmable, strongly interacting systems with more than a hun-

dred individual particles remains an outstanding challenge. Here, we realize a programmable

quantum simulator using arrays of up to 256 neutral atoms with tunable interactions, demon-

strating several novel quantum phases and quantitatively probing the associated phase transi-

tions.
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9.1 Programmable Rydberg arrays in 2D

Our experiments are carried out on the second generation of an experimental platform de-

scribed previously [157]. The new apparatus uses a spatial light modulator (SLM) to form a

large, two-dimensional (2D) array of optical tweezers in a vacuum cell (Fig. 9.1a and Chap-

ter 2). This static tweezer array is loaded with individual 87Rb atoms from a magneto-optical

trap (MOT), with a uniform loading probability of 50–60% across up to 1000 tweezers. We

rearrange the initially loaded atoms into programmable, defect-free patterns using a second

set of moving optical tweezers that are steered by a pair of crossed acousto-optical deflectors

(AODs) to arbitrary positions in 2D (Fig. 9.1a) [25]. Our parallel rearrangement protocol (see

Appendix F) enables rearrangement into a wide variety of geometries including square, hon-

eycomb, and triangular lattices (left panels in Fig. 9.1b-d). The procedure takes a total time

of 50–100 ms for arrays of up to a few hundred atoms and results in filling fractions exceeding

99%.

Qubits are encoded in the electronic ground state |g⟩ and the highly-excited n = 70 Ry-

dberg state |r⟩ of each atom. We illuminate the entire array from opposite sides with two

counter-propagating laser beams at 420 and 1013 nm, shaped into light sheets (see Chapter 3),

to coherently couple |g⟩ to |r⟩ via a two-photon transition (Fig. 9.1a).

The resulting many-body dynamics U(t) are governed by a combination of the laser excita-

tion and long-range van der Waals interactions between Rydberg states (Vij = V0/|xi − xj|6),

described by the Hamiltonian

H

ℏ
=

Ω

2

∑
i

(|gi⟩⟨ri|+ |ri⟩⟨gi|)−∆
∑
i

ni +
∑
i<j

Vijninj (9.1)

where ℏ is the Planck’s constant, ni = |ri⟩⟨ri|, and Ω and ∆ are the two-photon Rabi fre-
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quency and detuning, respectively. After evolution under the Hamiltonian (9.1), the state of

each atomic qubit is read out by fluorescence imaging that detects only atoms in |g⟩, while

atoms in |r⟩ are detected as loss. Detection fidelities exceed 99% for both states (see Ap-

pendix F).

The Rydberg blockade mechanism [88, 185] is central to understanding the programmable

dynamics driven by the Hamiltonian (9.1). It originates from the long-range interactions be-

tween Rydberg states, providing an effective constraint that prevents simultaneous excitation

of atoms within a blockade radius Rb ≡ (V0/Ω)
1/6. We control the effective blockade range

Rb/a by programming the lattice spacing a for the atom array. Using these control tools, we

explore quantum evolution resulting in a wide variety of quantum phases.

9.2 Checkerboard phase

The smallest value of Rb/a that results in an ordered phase for the quantum many-body ground

state of the system corresponds to Rb/a ≈ 1, where only one out of every pair of nearest-

neighbor atoms can be excited to |r⟩. On a square array, this constraint leads to a Z2-symmetry-

broken checkerboard phase with an antiferromagnetic (AF) ground state. To realize such a

state, we initialize the array at Rb/a = 1.15 (a = 6.7 µm, Ω = 2π × 4.3 MHz) with all atoms

in |g⟩. We then dynamically sweep the detuning ∆ from negative to positive values while keep-

ing the Rabi frequency Ω fixed to bring the system quasi-adiabatically into the checkerboard

phase (Fig. 9.1b and Fig. 9.2a). A similar approach can be used to create analogous ordered

phases on other lattice geometries (Fig. 9.1c, d).

We quantify the strength of antiferromagnetic correlations in the checkerboard phase over

many experimental repetitions using the connected density-density correlator G(2)(k, l) =

1
N(k,l)

∑
i,j(⟨ninj⟩ − ⟨ni⟩⟨nj⟩), where the sum is over all pairs of atoms (i, j) separated by
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Figure 9.2: Benchmarking of quantum simulator using checkerboard ordering. a. A quasi-adiabatic
detuning sweep ∆(t) at constant Rabi frequency Ω is used to prepare the checkerboard ground state with
high fidelity. b. Two-site correlation function G(2)(k, l), averaged over all pairs of atoms on a 12×12 array,
showing near-perfect alternating correlations throughout the entire system. c. Exponential fits of rectified
horizontal and vertical correlations are used to extract correlation lengths in the corresponding directions ξH
and ξV . d. Histogram of many-body state occurrence frequency after 6767 repetitions of the experiment on
a 12×12 array. The two most frequently occurring microstates correspond to the two perfect checkerboard
orderings, and the next four most common ones are those with a single defect in one of the corners of the
array. e. Probability of finding a perfect checkerboard ground state as a function of array size. The slightly
higher probabilities in odd×odd systems is due to commensurate edges on opposing sides of the array. All
data in this figure are conditioned on defect-free rearrangement of the array.
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the same relative lattice displacement x=(k, l) sites, normalized by the number of such pairs

N(k,l). Our measurement of G(2)(k, l) on a 12×12 system (Fig. 9.2b) yields horizontal and ver-

tical correlation lengths of ξH = 11.1(1) and ξV = 11.3(1) respectively (Fig. 9.2c), showing

long-range correlations across the entire 144 atom array. These exceed the values reported

previously for two-dimensional systems [177, 178] by nearly an order of magnitude.

Single-site readout also allows us to study individual many-body states of our system (Fig. 9.2d).

Out of 6767 repetitions on a 12x12 array, the two perfectly ordered states |AF1⟩ and |AF2⟩

are by far the most frequently observed microstates, with near-equal probabilities between

the two. We benchmark our state preparation by measuring the probability of observing per-

fect checkerboard ordering as a function of system size (Fig. 9.2e). We find empirically that

the probability scales with the number of atoms according to an exponential 0.97N , offering a

benchmark that includes all experimental imperfections such as finite detection fidelity, non-

adiabatic state preparation, spontaneous emission, and residual quantum fluctuations in the

ordered state (see Appendix F). Remarkably, even for a system size as large as 15×15 (225

atoms), we still observe the perfect antiferromagnetic ground state with probability 0.10+5
−4%

within the exponentially large Hilbert space of dimension 2225 ≈ 1068.

9.3 (2+1)D Ising quantum phase transition

We now describe quantitative studies of the quantum phase transition into the checkerboard

phase. Quantum phase transitions fall into universality classes characterized by critical expo-

nents that determine universal behavior near the quantum critical point, independent of the

microscopic details of the Hamiltonian [126]. The transition into the checkerboard phase is

expected to be in the paradigmatic—but never previously observed—quantum Ising univer-

sality class in (2+1) dimensions [186] (with expected dynamical critical exponent z = 1 and
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correlation length critical exponent ν = 0.629).

To explore universal scaling across this phase transition for a large system, we study the

dynamical build-up of correlations associated with the quantum Kibble-Zurek mechanism

[127, 181] on a 16 × 16 (256 atoms) array, at fixed Rb/a = 1.15. We start at a large negative

detuning with all atoms in |g⟩ and linearly increase ∆/Ω, stopping at various points to mea-

sure the growth of correlations across the phase transition (Fig. 9.3a,b). Slower sweep rates

s = d∆/dt result in longer correlation lengths ξ, as expected (Fig. 9.3c).

The quantum Kibble-Zurek mechanism predicts a universal scaling relationship between

the control parameter ∆ and the correlation length ξ. Specifically, when both ∆ and ξ are

rescaled with the sweep rate s (relative to a reference rate s0)

ξ̃ = ξ(s/s0)
µ (9.2)

∆̃ = (∆−∆c)(s/s0)
κ (9.3)

with exponents µ ≡ ν/(1+zν) and κ ≡ −1/(1+zν), then universality implies that the rescaled

ξ̃ vs. ∆̃ collapses onto a single curve [181] for any sweep rate s. Taking z = 1 to be fixed (as

expected for a Lorentz-invariant theory), we extract ν for our system by finding the value that

optimizes this universal collapse.

In order to obtain ν, we first independently determine the position of the critical point ∆c,

which corresponds to the peak of the susceptibility χ = −∂2⟨H⟩/∂∆2 and is associated with

a vanishing gap [126]. For adiabiatic evolution under the Hamiltonian (9.1), the susceptibility

χ is related to the mean Rydberg excitation density ⟨n⟩ by χ = ∂⟨n⟩/∂∆ according to the

Hellman-Feynman theorem. We measure ⟨n⟩ vs. ∆ along a slow linear sweep to remain as

adiabatic as possible. We take the numerical derivative of the fitted data to obtain χ, finding
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its peak to be at ∆c/Ω = 1.12(4) (see Appendix F).

Having identified the position of the critical point, we now extract the value of ν that op-

timizes data collapse (inset of Fig. 9.3d and Appendix F). The resulting ν = 0.62(4) rescales

the experimental data to clearly fall on a single universal curve (Fig. 9.3d). This measurement

is in good agreement with the predicted ν = 0.629 for the quantum Ising universality class in

(2+1) dimensions[186], and distinct from both the mean-field value[126] of ν = 1/2 and the

previously verified value in (1+1) dimensions [181] of ν = 1. Despite imperfections associated

with non-adiabatic state preparation and decoherence in our system, this demonstration of

universal scaling highlights opportunities for quantitative studies of quantum critical phenom-

ena on our platform.

9.4 Phase diagram of the square lattice

A rich variety of new phases have been recently predicted for the square lattice when Ryd-

berg blockade is extended beyond nearest neighbors [186]. To map this phase diagram ex-

perimentally, we use the Fourier transform of single-shot measurement outcomes F(k) =∣∣∣∑i exp(ik · xi/a)ni/
√
N
∣∣∣, which characterizes long-range order in our system. For instance,

the checkerboard phase shows a prominent peak at k = (π, π), corresponding to the canon-

ical antiferromagnetic order parameter: the staggered magnetization (Fig. 9.4a). We con-

struct order parameters for all observed phases using the symmetrized Fourier transform

F̃(k1, k2) = ⟨F(k1, k2) + F(k2, k1)⟩/2, averaged over experimental repetitions, which takes

into account the reflection symmetry in our system (see Appendix F).

When interaction strengths are increased such that next-nearest (diagonal) neighbor excita-

tions are suppressed by Rydberg interactions (Rb/a ≳
√
2), translational symmetry along the

diagonal directions is also broken, leading to the appearance of a new striated phase (Fig. 9.4b).
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Figure 9.3: Observation of the (2+1)D Ising quantum phase transition on a 16×16 array. a. The
transition into the checkerboard phase is explored using a linear detuning sweep ∆(t) at constant Ω. The
resulting checkerboard ordering is measured at various endpoints. b. Example of growing correlations G(2)

with increasing ∆/Ω along a linear sweep with sweep rate s = 15 MHz/µs. c. Growth of correlation length
ξ for s spanning an order of magnitude from 15 MHz/µs to 120 MHz/µs. ξ used here measures correla-
tions between the coarse-grained local staggered magnetization (see Appendix F). d. For an optimized value
of the critical exponent ν, all curves collapse onto a single universal curve when rescaled relative to the
quantum critical point ∆c. Inset: distance D between all pairs of rescaled curves as a function of ν (see
Appendix F). The minimum at ν = 0.62(4) (red dashed line) yields the experimental value for the critical
exponent (red and gray shaded regions indicate uncertainties).
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Figure 9.4: Phase diagram of the two-dimensional square lattice. a. Example fluorescence image of
atoms in the checkerboard phase and the corresponding Fourier transform averaged over many experimen-
tal repetitions ⟨F(k)⟩, highlighting the peak at (π, π) (circled). b. Image of atoms in the striated phase
and the corresponding ⟨F(k)⟩ highlighting peaks at (0, π), (π, 0) and (π, π) (circled). c. Image of atoms
in the star phase with corresponding Fourier peaks at (π/2, π) and (π, 0) (circled), as well as at symmetric
partners (π, π/2) and (π, 0). d. The experimental phase diagram is constructed by measuring order parame-
ters for each of the three phases for different values of the tunable blockade range Rb/a and detuning ∆/Ω.
Red markers indicate the numerically calculated phase boundaries (see Appendix F). e. The order parame-
ters evaluated numerically using DMRG for a 9×9 array (see Appendix F).

In this phase, Rydberg excitations are mostly located two sites apart and hence appear both

on alternating rows and alternating columns. This ordering is immediately apparent through

the observation of prominent peaks at k = (0, π), (π, 0), and (π, π) in the Fourier domain.

As discussed and demonstrated below, quantum fluctuations, appearing as defects on single

shot images (Fig. 9.4b), play a key role in stabilizing this phase.

At even larger values of Rb/a ≳ 1.7, the star phase emerges, with Rydberg excitations

placed every four sites along one direction and every two sites in the perpendicular direction.

There are two possible orientations for the ordering of this phase, so Fourier peaks are ob-
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served at k = (π, 0) and (π/2, π), as well as at their symmetric partners (0, π) and (π, π/2)

(Fig. 9.4c). In the thermodynamic limit, the star ordering corresponds to the lowest-energy

classical configuration of Rydberg excitations on a square array with a density of 1/4.

We now systematically explore the phase diagram on 13×13 (169 atoms) arrays, with di-

mensions chosen to be simultaneously commensurate with checkerboard, striated, and star

orderings (see Appendix F). For each value of the blockade range Rb/a, we linearly sweep ∆

(similar to Fig. 9.3a but with a ramp-down time of 200 ns), stopping at evenly spaced end-

points to raster the full phase diagram. For every endpoint, we extract the order parameter

corresponding to each many-body phase, and plot them separately to show their prominence

in different regions of the phase diagram (Fig. 9.4d).

We compare our observations with numerical simulations of the phase diagram using the

density-matrix renormalization group (DMRG) on a smaller 9×9 array with open boundary

conditions (Fig. 9.4e and red markers in Fig. 9.4d). We find excellent agreement in the ex-

tent of the checkerboard phase. For the striated and star phases, we also find good similarity

between experiment and theory, although due to their larger unit cells and the existence of

many degenerate configurations, these two phases are more sensitive to both edge effects and

experimental imperfections. We emphasize that the numerical simulations evaluate the order

parameter for the exact ground state of the system at each point, while the experiment quasi-

adiabatically prepares these states via a dynamical process. These results establish the poten-

tial of programmable quantum simulators with tunable, long-range interactions for studying

large quantum many-body systems that are challenging to access with state-of-the-art compu-

tational tools [187].
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Figure 9.5: Probing correlations and coherence in the striated phase via quench dynamics. a. Unit
cell of striated ordering (dashed box) with (0,0) and (1,1) sublattices outlined in red and blue, respectively.
The fill shade on each site reflects the mean Rydberg excitation. b. The variational states for the (0,0)
and (1,1) sublattices are illustrated on the Bloch sphere (see Appendix F). The black arrow illustrates the
phase ϕq of Ω during the quench. c. Probability P (d) of an excitation, conditioned on observing no nearest-
neighbor excitations, and zero (red), three (light blue), or four (dark blue) diagonal next-nearest neighbor
excitations. P (0) is plotted for ϕq = π/2, showing resonant de-excitation of the (0,0) sublattice near the
bare-atom resonance (leftmost vertical line). P (3) and P (4) are plotted for ϕq = −π/2, showing excitation
peaks for the (1,1) sublattice at interaction shifts corresponding to 3 or 4 diagonal neighbors (two rightmost
vertical lines). d, e. P (0) and P (4) vary with quench phase ϕq at their corresponding resonances (∆q/2π =
1.4 and 20.4 MHz, respectively), demonstrating coherence on both the (0,0) and (1,1) sublattices. Solid line
fits are used to extract Bloch vector components.
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9.5 Quantum fluctuations in the striated phase

We now explore the nature of the striated phase. In contrast to the checkerboard and star

phases, which can be understood from a dense-packing argument [186], this phase has no

counterpart in the classical limit (Ω → 0) (see Appendix F). Striated ordering allows the

atoms to lower their energy by partially aligning with the transverse field, favoring this phase

at finite Ω. This can be seen by considering the 2 × 2 unit cell, within which one site has a

large Rydberg excitation probability (designated the (0,0) sublattice) (Fig. 9.5a). Excitations

on its nearest-neighbor (0,1) and (1,0) sublattices are suppressed due to strong Rydberg block-

ade. The remaining atoms on the (1,1) sublattice have no nearest neighbors in the Rydberg

state and experience a much weaker interaction from four next-nearest (diagonal) neighbors

on the (0,0) sublattice, thus allowing the (1,1) atoms to lower their energy by forming a coher-

ent superposition between ground and Rydberg states (Fig. 9.5b).

We experimentally study quantum fluctuations in this phase by observing the response of

the system to short quenches (with quench times tq < 1/Ωq). The dependence on the detun-

ing ∆q and laser phase ϕq of the quench contains information about local correlations and co-

herence, which allows us to characterize the quantum states on the different sublattices. The

quench resonance for each site depends on the state of its nearest and next-nearest neighbors.

Due to the large difference between the interaction energies on the (0,0) and (1,1) sublattices,

when one sublattice is resonantly driven, the other is effectively frozen.

The nature of the striated phase is revealed using nine-particle operators to measure the

state of an atom, conditioned on its local environment. Specifically, we evaluate the condi-

tional Rydberg density P (d), defined as the excitation probability of an atom if all nearest

neighbors are in |g⟩, and exactly d next-nearest (diagonal) neighbors are in |r⟩ (see Appendix F).
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For d = 0, we observe a dip in P (0) near the bare atom resonance (Fig. 9.5c), correspond-

ing to resonant de-excitation of the (0,0) sublattice. Meanwhile, P (3) and P (4) have two sep-

arate peaks that correspond to resonant excitation of the (1,1) sublattice with d = 3 and

d = 4 next-nearest neighbor excitations, respectively (Fig. 9.5c). Remarkably, we find that

the quench response of both the (0,0) and (1,1) sublattices depends on the phase ϕq of the

driving field during the quench (Fig. 9.5d,e). The measured visibilities, together with a simple

mean-field model (see Appendix F), enable the estimation of unknown Bloch vector compo-

nents on the two sublattices, yielding ⟨σx⟩ = −0.82(6), ⟨σy⟩ = 0.25(2) for the (0,0) sublattice,

and ⟨σx⟩ = −0.45(4), ⟨σy⟩ = 0.09(1) for the (1,1) sublattice. We emphasize that accurate

characterization requires the use of more sophisticated variational wavefunctions (based on

e.g. tensor networks) and warrants further investigation. This approach can also be extended

through techniques such as shadow tomography [188].

9.6 Outlook

These experiments demonstrate that two-dimensional Rydberg atom arrays constitute a pow-

erful platform for programmable quantum simulations with hundreds of qubits. We expect

that system size, quantum control fidelity, and degree of programmability can all be increased

considerably via technical improvements. In particular, array sizes and rearrangement fideli-

ties, along with atomic state readout, are currently limited by collisions with background gas

particles, and can be improved with an upgraded vacuum system [35] and increased photon

collection efficiency. Quantum coherence can be enhanced using higher-power Rydberg lasers

and by encoding qubits in hyperfine ground states [33, 176]. Tweezers with different atomic

[38, 35, 36] and molecular [37, 39] species can provide additional features and lead to novel

applications in both quantum simulations and metrology. Finally, rapidly switchable local
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control beams can be used to perform universal qubit operations in parallel across the system.

Our experiments realize several new quantum phases and provide unprecedented insights

into quantum phase transitions in two-dimensional systems. These studies can be extended

along several directions, including the exploration of non-equilibrium entanglement dynamics

via rapid quenches across quantum phase transitions [189–191], the investigation of topologi-

cal quantum states of matter on frustrated lattices [192, 193], the simulation of lattice gauge

theories [194, 195], and the study of broader classes of spin models using hyperfine encoding

[89]. Quantum information processing can also be explored with hardware-efficient methods

for multi-qubit operations [33] and protocols for quantum error correction and fault tolerant

control [196]. Finally, our approach is well suited for efficient implementation of novel algo-

rithms for quantum optimization [197, 198] and sampling [199], enabling experimental tests of

their performance with system sizes exceeding several hundred qubits.
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10
Controlling many-body dynamics with driven

quantum scars in Rydberg atom arrays

Dynamics of complex, strongly interacting many-body systems have broad implications in

quantum science and engineering, ranging from understanding fundamental phenomena such

as the nature of quantum gravity [200] to realizing robust quantum information systems [21,

22]. In these many-body systems, dynamics typically lead to a rapid growth of quantum en-

tanglement and a chaotic spreading of the wave function throughout an exponentially large

Hilbert space, a phenomenon associated with quantum thermalization [201–203]. Recent ad-

vances in the controlled manipulation of isolated, programmable many-body systems have
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enabled detailed studies of non-equilibrium states in strongly interacting quantum matter

[204, 205, 203], in regimes inaccessible to numerical simulations on classical machines. Iden-

tifying non-trivial states for which dynamics can be stabilized or steered by external controls

is a central question explored in these studies. For instance, it has been shown that strong

disorder, leading to many-body localization (MBL), allows systems to suppress entanglement

growth and retain memory of their initial state for long times [206]. Another striking example

involves quantum many-body scars, which manifest as special initial states that avoid rapid

thermalization within an otherwise chaotic system [207, 157, 189]. Further, periodic driving

in strongly interacting systems can give rise to exotic non-equilibrium phases of matter, such

as the discrete time crystal (DTC) which spontaneously breaks the discrete time-translation

symmetry of the underlying drive [208, 209].

In this Report, we investigate stability, thermalization, and control of quantum many-body

scars in systems ranging from 3 to 200 strongly interacting qubits with varying geometry [157,

31]. We discover that entanglement dynamics associated with such scarring trajectories can be

stabilized via parametric driving, resulting in an emergent phenomenon akin to discrete time-

crystalline order. We show this phenomenon can be harnessed to steer entanglement dynamics

in complex many-body systems.

10.1 Quantum scars in two dimensional Rydberg atom arrays

In our experiments, neutral 87Rb atoms are trapped in optical tweezers and arranged into ar-

bitrary two-dimensional patterns generated by a spatial light modulator [117, 31]. This pro-

grammable system allows us to explore quantum dynamics in systems ranging from chains

and square lattices to exotic decorated lattices, with sizes up to 200 atoms. All atoms are ini-

tialized in an electronic ground state |g⟩ and coupled to a Rydberg state |r⟩ by a two-photon
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optical transition with an effective Rabi frequency Ω(t) and detuning ∆(t), as depicted schemat-

ically in Fig. 10.1A. When excited into Rydberg states, atoms interact via a strong, repulsive

van der Waals interaction V ∼ 1/d6, where d is the inter-atomic separation, resulting in the

many-body Hamiltonian [157],

H

ℏ
=

Ω(t)

2

∑
i

σxi −∆(t)
∑
i

ni +
∑
i<j

Vijninj (10.1)

where ℏ is the reduced Planck constant, ni = |ri⟩⟨ri| is the projector onto the Rydberg state at

site i and σxi = |gi⟩⟨ri| + |ri⟩⟨gi| flips the atomic state. We choose lattice spacings where the

nearest-neighbor (NN) interaction V0 > Ω results in the Rydberg blockade [88, 210, 117], pre-

venting adjacent atoms from simultaneously occupying |r⟩. For large negative detunings, the

many-body ground state is |gggg...⟩, and at large positive detunings on bipartite lattices the

ground state is antiferromagnetic, of the form |rgrg...⟩. Starting with all atoms in |g⟩, adiabat-

ically increasing ∆ from large negative values to large positive values thus prepares antiferro-

magnetic initial states |AF⟩ [123, 115, 157]; we choose array configurations (e.g. odd numbers

of atoms) such that one of the two classical orderings, |AF1⟩, is energetically preferred.

To explore quantum scarring in two-dimensional systems, we prepare |AF1⟩ on an 85-atom

honeycomb lattice, and then suddenly quench at fixed Ω to a small positive detuning (Fig. 10.1B).

The system quickly evolves from |AF1⟩ into a disordered, vast superposition of many-body

states as expected from a thermalizing system, but then strikingly the opposite order |AF2⟩

emerges at a later time [189]. Through the same process the system evolves back to |AF1⟩,

consistent with previous observations of quantum scars in one-dimensional chains [157, 189].

These scarring dynamics can be seen in the evolution of sublattice A and B populations as a

function of quench duration (Fig. 10.1C), where disordered configurations arise when the sub-
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Figure 10.1: Experimental investigations of quantum many-body scars. (A) Two-dimensional atom
array subject to global Rydberg lasers with Rabi frequency Ω and detuning ∆. (B) A quasi-adiabatic ramp
of ∆ and Ω prepares an antiferromagnetic state |AF1⟩ with sublattice A excited, and a detuning quench
launches non-equilibrium dynamics. Atoms in |g⟩ are imaged in optical tweezers via fluorescence while atoms
in |r⟩ (empty circles) are expelled and detected as atom loss. (C) The Rydberg population on sublattices A
and B undergo periodic oscillations (Inset: geometry used here).
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lattice populations are approximately equal. These observations are surprising in a strongly in-

teracting system: the fact that the atoms entangle and disentangle periodically while travers-

ing through the complicated Hilbert space (as shown theoretically [211]) indicates a special

dynamical behavior as well as a form of ergodicity breaking [189, 211]. This scarring behavior

is captured by the so-called ‘PXP’ model of perfect nearest-neighbor blockade, in which V0 is

infinite and interactions beyond nearest-neighbor are zero: HPXP = (Ω/2)
∑

i Pi−1σ
x
i Pi+1 with

Pi = |gi⟩ ⟨gi| [131, 189, 211–213].

We observe this oscillatory behavior in a wide variety of bipartite lattices, shown in Fig. 10.2A

(we do not observe scarring on the non-bipartite lattices we measure). As an example, we plot

the difference between the sublattice A and B populations ⟨n⟩A − ⟨n⟩B for a 49-atom square

and a 54-atom decorated honeycomb [214], with Rabi frequency Ω/2π = 4.2 MHz and inter-

action strength V0/2π = 9.1 MHz. We note a marked difference in the lifetime of periodic

revivals for these two different lattices. Quantitatively, we find that dynamics of ⟨n⟩A − ⟨n⟩B

are well-described by a damped cosine, y0 + C cos(Ω̃t) exp(−t/τ), with oscillation frequency

Ω̃, decay time τ , offset y0, and contrast C. While Ω̃ ≈ 0.6 Ω on both the square and deco-

rated honeycomb lattices, the fitted τ for these two different configurations are 0.22(1) µs and

0.50(1) µs, respectively.

10.2 Decay mechanisms of quantum scars

To understand this geometry dependence, we consider an empirical model for the decay rate of

many-body scars (see Appendix G), parametrized as follows:

1

τ
= α

(
1

2π

∑
NN

Ω2

4V0

)
+ β

(
1

2π

∑
NNN

Vij

)
+

1

τ0
(10.2)
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where the first two terms capture deviations of the Rydberg Hamiltonian from the idealized

PXP model, due to second-order virtual coupling to states violating blockade and next-nearest-

neighbor (NNN) interactions, respectively (Appendix G); α, β, τ0 are phenomenological val-

ues. In Fig. 10.2B we plot the measured 1/τ as a function of the first and second terms in

Eq. (10.2) for all geometries shown in Fig. 10.2A and varied interaction strengths V0. We find

that the decay rates fit well to a plane with slopes α = 0.72(12) and β = 0.58(5) and offset

1/τ0 = 0.4(2) MHz. Note that 1/τ0 ≪ 1/τ , i.e., we find that the decay of scars is dominated

by imperfect blockade and long-range interactions. The observation that long-range fields con-

tribute to decay also motivates quenching to small positive ∆q = ∆q,opt = 1/2
∑

i,j>NN Vij ,

which enhances scarring by cancelling the static, mean-field contribution from the long-range

interactions (Appendix G), and is implemented for all geometries throughout this work. These

results also suggest an intrinsic limit to the scar lifetime, coming from the trade-off between

imperfect blockade (∝ 1/V0) and long-range interactions (∝ V0). E.g., with Ω/2π = 4.2 MHz,

for a one-dimensional chain at an optimal V0/2π ≈ 19 MHz we estimate a maximum lifetime

τmax ≈ 0.9µs, or instead τmax ≈ 0.4µs for a honeycomb lattice.

10.3 Robust subharmonic response of driven quantum many-body scars

We next investigate the effect of parametric driving on many-body scars. To this end, we im-

plement quenches to a time-dependent detuning ∆q(t) = ∆0 + ∆m cos(ωmt), as illustrated

in Figure 10.3A, and explore a non-perturbative regime of ∆m,∆0, ωm ∼ Ω. Remarkably,

in Fig. 10.3B we find that such a quench results in a five-fold increase of scar lifetime com-

pared to the fixed-detuning case, for properly chosen drive parameters (modulation frequency

ωm = 1.24 Ω, offset ∆0 = 0.85 Ω, and amplitude ∆m = 0.98 Ω for this 9-atom chain). Further,

we find the drive changes the oscillation frequency Ω̃ to ωm/2, apparent in the synchronous
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Dynamics of the entire Hilbert space measured with experimental snapshots (0.5 million total bit strings).
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revival of ⟨n⟩A − ⟨n⟩B every two drive periods of ∆q(t).

Figure 10.3C shows the scar lifetime and oscillation frequency as a function of modula-

tion frequency ωm, for a 9-atom chain (with different V0 than Fig. 10.3A), a 41-atom honey-

comb, and a 66-atom edge-imbalanced decorated honeycomb (tabulation of system and drive

parameters in Appendix G). For all three lattices, a robust subharmonic locking of the scar

frequency is observed at ωm/2 over a wide range of ωm, accompanied by a marked increase

in the scar lifetime. We note that significant lifetime enhancements are found even when

∆m,∆0 ≫
∑

NNN Vij , and even in numerics for the idealized PXP model (Appendix G), in-

dicating that the physical origin of the enhancement is not simply a mean-field-interaction

cancellation akin to fixed ∆q,opt.

To gain insight into the origin of the subharmonic stabilization, Figure 10.3D shows the ex-

perimentally observed distribution of microscopic many-body states across the entire Hilbert

space of the 9-atom chain, as a function of quench time. For the fixed detuning quench, os-

cillations between |AF1⟩ and |AF2⟩ product states are observed, before the quantum state

spreads and thermalizes to a near-uniform distribution across the many-body states [201, 202].

Notably, parametric driving not only delays thermalization, but also alters the actual trajec-

tory being stabilized: the driven case also shows periodic, synchronous occupation of several

other many-body states, seemingly dominated by those with near-maximal excitation number

(indicated in the left panel of Fig. 10.3D). This suggests that, rather than enhancing oscilla-

tions between the |AF⟩ states, the parametric driving actually stabilizes the scar dynamics

to oscillations between entangled superpositions composed of various product states. Fig-

ure 10.3E further illustrates the change in trajectory with numerical simulations of the local

entanglement entropy, revealing that driving stabilizes the periodic entangling and disentan-

gling of an atom with the rest of the system.
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We observe this emergent subharmonic stabilization for a wide range of system and drive

parameters. Figs. 4A and 4B show the time dynamics of ⟨n⟩A − ⟨n⟩B and the normalized in-

tensity of its associated Fourier transform |S(ω)|2 as a function of the drive frequency for a

9-atom chain. A response is observed at ω = ωm for ωm < 0.8 Ω, before suddenly transitioning

into a subharmonic response ω = ωm/2 for ωm > 0.8 Ω. For different drive parameters a weak

4th subharmonic response at ω = ωm/4 is also observed (Appendix G). To quantify the robust-

ness of the observed response, we evaluate the subharmonic weight, |S(ω = ωm/2)|2, which

encapsulates both the ωm/2 response and enhanced lifetime [215, 216]. Fig. 10.4C shows the

corresponding results for a 9-atom chain and a 41-atom honeycomb as a function of the mod-

ulation frequency ωm and the lattice spacing a (in units of the blockade radius Rb defined by

V (Rb) = Ω). A wide plateau in the subharmonic weight is clearly observed for both lattices,

as a function of both modulation frequency and interaction strength (range 0.6− 0.9 a/Rb cor-

responds to V0/2π ≈ 8 − 80 MHz). To quantify the many-body nature of this stable region

[209], we define the subharmonic rigidity, which evaluates the robustness of the subharmonic

response over a range of modulation frequencies and is defined as
∑

ωm
|Sωm(ω = ωm/2)|2 for

ωm = 0.75, 0.85, ..., 1.75 Ω. Figure 10.4D plots subharmonic rigidity vs system size for both

a chain and a honeycomb lattice, increasing with system size until saturating at roughly 13

atoms, and appearing stable for the honeycomb lattice even to 200 atoms.

10.4 Discussion

We now turn to a discussion of these experimental observations. The emergent subharmonic

response and its rigidity is strongly reminiscent of those associated with discrete time-crystalline

order [208, 209, 215–217]. Yet, there are clear distinctions. Specifically, this behavior is ob-

served only for antiferromagnetic initial states, while other initial states such as |ggg...⟩ ther-
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malize and do not show subharmonic responses (Appendix G). This significant state depen-

dence distinguishes these observations from conventional MBL or prethermal time crystals

[218], where subharmonic responses are not tied to special initial states. Moreover, it is strik-

ing that our drive, whose frequency is resonant with local energy scales, enhances quantum

scarring and ergodicity breaking instead of rapidly injecting energy into the system, as would

generally be expected in many-body systems [219].

To gain intuition into the origin of our experimental observations, we consider a toy, pulsed

driving model with Floquet unitary UF (θ, τ) = e−iθ
∑

i nie−iHPXPτ , where θ arises from an

infinitesimal, strong detuning pulse. Due to the particle-hole symmetry of the PXP Hamilto-

nian, for θ = π the time evolution e−iHPXPτ during one pulse is cancelled by the time evo-

lution eiHPXPτ in a subsequent pulse, generating an effective many-body echo and subhar-

monic response (Appendix G). Interestingly, for small deviations from perfect π rotations,

θ = π + ε, revivals vanish for generic initial states but persist robustly for an initial |AF⟩ state

(Appendix G). This behavior can be understood as follows. Due to the scarring character of

the antiferromagnetic initial states, the PXP evolution approximately realizes an effective π-

pulse from |AF1⟩ to |AF2⟩, but results in ergodic spreading for other initial states. Accord-

ingly, for θ = π + ε, evolution still approximates a many-body echo for the scarred |AF⟩ but

does not reverse the chaotic evolution of generic initial states. Finally, the additional ε
∑

i ni

in fact serves as a “stabilizing Hamiltonian” by creating an effective gap between the |AF⟩

states (which have maximal atomic excitations nmax =
∑

i ni) from the rest of the spectrum.

In practice, the |AF⟩ states will be dressed by other states with near-maximal atomic excita-

tions, consistent with Fig. 10.3D showing stabilized oscillations between two superpositions

of states with largest
∑

i ni. Although the above arguments utilize pulses, neglect large NNN

interactions, and do not explicitly explain the observations in imbalanced lattices (Fig. 10.3C),
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this analysis already offers useful insight and warrants further study.

10.5 Outlook

These considerations indicate that the observed subharmonic stabilization of many-body scars

in large-scale quantum systems constitutes a new physical phenomenon that can be used for

steering quantum entanglement dynamics in complex systems. While these observations chal-

lenge conventional understandings of quantum thermalization, the exact nature and condi-

tions for these phenomena and their relationship to dynamical phases of matter such as the

DTC warrant further theoretical and experimental investigation. In particular, it would be

interesting to explore if many-body states with larger degrees of entanglement could also be

stabilized by driving. Such studies could be extended to systems with more complex geometry,

control, and topology: ranging from other initial states [220], non-bipartite arrays [117], and

utilizing hyperfine qubits [33], to implementing these techniques in other controllable many-

body systems. This phenomenon opens the door to tantalizing possibilities for robust creation

and control of complex entangled states in the exponentially large Hilbert spaces of many-

body systems, with intriguing potential applications in areas such as quantum metrology [221]

and quantum information science [200, 21, 22, 101].
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11
Probing Topological Spin Liquids on a

Programmable Quantum Simulator

11.1 Introduction

Motivated by visionary theoretical work carried out over the past five decades, a broad search

is currently underway to identify signatures of quantum spin liquids (QSL) in novel materi-

als [222, 223]. Moreover, inspired by the intriguing predictions of quantum information the-

ory [224], techniques to engineer such systems for topological protection of quantum informa-

tion are being actively explored [225]. Systems with frustration [226] caused by the lattice
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geometry or long-range interactions constitute a promising avenue in the search for QSLs. In

particular, such systems can be used to implement a class of so-called dimer models [227–231],

which are among the most promising candidates to host quantum spin liquid states. However,

realizing and probing such states is challenging since they are often surrounded by other com-

peting phases. Moreover, in contrast to topological systems involving time-reversal symme-

try breaking, such as in the fractional quantum Hall effect [232], these states cannot be easily

probed via, e.g., quantized conductance or edge states. Instead, to diagnose spin liquid phases,

it is essential to access nonlocal observables, such as topological string operators [222, 223].

While some indications of QSL phases in correlated materials have been previously reported

[233, 234], thus far, these exotic states of matter have evaded direct experimental detection.

Programmable quantum simulators are well suited for the controlled exploration of these

strongly correlated quantum phases [173, 89, 235–238, 180]. In particular, recent work showed

that various phases of quantum dimer models can be efficiently implemented using Rydberg

atom arrays [192] and that a dimer spin liquid state of the toric code type could be potentially

created in a specific frustrated lattice [193]. We note that toric code states have been dynam-

ically created in small systems using quantum circuits [239, 240]. However, some of the key

properties, such as topological robustness, are challenging to realize in such systems. Spin liq-

uids have also been explored using quantum annealers, but the lack of quantum coherence in

these systems has precluded the observation of non-classical features [241].

11.2 Dimer models in Rydberg atom arrays

The key idea of our approach is based on a correspondence [193] between Rydberg atoms

placed on the links of a kagome lattice (or equivalently the sites of a ruby lattice), as shown in

Fig. 11.1A, and dimer models on the kagome lattice [229, 231]. The Rydberg excitations can
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Figure 11.1: Dimer model in Rydberg atoms arrays. (A) Fluorescence image of 219 atoms arranged
on the links of a kagome lattice. The atoms, initially in the ground state |g⟩, evolve according to the many-
body dynamics U(t). The final state of the atoms is determined via fluorescence imaging of ground state
atoms. Rydberg atoms are marked with red dimers on the bonds of the kagome lattice. (B) We adjust
the blockade radius to Rb/a = 2.4, by choosing Ω = 2π × 1.4 MHz and a = 3.9 µm, such that all six
nearest neighbors of an atom in |r⟩ are within the blockade radius Rb. A state consistent with the Ryd-
berg blockade at maximal filling can then be viewed as a dimer covering of the kagome lattice, where each
vertex is touched by exactly one dimer. (C) The quantum spin liquid state corresponds to a coherent su-
perposition of exponentially many dimer coverings. (D) Detuning ∆(t) and Rabi frequency Ω(t) used for
quasi-adiabatic state preparation. (E) (Top) Average density of Rydberg excitations ⟨n⟩ in the bulk of the
system, excluding the outer three layers (Appendix H). (Bottom) Probabilities of empty vertices in the bulk
(monomers), vertices attached to a single dimer, or to double dimers (weakly violating blockade). After
∆/Ω ∼ 3, the system reaches ∼ 1/4 filling, where most vertices are attached to a single dimer, consistent
with an approximate dimer phase.

be viewed as “dimer bonds” connecting the two adjacent vertices of the lattice (Fig. 11.1B).

Due to the Rydberg blockade [27], strong and properly tuned interactions constrain the den-

sity of excitations such that each vertex is touched by a maximum of one dimer. At 1/4 fill-

ing, each vertex is touched by exactly one dimer, resulting in a perfect dimer covering of the

lattice. Smaller filling fractions result in a finite density of vertices with no proximal dimers,

which are referred to as monomers. A quantum spin liquid can emerge within this dimer-

monomer model close to 1/4 filling [193], and can be viewed as a coherent superposition of

exponentially many degenerate dimer coverings with a small admixture of monomers [231]

(Fig. 11.1C). This corresponds to the resonating valence bond (RVB) state [40, 227], predicted

long ago but so far still unobserved in any experimental system.
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Figure 11.2: Detecting a dimer phase via diagonal string operator. (A) The Z string operator mea-
sures the parity of dimers along a string. (B) A perfect dimer covering always has exactly one dimer touch-
ing each vertex of the array, so that ⟨Z⟩ = −1 around a single vertex and ⟨Z⟩ = (−1)#enclosed vertices for
larger loops. (C) Z parity measurements following the quasi-adiabatic sweep of Fig. 11.1D, with the addi-
tion of a 200 ns ramp-down of Ω at the end to optimize preparation. At different endpoints of the sweep
and for different loop sizes (inset), we measure a finite ⟨Z⟩, consistent with an approximate dimer phase.
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To create and study such states experimentally, we utilize two-dimensional arrays of 219

87Rb atoms individually trapped in optical tweezers [31, 242] and positioned on the links of

a kagome lattice, as shown in Fig. 11.1A. The atoms are initialized in an electronic ground

state |g⟩ and coupled to a Rydberg state |r⟩ via a two-photon optical transition with Rabi

frequency Ω. The atoms in the Rydberg state |r⟩ interact via a strong van der Waals potential

V = V0/d
6, with d the interatomic distance. This strong interaction prevents the simultaneous

excitation of two atoms within a blockade radius Rb = (V0/Ω)
1/6 [27]. We adjust the lattice

spacing a and the Rabi frequency Ω such that, for each atom in |r⟩, its six nearest neighbors

are all within the blockade radius (Fig. 11.1B), resulting in a maximum filling fraction of 1/4.

The resulting dynamics corresponds to unitary evolution U(t) governed by the Hamiltonian

H

ℏ
=

Ω(t)

2

∑
i

σxi −∆(t)
∑
i

ni +
∑
i<j

Vijninj (11.1)

where ℏ is the reduced Planck constant, ni = |ri⟩⟨ri| is the Rydberg state occupation at site

i, σxi = |gi⟩⟨ri| + |ri⟩⟨gi| and ∆(t) is the time-dependent two-photon detuning. After the

evolution, the state is analyzed by projective readout of ground state atoms (Fig. 11.1A, right

panel) [31].

To explore many-body phases in this system, we utilize quasi-adiabatic evolution, in which

we slowly turn on the Rydberg coupling Ω and subsequently change the detuning ∆ from neg-

ative to positive values using a cubic frequency sweep over about 2 µs (Fig. 11.1D). We stop

the cubic sweep at different endpoints and first measure the density of Rydberg excitations

⟨n⟩. Away from the array boundaries (which result in edge effects permeating just two layers

into the bulk), we observe that the average density of Rydberg atoms is uniform across the ar-

ray (see Fig. H.3 and Appendix H). Focusing on the bulk density, we find that for ∆/Ω ≳ 3,
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the system reaches the desired filling fraction ⟨n⟩ ∼ 1/4 (Fig. 11.1E, top panel). The resulting

state does not have any obvious spatial order (Fig. 11.1A) and appears as a different configu-

ration of Rydberg atoms in each experimental repetition (see Fig. H.4 and Appendix H). From

the single-shot images, we evaluate the probability for each vertex of the kagome lattice to be

attached to: one dimer (as in a perfect dimer covering), zero dimers (i.e. a monomer), or two

dimers (representing weak blockade violations). Around ∆/Ω ∼ 4 we observe an approximate

plateau where ∼ 80% of the vertices are connected to a single dimer (Fig. 11.1E), indicating

an approximate dimer covering.

11.3 Measuring topological string operators

A defining property of a phase with topological order is that it cannot be probed locally. Hence,

to investigate the possible presence of a QSL state, it is essential to measure topological string

operators, analogous to those used in the toric code model [224]. For the present model, there

are two such string operators, the first of which characterizes the effective dimer description,

while the second probes quantum coherence between dimer states [193]. We first focus on the

diagonal operator Z =
∏

i∈S σ
z
i , with σzi = 1 − 2ni, that measures the parity of Rydberg

atoms along a string S perpendicular to the bonds of the kagome lattice (Fig. 11.2A). For the

smallest closed Z loop, which encloses a single vertex of the kagome lattice, ⟨Z⟩ = −1 for any

perfect dimer covering. Larger loops can be decomposed into a product of small loops around

all the enclosed vertices, resulting in ⟨Z⟩ = (−1)# enclosed vertices (Fig. 11.2B). Note that the

presence of monomers or double-dimers reduces the effective contribution of each vertex, re-

sulting in a reduced ⟨Z⟩.

To measure ⟨Z⟩ for different loops (Fig. 11.2C), we evaluate the string observables directly

from single-shot images, averaging over many experimental repetitions and over all loops of
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Figure 11.3: Probing coherence between dimer states via off-diagonal string operator. (A) Defini-
tion of X string operator on a single triangle of the kagome lattice. (B) On any closed loop, the X operator
maps any dimer covering into another valid dimer covering, such that ⟨X⟩ measures the coherence between
pairs of dimer configurations. (C) The X operator is measured by evolving the initial state under Hamilto-
nian (eq. (11.1)) with ∆ = 0 and reduced blockade radius to encompass only atoms within each individual
triangle, implementing a basis rotation that maps X into Z. (D) In the experiment, after the state prepara-
tion, we set the laser detuning to ∆q = 0 and we increase Ω to 2π × 20 MHz to reach Rb/a = 1.53. (E)
By measuring the Z parity on the dual string (red) of a target X loop (blue) after a variable quench time,
we identify the time τ for which the mapping in (C) is implemented. (F) We measure ⟨X⟩ for different fi-
nal detunings of the cubic sweep and for different loop sizes (inset), and find that the prepared state has
long-range coherence that extends over a large fraction of the array (Appendix H).

the same shape in the bulk of the lattice (Appendix H). In the range of detunings where ⟨n⟩ ∼

1/4, we clearly observe the emergence of a finite ⟨Z⟩ for all loops, with the sign matching the

parity of enclosed vertices, as expected for dimer states (Fig. 11.2B). The measured values

are generally |⟨Z⟩| < 1 and decrease with the loop size, suggesting the presence of a finite

density of defects, as discussed below. Nevertheless, these observations indicate that the state

we prepare is consistent with an approximate dimer phase.

We next explore quantum coherence properties of the prepared state. To this end, we con-

sider the off-diagonal X operator, which acts on strings along the bonds of the kagome lattice.

It is defined in Fig. 11.3A by its action on a single triangle [193]. Applying X on any closed

string maps a dimer covering to another valid dimer covering (see e.g. Fig. 11.3B for a loop

around a single hexagon). A finite expectation value for X therefore implies that the state

contains a coherent superposition of one or more pairs of dimer states coupled by that specific
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loop, a prerequisite for a quantum spin liquid. The measurement of X can be implemented

by performing a collective basis rotation [193] illustrated in Fig. 11.3C. This rotation is im-

plemented by time-evolution under the Rydberg Hamiltonian (eq. (11.1)) with ∆ = 0 and

reduced blockade radius Rb/a = 1.53, such that only the atoms within the same triangle are

subject to the Rydberg blockade constraint. Under these conditions, it is sufficient to consider

the evolution of individual triangles separately, where each triangle can be described as a 4-

level system ( ). Within this subspace, after a time τ = 4π/(3Ω
√
3), the collective

3-atom dynamics realizes a unitary Uq which implements the basis rotation that transforms an

X string into a dual Z string (Appendix H).

Experimentally, the basis rotation is implemented following the state preparation by quench-

ing the laser detuning to ∆q = 0 and increasing the laser intensity by a factor of ∼ 200 to

reduce the blockade radius to Rb/a = 1.53 (Fig. 11.3D and Appendix H). We calibrate τ

by preparing the state at ∆/Ω = 4 and evolving under the quench Hamiltonian for a vari-

able time. We measure the parity of a Z string that is dual to a target X loop, and observe a

sharp revival of the parity signal at τ ∼ 30 ns (Fig. 11.3E) [193]. Fixing the quench time τ , we

measure ⟨X⟩ for different values of the detuning ∆ at the end of the cubic sweep (Fig. 11.3F)

and observe a finite X parity signal for loops that extend over a large fraction of the array.

We emphasize that, in light of experimental imperfections (Appendix H), the observation of

finite parities for string observables of up to 28 atoms within µs-long experiments is rather

remarkable. These observations clearly indicate the presence of long-range coherence in the

prepared state.
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Figure 11.4: String order parameters and quasiparticle excitations. (A) An open string operator
Xopen acting on a dimer state |D⟩ creates two monomers (e-anyons) at its endpoints (see Fig. H.9 for m-
anyons). (B,C) Definition of the string order parameters ⟨Z⟩BFFM and ⟨X⟩BFFM. (D) Comparison between
⟨Zclosed⟩ and ⟨Zopen⟩2 measured on the strings shown in the inset. The expectation value shown for the
open string is squared to account for the different length of the strings. (E) Analogous comparison for X.
(F,G) Zooming in on the range with finite closed loop parities we measure the BFFM order parameters
for different open strings (insets). We find that ⟨Z⟩BFFM is consistent with zero on the entire range of ∆,
while ⟨X⟩BFFM vanishes for ∆/Ω ≳ 3.3, allowing us to identify a range of detunings consistent with the on-
set of a QSL phase (shaded area). (H) Rescaled parities ⟨Z⟩1/area and ⟨Z⟩1/perim evaluated for ∆/Ω = 3.6,
where area and perimeter are defined as the number of vertices enclosed by the loop and the number of
atoms on the loop, respectively. For small loops, Z scales with an area law, while it deviates from this be-
havior for larger loops, converging towards a perimeter law. (I) ⟨X⟩1/area (the area, in this case, is the num-
ber of enclosed hexagons) and ⟨X⟩1/perim evaluated for ∆/Ω = 3.5, indicating an excellent agreement with
a perimeter-law scaling.
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11.4 Probing spin liquid properties

The study of closed string operators shows that we prepare an approximate dimer phase with

quantum coherence between dimer coverings. While these closed loops are indicative of topo-

logical order, it is important to compare their properties to those of open strings to distin-

guish topological effects from trivial ordering—the former being sensitive to the topology

of the loop [243–245]. This comparison is shown in Fig. 11.4D,E, indicating several distinct

regimes. For small ∆, we find that both Z and X loop parities factorize into the product of

the parities on the half-loop open strings—in particular, the finite ⟨Z⟩ is a trivial result of the

low density of Rydberg excitations. In contrast, loop parities no longer factorize in the dimer

phase (3 ≲ ∆/Ω ≲ 5). Instead, the expectation values for both open string operators vanish

in the dimer phase, indicating the nontrivial nature of the correlations measured by the closed

loops (see also Appendix H). More specifically, topological ordering in the dimer-monomer

model can break down either due to a high density of monomers, corresponding to the triv-

ial disordered phase at small ∆/Ω, or due to the lack of long-range resonances, correspond-

ing to a valence bond solid (VBS) [193]. Open Z and X strings distinguish the target QSL

phase from these proximal phases: when normalized according to the definition from Bric-

mont, Frölich, Fredenhagen and Marcu [243, 244] (BFFM) (Fig. 11.4B,C), these open strings

can be considered as order parameters for the QSL. In particular, open Z strings have a finite

expectation value when the dimers form an ordered spatial arrangement, as in the VBS phase.

At the same time, open X strings create pairs of monomers at their endpoints (Fig. 11.4A),

so a finite ⟨X⟩ can be achieved in the trivial phase where there is a high density of monomers.

Therefore, the QSL can be identified as the unique phase where both order parameters vanish

for long strings [193].
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Figures 11.4F,G show the measured values of these order parameters. We find that ⟨Z⟩BFFM

is compatible with zero on the entire range of ∆/Ω where we observed a finite Z parity on

closed loops, indicating the absence of a VBS phase (Fig. 11.4F), consistent with our analy-

sis of density-density correlations (Fig. H.5 and Appendix H). At the same time, ⟨X⟩BFFM

converges towards zero on the longest strings for ∆/Ω ≳ 3.3 (Fig. 11.4G), indicating a tran-

sition out of the disordered phase. By combining these two measurements with the regions

of non-vanishing parity for the closed Z and X loops (Figs. 11.2,11.3), we conclude that for

3.3 ≲ ∆/Ω ≲ 4.5 our results constitute a direct detection of the onset of a quantum spin liquid

phase (shaded area in Fig. 11.4F,G).

The measurements of the closed loop operators in Fig. 11.2,11.3 show that |⟨Z⟩|, |⟨X⟩| < 1

and that the amplitude of the signal decreases with the loop size, which results from a fi-

nite density of quasiparticle excitations. Specifically, defects in the dimer covering such as

monomers and double-dimers can be interpreted as electric (e) anyons in the language of

lattice gauge theory [193]. Since the presence of a defect inside a closed loop changes the

sign of Z, the parity on the loop is reduced according to the number of enclosed e-anyons as

|⟨Z⟩| = |⟨(−1)#enclosed e-anyons⟩|. The average number of defects inside a loop is expected to

scale with the number of enclosed vertices, i.e. with the area of the loop, and indeed we ob-

serve an approximate area-law scaling of |⟨Z⟩| for small loop sizes (Fig. 11.4H). However, for

larger loops we notice a deviation towards a perimeter-law scaling, which can emerge if pairs

of anyons are correlated over a characteristic length scale smaller than the loop size (see Ap-

pendix H for a discussion of the expected scaling). Pairs of correlated anyons which are both

inside the loop do not change its parity since their contributions cancel out; they only affect

⟨Z⟩ when they sit across the loop, leading to a scaling with the length of the perimeter. These

pairs can be viewed as resulting from the application of X string operators to a dimer cover-
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ing (Fig. 11.4A), originating, e.g., from virtual excitations in the dimer-monomer model (Ap-

pendix H) or from errors due to state preparation and detection. Note that state preparation

with larger Rabi frequency (improved adiabaticity) results in larger Z parity signals and re-

duced e-anyon density (see Fig. H.7).

A second type of quasiparticle excitation that could arise in this model is the so-called

magnetic (m) anyon. Analogous to e-anyons which live at the endpoints of open X strings

(Fig. 11.4A), m-anyons are created by open Z strings and they correspond to phase errors

between dimer coverings (Fig. H.9 and Appendix H). These excitations cannot be directly

identified from individual snapshots, but they are detected by the measurement of closed X

loop operators. The remarkable perimeter law scaling observed in Fig. 11.4I indicates that m-

anyons only appear in pairs with short correlation lengths (Appendix H). These observations

highlight the prospects for using topological string operators to detect and probe quasiparticle

excitations in the system.

11.5 Towards a topological qubit

To further explore the topological properties of the spin liquid state, we create an atom array

with a small hole by removing three atoms on a central triangle, which creates an effective

inner boundary (Fig. 11.5). This results in two distinct topological sectors for the dimer cov-

erings, where states belonging to different sectors can be transformed into each other only via

large X loops which enclose the hole, constituting a highly nonlocal process (involving at least

a 16-atom resonance) (Fig. H.11). We define the logical states |0L⟩ and |1L⟩ as the superposi-

tions of all dimer coverings from the topological sectors 0 and 1, respectively. One can define

[193] the logical operator σzL as proportional to any ZL string operator that connects the hole

with the outer boundary, since these have a well-defined eigenvalue ±1 for all dimer states
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Figure 11.5: Topological properties in array with a hole. (A) A lattice with nontrivial topology is ob-
tained by removing three atoms at the center to create a small hole. The dimer states can be divided into
two distinct topological sectors 0 and 1. Z strings connecting the hole to the boundary always have a well-
defined expectation value within each sector and opposite sign between the two sectors, while the correla-
tions between two such strings Z1Z2 are identical for both sectors. (B) Measured expectation values for the
operators ZL and XL defined in the inset, indicate that in the QSL region (shaded area) we prepare a super-
position state of the two topological sectors (⟨ZL⟩ = 0) with a finite overlap with the |+⟩ state (⟨XL⟩ > 0).
(C) Finite expectation values for the correlations between pairs of hole-to-boundary Z strings (inset), consis-
tent with (A).
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in the same sector but opposite for the two sectors. The logical σxL is instead proportional to

XL, which is any X loop around the hole. This operator anticommutes with ZL and has eigen-

states |+⟩ ∼ (|0L⟩+ |1L⟩)/
√
2 and |−⟩ ∼ (|0L⟩ − |1L⟩)/

√
2.

We measure ZL and XL on the strings defined in the inset of Fig. 11.5B, following the same

quasi-adiabatic preparation as in Fig. 11.1D. We find that in the range of ∆/Ω associated

with the onset of a QSL phase, ⟨ZL⟩ = 0, and ⟨XL⟩ > 0, indicating that the system is in a su-

perposition of the two topological sectors, with a finite overlap with the |+⟩ state (Fig. 11.5B).

To further support this conclusion, we evaluate correlations ⟨Z1Z2⟩ between hole-to-boundary

strings, which are expected to have the same expectation values for both topological sectors

(Fig. 11.5A). In agreement with this prediction, we find that the correlations between different

pairs of strings have finite expectation values, with amplitudes decreasing with the distance

between the strings (Fig. 11.5C) due to imperfect state preparation. These measurements rep-

resent the first steps towards initialization and measurement of a topological qubit.

11.6 Discussion and outlook

Noting that it is not possible to classically simulate quantum dynamics for the full experimen-

tal system, we compare our results with several theoretical approaches. We first note that

our observations qualitatively disagree with the ground state phase diagram obtained from

density-matrix-renormalization-group (DMRG) [246, 247] simulations on infinitely-long cylin-

ders. For the largest accessible system sizes, including van der Waals interactions only up to

intermediate distances (∼ 4a), we find a Z2 spin liquid in the ground state. However, unlike in

deformed lattices [193], longer-range couplings destabilize the spin liquid in the ground state

of the Hamiltonian (eq. (11.1)) on the specific ruby lattice used in the experiment, leading to

a direct first-order transition from the disordered phase to the VBS phase (Appendix H). In
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contrast, we experimentally observe the onset of the QSL phase in a relatively large parameter

range, while no signatures of a VBS phase are detected.

To develop additional insight, we perform time-dependent DMRG calculations [246, 248,

247] simulating the same state preparation protocol as in the experiment on an infinitely-long

cylinder with a seven-atom-long circumference (Appendix H). The results of these simulations

are in good qualitative agreement with our experimental observations (see Fig. H.17). Specif-

ically, similar to the results in Fig. 11.4, we find that the region ∆/Ω ∼ 3.54.5 hosts nonzero

signals for closed Z and X loops which cannot be factorized into open strings, a characteristic

fingerprint of spin liquid correlations. In addition, exact diagonalization studies of a simplified

blockade model reveal how the dynamical state preparation creates an approximate equal-

weight and equal-phase superposition of many dimer states, instead of the VBS ground state

(Appendix H). We conclude that quasi-adiabatic state preparation occurring over a few mi-

croseconds is insensitive to longer-range couplings and generates states that retain the QSL

character (Appendix H). While this phenomenon deserves further theoretical studies, these

considerations point towards the creation of a novel metastable state with key characteristic

properties of a quantum spin liquid.

Our experiments offer unprecedented insights into elusive topological quantum matter,

and open up a number of new directions in which these studies can be extended, including:

improving the robustness of the QSL by using modified lattice geometries and boundaries

[192, 193], as well as optimizing the state preparation to minimize quasiparticle excitations;

understanding and mitigating environmental effects associated, e.g., with dephasing and spon-

taneous emission (Appendix H); optimizing string operator measurements using quasi-local

transformations [249], potentially with the help of quantum algorithms [250]. At the same

time, hardware-efficient techniques for robust manipulation and braiding of topological qubits
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can be explored. Furthermore, methods for anyon trapping and annealing can be investigated,

with eventual applications towards fault-tolerant quantum information processing [251]. With

improved programmability and control, a broader class of topological quantum matter and

lattice gauge theories can be efficiently implemented [194, 252], opening the door to their de-

tailed exploration under controlled experimental conditions, and providing a novel route for

the design of quantum materials that can supplement exactly solvable models [224, 253] and

classical numerical methods [246, 247].
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12
High-fidelity control and entanglement of

Rydberg atom qubits

Neutral atoms are attractive building blocks for large-scale quantum systems. They can be

well isolated from the environment, enabling long-lived quantum memories. Initialization, con-

trol, and read-out of their internal and motional states is accomplished by resonance methods

developed over the past four decades [254]. Recent experiments demonstrated that arrays with

a large number of identical atoms can be rapidly assembled while maintaining single-atom

optical control [25, 24, 26]. These bottom-up approaches are complementary to the methods

involving optical lattices loaded with ultracold atoms prepared via evaporative cooling [173],
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and generally result in atom separations of several micrometers. In order to utilize these ar-

rays for quantum simulation and quantum information processing, it is necessary to introduce

controllable interactions between the atoms. This can be achieved by coherent coupling to

highly excited Rydberg states, which exhibit strong, long-range interactions [29]. Over the

past decade, this approach has emerged as a powerful platform for many applications, in-

cluding fast multi-qubit quantum gates [88, 112, 110, 111, 255–257], quantum simulations of

Ising-type spin models with up to 250 spins [115, 117, 258, 157, 177–179], and the study of

collective behavior in mesoscopic ensembles [259, 260, 118, 261, 262]. Despite these impres-

sive demonstrations, experimental progress to date has been limited by short coherence times

and relatively low gate fidelities associated with such Rydberg excitations [112]. This imper-

fect coherence limits the quality of quantum simulations, and especially dims the prospects for

neutral atom quantum information processing. The limited coherence becomes apparent even

at the level of single isolated atomic qubits [53].

This Letter reports the experimental realization of high-fidelity quantum control of Ryd-

berg atom qubits. We show that by reducing laser phase noise, a significant improvement

in the coherence properties of individual qubits can be achieved, consistent with recent the-

oretical analysis [53]. We further demonstrate that this high-fidelity control extends to the

multi-particle case by preparing a two-atom entangled state with a fidelity exceeding 0.97(3).

Finally, we extend the lifetime of the prepared Bell state with a novel two-atom dynamical

decoupling protocol.

12.1 Experimental setup

Our experimental setup has been described in detail previously [24, 157]. We deterministically

prepare individual cold Rubidium-87 atoms in optical tweezers at programmable positions in
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one dimension. The atoms are initialized in a Zeeman sublevel |g⟩ = |5S1/2, F = 2,mF = −2⟩

of the ground state via optical pumping in a 1.5 G magnetic field (Chapter 2 and Appendix I).

We then rapidly switch off the tweezer potentials, and apply a laser field to couple the atoms

to the Rydberg state |r⟩ = |70S, J = 1/2,mJ = −1/2⟩. After the laser pulse of typical dura-

tion 3-8 µs, we restore the tweezer potentials. Atoms that are in the ground state are recap-

tured by the tweezers, whereas those left in the Rydberg state are pushed away by the tweezer

beams [53]. This simple detection method has Rydberg state detection fidelity fr = 0.96(1)

and ground state detection fidelity fg ranging from 0.955(5) to 0.990(2), depending on the

trap-off time (Chapter 3 and Appendix I).

In our experiments, the Rydberg states are excited via a two-photon transition. A 420 nm

laser is blue detuned by ∆ from the transition from |g⟩ to |e⟩ = |6P3/2, F = 3,mF = −3⟩. A

second laser field at 1013 nm couples |e⟩ to |r⟩. The two lasers are polarized to drive σ− and

σ+ transitions, respectively, such that only a single intermediate sublevel and Rydberg state

can be coupled, avoiding the population of additional levels and associated dephasing (see

Fig. 12.1(a)).

12.2 Cavity filtering of high-frequency phase noise on Rydberg lasers

The two lasers (external-cavity diode lasers from MogLabs) are frequency stabilized by a

Pound-Drever-Hall (PDH) lock to an ultra-low expansion reference cavity (StableLasers).

The PDH lock strongly suppresses laser noise at frequencies below the effective bandwidth

of the lock, resulting in narrow linewidths of < 1 kHz, as estimated from in-loop noise. How-

ever, noise above the lock bandwidth cannot be suppressed, and can be amplified at high

locking gain. This results in broad peaks in phase noise around ∼ 2π × 1 MHz (see inset of

Fig. 12.1(b)). This high-frequency phase noise has been reported as a known coherence lim-
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Figure 12.1: Experimental setup and single-atom Rabi oscillations. (a) The ground state |g⟩ = |5S1/2, F =
2,mF = −2⟩ is coupled to |r⟩ = |70S, J = 1/2,mJ = −1/2⟩ via the intermediate state |e⟩ = |6P3/2, F =
3,mF = −3⟩. (b) The lasers are locked to a reference cavity whose narrow transmission window (shaded
region in inset) suppresses high-frequency phase noise. This transmitted light is used to injection lock a
Fabry-Perot (FP) laser diode. The laser diode output is focused onto the array of atoms trapped in optical
tweezers, with a small pickoff onto a reference CCD camera used for alignment. (c) Resonant two-photon
coupling induces Rabi oscillations between |g⟩ and |r⟩. The upper plot is a typical measurement from the
previous setup used in [157]. The lower plot shows typical results with the new setup, with a fitted coher-
ence time of 27(4)µs. Each data point is calculated from 50-100 repeated measurements of two identically-
coupled atoms separated by 23 µm such that they are effectively non-interacting. In all figures, error bars
mark 68% confidence intervals, solid lines are fits to experimental data, and dotted lines indicate the ex-
pected contrast from the numerical model.
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itation in Rydberg experiments [53] and experiments with trapped ions [263, 264], and has

also been studied in the context of atomic clocks [265]. To suppress this phase noise, we follow

the approach of [266, 267, 263, 264] in which the reference cavity is used as a spectral filter.

In particular, the transmission function of the cavity is a Lorentzian with a full-width at half

maximum of Γ ∼ 2π × 500 kHz (corresponding to a finesse of F ∼ 3000). When the laser is

locked, its narrow linewidth carrier component is transmitted through the cavity, whereas the

power spectral density 2π × 1 MHz away from the carrier is suppressed by a factor of ≳ 16

(estimated using the cavity linewidth). To amplify the transmitted light at both 420 and 1013

nm, we split the two colors and use each beam to injection lock a separate laser diode (1013

nm from Toptica, 420 nm from TopGaN), which inherits the same spectral properties. This

amplifies the spectrally pure transmitted light to 5 mW of 420 nm and 50 mW of 1013 nm

light. While the 420 nm power is sufficient to drive the blue transition directly, the 1013 nm

is further amplified by a tapered amplifier (MogLabs).

We focus both lasers onto the atom array in a counter-propagating configuration to mini-

mize Doppler shifts due to finite atomic temperature. The 420 (1013) nm laser is focused to a

waist of 20 (30) µm. We achieve single-photon Rabi frequencies of ΩB ≃ 2π × 54 MHz (ΩR ≃

2π× 40 MHz). At our intermediate detuning of ∆ ≃ 2π× 540 MHz, this leads to a two-photon

Rabi frequency of Ω = ΩBΩR/(2∆) ≃ 2π × 2 MHz. Each beam is power-stabilized to < 1%

by an acousto-optic modulator that is also used for fast (∼ 20 ns) switching. We use a sample-

and-hold method to pause the intensity lock during the Rydberg pulses to avoid introducing

additional intensity noise. To minimize sensitivity to pointing fluctuations, we ensure well-

centered alignment onto the atoms using a reference camera (depicted in Fig. 12.1(b)) and an

automatic beam alignment procedure (Chapter 5 and Appendix I).
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12.3 Characterizing Rydberg coherence

With these technical improvements in place, we measure long-lived Rabi oscillations with a

1/e lifetime of τ = 27(4) µs, to be compared with a typical ≲ 7 µs lifetime in previous ex-

periments [157] (see Fig. 12.1(c)). Importantly, we observe excellent agreement between these

new measurements and a simple numerical model for our single-atom system, indicated by

dotted lines in all figures. The numerical model has no free parameters and accounts only for

the effects of random Doppler shifts, off-resonant scattering from the intermediate state, the

Rydberg state lifetime, and finite detection fidelity (Appendix I). In the case of resonant Rabi

oscillations, the primary limitation is off-resonant scattering.

Next, we characterize the coherence of single atoms and demonstrate single-qubit control.

To begin, we experimentally measure the lifetime of the Rydberg state in Fig. 12.2(a). The

measured T1 = Tr→g = 51(6) µs is consistent with the 146 µs Rydberg state lifetime [48] when

combined with the ∼ 80 µs timescale for off-resonant scattering of the 1013 nm laser from |e⟩.

A Ramsey experiment shows Gaussian decay that is well-explained by thermal Doppler shifts

(see Fig. 12.2(b)). At 10 µK, the random atomic velocity in each shot of the experiment ap-

pears as a random detuning δD from a Gaussian distribution of width 2π × 43.5 kHz, resulting

in dephasing as |ψ⟩ → 1√
2
(|g⟩ + eiδ

Dt|r⟩). However, since the random Doppler shift is constant

over the duration of each pulse sequence, its effect can be eliminated via a spin-echo sequence

(orange in Fig. 12.2(b)). Note that the spin-echo measurements display some small deviations

from the numerical simulations, indicating the presence of an additional dephasing channel.

Assuming an exponential decay, we measure a fitted T2 = 32(6) µs and extract a pure dephas-

ing time Tϕ = (1/T2 − 1/(2Tr→g))
−1 = 47(13) µs. We hypothesize that this dephasing may

result from residual laser phase noise.

173



a b

c

Figure 12.2: Characterization of single-atom coherence and phase control. (a) The lifetime of |r⟩ is mea-
sured by exciting from |g⟩ to |r⟩ with a π-pulse, and then de-exciting after a variable delay. The probability
to end in |g⟩ (denoted Pg) decays with an extracted lifetime of T1 = 51(6) µs (fitted to an exponential
decay model with no offset). (b) A Ramsey experiment (blue) shows Gaussian decay with a 1/e lifetime of
T ∗
2 = 4.5(1) µs, limited by thermal Doppler shifts. Inserting an additional π-pulse (orange) between the
π/2-pulses cancels the effect of the Doppler shifts and results in a substantially longer coherence lifetime of
T2 = 32(6) µs (fitted to an exponential decay model with an offset of 0.5). (c) A single-atom phase gate is
implemented by applying an independent 809 nm laser which induces a light shift δ = 2π × 5 MHz on the
ground state for time t, resulting in an accumulated dynamical phase ϕ = δt. The gate is embedded in a
spin-echo sequence to cancel Doppler shifts. In each measurement shown here, the 1013 nm laser remains
on for the entire pulse sequence, while the 420 nm laser is pulsed according to the sequence shown above
each plot. Each data point is calculated from 200 − 500 repeated measurements with a single atom per
realization.
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Finally, we demonstrate a single-atom phase gate by applying an independent focused laser

that shifts the energy of the ground state |g⟩ (see Fig. 12.2(c)) (Appendix I). By controlling

the duration of the applied laser pulse, we impart a controlled dynamical phase on |g⟩ relative

to |r⟩. The contrast of the resulting phase gate (embedded in a spin-echo sequence) is close to

the limit imposed by detection and spin-echo fidelity.

12.4 Generating entanglement within the Rydberg blockade regime

We next turn to two-atom control. To this end, we position two atoms at a separation of

5.7 µm, at which the Rydberg-Rydberg interaction is U/ℏ = 2π × 30 MHz ≫ Ω = 2π × 2 MHz.

In this so-called Rydberg blockade regime, the laser field globally couples both atoms from

|gg⟩ to the symmetric∗ state |W ⟩ = 1√
2
(|gr⟩+ |rg⟩) at an enhanced Rabi frequency of

√
2Ω (see

Fig. 12.3(a)). The measured probabilities for the states |gg⟩, |gr⟩, |rg⟩, and |rr⟩ (denoted by

Pgg, Pgr, Prg, and Prr, respectively) show that indeed no population enters the doubly-excited

state (Prr < 0.02, consistent with only detection error). Instead, there are oscillations between

the manifold of zero excitations and the manifold of one excitation with a fitted frequency of

2π × 2.83 MHz ≈
√
2Ω (see Fig. 12.3(b)).

These collective Rabi oscillations can be used to directly prepare the maximally entangled

Bell state |W ⟩ by applying a π-pulse at the enhanced Rabi frequency (denoted by XW
π ). To

determine the fidelity of this experimentally prepared entangled state, given by F = ⟨W |ρ|W ⟩,

we express it in terms of diagonal and off-diagonal matrix elements of the density operator ρ:

F =
1

2
(ρgr,gr + ρrg,rg) +

1

2
(ρgr,rg + ρrg,gr) (12.1)

∗Here the excited states |r⟩ are defined in the rotating frame to incorporate the spatial phase factors
eikx, as discussed in Appendix I.
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Figure 12.3: Coherent control and entanglement generation with two atoms. (a) The level structure for
two nearby atoms features a doubly excited state |rr⟩ which is shifted by the interaction energy U ≫ ℏΩ. In
this Rydberg blockade regime, the laser field only couples |gg⟩ to |W ⟩. The symmetric and antisymmetric
states |W ⟩, |D⟩ = 1√

2
(|gr⟩ ± |rg⟩) can be coupled by a local phase gate on one atom (pink arrow). (b)

After driving both atoms on resonance for variable time, we measure the probability of the resulting two-
atom states. Population oscillates from |gg⟩ to |W ⟩ at the enhanced Rabi frequency

√
2Ω. (c) We measure

the entanglement fidelity of the two atoms after a resonant π-pulse in the blockade regime. A local phase
gate Z(1)

ϕ rotates |W ⟩ into |D⟩, which is detected by a subsequent π-pulse. The fitted contrast 0.88(2)
measures the off-diagonal density matrix elements. The phase gate is implemented by an off-resonant laser
focused onto one atom, with a crosstalk of < 2% (Appendix I). The measurement is embedded in a spin-
echo sequence to cancel dephasing from thermal Doppler shifts. (d) The four components of the density
matrix correspond to an entangled state with fidelity F = 0.97(3) (corrected for detection error). Each data
point in (b) and (c) is calculated from ∼ 50 and ∼ 250 repeated measurements, respectively, with a single
atom pair per realization. Dotted lines in (c) mark the limits of detection fidelity.
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where ραβ,γδ = ⟨αβ|ρ|γδ⟩ for α, β, γ, δ ∈ {g, r}. The diagonal elements can be directly mea-

sured by applying a π-pulse and then measuring the populations. The results closely match

those of a perfect |W ⟩ state after accounting for state detection errors, with ρgr,gr + ρrg,rg =

0.94(1), relative to a maximum possible value of 0.95(1).

12.5 Characterizing two-particle Bell state

To measure the off-diagonal elements of the density matrix, we make use of the single-atom

phase gate Z(1)
ϕ demonstrated in Fig. 12.2(c), which introduces a variable phase on one atom

(as demonstrated in [268]). Specifically, a local beam adds a light shift δ to |gr⟩ but not to

|rg⟩, such that |W ⟩ → 1√
2
(eiδt|gr⟩+ |rg⟩).

This phase accumulation rotates |W ⟩ into the orthogonal dark state |D⟩ = 1√
2
(|gr⟩ − |rg⟩)

according to:

|W ⟩ → cos(δt/2)|W ⟩+ i sin(δt/2)|D⟩ (12.2)

Since |D⟩ is uncoupled by the laser field, a subsequent π-pulse maps only the population of

|W ⟩ back to |gg⟩. The probability of the system to end in |gg⟩ therefore depends on the phase

accumulation time as Pgg(t) = A cos2(δt/2). Here, the amplitude of the oscillation A precisely

measures the off-diagonal matrix elements ρgr,rg = ρrg,gr (see Appendix I for derivation). Note

that in order to mitigate sensitivity to random Doppler shifts, we embed this entire sequence

in a spin-echo protocol (see Fig. 12.3(c)). The resulting contrast is A = 0.88(2) = 2ρgr,rg =

2ρrg,gr. Combining these values with the diagonal matrix elements, we have directly measured

entanglement fidelity of F = 0.91(2). The maximum measurable fidelity given our state de-

tection error rates would be 0.94(2), so after correcting for imperfect detection, we find that

the entangled Bell state was created with fidelity of F = 0.97(3). We note that this fidelity
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Figure 12.4: Extension of entangled-state lifetime via dynamical decoupling. We measure the lifetime of
|W ⟩ by exciting |gg⟩ to |W ⟩ and then de-exciting after a variable time (blue). The lifetime is limited by
dephasing from random Doppler shifts. Inserting an additional 2π-pulse (orange) in the blockade regime
swaps the populations of |gr⟩ and |rg⟩ to refocus the random phase accumulation, extending the lifetime
to ∼ 36 µs (fitted to an exponential decay with no offset, shown as the solid orange line). The initial off-
set in each curve is set by the ground state detection fidelity associated with the given trap-off time. All
data points are calculated from 30-100 repeated measurements, averaged over nine independent identically-
coupled atom pairs per realization.

includes errors introduced during the pulses that follow the initial π-pulse, and therefore con-

stitutes a lower bound on the true fidelity.

12.6 Lifetime of Bell state

Finally, we explore the lifetime of the entangled state by exciting |W ⟩ with a π-pulse and then

de-exciting after a variable delay (see Fig. 12.4). The decay in contrast is in good agreement

with numerical predictions associated with random Doppler shifts. In particular, the two com-

ponents |gr⟩ and |rg⟩ of the |W ⟩ state dephase as |W ⟩ → 1√
2
(eiδ

D
2 t|gr⟩+ eiδD1 t|rg⟩), where δDi is

the two-photon Doppler shift on atom i.

We extend the lifetime of the two-atom entangled state with a many-body echo sequence.

After the |W ⟩ state has evolved for time T , we apply a 2π-pulse to the two-atom system.

In the Rydberg blockade regime, such a pulse swaps the populations of |gr⟩ and |rg⟩. Af-

ter again evolving for time T , the total accumulated Doppler shifts are the same for each
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a) b) O�-resonant coupling

Figure 12.5: Suppressing Doppler dephasing of Bell state. (a) Doppler shifts due to finite atomic tempera-
ture are a dominant source of dephasing of the |W ⟩ state, leading to a random coupling δDoppler from |W ⟩
to |D⟩ given by the difference in Doppler shifts for the two atoms. By applying the Rydberg laser in an off-
resonant configuration, detuned by ∆, the states |gg⟩ and |W ⟩ are shifted in energy by Ω2/2∆ due to the
AC Stark effect. When this light shift is larger than the rate of Doppler dephasing, Ω2/2∆ > δDoppler, the
dephasing mechanism is off-resonance and therefore suppressed. (b) We measure the |W ⟩ state lifetime sim-
ilarly to in Fig. 12.4, with and without the presence of the off-resonant Rydberg laser. We observe that the
presence of the off-resonant coupling indeed suppresses dephasing and leads to an increased lifetime.

part of the two-atom wavefunction, and therefore do not affect the final |W ⟩ state fidelity.

Indeed, Figure 12.4 shows that its lifetime is extended far beyond the Doppler-limited de-

cay to TW
2 = 36(2) µs. As in the single atom case, we extract a pure dephasing timescale

TW
ϕ = (1/TW

2 − 1/Tr→g)
−1 > 100 µs.

Remarkably, the Bell state dephasing time TW
ϕ > 100 µs is significantly longer than the

single atom dephasing time Tϕ = 47(13) µs. This can be understood by noting that the states

|gr⟩ and |rg⟩ form a decoherence-free subspace that is insensitive to global perturbations such

as laser phase and intensity fluctuations that couple identically to both atoms [269, 270]. In

contrast, a single atom in a superposition |ψ⟩ = 1√
2
(|g⟩ + |r⟩) is sensitive to both the laser

phase and the laser intensity. These measurements provide further indications that laser noise

is not completely eliminated in our experiment.
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12.7 Suppressing Doppler dephasing of Bell state

The simple dynamics of the blockaded two-atom system enable simple echo protocols to elim-

inate the effect of Doppler dephasing. However, more general approaches that do not rely on

echo pulses are also possible, and may be applicable in more complex systems. Here, we con-

sider a method to suppress Doppler dephasing of the Bell state |W ⟩ by application of the Ryd-

berg laser in an off-resonant configuration.

Doppler dephasing results from a random coupling between |W ⟩ and |D⟩, with rate given

by the difference in Doppler shifts for the two atoms. In each experimental cycle, this can be

regarded as a static, coherent coupling, but with random amplitude. In the absence of laser

fields, |W ⟩ and |D⟩ are degenerate, so random Doppler coupling leads to large population

transfer out of |W ⟩ on the timescale set by the Doppler shifts. However, in the presence of

the Rydberg laser which is far off-resonance, the state |W ⟩ shifts due to the AC Stark effect,

and |D⟩ is unshifted because it is uncoupled by the laser field. The population transfer from

|W ⟩ to |D⟩ is now suppressed as long as the dephasing rate is smaller than the AC Stark shift

of |W ⟩ (Fig. 12.5a). Indeed, we observe that this protocol substantially extends the Bell state

lifetime (Fig. 12.5b).

12.8 Outlook

Our measurements establish Rydberg atom qubits as a competitive platform for high-fidelity

quantum simulation and computation. The techniques demonstrated in this Letter are of

immediate importance to ongoing experiments using neutral atom arrays. Furthermore, the

demonstrated fidelities can be further improved by increasing laser intensities and operating

at larger detunings from the intermediate state, thereby reducing the deleterious effect of off-
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resonant scattering (Appendix I), or by using a direct single-photon transition. In addition,

sideband cooling of atoms in tweezers [95, 43] can dramatically decrease the magnitude of

Doppler shifts, while low-noise laser sources such as Titanium-Sapphire lasers or diode lasers

filtered by higher-finesse cavities will further eliminate errors caused by phase noise. Advanced

control techniques, such as laser pulse shaping, can also be utilized to reach higher fidelities

[271]. Finally, state detection fidelities can be improved by mapping Rydberg states to sep-

arate ground state levels, which will additionally enable long-term storage of the prepared

entangled states.
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13
Generation and manipulation of Schrödinger

cat states in Rydberg atom arrays

13.1 Greenberger–Horne–Zeilinger states

GHZ states constitute an important class of entangled many-body states [272]. On the one

hand, such states provide an important resource for applications ranging from quantum metrol-

ogy [273] to quantum error correction [274]. On the other hand, these states are among the

most fragile many-body states, since a single error on any one of the N qubits collapses the

superposition resulting in a statistical mixture. Remarkably, despite their highly entangled

182



nature, GHZ states can be characterized by just two diagonal and two off-diagonal terms

in the N -particle density matrix. In contrast to quantifying the degree of general entangled

states in many-body systems, which is extremely challenging [275–277], the GHZ state fidelity

(F > 0.5) constitutes an accessible witness for N -partite entanglement [13]. For these reasons,

GHZ state creation can serve as an important benchmark to characterize the quality of any

given quantum hardware. Such states have been previously generated using systems of nuclear

spins [278, 279], individually controlled optical photons [280–282], trapped ions [13, 283, 101],

and superconducting quantum circuits [284, 103, 285]. Large-scale superposition states have

also been generated in systems of microwave photons [286] and atomic ensembles without indi-

vidual particle addressing [273].

In this Report we demonstrate the preparation of N -particle GHZ states

|GHZN ⟩ = 1√
2
(|0101 · · · ⟩+ |1010 · · · ⟩) (13.1)

in a one dimensional array of individually trapped neutral 87Rb atoms, where the qubits are

encoded in an atomic ground state |0⟩ and in a Rydberg state |1⟩. Our entangling operation

relies on the strong van-der-Waals interaction between atoms in states |1⟩ and on engineer-

ing the energy spectrum of the quantum many-body system to allow for a robust quantum

evolution from an initial product state to a GHZ state. The basic ingredients for the manipu-

lation of atomic states, both for generating and characterizing GHZ states, are illustrated in

Fig. 13.1. All the atoms are homogeneously coupled to a Rydberg state |1⟩ via a two-photon

transition with an effective coupling strength Ω(t) and detuning ∆(t) [117, 157]. In addition,

we use addressing beams to introduce local energy shifts δi on specific sites i along the array
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(Fig. 13.1A). The resulting many-body Hamiltonian is

H

ℏ
=

Ω(t)

2

N∑
i=1

σ(i)x −
N∑
i=1

∆i(t)ni +
∑
i<j

V

|i− j|6
ninj (13.2)

where σ(i)x = |0⟩⟨1|i+ |1⟩⟨0|i is the qubit flip operator, ∆i(t) = ∆(t)+δi is the local effective de-

tuning set by the Rydberg laser and the local light shift, ni = |1⟩⟨1|i is the number of Rydberg

excitations on site i, and V is the interaction strength of two Rydberg atoms on neighboring

sites. The separation between adjacent sites is chosen such that the nearest-neighbor inter-

action V = 2π · 24MHz ≫ Ω results in the Rydberg blockade [88, 110, 111], forbidding the

simultaneous excitation of adjacent atoms into the state |1⟩.

13.2 Entanglement protocol

To prepare GHZ states, we utilize arrays with an even number N of atoms. For large nega-

tive detuning ∆ of the Rydberg laser, the many-body ground state of the Hamiltonian (2) is

|GN ⟩ = |0⟩⊗N . For large uniform positive detuning ∆i = ∆, the ground state manifold con-

sists of N/2+1 nearly degenerate classical configurations with N/2 Rydberg excitations. These

include in particular the two target antiferromagnetic configurations |AN ⟩ = |0101 · · · 01⟩ and∣∣AN

〉
= |1010 · · · 10⟩ [102], as well as other states with nearly identical energy (up to a weak

second-nearest neighbor interaction), with both edges excited, such as |10010 · · · 01⟩. To iso-

late a coherent superposition of states |AN ⟩ and
∣∣AN

〉
, we introduce local light shifts δe using

off-resonant laser beams at 840nm, generated by an acousto-optic deflector (AOD), which en-

ergetically penalize the excitation of edge atoms (Fig. 13.1A), and effectively eliminate the

contribution of undesired components. In this case, the ground state for positive detuning is

given by the GHZ state (1) and there exists, in principle, an adiabatic pathway that trans-
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Figure 13.1: Experimental scheme and entanglement generation procedure. A, 87Rb atoms initially in a
ground state |0⟩ =

∣∣5S1/2, F = 2,mF = −2
〉

are coupled to a Rydberg state |1⟩ =
∣∣70S1/2,mJ = −1/2

〉
by

a light field with a coupling strength Ω/(2π) ≤ 5MHz and a variable detuning ∆. Local addressing beams
at 840 nm target the edge atoms, reducing the energy of |0⟩ at those sites by a light shift δe. B, Many-body
energy gap spectrum of N = 8 atoms, including energy shifts on the edge atoms. For positive detuning,
the states with one ground state atom on the edges are favored over states with a Rydberg atom on both
edges. An adiabatic pathway connects the state |GN ⟩ = |000 · · · ⟩ with the two GHZ components. Gray
lines in the spectrum are energies associated with antisymmetric states, which are not coupled to the initial
state by Hamiltonian (2). C, Method to control the phase ϕ of GHZ states. Every other site of the array
is illuminated with a local addressing beam at 420 nm, which imposes a negative differential light shift δp
on the |0⟩-|1⟩ transition. The offset in state |0101 · · · ⟩ relative to |1010 · · · ⟩ leads to an evolving dynamical
phase.
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forms the state |GN ⟩ into |GHZN ⟩ by adiabatically increasing ∆(t) from negative to positive

values (Fig. 13.1B).

In practice, the time necessary to adiabatically prepare such a GHZ state grows with sys-

tem size and becomes prohibitively long for large N owing to small energy gaps in the many-

body spectrum. To address this limitation, we employ optimal control methods to find laser

pulses that maximize the GHZ state preparation fidelity while minimizing the amount of time

necessary. Our specific implementation, the Remote dressed Chopped-RAndom Basis algo-

rithm (RedCRAB) [287, 288], yields optimal shapes of the laser intensity and detuning for

the given experimental conditions (Appendix J). For N ≤ 8 atoms, we perform this opti-

mization using δe/(2π) ≈ −4.5MHz light shifts on the edge atoms. For larger systems of

N > 8, we found the preparation to be more robust by increasing the edge light shifts to

δe/(2π) ≈ −6MHz and adding δ4,N−3/(2π) ≈ −1.5MHz light shifts on the third site from

both edges.

Our experiments are based on the optical tweezer platform and experimental procedure

that have been described previously [157]. Following the initialization of a defect-free N -atom

array, the traps are switched off while the atoms are illuminated with the Rydberg and local

light shift beams. The internal state of the atoms is subsequently measured by imaging state

|0⟩ atoms recaptured in the traps, while Rydberg atoms are repelled by the trapping light [53].

Fig. 13.2 demonstrates the result of such experiments for a 20-atom array. After applying the

optimized pulse shown in Fig. 13.2B, we measure the probability of observing different pat-

terns pn = ⟨n| ρ |n⟩ in the computational basis, where ρ is the density operator of the prepared

state. Fig. 13.2A shows the measured probability to observe each of the 220 possible patterns

in a 20-atom array. The states |A20⟩ and
∣∣A20

〉
clearly stand out (blue bars) with a combined

probability of 0.585(14) and almost equal probability of observing each one.
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Figure 13.2: Production of a 20-atom GHZ state. A, Probability of observing different patterns, showing
a large population of the two target patterns out of 220 = 1, 048, 576 possible states. Shown here are the
directly measured (blue bars) and the corrected values (orange bars) for the two target states after taking
into account measured detection errors. Insets show fluorescence images of the two target patterns, where
red circles mark empty sites corresponding to atoms in state |1⟩. B, Optimal control pulse used for state
preparation. C, Parity oscillations produced by acquiring a phase ϕ between the GHZ components. We ap-
ply a staggered field with an energy shift of δp/(2π) = ±3.8MHz on all sites, followed by an operation Ux

such that subsequent parity measurements are sensitive to ϕ (Appendix J). From the population measure-
ment and the oscillation amplitude, we obtain a lower bound on the 20-atom GHZ fidelity of F ≥ 0.542(18).
Error bars denote 68% confidence intervals.

13.3 GHZ states with up to 20 atoms

To characterize the experimentally prepared state ρ, we evaluate the GHZ state fidelity

F = ⟨GHZN | ρ |GHZN ⟩ = 1

2

(
pAN

+ pAN
+ cN + c∗N

)
(13.3)

where pAN
and pAN

are the populations in the target components and cN =
〈
AN

∣∣ ρ |AN ⟩ is

the off-diagonal matrix element, which can be measured by utilizing the maximal sensitivity

of the GHZ state to a staggered magnetic field. Specifically, evolving the systems with the

Hamiltonian Hp = ℏδp/2
∑N

i=1(−1)iσ
(i)
z , the amplitude cN acquires a phase ϕ at a rate of

ϕ̇ = Nδp. Measuring an observable that oscillates at this frequency provides a lower bound
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on the coherence |cN | through the oscillation contrast [104] (Appendix J). In our experiments,

the staggered field is implemented by applying off-resonant focused beams of equal intensity

at 420nm, generated by another AOD, to every other site of the array (Fig. 13.1C), resulting

in a local energy shift δp (Appendix J). Subsequently, we drive the atoms resonantly, applying

a unitary operation Ux in order to change the measurement basis (Appendix J), such that

a measurement of the parity P =
∏

i σ
(i)
z becomes sensitive to the phase of cN . Fig. 13.2C

shows the measured parity as a function of the phase accumulated on each atom in the array,

demonstrating the coherence of the created state.

To extract the entanglement fidelity for large atomic states, we carefully characterized our

detection process used to identify atoms in |0⟩ and |1⟩, since it has a small but finite error.

We have independently determined the probability to misidentify the state of a particle to be

p(1|0) = 0.0063(1), and p(0|1) = 0.0227(42) (Appendix J). Using these numbers, we extract

a corrected probability of preparing states |A20⟩ and
∣∣A20

〉
to be 0.782(32) (orange bars in

Fig. 13.2A) and a corrected amplitude of oscillation of 0.301(18) (orange points in Fig. 13.2C).

In the population measurement, we independently confirmed that the 14 most commonly ob-

served incorrect patterns are fully consistent with the correct target states with a single de-

tection error. From these measurements we extract a lower bound for the 20-atom GHZ state

fidelity of F ≥ 0.542(18), certifying genuine 20-partite entanglement.

This protocol was applied for multiple system sizes of 4 ≤ N ≤ 20, using 1.1µs control

pulses optimized for each N individually. Consistent with expected GHZ dynamics (Fig. 13.1C

and [283]), the frequency of the measured parity oscillations grows linearly with N (Fig. 13.3A).

Extracting the GHZ fidelity from these measurements shows that we surpass the threshold of

F = 0.5 for all studied system sizes (Fig. 13.3B). We further characterized the lifetime of the

created GHZ state by measuring the parity signal after a variable delay (Fig. 13.3C). These
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Figure 13.3: Quantifying entanglement for different system sizes. A, Parity oscillations measured on differ-
ent system sizes. We apply a staggered field with a shift of δp/(2π) = ±3.8MHz on all sites and observe
a scaling of the phase accumulation rate proportional to the system size N . B, Measured GHZ fidelity for
different system sizes (Orange circles). Blue diamonds show the result of simulations that account for de-
phasing during state preparation, decay from off-resonant photon scattering and imperfect detection of co-
herence through parity oscillations (Appendix J). Pale blue triangles show identical simulations for analytic
pulses of duration T = 1.1µs with a linear detuning sweep and Ω(t) = Ωmax[1 − cos12(πt/T )], which were
used as an initial guess for the RedCRAB optimization. The gray shaded area marks a region not measur-
able with our parity observable, see text and Appendix J for details. C, Lifetime of the GHZ state coherence.
For all system sizes N , we measure the state parity after a variable delay following the GHZ state prepara-
tion, which decays to zero (inset). We fit the individual parity data to the tail of a Gaussian decay curve,
as we assume the dephasing has started during state preparation, i.e. before τ = 0. The gray line shows a
theoretical prediction with no free parameters accounting for known dephasing mechanisms in our system.
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Figure 13.4: Demonstration of entanglement distribution. A, Experimental protocol for N = 8. Edge
atoms are addressed by light shift beams and a reverse sweep of the Rydberg laser detuning is performed to
disentangle the bulk of the array, leaving a Bell state |Ψ+⟩ ∝ |1 · · · 0⟩ + |0 · · · 1⟩ on the edge. A π/2 pulse
resonant only with the edge atoms is applied to convert the state |Ψ+⟩ to |Φ+⟩ ∝ |0 · · · 0⟩ + |1 · · · 1⟩. B,
Measured Rydberg populations on each site after entanglement distribution, where the probability for a sin-
gle Rydberg excitation is shared among the two edges. Inset: Probabilities for different patterns on the edge
atoms, which are consistent with the Bell state |Φ+⟩. Blue bars indicate measured values, while orange bars
include corrections for detection errors. C, Measurement of the Bell state coherence. GHZ entanglement
is distributed to the edges, a π/2 pulse is applied at laser phase ϕ = 0, followed by a second π/2 pulse at
varying phase ϕ. The amplitude of the parity oscillation provides a lower bound on the coherence of the Bell
state, yielding a fidelity of F ≥ 0.605(13).

observations are most consistent with Gaussian decay, while characteristic lifetimes are re-

duced relatively slowly for increasing system sizes, indicating the presence of a non-Markovian

environment [274, 101].

13.4 Entanglement distribution

As an application of our entanglement manipulation technique, we demonstrate its use for

entanglement distribution between distant atoms. Specifically, we consider the preparation

of Bell states between atoms at the two opposite edges of the array. Our approach is based
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on first creating the GHZ state using the above procedure, followed by an operation that

disentangles all but two target atoms. The latter is realized by shifting the transition fre-

quencies of the two target edge atoms using two strong, blue-detuned addressing beams at

420nm. Subsequently, we perform a reverse detuning sweep of the Rydberg laser that effec-

tively disentangles all atoms except those at the edges. The resulting state corresponds to

a coherent superposition of two pinned excitations that can be converted into a Bell state

|Φ+⟩ = (|00⟩+ |11⟩)/
√
2 by applying a resonant π/2 pulse on the edge atoms (Fig. 13.4A).

To demonstrate this protocol experimentally, we prepare a GHZ-state of 8 atoms, and turn

on the detuned 420nm addressing beams on the edge atoms resulting in a shift of δ1,8/(2π) =

6MHz. We then use an optimized Rydberg laser pulse to distribute the entanglement, and

observe the patterns |00000000⟩ and |10000001⟩ with a total probability of 0.729(9) after ac-

counting for detection errors (Fig. 13.4B). We verify the coherence of the remote Bell pair by

applying an additional π/2 pulse with a variable laser phase, and observe parity oscillations

with an amplitude of 0.481(24) (Fig. 13.4C). Combining these results, we obtain the edge

atom Bell state fidelity of 0.605(13).

13.5 Discussion

Turning to the discussion of our experimental observations, we note that the optimal control

provides a substantial improvement over naive analytic pulses (Fig. 13.3B), while bringing our

protocol close to the speed set by a more conventional protocol of building up entanglement

through a series of two-qubit operations (Appendix J). In contrast, a simple linear detuning

sweep only allows for the creation of GHZ states for N ≤ 16 within a fixed 1.1µs window

(Fig. 13.3B), even under ideal conditions. Our analysis reveals that the reason for this im-

provement stems from diabatic excitations and de-excitations in the many-body spectrum,
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related to the recently proposed mechanisms for quantum optimization speedup [197, 198]

(Appendix J).

The measured entanglement fidelity is partially limited by imperfect qubit rotations used

for parity measurements. Specifically, the qubit rotation operation Ux in our experiment is

induced by an interacting Hamiltonian, which complicates this step. The resulting evolution

can be understood in terms of quantum many-body scars [157, 189], which gives rise to coher-

ent qubit rotations, even in the presence of strong interactions. The deviations from an ideal

parity measurement arises from the Rydberg blockade constraint and long-range interactions

(Appendix J). These grow with the system size, resulting in finite fidelities even for a perfect

initial GHZ state (gray shaded area in Fig. 13.3B). Our quoted fidelity values do not include

the correction for this imperfection and represent the lower bound on the actual GHZ state

fidelities.

The entanglement generation, manipulation and lifetime are further limited by several

sources of decoherence. The finite temperature of the atoms leads to random Doppler shifts

on every site as well as position fluctuations that influence interaction energies. These thermal

dephasing mechanisms lead to a Gaussian decay of the GHZ state coherence, which decreases

with the system size as 1/
√
N , in good agreement with our observations (Fig. 13.3B). Addi-

tionally, off-resonant laser scattering introduces a small rate of decoherence on each site in the

array. We find that numerical simulations of the state preparation accounting for these im-

perfections predict a higher GHZ fidelity than that obtained experimentally (Fig. 13.3B and

Appendix J). We can attribute this discrepancy to several additional sources of errors. Laser

phase noise likely contributes to the finite fidelity of the state preparation. Drifts in the beam

positions of the Rydberg lasers can lead to changing light shifts, giving rise to uncontrolled de-

tunings, while drifts in the addressing beam positions can lead to an imbalance in the local en-
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ergy shifts and thereby in the populations of the two GHZ components, limiting the maximum

possible coherence. This analysis highlights the utility of GHZ states for uncovering sources

of errors. We emphasize that all of these known error sources can be mitigated via technical

improvements (Appendix J).

13.6 Outlook

Our experiments demonstrate a new promising approach for the deterministic creation and

manipulation of large-scale entangled states, enabling the certification of genuine N -partite en-

tanglement in system sizes up to N = 20, the largest GHZ state demonstrated to date. These

results show the utility of this approach for benchmarking quantum hardware, demonstrating

that Rydberg atom arrays constitute a competitive platform for quantum information science

and engineering. Specifically, the entanglement generation and distribution could be poten-

tially utilized for applications ranging from quantum metrology and quantum networking to

quantum error correction and quantum computation. Our method can be extended by map-

ping the Rydberg qubit states used here to ground-state hyperfine sublevels, such that the

entangled atoms can remain trapped and maintain their quantum coherence over very long

times [289]. This could enable the sophisticated manipulation of entanglement and realization

of deep quantum circuits for applications such as quantum optimization [197, 198].
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14
Parallel implementation of high-fidelity

multi-qubit gates with neutral atoms

Trapped neutral atoms are attractive building blocks for large scale quantum information sys-

tems. They can be readily manipulated in large numbers while maintaining excellent quantum

coherence, as has been demonstrated in remarkable quantum simulation and precision mea-

surement experiments [173, 290]. Single atom initialization, addressing, and readout have

been demonstrated in a variety of optical trapping platforms, and single-qubit gates have

been implemented with exquisite fidelity [93, 291, 292]. Multi-qubit entangling gates with

neutral atoms can be implemented by driving atoms to highly excited Rydberg states, which
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exhibit strong and long-range interactions [29]. Protocols for entangling atoms using Ryd-

berg interactions have been explored theoretically and experimentally over the last decade

[88, 27, 110, 111, 256, 257, 289], but despite major advances, progress in this field has been

limited by relatively low fidelities associated with ground-Rydberg state coherent control [112].

Recent advances in Rydberg atom control [53, 293, 182] offer new opportunities for realization

of entangling gates, combining high-fidelity performance and parallelization.

In this Letter, we introduce a new method for realizing multi-qubit entangling gates be-

tween individual neutral atoms trapped in optical tweezers. In our approach, qubits are en-

coded in long-lived hyperfine states |0⟩ and |1⟩ which can be coherently manipulated individ-

ually or globally to perform single-qubit gates. Our two-qubit gate, the controlled-phase gate,

is implemented with a novel protocol consisting of just two global laser pulses which drive

nearby atoms within the Rydberg blockade regime [88]. We benchmark this gate by prepar-

ing Bell states of two atoms with a fidelity F ≥ 95.0(2)%, averaged across five pairs of atoms.

After accounting for state preparation and measurement errors, we extract the entanglement

operation fidelity to be Fc ≥ 97.4(3)%, competitive with other leading platforms capable of

simultaneous manipulation of ten or more qubits [294–297]. We additionally demonstrate a

proof-of-principle implementation of the three-qubit Toffoli gate, wherein two atoms simulta-

neously constrain a third atom through the Rydberg blockade, highlighting the potential use

of Rydberg interactions for efficient multi-qubit operations [89, 112].

14.1 Atom arrays with hyperfine control and Rydberg coupling

In our experiments, individual atoms are trapped in optical tweezers and sorted by a real-time

feedback procedure into groups of two or three, organized in a one-dimensional array [24–26].

We encode qubits in the hyperfine ground states of these atoms, with |0⟩ = |5S1/2, F =
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Figure 14.1: Control of individual qubits in atom arrays. a) Atoms arranged in pairs are globally
driven with a 795 nm Raman laser (shown in red) which couples the hyperfine qubit levels. Local 420 nm
beams (purple) are focused onto individual sites, resulting in a light shift δ used for individual address-
ing. Additionally, atoms are globally excited by a bichromatic Rydberg laser (shown in blue) containing
420 nm and 1013 nm light from the |1⟩ qubit state to |r⟩. b) Relevant atomic levels. The qubit states are
|0⟩ = |5S1/2, F = 1,mF = 0⟩ and |1⟩ = |5S1/2, F = 2,mF = 0⟩. The qubit state |1⟩ is coupled to the Ry-
dberg state |r⟩ = |70S1/2,mJ = −1/2⟩ with detuning ∆ and Rydberg Rabi frequency Ω. c) Rydberg Rabi
oscillations from |1⟩ to |r⟩. Only one atom in each pair is prepared in state |1⟩ to avoid interactions. Atoms
in |r⟩ are directly detected by loss from tweezers [182]. d) Local phase shifts as measured in a Ramsey se-
quence, averaged across the five atom pairs. The purple curve belongs to the addressed atom and shows
high-contrast oscillations; the gray curve shows the non-addressed atom, which sees limited < 2% crosstalk.
e) Rabi oscillations from |0⟩ to |1⟩ driven by Raman lasers. Error bars in all figures denote 68% confidence
intervals and in most cases are smaller than the markers.
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1,mF = 0⟩ and |1⟩ = |5S1/2, F = 2,mF = 0⟩. In each experiment we initialize all qubits

in |0⟩ through a Raman-assisted optical pumping procedure (Chapter 4). Single-qubit coher-

ent control is achieved through a combination of a global laser field which homogeneously

drives all qubits, as well as local addressing lasers which apply AC Stark shifts on individ-

ual qubits (Fig. 14.1a,b). The global drive field is generated by a 795 nm laser, tuned near

the 5S1/2 to 5P1/2 transition. This laser is intensity modulated to produce sidebands which

drive the qubits through a two-photon Raman transition with an effective Rabi frequency

Ω01 ≈ 2π×250 kHz (Fig. 14.1e) [54] (Chapter 4 and Appendix K). The local addressing beams

are generated by an acousto-optic deflector which splits a single 420 nm laser, tuned near

the 5S1/2 to 6P3/2 transition, into several beams focused onto individual atoms (Fig. 14.1a,d)

[182]. We describe these two couplings as global X(θ) qubit rotations and local Z(θ) rotations.

After each sequence, we measure the individual qubit states by pushing atoms in |1⟩ out of the

traps with a resonant laser pulse, followed by a site-resolved fluorescence image of the remain-

ing atoms (Appendix K).

We perform multi-qubit gates by exciting atoms from the qubit state |1⟩ to the Rydberg

state |r⟩ = |70S1/2,mJ = −1/2⟩. All atoms are homogeneously coupled from |1⟩ to |r⟩ through

a two-photon process with effective Rabi frequency Ω ≈ 2π × 3.5 MHz (Fig. 14.1c and Ap-

pendix K). Within a given cluster of atoms, the Rydberg interaction between nearest neigh-

bors is 2π × 24 MHz ≫ Ω; neighboring atoms therefore evolve according to the Rydberg

blockade in which they cannot be simultaneously excited to the Rydberg state [88].

14.2 A fast, symmetric protocol for the controlled-phase gate

To entangle atoms in such arrays, we introduce a new protocol for the two-qubit controlled-

phase (CZ) gate that relies only on global excitation of atoms within the Rydberg blockade
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b) As a result of the evolution, each basis state returns to itself with an accumulated dynamical phase. |00⟩
is uncoupled and therefore accumulates no phase. |01⟩ and |10⟩ are equivalent by symmetry (ϕ01 = ϕ10),
while |11⟩ accumulates phase ϕ11. The CZ gate is realized for ϕ11 = 2ϕ01 − π. c) The dynamics of the
|01⟩ and |11⟩ states can be understood in terms of two-level systems with the same detuning ∆ but differ-
ent effective Rabi frequencies. The pulse length τ is chosen such that the |11⟩ system undergoes a complete
detuned Rabi cycle during the first pulse, while the |01⟩ system undergoes an incomplete oscillation. The
laser phase ξ is chosen such that the second pulse drives around a different axis to close the trajectory for
the |01⟩ system, while driving a second complete cycle for the |11⟩ system. d) The dynamical phases ϕ01
and ϕ11 are determined by the shaded area enclosed by the Bloch sphere trajectory and vary from 2π to 0
as a function of ∆, corresponding to increasingly shallow trajectories. Insets show family of trajectories for
different detunings. Choosing ∆ ≈ 0.377Ω realizes the CZ gate.
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regime. The desired unitary operation CZ maps the computational basis states as follows:

|00⟩ → |00⟩

|01⟩ → |01⟩eiϕ

|10⟩ → |10⟩eiϕ

|11⟩ → |11⟩ei(2ϕ−π) (14.1)

This map is equivalent to the canonical form of the controlled-phase gate CZ = 2|00⟩ ⟨00| − 1

up to a single-qubit phase ϕ. To realize this gate, we use two global Rydberg laser pulses of

the same length τ and detuning ∆ which couple |1⟩ to |r⟩, with the laser phase of the second

pulse shifted by ξ (Fig. 14.2).

The gate can be understood by considering the behavior of the four computational basis

states. The |00⟩ state is uncoupled by the laser field and therefore does not evolve. The dy-

namics of |01⟩ (and |10⟩) are given by the coupling of the single atom on the |1⟩ ↔ |r⟩ transi-

tion, forming a two-level system with Rabi frequency Ω and detuning ∆ (Fig. 14.2c, top). The

|11⟩ state evolves within the Rydberg blockade regime as a two-level system due to the collec-

tive coupling from |11⟩ ↔ |W ⟩ = 1√
2
(|1r⟩ + |r1⟩), with enhanced Rabi frequency

√
2Ω and the

same detuning ∆ (Fig. 14.2c, bottom). For a chosen detuning ∆, we select the pulse length τ

such that the first laser pulse completes a full cycle of a detuned Rabi oscillation for the |11⟩

system. The same pulse drives an incomplete Rabi oscillation on the |01⟩ system. A subse-

quent phase jump Ω → Ωeiξ rotates the orientation of the drive field around the Z axis by an

angle ξ such that a second pulse of length τ completes the oscillation and returns the state to

|01⟩, while driving a second complete detuned oscillation on the |11⟩ configuration. By the end

of the second pulse, both |01⟩ and |11⟩ return to their initial positions on the Bloch sphere but
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with accumulated dynamical phases ϕ01 and ϕ11, which depend on the geometric surface area

of the Bloch sphere enclosed by the ∆-dependent trajectories. As shown in Fig. 14.2d, for a

specific choice of laser detuning (∆ ≈ 0.377Ω), 2ϕ01 − π = ϕ11, realizing the CZ gate 14.1.

Remarkably, this gate protocol is faster (total time 2τ ≈ 2.732π/Ω) than the traditional ap-

proach [88] of sequential local pulses (total time 4π/Ω), and offers the additional advantage of

requiring only global coupling of both qubits.

14.3 Parallel implementation of CZ gate

We demonstrate the parallel operation of the CZ gate on five separate pairs of atoms by using

it to create Bell states of the form |Φ+⟩ = 1√
2
(|00⟩ + |11⟩). We initialize all atomic qubits in

|0⟩, then apply a global X(π/2) Raman pulse to prepare each atom in |−⟩y = 1√
2
(|0⟩ − i|1⟩).

The CZ gate protocol, consisting of the two Rydberg laser pulses, is then applied over a total

time of 0.4 µs, during which the optical tweezers are turned off to avoid anti-trapping of the

Rydberg state. The pulse sequence realizes map 14.1, along with an additional phase rotation

on each qubit due to the light shift of the Rydberg lasers on the hyperfine qubit states. We

embed the CZ implementation in an echo sequence to cancel the effect of the light shift, and

we add an additional short light shift to eliminate the single-particle phase ϕ (Appendix K).

Altogether, this realizes a unitary that combines the canonical CZ gate with a global X(π)

gate (enclosed region in Fig. 14.3a,d). A final X(π/4) rotation produces the Bell state |Φ+⟩

(Fig. 14.3a and Appendix K).

We characterize the experimentally produced state ρ by evaluating its fidelity with respect

to the target Bell state F = ⟨Φ+|ρ|Φ+⟩. The fidelity is the sum of two terms, the first of

which is the Bell state populations, given by the probability of observing |00⟩ or |11⟩ (Fig. 14.3b).

The second term is the coherence between |00⟩ and |11⟩, measured by applying a global Z(θ)
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Figure 14.3: Bell state preparation and CNOT gate. a) Quantum circuit used to prepare and probe
the |Φ+⟩ state. b) Measured populations of the Bell states. Raw measurements associating |0⟩ with atom
presence and |1⟩ with atom absence yields 97.6(2)% in the target states. Separate measurements of leakage
out of the qubit subspace indicate a small contribution (light shaded region) to these probabilities; sub-
tracting this contribution, the measured population is ≥ 95.8(3)%. c) The parity oscillation with respect
to accumulated phase θ has a measured amplitude of 94.2(4)%. The resulting lower bound on Bell state
fidelity is F ≥ 95.0(2)% (raw measurements yield F raw = 95.9(2)%). Correction for SPAM errors re-
sults in Fc ≥ 97.4(3)%. d) The CNOT gate is constructed from our native CZ gate with the addition of
local hyperfine qubit rotations. e) The four computational basis states are prepared with average fidelity
96.8(2)%. f) We apply the CNOT sequence to the four computational basis states and measure the truth ta-
ble fidelity to be FCNOT ≥ 94.1(2)%. Corrected for SPAM errors, the fidelity is Fc

CNOT ≥ 96.5(3)%. Wire-
frames on purple bars show ideal outcomes; solid bars show the raw measurement; the light-shaded top
portions of the bars bound the contribution from qubit leakage. Only the darker lower region is counted
towards fidelities.
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rotation followed by a global X(π/2) rotation and observing parity oscillations (Fig. 14.3a,c)

[13]. When evaluating the contributions to the fidelity, we account for atom population left

in the Rydberg state after the operation and for background losses. Both of these correspond

to leakage out of the qubit subspace and can lead to overestimation of the |1⟩ populations

and Bell state fidelities in the raw measurements. Using separate measurements of atoms in

both hyperfine qubit states (Appendix K), we determine a conservative upper bound on these

leakage errors and subtract this contribution (shown in light shaded regions of bar plots in

Figs. 14.3 and 14.4, see Appendix K). The resulting lower bound on the Bell state fidelity is

F ≥ 95.0(2)%.

The measured Bell state fidelity includes errors in state preparation and measurement (SPAM),

as well as errors in the two-qubit entangling gate. To characterize the entangling gate specif-

ically, we evaluate the error contributions from SPAM (1.2(1)% per atom) and compute a

SPAM-corrected fidelity Fc ≥ 97.4(3)% (Appendix K). The majority of the remaining error is

due to finite atomic temperature and laser scattering during Rydberg dynamics (Appendix K).

We separately characterize our native CZ gate by converting it to a controlled-NOT (CNOT)

gate via local rotations (Fig. 14.3d). We measure the action of the CNOT gate on each com-

putational basis state to obtain its truth table fidelity Fc
CNOT ≥ 96.5(3)%, corrected for SPAM

errors (Fig. 14.3e,f and Appendix K).

14.4 Extensions to three-qubit CCZ (and Toffoli) gate

Finally, we extend our control of multiple atomic qubits to implement the three-qubit controlled-

controlled-phase (CCZ) gate. This logic operation can be decomposed into five two-qubit

gates [298–300]. Instead, we realize this multiple-control gate directly by preparing three

atoms in the nearest-neighbor blockade regime such that both outer atoms constrain the be-
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Figure 14.4: Realization of three-qubit Toffoli gate. a) The Toffoli gate is implemented in parallel on
four triplets of atomic qubits using the same lasers as for two-qubit gates. b) Quantum circuit for construct-
ing the Toffoli gate from local rotations and a globally implemented CCZ gate. c) Eight computational basis
states are prepared with average fidelity 95.3(3)%. d) Measured truth table, with fidelity FToff ≥ 83.7(3)%.
Corrected for SPAM errors, the fidelity is Fc

Toff ≥ 87.0(4)%. Wireframes on purple bars show ideal out-
comes; solid bars show the raw measurement; the light-shaded top portions of the bars bound the contribu-
tion from qubit leakage. Only the darker lower region is counted towards fidelities.
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havior of the middle atom. The complicated three-atom dynamics makes it challenging to

analytically construct global laser pulses that realize a CCZ gate in this configuration. We

therefore use numerical optimization to construct a global amplitude and frequency modu-

lated laser pulse which approximately implements the CCZ gate (Appendix K). The laser

pulse is optimized through the remote dressed chopped random basis (RedCRAB) optimal

control algorithm [287, 288].

We implement the CCZ gate in parallel on four triplets of atomic qubits (Fig. 14.4a). The

three atoms in each triplet are arranged such that nearest neighbors are blockaded by the

strong 2π × 24 MHz interaction, as in the two-qubit experiments. The edge atoms interact

with each other weakly (2π × 0.4 MHz). As with the two-qubit gate, we embed the CCZ

gate in an echo sequence to cancel light shifts, such that our gate implements CCZ along

with a global X(π) rotation. To characterize the performance of this three-qubit gate, we

convert it into a Toffoli gate by applying a local Hadamard on the middle atom before and

after the CCZ gate (along with edge X(π) pulses, to simplify implementation, described in

Appendix K) (Fig. 14.4b). We apply the Toffoli gate to each computational basis state to mea-

sure the truth table fidelity Fc
Toff ≥ 87.0(4)%, corrected for SPAM errors (Fig. 14.4c,d and

Appendix K). We additionally perform “limited tomography”, consisting of truth table mea-

surements in a rotated basis, to verify the phases of the Toffoli unitary in a more experimen-

tally accessible manner than full process tomography [300]. The limited tomography fidelity is

Fc
LT ≥ 86.2(6)% (Appendix K).

14.5 Outlook

These results can be directly improved and extended along several directions. The fidelity of

Rydberg coupling is primarily limited by finite atomic temperature and off-resonant laser scat-
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tering, which can be addressed by sideband cooling of atoms within optical tweezers [95, 43]

and by higher power lasers. The background atomic loss and state preparation can be im-

proved using higher quality vacuum systems [301] and more sophisticated state preparation

techniques [292]. Finally, atomic qubit readout can be improved using recently demonstrated

non-destructive readout protocols [292, 302, 303] to give stronger constraints on the atomic

populations.

While in this work we have performed parallel gate implementation on spatially separated

clusters of atoms, the same approach can be extended to non-local coupling within contigu-

ous atom arrays using local addressing with an additional off-resonant laser system. Specifi-

cally, subsets of the array could be simultaneously illuminated to create light shifts that bring

them into resonance with a global resonant Rydberg excitation laser (Appendix K). Further-

more, with more atoms arranged in the blockade volume, the controlled-phase gate demon-

strated here can be extended to higher multi-qubit gates with global coupling (Appendix K).

The dipolar interaction between S and P Rydberg states [304] could also be used to achieve

improved gate connectivity between qubits. A combination of the present results with re-

cently demonstrated trapping and rearrangement of individual neutral atoms in 2D and 3D

[25, 30, 166] will be well-suited for the implementation of deep quantum circuits or variational

quantum optimization with hundreds of qubits [167]. In addition, such a platform could be

utilized to explore efficient methods for error correction and fault-tolerant operation to eventu-

ally enable scalable quantum processing.
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15
Conclusion

15.1 Summary

This thesis describes several efforts to advance the scalability and control of neutral atom sys-

tems for quantum science. Central to these efforts were the novel methods for atom-by-atom

assembly of defect-free atomic arrays, both in one and two dimensions. New techniques for ex-

citation to Rydberg states additionally enabled state-of-the-art coherence, increasing the scope

of quantum simulation and quantum information experiments that are feasible. Moreover,

new methods for controlling the hyperfine degrees of freedom have enabled experiments which

for the first time show high-fidelity multi-qubit quantum logic operations for neutral atoms.
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Beyond the experimental advances, several conceptual advances in understanding of the

Rydberg many-body Hamiltonian paved the way for new applications towards the study of

many-body physics as well as novel protocols for engineering quantum entanglement. Quasi-

adiabatic dynamical control of the Rydberg excitation field has enabled the study of a wide

variety of quantum many-body phases which result from the competition between Rydberg

interactions and the excitation drive. In simple lattices, the resulting states involve classi-

cal Ising-type ordering, and offer a clean benchmark for performance. In more sophisticated

lattices, such as those featuring frustration, rich quantum phases featuring topological or-

dering and long-range entanglement emerge. Moreover, techniques in which quantum states

are quasi-adiabatically prepared and then rapidly quenched have enabled the study of non-

equilibrium dynamics. In the context of quenching Ising-type ordered states, these quenches

resulted in the discovery of surprisingly slow thermalization which is now associated with the

notion of quantum many-body scars. These quenches additionally offer a new approach for

characterizing coherence and long-range order in entangled systems, such as in GHZ states

and quantum spin liquid states. The dynamical control of the Rydberg excitation laser, along

with new local controls involving local addressing, have additionally resulted in new protocols

for engineering many-body GHZ-type entanglement, as well as new fast protocols for imple-

menting universal quantum logical gates.

15.2 Extending experimental capabilities

15.2.1 System size

The current apparatus can create up to ∼ 1000 optical tweezers, and thus supports experi-

ments with up to ∼ 500 atoms. A higher power trapping laser, along with improved higher-
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NA objectives, could create arrays of 10, 000 tweezers. While our existing two-dimensional

sorting procedure could be applied with these larger arrays, an important ingredient is an up-

graded vacuum system which features long trap lifetimes to mitigate background losses during

rearrangement. Finally, recently demonstrated techniques for enhanced loading of tweezers

(reaching loading probabilities of ∼ 0.9) [85, 86] would facilitate yet larger atomic arrays, as

well as more efficient sorting.

15.2.2 Rydberg and hyperfine coherence

The coherence of the Rydberg excitation scheme is generally limited by two effects: firstly,

the two-photon excitation scheme intrinsically induces spontaneous emission from the inter-

mediate state. The rate of spontaneous emission can be reduced by increasing the power in

our Rydberg lasers and increasing the detuning from the intermediate state. In practice, we

are limited by the availability of laser power at the upper 1013 nm transition, and for this the-

sis we used the highest power (10 W) system that was available. However, this is an area of

active industry development, and systems with up to 100 W may become available over the

next several years. The second key coherence limitation for Rydberg coupling is the Doppler-

sensitivity of the transition, which results in fluctuations in the effective laser detuning due to

the thermal fluctuations of the atoms. Techniques for improved cooling of the atoms, such

as Raman sideband cooling and Lambda-enhanced gray molasses, could strongly suppress

Doppler dephasing on the Rydberg transition.

Coherence of hyperfine qubits, on the other hand, is limited by effects associated with the

optical tweezers themselves. The differential light shift of the tweezers on the qubit transition,

combined with thermal fluctuations of the atoms, result in Ramsey dephasing on the 1 ms

timescale, although dynamical decoupling extends the coherence to the longer timescale of sev-
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eral hundred milliseconds, limited by off-resonant scattering from the optical tweezers. Both

of these effects will be suppressed by using higher power optical tweezers which are further

detuned from the atomic transition, although this is a tradeoff that reduces the number of

available optical tweezers.

For both Rydberg laser excitation as well as Raman driving of hyperfine qubits, a general

challenge is to stabilize laser pulse amplitudes. These experiments generally have laser pulse

intensity fluctuations at the scale of 0.1 − 1%, which is generally sufficient for quasi-adiabatic

control or for low depth circuits. Improved pulse stability will however be an important step

towards the implementation of more sophisticated quantum circuits. New experimental tech-

niques for monitoring and stabilizing laser power may be necessary; alternatively, protocols

with frequent re-calibration of Rabi frequencies may suffice to compensate for slow drifts of

the experimental apparatus [305].

15.2.3 Local addressing

The experiments in this thesis rely primarily on global laser driving of entire atomic arrays.

However, local control over Rydberg couplings, as well as local control over hyperfine qubits,

is a promising avenue which will enable broad new classes of experiments. For certain specific

applications, it is sufficient to program a static arrangement of local addressing beams, such

as the one-dimensional array experiments in which local addressing was used to create GHZ

states and probe entanglement. New static two-dimensional local addressing beams could be

generated by spatial light modulators and could be readily integrated with the experimental

system. More challenging, however, is full dynamical control over each local addressing beam

individually, especially on the nanosecond timescale necessary for calibrated Rydberg pulses.

New optical systems based on arrays of individually controlled modulators are the subject of
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active development in several research groups, and integration with Rydberg atom arrays will

likely require collaborative development of these tools.

15.2.4 Dynamic shuttling of hyperfine qubits

Hyperfine qubits preserve coherence for hundreds of milliseconds in the optical tweezers. This

timescale is several orders of magnitude larger than the timescale for performing Rydberg-

based quantum gates, or Raman single-qubit gates. These long coherence times also could

enable protocols in which atoms are dynamically moved while preserving their coherence

[83, 306]. Since Rydberg based interactions are geometry-dependent, moving atoms would

open up new prospects for experiments in which the interaction connectivity of the atoms is

dynamically reconfigurable. Experimentally, these schemes would rely only on tools which are

already in place for atom sorting in the existing apparatus, and could be explored in the near

term.

15.3 Outlook

A central focus of modern quantum science and technology is to build quantum devices which

are beyond the reaches of classical simulatability, as part of the so-called NISQ (noisy, inter-

mediate scale quantum) era [20]. Since theoretical and numerical tools are intrinsically limited

for analyzing large quantum systems, laboratory devices will play a crucial role in understand-

ing the capabilities of such near-term quantum systems. With hundreds of individually con-

trolled atoms, neutral atom arrays constitute a powerful NISQ-era test bed for a wide range

of studies. Quantum simulations of exotic Hamiltonians allow for the explorations of novel

quantum phases, including topological phases which may be utilized for robust quantum com-

putation. Combinatorial optimization problems can be mapped to the Rydberg Hamiltonian
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[167], enabling new tests and comparisons of protocols for finding high-quality solutions, in-

cluding those based on quasi-adiabatic passage or on pulse protocols such as the quantum

approximate optimization algorithm [150, 197, 198]. New approaches for quantum information

processing based on dynamically reconfigurable arrays will enable the testing of sophisticated

quantum circuits.

New experimental advances may also extend optical tweezer arrays with new opportunities.

Trapping of more exotic two-electron atoms provides a distinct and powerful toolset for quan-

tum simulation and quantum processing, as well as strong applications to quantum metrology

[38, 35, 36]. Arrays of multiple atomic species may enable new approaches for higher-fidelity

control or quantum error correction protocols. Alternatively, arrays of individual molecules

offer a different approach towards quantum simulation, based on direct dipolar interactions

between ground state molecules [39, 37]. With several new research groups exploring these

many directions, this field will continue to grow and mature rapidly.
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A
Optical Setups

A.1 MOT laser setup

The MOT laser setup, shown in Fig. A.1, consists of two 780 nm lasers: the MOT laser, which

drives transitions from the F = 2 ground state to 5P3/2, and the repumper laser, which

drives transitions from the F = 1 ground state. The repumper laser is locked to a satu-

rated absorption spectroscopy signal from a Rubidium vapor cell on the crossover line between

F = 1 → F ′ = 1 and F = 1 → F ′ = 2. The beam is enlarged prior to entering the vapor cell

to increase the signal; alternatively, the vapor cell could be heated to increase the signal. The

repumper laser is modulated by an AOM, and split into several beam paths: the MOT beams,
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Figure A.1: MOT laser setup. This is the laser setup for the 780 nm lasers which are used for laser cool-
ing and imaging. DBR=Distributed Bragg Reflector; PBS = Polarizing beamsplitter; NPBS=Non-polarizing
beamsplitter; HWP=Half-wave plate; QWP=Quarter-wave plate; PD=Photodetector; TA=Tapered ampli-
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1013 nm laser is sourced from a Toptica DL pro (upper left). The light is locked to the ultra-low expan-
sion (ULE) cavity (right section). The transmitted light is used to injection lock a laser diode (lower left).
The 840 nm light (which is doubled to produce 420 nm light) is also locked to the ULE cavity. Both
the 1013 nm and 840 nm lasers are locked to the ULE cavity by a Pound-Drever-Hall (PDH) lock. The
1013 nm is phase modulated by an EOM (shown) to produce the PDH sidebands. The 840 nm is phase
modulated by a fiber modulator (not shown), which produces a variable frequency sideband (up to ∼ GHz
scale) which is locked to the cavity to allow for a tunable offset from the cavity mode. This fiber modu-
lator also produces the PDH sidebands for the 840 nm light. The ULE cavity has a free spectral range
of 1.5 GHz. ULE=Ultra low expansion; PBS = Polarizing beamsplitter; BS=Non-polarizing beamsplitter;
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the probe beams, and the optical pumping axis.

The MOT laser is characterized on saturated absorption spectroscopy in a vapor cell, but it

is frequency-stabilized by a ∼ 6.8 GHz offset lock to the repumper laser. The laser is amplified

using a tapered amplifier (TA) and similarly split into separate pathways for the MOT beams,

probe beams, and optical pumping axis; each pathway has a separate AOM.
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A.2 Rydberg laser setup

The Rydberg laser setup is shown in Fig. A.2. The 1013 nm laser source is a Toptica DL Pro

(upper left), while the 840 nm laser source for the 420 nm light is a Ti:Sapphire laser from

M Squared (not shown). The two lasers are merged with dichroics and locked to the same

ultra-low expansion (ULE) cavity. The 1013 nm light which is transmitted through the cavity

is used to injection lock a separate laser diode (lower left of figure) to amplify the low-noise

light, and this output is then coupled into a fiber amplifier (not shown). Since the transmitted

light through the ULE cavity is used to source the injection lock, the injection locked laser is

always parked exactly at a cavity resonance. It is therefore easy to change the 1013 nm fre-

quency by a multiple of the 1.5 GHz free spectral range of the cavity. Finer frequency tuning

of the 1013 nm is accomplished using acousto-optic modulators (AOMs).

Since the 840 nm laser is intrinsically low noise, we do not use the cavity to filter the laser,

but only as a frequency reference. To make the frequency lock flexible, we generate tunable

sidebands on the 840 nm light using a fiber phase modulator, and lock one of these sidebands

to the ULE cavity. This allows arbitrary frequency tuning of the 840 nm light relative to any

ULE cavity mode.
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B
Supplementary information for Chapter 4

B.1 Methods for converting phase modulation to amplitude modulation

To evaluate the various methods for converting phase modulation to amplitude modulation,

we consider two main parameters for each approach: (1) T , the fraction of optical power that

is transmitted through the conversion system, and (2) ηAM , the amplitude modulation effi-

ciency of the resulting light. The Raman Rabi frequency scales according to Ωeff ∝ TηAM/∆,

where ∆ is the detuning from the intermediate excited state. At the same time, the rate of op-

tical scattering depends on the average optical power on the atoms, according to Γsc ∝ T/∆2.

We combine these two parameters into a single metric which best characterizes the coher-
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Method Transmission Amp. Mod. Eff. Coherence metric

T (β) ηAM(β) C(β) = T (ηAM)2

Filter out carrier 1− J0(β)
2 2J0(β)J2(β)

1−J0(β)2
(2J0(β)J2(β))2

1−J0(β)2

Filter with M.-Z. interf. 1
2
(1 + J0(2β))

J2(2β)
1+J0(2β)

(J2(2β))2

2(1+J0(2β))

M.-Z. Modulator (half-trans.) 1/2 J1(β) (J1(β))
2/2

M.-Z. Modulator (min-trans.) (1− J0(β))/2
J2(β)

1−J0(β)
(J2(β))2

2(1−J0(β))

Dispersive element (coeff. α) 1 J1(2β sinα) (J1(2β sinα))2

Two frequency components - 1/2 -

N uniform sidebands - N−1
N

-

N optimal sidebands - cos( π
N+1

) -

Table B.1: Comparison of methods for converting phase modulation to amplitude modulation.
For each method, as a function of the phase modulation depth β, we calculate the transmission through
the conversion system T (β), the amplitude modulation efficiency ηAM (β), and the coherence metric
C(β) = T (ηAM )2. For reference, we also present the amplitude modulation efficiency for an idealized
model of exactly two frequency components, of N uniform sidebands, and of N sidebands with optimal
amplitudes.

Method Optimal phase mod. Max. coherence
β∗ (rad) C(β∗)

Filter out carrier 3.574 0.144
Filter with M.-Z. interf. 1.664 0.174

M.-Z. Modulator (half-trans.) 1.841 0.169
M.-Z. Modulator (min-trans.) 2.718 0.097
Dispersive element (coeff. α) 1.336 ( α = 0.76 rad) 0.339

Table B.2: Optimal conversion of phase modulation to amplitude modulation. For each of the above
methods, we calculate the phase modulation depth β∗ which optimizes the coherence metric, and present
the optimized values. The dispersive element approach achieves the highest coherence metric, both due to
the high transmission through the system as well as the high amplitude modulation efficiency.
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ence properties of each approach. Specifically, we assume a fixed amount of available optical

power, and we choose the laser detuning ∆ such that the resulting Raman Rabi frequency Ωeff

is fixed. To achieve this, we set ∆ ∝ TηAM . For this setting, the optical scattering scales as

Γsc ∝ 1/T (ηAM )2. The ratio of Raman Rabi frequency to scattering rate is therefore given

by Ωeff/Γsc ∝ T (ηAM )2, which we define as the coherence metric C. The comparison of ap-

proaches is summarized in Table B.1.

To calculate T and ηAM for each approach, we begin by considering a phase modulated

laser, with (normalized) field:

Ω(t) =

∞∑
n=−∞

Jn(β)e
inωt (B.1)

The total power is
∑

n |Jn(β)|2 = 1. As we evaluate T and ηAM by considering the filtering of

various sidebands, we remarkably find that these values can be expressed as simple combina-

tions of Bessel functions through several Bessel function identities (derived in Appendix L).

B.1.1 Filter out carrier component

In this approach, the phase modulation frequency ω = ωq/2, such that second-neighboring

frequency components contribute to the Raman drive. After filtering out the carrier, the re-

sulting optical power is

T = 1− |J0(β)|2 (B.2)

The amplitude modulation efficiency is

ηAM =

∣∣∣∣∣
(∑

n

Jn(β)Jn+2(β)

)
− J0(β) (J−2(β) + J2(β))

∣∣∣∣∣ /T (B.3)

=
2J0(β)J2(β)

1− |J0(β)|2
(B.4)
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The first expression sums up all pairs of frequency components separated with ∆n = 2, and

then subtracts the contributions from n = 0 with n = ±2. The sum over all pairs is identi-

cally 0, and due to evenness of Bessel functions, J−2(β) = J2(β). Complex conjugation in the

amplitude modulation efficiency is ignored since the Bessel functions are real valued.

B.1.2 Filter with Mach-Zehnder interferometer

Here we again consider phase modulation with frequency ω = ωq/2. Passing the laser through

a Mach-Zehnder interferometer with a properly chosen path-length difference between arms

can result in filtering of all even index or all odd index components in the laser. The optical

power after filtering out all odd sidebands (a more favorable configuration) is

T =
∑

n even
Jn(β)

2 =
1

2
(1 + J0(2β)) (B.5)

due to a Bessel function identity (see Appendix L).

The amplitude modulation efficiency in this configuration is also greatly simplified due to a

Bessel function identity:

ηAM =
1

T

∑
n even

Jn(β)Jn+2(β) =
1

T

(
1

2
J2(2β)

)
(B.6)

=
J2(2β)

1 + J0(2β)
(B.7)

B.1.3 Mach-Zehnder modulation

A Mach-Zehnder modulator is an interferometer in which phase modulation occurs in one arm

of the interferometer. If the two pathways are balanced in power, the power transmitted in
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one output mode is given by the relative phase between the two paths:

I(ϕ) = sin2(ϕ/2) =
1

2
(1− cos(ϕ)) (B.8)

To modulate the output intensity at the qubit frequency ωq, the relative phase can either bi-

ased to the half-transmission point and then be modulated at ωq, according to ϕ = π/2 +

β sin(ωqt), or it can be biased to the minimum transmission point and then modulated at

ωq/2, with ϕ = β sin(ωqt/2). These approaches result in different electric field components

in the output light, but to analyze the Raman performance, we need only analyze the laser

intensity.

We begin with the half-transmission configuration. In this case,

I(t) =
1

2
(1 + sin(β sin(ωqt))) (B.9)

Using a version of the Jacobi-Anger expansion, the right hand side can be expanded:

I(t) =
1

2

(
1− i

∑
n odd

Jn(β)e
inωqt

)
(B.10)

The average optical power is given by the time-indepenent term:

T = 1/2 (B.11)

This is as expected, since we modulate symmetrically around the half-transmission point.

The amplitude modulation efficiency is given by the coefficient of the eiωqt term, normalized
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by T :

ηAM =
1

T

J1(β)

2
= J1(β) (B.12)

Turning instead to the minimum transmission case, we calculate the time-dependent output

intensity (where the modulation frequency is ωq/2):

I(t) =
1

2
(1− cos(β sin(ωqt/2))) (B.13)

Again using Jacobi-Anger:

I(t) =
1

2

(
1−

∑
n even

Jn(β)e
inωqt/2

)
(B.14)

We now read off the average optical power by setting all time dependent terms to zero:

T =
1

2
(1− J0(β)) (B.15)

As with the half-transmission case, the amplitude modulation efficiency is the coefficient of the

eiωqt term, here corresponding to n = 2, normalized by T :

ηAM =
1

T

J2(β)

2
=

J2(β)

1− J0(β)
(B.16)
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B.1.4 Dispersive elements

After reflecting from a dispersive element with uniform dispersion (GDD is independent of

frequency), the normalized field is described by:

Ω(t) =
∞∑

n=−∞
Jn(β)e

inωteiαn
2 (B.17)

The intensity is then given by:

|Ω(t)|2 =
∞∑

k=−∞
eikωt

∞∑
n=−∞

Jn(β)Jn+k(β)e
iα[(n+k)2−n2] (B.18)

Assuming the phase modulation frequency is a subharmonic of ωq, with ω = ωq/k, then we

have the following amplitude modulation efficiency (of order k):

ηAM
k =

∣∣∣∣∣
∞∑

n=−∞
Jn(β)Jn+k(β)e

2iαnk

∣∣∣∣∣ (B.19)

Here we use the Bessel function identity (see Appendix L) to simplify:

ηAM
k = Jk (2β sin(αk)) (B.20)

This conclusion is quite amazing. We can immediately evaluate the upper bound on efficiency

for any possible choice of β and dispersive parameter α, because the result is simply bounded

by the maximum value of Jk(z). Moreover, we see that modulating directly at ω = ωq (taking

k = 1) is optimal, since J1(z) has a larger maximum than any higher order Bessel function –

but we also see that this configuration requires the largest dispersive parameter α to achieve

this maximum, due to the sin(αk) coefficient within the Bessel function.
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B.2 Dispersive optical elements

The group delay dispersion of an optical element is defined as:

GDD =
∂2φ

∂ω2
(B.21)

where φ(ω) is the optical phase shift (in radians) accumulated by a frequency component with

angular frequency ω after the action of the element. GDD is typically measured in units of

fs2, although many optical elements such as fibers have their dispersive properties described in

terms of their group velocity dispersion (GVD), which is GDD per unit length (typical units

are ps/nm/km).

Normal materials have dispersion which acts over a broad wavelength range, which plays

an important role in ultrafast optics with broadband lasers, where dispersion results in pulse

broadening. However, we are interested here in strong dispersion on the scale of ∼ 10 GHz

in the near infrared. In particular, as described in Chapter 4, we want optical elements with

group delay dispersion of 8 × 108 fs2 to be able to optimally convert phase modulation to am-

plitude modulation.

Typical optical fibers at 795 nm have GVD of −120 ps/nm/km, or 4 × 104 fs2/meter, with

attenuation 4 dB/km. To achieve the target GDD, we would require a 20 km fiber, with a

resulting 80 dB laser attenuation. Some photonic crystal fibers have been designed to have

significantly larger GVD, but with much higher attenuation.

In the ultrafast optics community, after sending short pulses through a long fiber, they

reverse the pulse broadening by reflecting the broadened pulse from a chirped Bragg mirror.

The highest available chirped Bragg mirrors offer GDD ∼ 1300 fs2 per reflection. To achieve

our target GDD would require ∼ 600, 000 reflections from such a mirror.
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The volumetric chirped Bragg grating (CBG) that we use offers the enormous GDD =

4× 108 fs2 from a single pass. After reflecting twice from the CBG, we double the GDD to the

target level, and conveniently also recombine spatial modes of all spectral components in the

laser. One caveat is that the CBG has a narrow bandwidth of ∼ 50 GHz, which requires angle-

tuning to match to the bandwidth of the phase modulated laser. This could also limit reflec-

tivity for very large phase modulation depth which creates many sidebands, but for β ≲ π this

does not pose an issue. Another factor is that the CBG does not in fact have uniform GDD

over its bandwidth, which further requires angle tuning to position the laser bandwidth at an

optimal point within the CBG bandwidth.

226



C
Supplementary information for Chapter 6

C.1 Experimental Sequence

C.1.1 Trap loading

The experimental sequence begins by laser cooling thermal 87Rb atoms in a magneto-optical

trap (MOT) around the traps for 100 ms (Fig. C.1A). We use a gradient field of 9.7 G/cm,

and three intersecting retroreflected beams that are 17 MHz red detuned of the free space F =

2 → F ′ = 3 transition, overlapped with repumper beams resonant with the free space F = 1 →

F ′ = 2 transition. One of these beams is perpendicular to the optical table, and the other two

are parallel to it (intersecting at an angle of ≈ 120◦ due to the geometric restriction imposed
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Figure C.1: Experimental sequence and atomic signal. A) Pulse diagram of the experimental se-
quence. B) Distribution of number of initially loaded atoms. C) Sample fluorescence count distribution
for a single trap during 20 ms of exposure.

by the high resolution objectives). All three beams have a diameter of ≈ 1.5 cm, and carry

≈ 1.5 mW of cooling light and ≈ 0.4 mW of repumping light each. To reduce the necessary

time to load the MOT, we shine UV light from a diode at 365 nm directly on the region of the

glass cell within which the MOT is loaded [42].

After 100 ms, the magnetic field gradient and the MOT beams are turned off to allow the

MOT to dissipate over 28 ms. At the same time we turn on a set of probe beams which are 20

MHz red-detuned from the bare atom F = 2 → F ′ = 3 transition. The probe beams have the

same geometric configuration as the MOT beams, but they have ≈ 50 times less power, and

a diameter of ≈ 1 mm, which largely reduces background light due to stray reflections during

imaging. The probe beams further cool the atoms through polarization-gradient cooling, and

are left on for the remainder of the sequence.

The result of this process is the probabilistic loading of atoms into the traps. For the data

presented in Fig. 6.3 of Chapter 6, we loaded on average 59±5 atoms (Fig. C.1B).

C.1.2 Imaging

The EMCCD camera (Andor iXON3) is triggered 128 ms after the beginning of the experi-

mental sequence and acquires an image over the following 20 ms. Cooling light from the probe
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beams is scattered by the atoms and collected on the EMCCD, forming an image of the atoms

in the array. Based on the collected photon statistics for each trap, we can set clear thresholds

to determine the presence of an atom in a trap (see Fig. C.1C). Furthermore, the bimodal na-

ture of the photon statistics is an indication that the traps are occupied by either 0 or 1 atom.

C.1.3 Feedback

Once the EMCCD has finished acquiring the signal, the image file is transferred over the fol-

lowing 10 ms to a computer which determines trap occupations, using pre-calibrated regions

of interest and threshold counts for each trap, in sub-ms time. Using this information, the

computer finds the correct pre-calculated waveform to displace each occupied trap during

3 ms from its initial position to its final position, and then adds up all of them into a multi-

tone frequency-sweep waveform. This computation takes ≈ 0.2 ms for each trap to be dis-

placed. Once the waveform is ready, it is sent to the AOD to perform the trap displacement,

and then it goes back to producing the original set of 100 traps. It is important to note that

the rearrangement waveform is only calculated for loaded traps, which means that all empty

traps are turned off for the duration of the rearrangement but are restored immediately after-

wards, so that the trap array returns after rearrangement to its original configuration. After

rearrangement, there is a ≈ 7 ms buffer time before taking another 20 ms exposure image

with the EMCCD. The entire process, consisting of image acquisition, transfer, analysis, wave-

form generation, rearrangement, and buffer, takes a total of 50 ms.

Currently, the profile of the frequency sweeps is calculated to be piece-wise quadratic in

time, over a duration of 3 ms. For shorter transport times we observe an increase in the num-

ber of atoms lost during rearrangement. For the experiments reported in Chapter 6, atom

losses are only slightly increased compared to the expected lifetime in static traps (see Fig. C.2).
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Figure C.2: Rearrangement losses. Losses as a function of total distance traveled by the atom during
rearrangement for the dataset presented in Fig. 6.3 of Chapter 6. The dashed line represents the expected
loss for a stationary trap with 6.2 s lifetime.

These losses depend on the distance that the atoms move, and it is possible that they could

be reduced by changing the length or the profile of the frequency sweep to minimize accelera-

tion and jerk during the trajectory. However, the fidelity of our rearrangement would not be

significantly improved by minimizing these losses (see Fig. 6.3B of Chapter 6).

C.2 Experimental Methods

C.2.1 Generating 100 traps

When driving the AOD with a single radio frequency (RF) tone, a portion of the input beam

is deflected by an angle θ that depends on the frequency ω of the tone. By applying 100 differ-

ent RF tones {ω1, . . . , ω100}, we generate 100 beams with output angles {θ1, . . . , θ100}, where

θi = θ(ωi). The waveform that we send into the AOD is initially calculated by a computer

that samples the desired waveform in the time-domain with a sampling rate of 100 MHz. We

stream these waveform samples to a Software Defined Radio (SDR) (Ettus Research, model

USRP X310, daughterboard UBX 160) which performs digital-analog conversion, low-pass fil-

tering, and subsequent analog IQ upconversion by a frequency of ωup = 74 MHz, and outputs

an analog waveform, which we then amplify and send to the AOD. The waveform that we cal-
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culate initially is given by:
100∑
i=1

Aie
iϕiei(ωi−ωup)t,

with Ai and ϕi being the real amplitude and phase, respectively, of the RF tone with fre-

quency ωi. Since we generate all tones in the same waveform (relative to the same local os-

cillator inside the SDR), the tones in our waveform have well-defined phases {ϕi} relative to

one another. Also, since all the frequencies we use are integer multiples of 1 kHz, we calculate

a 1 ms waveform which is streamed on a loop without needing to continuously generate new

samples.

C.2.2 Effects of intermodulation

The finite power bandwidth, along with other imperfections of our system (RF amplifier and

AOD) generate a nonlinear response to the input signal. To the lowest order nonlinearity, the

system acts as a mixer and generates new tones at the sum and difference of the input fre-

quencies. For example, for two tones, A1e
iϕ1eiω1t, A2e

iϕ2eiω2t, at the input, there will be a

corresponding set of tones at the output:

E−
1,2 ∝ ei(ϕ1−ϕ2)ei(ω1−ω2)t,

E+
1,2 ∝ ei(ϕ1+ϕ2)ei(ω1+ω2)t

These terms are far removed from the main set of desired tones {ωi} and can in principle

be filtered by frequency. However, they seed the next order of nonlinearity.

The next order of nonlinearity contains the mixing of these first order nonlinearities with

the original tones. For example, with two tones we would now see a mixing of the (ω1 − ω2)

tone with the original ω1 tone to produce a sum tone at (2ω1 − ω2) and a difference tone at
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Figure C.3: Generating uniform traps. Nonlinearities inside the AOD and RF amplifier cause frequency
mixing. (A) Setting identical phases for each input tone results in intermodulations that strongly interfere
with the intended frequency tones and significantly distort the trap amplitudes. (B) By optimizing the
phases {ϕi} and amplitudes {Ai} of the RF tones we can reduce intermodulations and generate homoge-
neous traps.

ω2. Similarly, the (ω1 − ω2) tone would mix with the original ω2 tone to produce a tone at

(2ω2 − ω1) and ω1. If the phases of each input tone {ϕi} are not carefully selected, these inter-

modulations interfere destructively with the original tones, as shown in Fig. C.3A.

C.2.3 Optimizing trap homogeneity

We address the issue of intermodulations by adjusting the phases of the different RF tones to

almost completely cancel out the nonlinearities. As a first step, we generate a computer simu-

lation of 100 tones evenly spaced in frequency and with random phases, and equal amplitudes.

For each pair of traps {i, j}, we calculate the difference tone E−
i,j . By starting with random

initial phases, the difference tones nearly completely destructively interfere with one another.

We then optimize each phase, one at a time, to further reduce the sum of all difference tones∑
E−

i,j . After this, we proceed to generate the waveform to be streamed onto the SDR. The

starting amplitudes for each tone are selected such that they individually produce a single de-

flection carrying the correct amount of optical power. The frequencies span from 74.5 MHz to
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123.01 MHz in steps of 0.49 MHz.

The next step in optimization consists of imaging the focused trap array on a CCD and

performing 2D Gaussian fits. We use the amplitude of these fits to feed back on the amplitude

of the individual tones. Once all the fitted amplitudes are approximately uniform, we continue

to the last step of optimization.

Since we are interested in the uniformity of the traps at the positions of the atoms, we mea-

sure the AC Stark shifts induced by the traps, and use these values to feed back on the ampli-

tude of each tone. In order to extract the AC Stark shift, we shine a single laser beam onto

the trapped atoms for 10µ s, and measure the loss probability introduced by this “pushout”

beam as a function of detuning from the bare F = 2 → F ′ = 3 resonance (Fig. C.4A inset).

From the fits we extract the individual lightshift for each trap and use these values to perform

feedback on the amplitudes. We repeat the procedure until the shifted resonances are uniform

to within ≈ 2% across the trap array (Fig. C.4A). At this point we have a set of optimal am-

plitudes {Aopt
i } and phases {ϕopti } associated with the RF frequencies {ωi} (Fig. C.3B). We

interpolate between the values of {Aopt
i } to define the optimal amplitude as a function of fre-

quency Aopt(ω).

C.2.4 Characterizing trap homogeneity

To characterize the homogeneity of the final trap configuration, we perform experiments to

determine the AC Stark shift and trap frequency for each trap in the array (Fig. C.4).

As outlined in the previous section, the measurement of the AC Stark shift is used to equal-

ize the traps. We find an average shift of 17.5 MHz with a standard deviation of 0.1 MHz

across the whole array.

The trap frequency (Fig. C.4B) is found through a release and recapture technique [307].
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Figure C.4: Characterization of trap and atom properties. (A) The trapping light causes a lightshift
on the atomic resonances that depends on the amplitude of the trap. The measured lightshifts across the
array are used to optimize the RF amplitudes {Ai}. This process results in homogeneous traps with light-
shifts that are uniform to within ≈ 2%. Inset shows the result of a “pushout” measurement (see text) on
trap 26 that is used to determine the individual lightshift. (B) The trap frequencies are determined from a
release and recapture measurement [307] (see inset for trap 26). The errors from the fits are smaller than
the marker size for all the figures.

We obtain the radial frequency from a fit to the probability of retaining an atom as a func-

tion of hold time (Fig. C.4B inset). We find the average trap frequency to be 98.7 kHz with a

standard deviation of 1.7 kHz across the array. Combining these measurements with an inde-

pendent determination of the waist, we estimate a trap depth of ≈ 0.9 mK.

C.2.5 Moving traps

For most of the experimental sequence time, the traps are static. However, during short bursts

we stream new waveforms to the AOD to rearrange them, and the atoms they hold. We move

our traps by sweeping the frequencies {ωi(t)} of the tones that correspond to the traps we

wish to move, in a piecewise-quadratic fashion. This way, the atoms experience a constant

acceleration a for the first half of the trajectory, and −a for the second half. During the sweep,

we also continuously adjust the amplitude of the RF tone to match the optimized amplitude

for its current frequency: Ai(t) = Aopt(ωi(t)). Further, by slightly adjusting the duration

of each sweep, we enforce each trap to end with the optimal phase corresponding to its new

position.
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Using these parameters we pre-calculate all waveforms to sweep the frequency of a tone

at any given starting frequency in our array to any given final frequency, over 3 ms. This

amounts to 1002 precalculated trajectories.

C.2.6 Lifetimes

The lifetime for each trap is found by an exponential fit to the probability of retaining an

atom as a function of time. Under optimal conditions, this results in an average lifetime for

the traps in our array of 11.6 s with a standard deviation of 0.5 s across the array. However,

this value depends on the background pressure inside the vacuum chamber and therefore de-

pends on the current with which we drive our dispenser atom source. For the measurements

presented in Fig. 6.3 of Chapter 6, an average lifetime of 6.2 s was found from independent

calibration measurements.

In these measurements, we apply continuous laser cooling throughout the hold time. We ob-

serve that without continuous cooling, the lifetime is reduced compared to these values. The

retention as a function of time in this case does not follow a simple exponential decay (indica-

tive of a heating process), and we define the time at which the retention probability crosses

1/e to be the lifetime. For the standard configuration in Chapter 6 (100 traps with 0.49 MHz

spacing between neighboring frequencies), we find a lifetime of ≈ 0.4 s. While we have not

characterized the source of the lifetime reduction in detail, we have carried out a number of

measurements in different configurations to distinguish various effects:

• Generating a single trap by driving the AOD with a single frequency from a high-quality

signal generator (Rohde & Schwarz SMC100A), we find a lifetime of ≈ 2 s. This indi-

cates that there are additional heating effects, such as photon scattering from trap light

or intensity noise, that are independent of the use of the SDR or the fact that we drive
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the AOD with a large number of frequencies. Possible improvements include using fur-

ther detuned trap light and improving our intensity stabilization. Furthermore, in a

separate experiment [43], we observed that using a Titanium-Sapphire laser instead of a

TA significantly improved trap lifetimes even at the same trapping wavelength.

• Generating a single trap by driving the AOD with a single frequency from the SDR, we

find a lifetime of ≈ 1 s. This indicates that the RF-waveforms from the SDR could have

additional phase or intensity noise. A possible source is the local oscillator used for IQ

upconversion in the SDR, which could be replaced with a more phase-stable version.

• We observe the same trap lifetime of ≈ 1 s when driving the AOD with 70 frequencies

at a spacing of 0.7 MHz using the SDR. This indicates that, in principle, there is no

lifetime reduction associated with driving the AOD with a large number of frequencies.

• We observe a reduction of lifetime for frequency spacings smaller than ≈ 0.65MHz. For

example, we found a lifetime of ≈ 0.4 s, when setting the frequency spacing to 0.49MHz.

(This lifetime is unchanged by increasing the number of traps from 70 to 100.) We in-

terpret this effect to be the result of interference between neighboring traps. Due to the

finite spatial overlap of the tweezer light, a time-dependent modulation occurs with a

frequency given by the frequency spacing between neighboring traps. When bringing

traps closer together, both the spatial overlap increases and the modulation frequency

approaches the parametric heating resonance at ≈ 200kHz given by twice the radial

trapping frequency.

We would like to stress that these effects only play a role after the rearrangement procedure is

completed. During rearrangement, continuous laser cooling is a valid and powerful method to

reduce heating effects. Additionally, the flexibility of our system makes it possible to load and

236



continuously cool atoms in a set of closely spaced traps, and to rearrange the filled traps to

an array with larger separations, at which point cooling can be turned off. This method of re-

arrangement takes advantage of the large number of atoms that can be initially loaded in our

set of 100 traps separated by 0.49 MHz, while eliminating the effect of interference by setting

a larger final frequency separation of, for example, 0.7 MHz. Furthermore, atoms could also

be transferred into a fully “static” trap array, such as an optical lattice, after rearrangement.

However, even with optimal cooling parameters, heating effects cannot be always compen-

sated. For example, we observed a significant reduction of lifetime for frequency spacings be-

low ≈ 0.45 MHz even with continuous laser cooling. This sets a limit on the maximum num-

ber of traps that can be generated within the bandwitdh of our AOD, and therefore limits the

final sizes of the atomic arrays.

C.3 Prospects for extensions to 2D arrays

In this section we will discuss possible extensions of our method to form uniformly filled two-

dimensional (2d) arrays. We will describe two different rearrangement strategies and compare

their performance given realistic parameters for loading efficiencies and lifetimes.

C.3.1 Method 1: Row or column deletion and rearrangement

Using a 2d AOD we could generate a 2d array of optical tweezers using two sets of RF tones,

one set corresponding to rows and the other corresponding to columns. After loading atoms

probabilistically into the array, it would be possible to eliminate each defect by turning off

the RF frequency that generates either the row or the column containing the defect, and then

transport all remaining rows and columns to form a defect-free uniform array.
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Figure C.5: Projections for 2D system sizes. Expected number of atoms in defect free rectangular ar-
rays generated through the “Row or column deletion and rearrangement method” with 0.6 loading efficiency
and 10 s lifetime (A), and with 0.9 loading efficiency and 60 s lifetime (B). Expected number of atoms in
defect free rectangular arrays generated through the “Row-by-row rearrangement method” with 0.6 loading
efficiency and 10 s lifetime (C), and with 0.9 loading efficiency and 60 s lifetime (D).

C.3.2 Method 2: Row-by-row rearrangement

A different approach is to generate a static two-dimensional array of traps using techniques

such as optical lattices or spatial-light modulators. In a first step, atoms would be probabilis-

tically loaded into this static array. After loading, we could use an independent AOD to gen-

erate a linear array of traps, deeper than the ones forming the static array and overlapping

precisely with one row of static traps. By rearranging the linear array, we could transfer the

atoms to their final locations in the static configuration, where they would remain after turn-

ing off the traps used for transport. Doing this for each row would make it possible to fill an

entire region of the static 2d array.
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C.3.3 Expected performance and scalability

The final size of the array will depend on the initial loading efficiency, while the probability

to have a defect-free array after rearrangement will depend on the atom lifetimes in the traps,

and the total feedback time. This time consists of several blocks: image taking, image trans-

fer, waveform calculation, and trap movement. We can take an image in 20 ms. The time it

takes to transfer the image from the camera to the computer takes a minimum of 9 ms and

each row of atoms adds 0.8 ms to the transfer time. Analyzing the image to determine the lo-

cation of the atoms and necessary frequency sweeps can be done in sub-ms time. Generating

the waveform takes ≈ 0.2 ms for each sweep necessary. This time scales as the final number

of atoms (O(N)) for method 2, and with the final number of rows and columns (O(N1/2)) for

method 1. Finally, the rearrangement itself takes 3 ms for each set of frequency sweeps: for

method 1 there are two sweeps, and for method 2 the number of sweeps equals the number of

rows.

Figure C.5 shows the result of a Monte Carlo simulation for the expected number of atoms

in a defect-free rectangular array using two sets of parameters, and both rearrangement meth-

ods described above. Given our current loading efficiency of 0.6 and vacuum-limited lifetime

of ≈ 10 s, we can expect more than 160 atoms in the final defect-free configuration (Fig. C.5A, C).

However, if we were to upgrade our vacuum setup to increase the lifetime from 10 s to 60 s,

and we increased the loading efficiency to 0.9 using currently available techniques [85–87], we

could expect more than 600 atoms in defect-free configurations (Fig. C.5B, D). These num-

bers were calculated by simulating a sequence that performed repeated rearrangement until no

more defects appeared, and every point on the plot is the average of 500 simulations.
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D
Supplementary information for Chapter 7

D.1 Trapping setup and experimental sequence

Our setup consists of a linear array of up to 101 evenly spaced optical tweezers. The tweezers

are generated by feeding a multi-tone RF signal into an acousto-optic deflector (AA Opto-

Electronic model DTSX-400-800.850), generating multiple deflections in the first diffraction

order, and focusing them into the vacuum chamber using a 0.5 NA objective (Mitutoyo G

Plan Apo 50X). The beams have a wavelength of 808nm and a waist of ∼ 0.9µm, forming

traps of depth ∼ 1 mK.

A diagram of the experimental sequence is shown in Fig. D.1a. The traps are loaded from

240



MOT

Probe

EMCCD

Feedback

Time

Rydberg

Opt. pump

Traps

a b

TA

Fiber EOM

19 MHz

QWP

PBSPD

EOM

18 MHz

Dichroic

PD

QWP

AOM AOM

EOM

Optical cavity

1013 nm

420 nm

Experiment

PBS

100 - 1500 MHz

Figure D.1: Experimental sequence and Rydberg laser setup. a, The tweezer array is initially loaded
from a MOT. A single-site resolved fluorescence image taken with an electron-multiplied-CCD camera (EM-
CCD) is used to identify the loaded traps. Using this information, a feedback protocol rearranges the loaded
atoms into a preprogrammed configuration, which is verified by the second EMCCD image. After that, all
atoms are optically pumped into the |F = 2,mF = −2⟩ state, the tweezers are turned off, and the Rydberg
lasers are pulsed. After the traps are turned back on, a third EMCCD image is taken to detect Rydberg ex-
citations with single-site resolution. b, Schematic representation of the Rydberg laser setup, which is used
to stabilize two external cavity diode lasers to a reference optical cavity with a fast Pound-Drever-Hall lock.
Key: TA=Tapered amplifier, AOM = Acousto-optic modulator, EOM = Electo-optic modulator, PD = Pho-
todetector, PBS = Polarizing beam splitter, QWP = Quarter wave plate.

a magneto-optical trap (MOT), leading to individual tweezer single-atom loading probabilities

of ∼ 0.6. A fluorescence image of the array is taken, and the empty traps are turned off, while

the filled traps are rearranged to bring the atoms into their preprogrammed positions [24].

Following the rearrangement procedure, another image of the array is taken to preselect on

instances in which the initial configuration is defect-free. After taking the second image, we

apply a magnetic field of ∼ 1.5 G along the axis of the array, and then we optically pump all

atoms into the |F = 2,mF = −2⟩ state using a σ−-polarized beam resonant to the |5S1/2, F =

2⟩ → |5P3/2, F = 2⟩ transition. We then turn off the traps, pulse the Rydberg lasers on a

timescale of a few microseconds, and then turn the traps back on to recapture the atoms that

are in the ground state |g⟩ while pushing away the atoms in the Rydberg state |r⟩, and finally

take a third image. Because of their long lifetime, most of the Rydberg atoms escape from the

trapping region before they decay back to the ground state. This provides a convenient way

to detect them as missing atoms on the third image (with finite detection fidelity discussed in
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section 1.3). The entire experimental sequence, from MOT formation to the third image, takes

∼ 250ms.

D.2 Rydberg lasers setup

To introduce interactions within the array, we couple the atomic ground state |g⟩ = |5S1/2, F =

2,mF = −2⟩ to a target Rydberg state |r⟩ = |70S1/2,mJ = −1/2⟩. The van der Waals interac-

tion between two 87Rb 70S atoms follows a 1/R6 power law and is on the order of 1MHz at

10µm [47], making it the dominant energy scale in our system for up to several lattice sites.

The coupling between states |g⟩ and |r⟩ is induced by a two-photon transition, with |6P3/2⟩

as the intermediate level. We drive the transition between |g⟩ and |6P3/2⟩ with a blue 420nm

laser (MOGLabs cateye diode laser CEL002) and the transition between |6P3/2⟩ and |r⟩ with

an IR 1013nm laser injecting a tapered amplifier (MOGLabs CEL002 and MOA002). The

detuning δ of the blue laser from the |g⟩ ↔ |6P3/2⟩ transition is chosen to be much larger

than the single-photon Rabi frequencies (typically δ ∼ 2π × 560MHz ≫ ΩB,ΩR ∼ 2π ×

60, 36MHz, where ΩB and ΩR are the single-photon Rabi frequencies for the blue and red

lasers, respectively), such that the dynamics can be safely reduced to a two-level transition

|g⟩ ↔ |r⟩ driven by an effective Rabi frequency Ω = ΩBΩR/(2δ) ∼ 2π × 2MHz (Fig. D.2a).

The blue and IR beams are applied counter-propagating to one another along the axis of

the array. An external magnetic field is additionally applied, and the beams are circularly po-

larized such that blue laser drives the σ− transition between |g⟩ and |e⟩ = |6P3/2, F = 3,mF =

−3⟩, while the red laser drives the σ+ transition between |e⟩ and |r⟩. Such a stretched configu-

ration minimizes the probability to excite unwanted states such as |70S1/2,mJ = +1/2⟩. The

two beams are focused to waists of 20µm (blue) and 30µm (IR) at the position of the atoms,

in order to get high intensity while still being able to homogeneously couple all atoms in the
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Figure D.2: Typical Rabi oscillation, homogeneity and coherence for non-interacting atoms (a =
23µm, Ω ≫ Vi,i+1 ≃ 5 kHz). a, Rabi oscillations. We observe a typical decay time of ∼ 6µs, which is
mainly limited by intensity fluctuations from shot to shot. b, The fitted Rabi frequency for each atom across
the array (spatial extent ∼ 300µm) is homogeneous to within < 3%. Error bars denote 68% confidence
intervals. c, Measurement of the population in the Rydberg state after a spin echo pulse sequence drawn
above. We find no decay of coherence over typical measurement periods of several microseconds, thereby
ruling out fast sources of decoherence.

array (see section Coherence Limitations).

The Rydberg lasers interact with the atoms during one experimental cycle for a few µs. In

order to maintain laser coherence, the linewidth must be significantly smaller than a few tens

of kHz. To achieve this, we use a fast Pound-Drever-Hall scheme to lock our Rydberg lasers to

an ultra-low-expansion reference cavity (ATF-6010-4 from Stable Laser Systems, with a finesse

of ≥ 4000 at both 420nm and 1013nm). The optical setup used for this purpose is sketched

on Fig. D.1b. A fraction of the beam from the blue laser first goes through a phase modulator

(Newport 4005) driven by a 18MHz sinusoidal signal, before being coupled to a longitudinal

mode of the reference cavity. The reflected beam from the cavity is sent on a fast photodetec-

tor (Thorlabs PDA8A), whose signal is demodulated and low-pass filtered to create an error

signal which is fed into a high-bandwidth servo controller (Vescent D2-125). The feedback sig-

nal from the servo controller is applied to the current of the laser diode using a dedicated fast

input port on the laser headboard. The measured overall bandwidth of the lock is on the or-

der of 1MHz. The other part of the blue laser beam goes through an acousto-optic modulator
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Figure D.3: Spectroscopic measurement of Rydberg interactions. Spectroscopy on pairs of atoms
separated by ∼ 5.74 µm. a, For single atom losses, we observe a single peak at ∆ = 0 corresponding
to the two-photon coupling from |g, g⟩ to |W ⟩. b, For two atom losses, we observe an additional peak at
∆ = 2π × 12.2 MHz. This corresponds to the four-photon coupling from |g, g⟩ to |r, r⟩ through the in-
termediate state |W ⟩, detuned by ∆. The interaction energy is then given by V = 2∆. Note that this
four-photon resonance is broadened due to random atom positions within the optical tweezers that result
in fluctuations in interaction strengths from shot to shot of the experiment. Solid lines are fits to a single
Lorentzian (single atom losses) and the sum of two Lorentzians (two atom losses).

(IntraAction ATM-1002DA23), whose first diffraction order is used to excite atoms, providing

frequency and amplitude control for the Rydberg pulses.

A similar scheme is implemented for the 1013nm laser, with the notable difference that the

beam used for the frequency lock first goes through a high-bandwidth (> 5GHz) fiber-based

electro-optic modulator (EOM, EOSpace PM-0S5-05-PFA-PFA-1010/1030). Rather than the

carrier, we use a first-order sideband from the EOM for the lock, which makes it possible to

tune the frequency of the red laser over a full free-spectral range of the reference cavity (1.5

GHz) by tuning the driving frequency of the high-bandwidth EOM. Following [308] and [309],

we estimate that the contribution to the laser linewidth of the noise within the servo loop rela-

tive to the cavity is less than 500Hz.

D.3 Measuring interaction strengths

We experimentally measure the 70S → 70S van der Waals interactions between atom pairs

separated by 5.74 µm (identical to the spacing used for observing the Z2 ordered phase) to
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confirm our estimate of interaction strengths and to provide independent (and more precise)

estimation of the exact atom spacing (Fig. D.3). At this spacing we expect the interaction

V to be on the order of 2π × 20 MHz. We apply our two laser fields (420 nm and 1013 nm)

to couple each atom to the Rydberg state, with two-photon detuning ∆. For ∆ = 0, we ob-

serve resonant coupling from |g, g⟩ to |W ⟩ = 1√
2
(|g, r⟩ + |r, g⟩) as expected for the block-

aded regime in which Ω = 2π × 2 MHz ≪ V . However, there is an additional resonance

at ∆ = V/2 in which we drive a four-photon process from |g, g⟩ to |r, r⟩ through the off-

resonant intermediate state |W ⟩. By spectroscopy, we determine this 4-photon resonance to

be at ∆ ∼ 2π × 12.2 MHz , from which we calculate V = 2∆ = 2π × 24.4 MHz. This is

consistent with independent measurements of our trap spacing of ∼ 5.7 µm, from which we ad-

ditionally calibrate the spacing used in other arrangements (3.57 µm for Z3 order and 2.87µm

for Z4 order). Other methods have also been used to more accurately determine interaction

strengths, such as those demonstrated in Fig. 3.7 of Chapter 3.

D.4 Timing limits imposed by turning off traps

Atoms can be unintentionally lost due to motion away from the trapping region during the

Rydberg pulse when the traps are off. This process depends on atomic temperature and how

long we turn off the traps. In particular, with our measured temperature of 12 µK (Fig. 2.8

in Chapter 2), the loss due to atomic motion for trap-off times of < 4 µs is only ≲ 0.1%. For

longer trap-off times, we see loss of up to 2% at 6 µs or 9% at 10 µs. To cap this infidelity at

3%, all experiments described in Chapter 7 operate with trap-off times of ≤ 7 µs.
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D.5 State detection fidelity

Each atom is identified as being in |g⟩ (or |r⟩) at the end of the Rydberg pulse by whether it

is (or is not) present in the third fluorescence image. Detection infidelity arises from acciden-

tal loss of atoms in |g⟩ or accidental recapture of atoms in |r⟩. For an atom in state |g⟩, detec-

tion fidelity is set by the finite trap lifetime (which causes baseline loss of 1%) and motion due

to turning the traps off (≤ 3% for all experiments shown, see section on Timing Limits). In

particular, for the 7-atom data shown in Figure 7.3 in Chapter 7 and the 51-atom data shown

in Figure 7.4 and 7.5, we measured ground state detection fidelities of 98% and 99%, respec-

tively.

For an atom in state |r⟩, the optical tweezer yields an anti-trapping potential, but there is a

finite probability that the atom will decay back to the ground state and be recaptured by the

tweezer before it can escape the trapping region. We quantify this probability by measuring

Rabi oscillations between |g⟩ and |r⟩ (Fig. D.2) and extracting the maximum amplitude of

the oscillation signal. After accounting for the loss of ground state atoms as an offset to the

signal, we obtain a typical effective detection fidelity of 93% for the |70S1/2⟩ Rydberg state.

Furthermore, we observe a reduced detection fidelity at lower-lying Rydberg states, which is

consistent with the dependence of the Rydberg lifetime on the principal quantum number [48].

D.6 Correcting for finite detection fidelity

The number of domain walls is a metric for the quality of preparing the desired crystal state.

Boundary conditions make it favorable to excite the atoms at the edges. Therefore, we define

a domain wall as any instance where two neighboring atoms are found in the same state or an

atom at the edge of the array is found in state |g⟩. In systems composed of an odd number of
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particles, this definition sets the parity of domain walls to be even.

The appearance of domain walls can arise from non-adiabaticity across the phase transition,

as well as scattering from the intermediate 6P state, imperfect optical pumping, atom loss,

and other processes (see section on Coherence Limitations). However, the observed number

of domain walls is artificially increased owing to detection infidelity; any atom within a crys-

tal domain that is misidentified increases the number of measured domain walls by two. For

this reason, we use a maximum-likelihood routine to estimate the parent distribution, which

is the distribution of domain walls in the prepared state that best predicts the measured dis-

tribution. We use two methods to correct for detection infidelity, depending on whether we

are interested only in the probability to generate the many-body ground state, or in the full

probability distribution of the number of domain walls.

D.7 Correcting detection infidelity: Many-body ground state preparation

Having prepared the many-body ground state, the probability to correctly observe it depends

on the measurement fidelity for atoms in the electronic ground state fg, the measurement

fidelity for atoms in the Rydberg state fr, and the size of the system N . Assuming a per-

fect crystal state in the Z2 phase, the total number of atoms in the Rydberg state is nr =

(N + 1)/2, while the number of atoms in the ground state is ng = (N − 1)/2. The probability

to measure the perfect state is then pm = fnr
r × f

ng
g . Therefore, if we observe the ground state

with probability pexp, the probability of actually preparing this state is inferred to be pexp/pm.

The blue data points in Fig. 7.4a in Chapter 7 are calculated this way.
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D.8 Correcting detection infidelity: Maximum likelihood state reconstruc-

tion

In order to correct for detection fidelity in the entire distribution of domain walls, we use a

maximum-likelihood protocol. For this purpose, we assume that the density of domain walls is

low, such that the probability of preparing two overlapping domain walls, meaning three con-

secutive atoms in the same state, is negligibly small. Under this assumption, misidentifying an

atom within a domain wall shifts its location, but does not change the total number. However,

misidentification of an atom within a crystal domain increases the number of domain walls by

two. For any prepared state with a number of domain walls ni, we can calculate the probabil-

ity to measure nf domain walls, p(nf |ni). We can construct a matrix M , which transforms an

initial probability distribution in number of domain walls, Wi = (p(ni = 0), p(ni = 2), ...), into

the expected observed distribution Wf = MWi, where Mkl = p(nf = k|ni = l). Given an

experimentally observed distribution of domain walls, Wo, and a test initial distribution W′
i,

we can calculate the difference vector between them D′ = Wo −W′
f = Wo −MW′

i.

Using D′ and the confidence intervals of the measured data (σ), we define a cost function

C
(
Wo,W

′
i

)
=
∑
k

(
D′

k

σk

)2

, (D.1)

where σ represents the 68% confidence intervals obtained via an approximate parametric boot-

strap method [310], and the sum is taken over the elements of the vectors. We can find the

most likely parent distribution, Wi, by minimizing the cost function over the different possi-

ble W′
i, under the constraint that that every element is between 0 and 1, and the sum of the

elements is 1. For this purpose, we use a Sequential Least Square Programming routine. To

reduce biases, we use a random vector as a starting point of the minimization procedure. We
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Figure D.4: State reconstruction. a, Reconstructed parent distribution. b, Comparison of measured do-
main wall distribution (red) and predicted observation given the parent distribution in a (blue). c, Difference
between the two distributions in b.

checked that repeating the procedure several times with different initial vectors converged to

the same parent distribution, and that the distribution of domain walls predicted by this par-

ent distribution was in excellent agreement with the measured distribution. The result of such

a procedure on the dataset used for Fig. 7.5c of Chapter 7 is shown in Fig. D.4.

D.9 Adiabatic pulse optimization

In order to prepare the ordered phases, we use frequency chirped pulses by varying the two-

photon detuning ∆ across the bare |g⟩ ↔ |r⟩ resonance, corresponding to ∆ = 0. To perform

these sweeps, we drive a high-modulation-bandwidth voltage-controlled oscillator (VCO, Mini-

Circuits ZX95-850W-S+) according to either cubic or tangent functional forms:

V (t)cubic = a(t− t0)
3 + b(t− t0) + c

∣∣∣
∆min≤∆≤∆max

(D.2)
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V (t)tangent = a tan (b(t− t0)) + c
∣∣∣
∆min≤∆≤∆max

(D.3)

with programmable parameters a, b, c. The output from this VCO is mixed (Mini-Circuits

ZFM-2-S+) with a 750MHz source to generate the difference frequency, which is used to drive

the AOM in the 420nm light path. The detuning ∆ is set to truncate at minimum and max-

imum values ∆min and ∆max, respectively. The tangent adiabatic sweep has been used for

datasets with 51 atoms shown on Figures 7.4 and 7.5 of Chapter 7 due to improved perfor-

mance, whereas the cubic form has been used for all smaller system sizes and for the data on

crystal dynamics shown on Figure 7.6 of Chapter 7.

At the end of the sweep, the number of domain walls in the crystal provides a metric for

the quality of the crystal preparation. All parameters in (D.2) or (D.3) are iteratively opti-

mized as to minimize the domain wall number, i.e. maximize the crystal preparation fidelity.

The optimization starts with the offset c, followed by the b parameter, then the maximum and

minimum detunings ∆min/max, and finally the a parameter. Repeated optimization of these

parameters often leads to better crystal preparation fidelities [311].

After passing through the AOM, the 420nm light is coupled into a fiber. The coupling is

optimized for the VCO frequency at which the light is resonant with the |g⟩ to |r⟩ transition

(fopt), and decreases as the VCO frequency deviates from fopt. The power throughout all fre-

quency sweeps is ≥ 75% of the power at fopt.

D.10 Coherence limitations

When sweeping into the crystalline phase, the control parameter ∆(t) must be varied slowly

enough that the adiabaticity criterion is sufficiently met. However, for long pulses, additional
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technical errors may become limiting. Here, we summarize some key limitations:

• State preparation fidelity: For all analyzed data, we preselect on defect-free atom

arrays. Preparation fidelity is therefore given by the probability that each atom in the

array is still present for the Rydberg pulse, and that it is prepared in the correct mag-

netic sublevel: |5S1/2, F = 2,mF = −2⟩. Including both factors, we estimate that atoms

are present and in the correct magnetic sublevel with fidelity f > 98%. For experiments

with 51 atoms, this leads to ≲ 1 atom incorrectly prepared.

• Spontaneous emission: The 70S Rydberg state has an estimated lifetime of 150µs

(including blackbody radiation at 300K) [48]. Additionally, for the typical interme-

diate detuning ∆ ≈ 2π × 560MHz and single photon IR and blue Rabi frequencies

of (ΩR,ΩB) ≈ 2π × (36, 60)MHz, spontaneous emission from the intermediate state

occurs on a time scale of 40µs for the ground state, and introduces a combined effec-

tive lifetime of 50µs for the Rydberg state. This leads to an average scattering rate of

2π × 3.6 kHz.

• Rabi frequency homogeneity: We aim to align our beams to globally address all

trapped atoms with a uniform Rabi frequency |Ωi| = Ω. Experimentally, we achieve

homogeneity up to differences ≲ 3% (Fig. D.2b).

• Intensity fluctuations: Primarily because of pointing instability, the global Rabi fre-

quency fluctuates by small amounts from shot to shot of the experiment. In order to

reduce slow drifts of the beams, we use a 1:1.25 telescope to image on a camera their

position on the plane of the atoms and feedback to stabilize their position to a target

every 500 repetitions (∼2 minutes).

• Rydberg laser noise: The coherence properties of the Rydberg lasers over typical
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experimental times are probed by measurements on single, non-interacting atoms. In

particular, spin echo measurements between |g⟩ and |r⟩ show no visible decay of coher-

ence over 5µs (Fig. D.2c). This measurement, along with the measured noise contribu-

tion from the laser lock < 0.5 kHz (see section on Rydberg lasers setup), indicates that

the laser linewidths are sufficiently narrow. Additional phase noise is introduced by the

laser lock around the lock bandwidth of about 1MHz. This phase noise may cause weak

additional decoherence on the adiabatic sweep experiments shown in Chapter 7.

• Finite atomic temperature: Our finite atomic temperature of ∼ 12µK introduces

both random Doppler shifts (of order 2π × 50 kHz), as well as fluctuations in the atomic

positions (∼ 120nm radially, ∼ 600nm longitudinally) for each atom in each cycle of

the experiment. The Doppler shift is very small in magnitude compared to the single

atom Rabi frequency Ω. The position fluctuations can introduce noticeable fluctuations

in the interaction energy between a pair of atoms from shot to shot. As an example, at

our chosen lattice spacing of 5.9µm, we calculate an interaction energy of 2π × 24MHz.

However, if the distance fluctuates by values on the order of
√
2 × 120nm ≈ 170nm,

then the actual interaction energy can range from 21 MHz to 29 MHz. The longitudi-

nal position fluctuations add in quadrature, so they contribute less to fluctuations in

distance.

• Electric and magnetic fields: We have observed that the Rydberg resonance can

drift over time, especially for states with high principal quantum number n, which we

attribute to uncontrolled fluctuations in the electric field. We can reduce these fluctua-

tions by shining UV light at 365 nm on the glass cell in between experimental sequences

and during the MOT loading period, which stabilizes the charge environment on the
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Figure D.5: Ground state preparation probability comparisson. Comparison of the ground state prepa-
ration probability obtained in this work (measured, red circles; corrected for detection infidelity, blue cir-
cles) with the most complete prior observations of a Z2-symmetry breaking transition in a system of trapped
ions [125]. We emphasize that the interaction Hamiltonians for the two systems are not identical due to the
finite interaction range. In particular, the long range interactions tend to frustrate adiabatic transitions into
Z2 ordered states in [125] and, to lesser extent, in the present work.

glass cell surface. While the fluctuations for states n ≥ 100 are still significant, they

become negligible (< 100 kHz) for our chosen state n = 70.

The energy shifts of the initial state |g⟩ and final state |r⟩ with magnetic fields are iden-

tical. Differential shifts of the intermediate state are very small compared to the detun-

ings of the two laser beams from the 6P3/2 state. Therefore, we do not expect magnetic

fields to play any significant role in fluctuations between experimental runs.

We note that the use of deterministically prepared arrays allows us to efficiently optimize

the coherence properties. For example, for collective Rabi oscillations of fully blockaded groups

of up to three atoms, we observe an improvement in the product Ωτd of about an order of

magnitude compared to previous work [117], where τd is the decay time of Rabi oscillations.

In addition, the relatively high fidelity in the preparation of Z2 ordered states with 51 atoms

(Fig. D.5) indicates a significant amount of coherence preserved over the entire evolution.

These considerations indicate that the present approach is promising for near-term coherent

experiments with large scale systems [312].
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D.11 Comparison with a classical thermal state

To gain some insight into the states obtained from our preparation protocol (Fig. 7.3a in

Chapter 7), we provide a quantitative comparison between experimentally measured quan-

tities and those computed from a thermal ensemble. In particular, we note that deep in the

ordered phase ∆/Ω ≫ 1, the coherent coupling of the ground state to the Rydberg state

can be neglected owing to strong energetic suppression, and that the effective Hamiltonian

becomes diagonal in the measurement basis. This allows us to calculate all properties of a

thermal state even for systems of 51 atoms by explicitly computing the partition function via

the transfer matrix method [313]. Also, we may consider the interactions only up to next-

nearest neighbors as the coupling strengths for longer distances are weak compared to the

maximum timescale accessible in our experiments. To this end, we consider the Hamiltonian

Hcl = −∆
∑N

i=1 ni +
∑N−1

i=1 V1nini+1 +
∑N−2

i=1 V2nini+2.

The eigenstates of this Hamiltonian are simply 2N classical configurations, where each atom

is in either |g⟩ or |r⟩. We label these configurations by a length-N vector i = (i1, i2, . . . , iN )

(in ∈ {g, r}), and denote their energy by Ei. In a thermal ensemble ρ = exp(−βHcl)/Z

with Z ≡ tr[exp(−βHcl)] and inverse temperature β, the probability to find a particular

configuration i is given by pi = exp(−βEi)/Z. Since Ei can be written as a sum of local

terms involving only interactions up to a range 2, the partition sum can be evaluated us-

ing a standard transfer matrix of size 4 × 4. Moreover, using this approach, we can eval-

uate all measurable quantities for the thermal ensemble such as the average number of do-

main walls ⟨D⟩ = tr {Dρ}, where D is an operator counting the number of domain walls, i.e.

D =
∑N−1

i=1 (nini+1 + (1 − ni)(1 − ni+1)) + (1 − n1) + (1 − nN ), the correlation function

g(2)(d) = 1/(N − d)
∑N−d

i=1 g
(2)
i,i+d, and even the full counting statistics for the domain wall
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distribution in the state ρ. In particular, the probability to measure exactly n domain walls

pn = tr {Pnρ} can be computed from a Fourier transform of the Kronecker delta function

Pn ≡ δD,n = 1
N+2

∑N+1
k=0 exp[i 2π

N+2k(n−D)] with n = 0, 1, 2, . . . N + 1.

One can directly include the effect of imperfect detections in this formalism. To that end,

we denote the expectation value of an observable O as

⟨⟨O⟩⟩ =
∑
i,j

OiΛi,jpj, (D.4)

where Oi is the value of the observable in state i, and Λi,j is the probability to detect state

i when the system is in state j, accounting for finite detection fidelity. Assuming detection

errors occur independently from one another, we have Λi,j =
∏

n λin,jn where λg,g = fg is

the probability to correctly detect an atom in the ground state, λr,r = fr is the probability

to correctly detect an atom in the Rydberg state, and λr,g = 1 − λg,g, and λg,r = 1 − λr,r.

Equation (D.4) can be evaluated using a 16×16 transfer matrix for any observables of interest.

In order to get a quantitative comparison with our experiments, we determine the inverse

temperature β in such a way that the average number of domain walls ⟨⟨D⟩⟩, including the ef-

fect of imperfect detections, matches the experimentally determined value, i.e. ⟨⟨D⟩⟩ = 9.01(2).

For ∆ = 2π × 14MHz, V1 = 2π × 24MHz and V2 = 2π × 0.38MHz this leads to β = 3.44(1)/∆

or equivalently to the entropy per atom of s/kB = 0.286(1) (Fig. D.6a,b). Since β charac-

terizes the thermal state completely, we can extract the corresponding domain wall distribu-

tion (Fig. D.6c) and the correlation function (Fig. D.6d) as described above. We find that the

correlation length in the corresponding thermal state is ξth = 4.48(3), which is significantly

longer than the measured correlation length ξ = 3.03(6), from which we deduce that the exper-

imentally prepared state is not thermal.
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Figure D.6: Comparison to thermal state. a, Domain wall density for thermal states at different entropy
per atom. The lower line corresponds to the actual number of domain walls in a system of the correspond-
ing temperature, the upper line gives the domain wall density one would measure at this temperature, given
the finite detection fidelity. The horizontal dashed line denotes the experimentally measured domain wall
density, from which we can infer a corresponding entropy per atom and equivalently, temperature, in a
thermal ensemble. b, Entropy per atoms for a thermal state at given inverse temperature β = 1/(kBT )
in a 51-atom array. c, Expected distribution of the number of domain walls for the thermal ensemble at
β = 3.44/∆, with (red) and without (blue) taking into account finite detection fidelity. d, Experimen-
tally measured correlation function g(2)(d) and correlation function corresponding to a thermal ensemble at
β = 3.44/∆. The inset shows the rectified correlation function on a logarithmic scale, indicating that the
measured correlation function decays exponentially, but with a different correlation length than one obtains
from a thermal state with the measured number of domain walls.
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D.12 Dynamics after sudden quench: Matrix Product State ansatz

To understand the dynamics of the Z2 Rydberg crystal following the quench of the detuning

to ∆ = 0, we first consider a simplified model, where interactions beyond nearest neighbor are

neglected. In addition, we replace the nearest neighbor interactions with hard constraints that

two neighboring atoms cannot be excited at the same time; such an approximation is well con-

trolled in the limit of Vi,i+1 ≫ Ω, as in the case of our experiments, for a time exponentially

long in Vi,i+1/Ω [129]. In this limit, the Hamiltonian can then be approximated by

Hc =
∑
i

P i−1
g

(
Ω

2
σix −∆P i

r

)
P i+1
g , (D.5)

where P i
g = |gi⟩⟨gi|, P i

r = |ri⟩⟨ri|. We identify P i=0
g = P i=N+1

g = 1 at the boundaries.

Within this approximation, the relevant Hilbert space consists only of states with no neigh-

boring atoms in the Rydberg state, i.e. P i
rP

i+1
r = 0. The dimension of this constrained Hilbert

space is still exponentially large and grows as ∼ ϕN , where ϕ = 1.618 . . . is the golden ratio.

In the simplest approximation, one can treat the array of atoms as a collection of indepen-

dent dimers, |Ψ(t)⟩ =
⊗

i |ϕ(t)⟩2i−1,2i, where for each pair of atoms only three states are al-

lowed due to the blockade constraint, |r, g⟩, |g, g⟩ and |g, r⟩. The dynamics of each pair with

initial state |ϕ(0)⟩ = |r, g⟩ is then given by |ϕ(t)⟩ = 1
2(1+cos(Ωt/

√
2))|r, g⟩+ i√

2
sin(Ωt/

√
2)|g, g⟩+

1
2(1 − cos(Ωt/

√
2))|g, r⟩. This dimer model predicts that each atom flips its state with respect

to its initial configuration after a time τ =
√
2π/Ω. The corresponding oscillations between

two complementary crystal configurations are thus a factor
√
2 slower than an independent

spin model would predict, which is qualitatively consistent with the experimental observations.

We note that this dimerized ansatz does not satisfy the constraint P i
rP

i+1
r = 0 between two

neighboring dimers, which is an artifact originating from the artificial partitioning of the array
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into non-interacting dimers.

To go beyond this approximation, we consider an ansatz for the many-body wavefunction

that treats each atom on an equal footing. The simplest such wavefunction that also allows

for non-trivial entanglement between the atoms can be written as a matrix product state

(MPS) with bond dimension 2 [314]. In particular we consider a manifold of states of the form

|Ψ({θn})⟩ =
∑

{in} vLA(θ1)
i1A(θ2)

i2 · · ·A(θN )iN vR|i1, i2, . . . , iN ⟩ with matrices

A(θn)
g =

 cos(θn) 0

1 0

 A(θn)
r =

 0 i sin(θn)

0 0

 , (D.6)

and boundary vectors vL =

(
1 1

)
and vR =

(
1 0

)⊺
. Here, the indices in ∈ {g, r}

enumerate the state of the n-th atom. This manifold satisfies the constraint that no two neigh-

boring atoms are simultaneously excited. The many-body state within this subspace is com-

pletely specified by the N parameters θn ∈ [0, 2π]. In particular, it allows to represent the

initial crystal state, θ2n−1 = π/2 for atoms on odd sites and θ2n = 0 for atoms on even sites,

as well as its inverted version, θ2n−1 = 0 for odd and θ2n = π/2 for even sites, respectively. Us-

ing the time-dependent variational principle [315], we derive equations of motion for the wave

function within this manifold. For an infinite system with a staggered initial state θn+2 = θn,

such as the Z2 ordered state, the wave function is at all times described by two parameters

θa = θ2n−1 and θb = θ2n for even and odd sites. The corresponding non-linear, coupled equa-

tions of motion read

θ̇a = −1

2
sec (θb)

(
sin (θa) cos

2 (θa) sin (θb) + cos2 (θb)
)

(D.7)

θ̇b = −1

2
sec (θa)

(
sin (θb) cos

2 (θb) sin (θa) + cos2 (θa)
)
. (D.8)
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Figure D.7: Oscillations of domain wall density: Using a variational matrix product state ansatz.
Dynamics of the domain wall density in the bulk of the array under the constrained Hamiltonian Hc at ∆ =
0. The blue line shows the evolution of the domain wall density obtained from integrating the variational
equation of motion eq. (D.7) with initial conditions θa = π/2, θb = 0, i.e. the crystalline initial state. The
red line shows the exact dynamics of the domain wall density at the center of a system of 25 atoms initially
in the crystalline state under the constrained Hamiltonian Hc.

A numerical solution of these variational equations for the crystalline initial state predicts a

periodic motion with a frequency of ≈ Ω/1.51 (Fig. D.7), where the many-body wavefunction

oscillate between two staggered configurations.

D.13 Decay of the oscillations and growth of entanglement after quan-

tum quench

In order to obtain more insight into the dynamics of our system beyond these variational mod-

els, we use exact numerical simulations to integrate the many-body Schrödinger equation. In

particular, we focus on the decay of oscillations and the growth of entanglement entropy in

our system. Due to the exponentially growing Hilbert space, this method is limited to rela-

tively small system sizes. We make use of the constrained size of the Hilbert space (blockade

of nearest neighboring excitations of Rydberg states), and propagate the state vector of up

to 25 spins using a Krylov subspace projection method. In Fig. D.8 a we show the dynamics

of the domain wall density under the time evolution of the constrained Hamiltonian Hc with

Ω = 2π × 2MHz and ∆ = 0. We consider two different initial states: the disordered state

where each atom is initially prepared in the ground state |g⟩, and the perfect crystalline state
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Figure D.8: Decay of oscillations after a quench and entropy growth. a, Dynamics of the domain wall
density under the constrained Hamiltonian Hc for different initial states. The red line shows the domain
wall density for a system of 25 atoms initially prepared in the electronic ground state. In this case, the do-
main wall density quickly relaxes to a steady value corresponding to thermalization. In contrast, the blue
line shows the dynamics if the system is initialized in the Z2 ordered state. The domain wall density oscil-
lates over several periods and even for very long times does not fully relax to a steady value. b, Same as in
a but taking into account the full 1/R6 interactions. While the dynamics for an initial state |g⟩⊗N is very
similar to the one obtained in the constrained case, for the crystalline initial state the decay of the oscilla-
tions is faster than in the constrained model. c, Growth of entanglement entropy in a bipartite splitting of
the 25 atom array for the different cases displayed in a and b. The entropy is defined as the von Neumann
Entropy of the reduced state of the first 13 atoms of the array. The dashed lines correspond to dynamics
under the constrained Hamiltonian, neglecting the 1/R6 tail, while the solid lines take the full interactions
into account. Red lines correspond to the initial state |g⟩⊗N , while blue lines correspond to crystalline initial
states. In all panes we chose Ω = 2π × 2 MHz, and where applicable, interaction parameters such that the
nearest neighbor interaction evaluates to Vi,i+1 = 2π × 25.6MHz.
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|r, g, r, g, . . . ⟩. We note that in both cases the energy density corresponds to that of an infinite

temperature thermal ensemble in the constrained subspace with respect to Hc.

For the disordered initial state, the domain wall density quickly relaxes to a steady state

value. In contrast, if the system is initialized in the perfect crystalline state, the domain wall

density oscillates for long times and decays at a rate much slower than the oscillation period.

We confirmed numerically that this initial decay time is independent of the system size. We

further note that for every system size accessible in our numerical method, the domain wall

density does not relax to a steady value even at very long times, but continues to oscillate

with a reduced amplitude. Moreover, while the disordered initial state relaxes to an average

domain wall density consistent with a thermal state of infinite temperature corresponding

to the energy density of the initial state, this is clearly not the case for the crystalline initial

state. This qualitatively distinct behavior for two different initial states is also reflected in the

growth of entanglement entropy after the quench, shown in Fig. D.8c (dashed lines). While

in both cases the entanglement entropy grows initially linearly, the rate of growth is signif-

icantly lower for the crystalline initial state. Moreover, unlike the case of disordered initial

state where the entanglement entropy quickly saturates to its maximum value (limited by the

finite system size and the constrained Hilbert space), for the crystalline initial state, the entan-

glement entropy does not seem to approach the same value.

To understand the influence of the 1/R6-decaying interactions, we show the correspond-

ing dynamics and entanglement growth in Fig. D.8b,c (solid lines). Numerically, we treat the

strong nearest neighbor interactions perturbatively – by adiabatic eliminations of simultane-

ous excitation of neighboring Rydberg states – while the weak interactions beyond nearest

neighbors are treated exactly. For the disordered initial state, we find that the dynamics of

domain wall density and the entanglement growth remain similar to the previous case, where
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Figure D.9: State preparation with 51 atom clusters. a, Average position-dependent Rydberg proba-
bility in a 51 atom cluster after the adiabatic sweep. Error bars denote 68% CI. The Z2 order is visible at
the system edges, while the presence of domain walls leads to an apparently featureless bulk throughout the
system center. Inset: Comparison with average Rydberg probabilities in a 13 atom chain, where the Z2 order
is visible throughout the system but the small system size prevents the study of bulk properties. b, Variance
of the domain wall distribution during Z2 state preparation. Points and error bars represent measured values.
The solid red line corresponds to a full numerical simulation of the dynamics using a matrix product state
ansatz (see text and Fig. 7.5 of Chapter 7).

long range interactions are neglected; in this case, the thermalization time is barely affected.

In contrast, for the crystalline initial state, the oscillations decay significantly faster once next-

to-nearest neighbor interactions are included. We thus attribute the thermalization in this

case to interactions beyond the nearest neighbor blockade constraint. From the growth of the

entanglement entropy, we see that the crystalline initial state still thermalizes slower than the

disordered initial state.

D.14 Numerical time evolution via matrix product state algorithm

The numerical data presented in Fig. 7.5b and Fig. 7.6b in Chapter 7 are obtained by simu-

lating the evolution of the 51 atom array during the sweep across the phase transition as well

as the subsequent sudden quench using a matrix product state algorithm with bond dimen-

sion D = 256. We simulate the entire preparation protocol to generate the Rydberg crystal

(Fig. 7.5b in the Chapter 7), and use the resulting state as an initial state for the time evolu-

tion after the sudden quench. To this end, we use a time-evolving block decimation (TEBD)

algorithm [316, 317], with a Suzuki-Trotter splitting of the Hamiltonian to update the state.
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The time step used in this Trotterization is Ω∆t = 0.004. We take into account only near-

est neighbor and next-nearest neighbor interactions and neglect small interactions for atoms

that are separated by 3 or more sites (as discussed also in Sec. 4). We account for finite de-

tection fidelities that are determined independently, but otherwise do not include any incoher-

ent mechanisms. Remarkably, for local quantities, such as the domain wall density, this fully

coherent simulation agrees well with the experimentally measured values. For higher-order

correlation functions, such as the variance of the domain wall number, the fully coherent sim-

ulation and the experiment agree only qualitatively (Fig. D.9). The quantitative difference is

likely due to either limitations of the MPS simulations or various incoherent processes present

in the experiment.
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E
Supplementary information for Chapter 8

E.1 Rydberg array preparation

The experiment utilizes an acousto-optic deflector to generate multiple optical tweezers, which

are loaded probabilistically from a cold gas of 87Rb atoms in a magneto-optical trap. Each

tweezer can be loaded with up to a single atom. Once the cloud is dispersed, a fluorescence

image, similar to the ones shown in Fig. 8.2a of Chapter 8, is taken to identify loaded traps.

The traps are then rearranged to generate a defect-free regular array of 51 atoms, evenly sepa-

rated by a distance a [24].

We define our spin Hamiltonian according to two pseudospin-1/2 states. The first is a ground-
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state hyperfine sublevel, |g⟩ = |5S1/2, F = 2,mF = −2⟩. The second is the interacting Rydberg

state |r⟩ = |70S, J = 1/2,mJ = −1/2⟩. These two states are coupled by a two-photon process

via the intermediate state |e⟩ = |6P3/2, F = 3,mF = −3⟩. The two lasers operate at wave-

lengths 420nm for the lower transition and 1013nm for the upper transition.

The 420nm laser is a frequency-doubled Titanium-Sapphire laser (SolsTiS 4000 PSX F by

M Squared), locked to an optical reference cavity (ATF-6010-4 from Stable Laser Systems).

The 1013nm laser is an external cavity diode laser (CEL002 by MOGLabs) that is locked to

the same reference cavity. The transmitted light through the cavity is used to injection lock

another 1013nm laser diode, which is then amplified by a tapered amplifier [293]. Both beams

are focused along the array axis (aligned with the quantization axis) to drive σ− and σ+ tran-

sitions for the 420nm and 1013nm beams, respectively.

E.2 Pulse generation

We modulate the 420nm Rydberg laser with an AOM driven by an arbitrary waveform gener-

ator (AWG, M4i.6631-x8 by Spectrum Instrumentation). For each experiment, we program a

waveform with varying amplitudes, frequencies and phases in the time domain into the AWG,

which is then transmitted to the AOM through a high-power RF amplifier (ZHL-1-2W+ by

Mini-Circuits).

The nonlinear AOM response to changes in amplitude and frequency poses a technical

challenge. The deflection efficiency is not proportional to the waveform amplitude, and large

changes in the waveform frequency lead to variations in the deflection efficiency. These effects

lead to distortions in the pulse shape. We apply feed-forward corrections to the amplitude to

both match the output intensity to the desired waveform amplitude, as well as to compensate

for the variations with frequency.
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Figure E.1: Determination of initial detuning ∆0. At a fixed laser detuning, we linearly ramp Ω on and
then off over 1 µs each. We identify the negative detuning closest to resonance for which we are fully adia-
batic, such that the excitation probability at the end of the pulse returns to the minimum. From this typical
measurement, taken at RB/a = 1.59, we set ∆0 = −2.5MHz. Error bars denote 68% confidence intervals.

E.3 Pulse parameters

All pulses begin by turning on the value of Ω linearly over 1µs at a fixed initial detuning ∆0.

We select our initial detuning to be as close to the critical point as possible subject to the con-

straint that the initial turn-on is still fully adiabatic. We identify this detuning experimentally

by ramping Ω on and then off for various fixed detunings. In the adiabatic case, all the atoms

should return to |g⟩. We therefore select the detuning closest to resonance that still shows no

excess excitation at the end of the pulse. For a typical measurement in the Z2 regime, we se-

lect ∆0 = −2.5MHz (Fig. E.1).

The final detunings of the sweeps are chosen in most cases to cross the tip of the corre-

sponding phase boundary. In some cases in which the interaction strength is on the border

between two phases, we do not fully cross over the boundary (Fig. E.2a).

The power-law scaling behavior of the correlation length can be limited owing to strong

nonadiabaticity far away from the critical point, where the behavior of the system is suscep-

tible to the microscopic details and should deviate from universal theories, limiting how fast

a sweep across the phase transition can be. At the same time, slow sweeps are more suscep-
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Figure E.2: Numerically extracted phase diagram with trajectories for QKZM measurements. a,
Green (purple) markers indicate the phase boundary points between disordered and Z2-(Z3-)ordered phases.
Yellow diamonds indicate the boundaries of the disordered phase (as approached from increasing ∆ with
fixed Ω and Rb/a). We have not verified if these transitions are directly from disordered to Z4-ordered
phases, or involve incommensurate phases. Each gray dashed line corresponds to the trajectory across phase
space used to probe for scaling behavior of correlation length growth. The horizontal section of each trace
corresponds to the detuning sweep at a constant Rabi frequency, while the curved sections correspond to
pulse turn-off at a fixed value of the detuning. The total duration of the detuning sweep is varied to con-
trol the rate of transition across the phase boundaries, but the time to turn the field off is not. b, Numeri-
cally obtained energy densities E along the red solid line indicated in (a). The second order derivatives of E
shows clear cusps at two critical points.

tible to decoherence, both because of the longer pulse time window, and because the system

remains closer to the ground state near the critical point and the growing quantum correla-

tions are increasingly sensitive to environmental noise. To determine the range of rates for

which QKZM scaling can be observed, we perform a sweep into each of the ordered phases at

a wide range of sweep speeds s. We fit the correlation lengths for each parameter, discarding

all the instances where the correlation length is smaller than the size of the blockade radius,

to a model that accounts for incoherent processes as a saturation in the final size of the corre-

lation length, namely:

ξ(s) =


ξ0(s0/s)

µ : s ≤ sc,

ξ0(s0/sc)
µ : s > sc.

(E.1)

From this fit, we set smin > sc and find smax such that ξ(smax) > RB. An example of
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Figure E.3: Scaling window. Determination of the window of rates where scaling is valid for the transition
into the Z3-ordered phase. The black solid lines represent the result of the fitted model which grows as a
power law until it saturates. The dashed horizontal line marks the size of the blockade radius. The values of
all the rates used in the experiment are larger than the value at which the dashed and solid lines intersect,
and smaller than the point where the model saturates. The error bars denote the uncertainty of the power-
law fit.

this can be seen in Fig. E.3. In this way, we determine the sweep parameters for the different

values of the interaction strength (see Fig. E.1).

E.4 Numerical computation of the phase diagram

The quantum critical points along the phase boundary on the phase diagram presented in

Chapter 8 were obtained using both finite- and infinite-system density-matrix renormalization

group (DMRG) algorithms [246, 318–322]. The filled colored regions are not the result of nu-

merical simulations, and only show approximately the expected shape of the phases. In this

section, we describe the details of the DMRG calculations.

For the infinite-system DMRG (iDMRG), we generally follow the method summarized in

Ref. [323], where translationally invariant matrix product states (iMPS) are used as varia-

tional ansatze for ground-state wavefunctions. Our Hamiltonian with long-range interactions

is encoded using matrix product operator representations, where 1/r6 decaying interactions
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Figure E.4: Interaction potential approximation. Comparison between the exact power-law decay 1/r6

and its approximation using a linear combination of four exponentials. The two functions agree with each
other until their relative strength decreases to 10−6.

are approximated by a linear combination of four exponentials

1

r6
≈

4∑
i=1

cix
r
i , (E.2)

with (c1, c2, c3, c4) = (170.55, 1.29, 0.0252, 0.000279) and (x1, x2, x3, x4) = (0.00519, 0.0835, 0.279, 0.565)

[324]. The resultant function provides an excellent approximation with relative error less

than 10−5 (Fig. E.4). This accuracy implies that even with the strongest interaction strength

probed in our experiments (Rb ≈ 3.5), the maximum correction, V0
∣∣∣1/r6 −∑4

i=1 cix
r
i

∣∣∣ ≲

(2π) × 36 kHz, is much weaker than the smallest energy scale that can be probed within our

experimental timescales.

Our phase diagram involves quantum phases that spontaneously break spatial translation

symmetry. Hence, it is important that the number of spins in a translationally invariant unit

cell of our iMPS ansatz must be compatible with the broken spatial symmetry. We use 2 or

6 spins as a unit cell in order to probe phase transitions from disordered to Z2-ordered or Z3-

ordered phases, respectively. Incommensurate phases or onset of spatial symmetry breaking

that is not compatible with the number of spins per unit cell can be identified by oscillatory

behavior of wavefunction overlaps or energy densities over iterations.
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In order to obtain the ground-state wavefunction, we iteratively optimize iMPS tensors

until the (local) overlap between wavefunctions from two consecutive optimization steps ap-

proaches unity up to a small error ϵ. As convergence criteria, we require that either ϵ ≤ 10−8

or ϵ is limited by truncation errors arising from finite bond dimension D [323]. We use a wide

range of bond dimensions up to D = 200, depending on the quantity of interest to be com-

puted and on the convergence of wavefunctions. For example, computing the ground state

energy density is relatively insensitive to bond dimensions, while extracting correlation lengths

near the critical point requires a substantially larger D.

We thus extract the phase boundaries from the energy density. Specifically, we use iDMRG

to extract the ground-state energy density E along a line in the parameter space, (Rb/a,∆/Ω),

and compute its second derivative along the line. When crossing a quantum phase transi-

tion, the second-order derivative of the energy density exhibits a sharp feature. For exam-

ple, Fig. E.2b shows the numerically computed energy densities per unit cell (6 spins) as a

function of Rb/a ∈ [1.75, 2.25] for a fixed ∆/Ω = 2 with D = 10. We find clear cusps at

Rb/a ≈ 1.86 and 2.18, corresponding to critical points from Z2-ordered to disordered and

to Z3-ordered phases. Similar procedures along different lines lead to the phase diagram in

Fig. E.2a and in Fig. 8.1c of Chapter 8.

These phase boundaries are also reproduced using finite-system DMRG [325, 326] with a

bond dimension up to D = 60 for a chain of L = 51 atoms and open boundary conditions.

The first three energy levels are individually targeted, which, in turn, gives us access to the en-

ergy gap. The closing of the gap outlines well-defined lobes in the phase diagram, the bound-

aries of which overlap well with the points extracted previously with iDMRG (see Fig. E.5).

A few remarks are in order. First, it has been previously discussed that the Z3-ordered

phase may be interfacing incommensurate phases [120]. However, we do not find any evidence
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Figure E.5: Energy gap. Calculated gap between ground and first excited state using density-matrix renor-
malization group (DMRG) calculations. Green (purple) circles indicate the extracted quantum critical points
separating the disordered from the Z2(Z3)-ordered phase.

of incommensurate phases between Z2 and Z3 phases up to ∆/Ω = 12 within our numeri-

cal precision. The nature of the direct transition from disordered to Z3-ordered phases is dis-

cussed in Refs. [160–162]. Second, we have not explicitly identified the phase transition be-

tween disordered to Z4-ordered phases. This is because our choices of a unit cell (two or six

spins) are not compatible with Z4-ordered wavefunctions. Instead, the boundary of the disor-

dered phase for Rb/a > 3 (yellow diamonds in Fig. E.2a) has been extracted from the conver-

gence of the iDMRG algorithm; as ∆/Ω increases with a fixed Rb/a, the yellow diamonds in

Fig. E.2a indicate the points at which the iDMRG algorithm ceases to converge, and instead

exhibits oscillatory behaviors. Our method does not distinguish whether this is due to the on-

set of the Z4-ordered phase or a gapless incommensurate phase.
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E.5 Correlation length extraction and scaling

From the fluorescence pictures obtained at the end of an experimental sequence, we calculate

the two-dimensional Rydberg density-density correlation map:

G(i, j) = ⟨ninj⟩ − ⟨ni⟩⟨nj⟩. (E.3)

Figure E.6: Rydberg density-density correlations. Full density-density correlation map for sites i and
j after a slow sweep into the Z2-ordered phase. The orange square outline marks the bulk region used for
analysis.

To minimize boundary effects, we disregard 8 sites from each edge. From the remaining

bulk correlations, we average out this map over diagonal lines of constant |i − j| to obtain

the Rydberg density-density correlation described in Eq. (8.2) of Chapter 8 (Fig. E.6). The

uncertainties for the values of G(r) are found via a jackknife analysis.

Two different approaches are used to extract a characteristic length from such correlations.

For transitions into ZN -ordered states (Fig. 8.4), we perform a least squares fit to the data

with the model function:

Ĝ(r) = Ae−r/ξĜN (r)gs, (E.4)
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where A is the amplitude at r = 0, ξ is the correlation length, and ĜN (r)gs is the ideal correla-

tion function at integer values of r for the corresponding ZN -ordered state, with a peak every

N sites:

Ĝ2(r)gs = cos(2πr/2)

Ĝ3(r)gs = cos(2πr/3) (E.5)

Ĝ4(r)gs = cos(2πr/4) + 1/2 cos(2πr/2).

The range of distances used for all fits is 0 < r ≤ 20, where the cutoff at 20 sites is used to

avoid any potential finite-size effects of the system.

In addition to the procedure described above, for Z2-ordered states it is possible to extract

a correlation length by fitting an exponential decay to the modulus of the correlation function,

as is done in Fig. 8.2 of Chapter 8. This method allows for the determination of the corre-

lation length in a way that is less susceptible to systematic effects arising from inversions of

the alternating pattern, as observed in Fig. 8.3a. However, this method cannot be applied to

ZN -ordered states for N > 2, necessitating the use of a more general approach, such as the

function Ĝ(r) defined above. While the scaling exponents extracted using both of these meth-

ods for the Z2-ordered state data are consistent within error bars, Ĝ(r) is used to obtain all

exponents in Fig. 8.4c of Chapter 8.

To extract the most likely scaling exponent µ at a given interaction, we fit a power law

ξ = ξ0 (s/s0)
−µ, (E.6)

where s is the detuning sweep rate.
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E.6 ZN domain density

In the fluorescence images obtained at the end of each experimental sequence, we identify the

loss of an atom to a Rydberg excitation. In this way, we can directly count the number of in-

stances of two lost atoms separated by N sites, where every site in between contains an atom.

To extract the data for Fig. 8.4b, we disregard the first 8 sites from the edges and count the

instances in which both ends of the N atom chain are within the bulk, fN . The relative proba-

bility for two lost atoms separated by N sites is given by:

pN =
N × fN∑
i>0(i× fi)

. (E.7)

Unlike G(r), pN is susceptible to detection infidelity [157, 293].

E.7 Length rescaling of correlation functions

In Fig. 8.3 of Chapter 8, we use the normalized measured density-density correlation functions,

1
Ai
G(r)i, and rescale the length r by the QKZM length scaling exponent found via the scaling

analysis of correlation length, r → (s/s0)
µr.

E.8 Finite-time scaling

The length scaling exponent, µ, found experimentally sets constraints to the possible combi-

nations of the critical exponents z and ν at a given interaction strength. In order to estimate,

or qualitatively test, the possible values of z and ν, given the constraints set by µ, we make

use of the fact that in the critical region, all system properties scale in a universal way. The

QKZM predicts a universal scaling of time with a scaling exponent of zν/(1 + zν), in addition
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Figure E.7: Finite-size scaling across QPT into Z2-ordered phase. a, Experimentally measured growth
of the correlation length across the phase transition for different sweep speeds. The error bars denote the
uncertainty of the power-law fit. b, Verification of critical exponents across the QPT into Z2-ordered phase
by rescaling the control parameter and spatial correlations. Using the experimentally extracted value of the
QKZM length scaling exponent, µ = 0.52, and setting the dynamical critical exponent to the Ising predic-
tion, z = 1, it is observed that the data in a falls along a smooth function.

to the scaling of length with µ = ν/(1 + zν) [327] . In the experiment, the control parameter

used to cross the quantum phase transition is δ = ∆ − ∆c, where ∆c is the value of the de-

tuning at the critical point and can be estimated through numerical simulations (see section

on numerical computation of the phase diagram). Near the critical point, the control param-

eter varies in time as δ(t) = st, leading to a universal scaling of δ(s) = δ0(s0/s)
κ, where

κ = −1/(1 + zν). Using the data shown in Chapter 8 for the correlation length growth across

the transition into the Z2-ordered phase, we can apply the transformation ξ → ξ(s/s0)
µ and

δ → δ(s/s0)
κ, to observe how well the data collapse to a universal shape. Fig. E.7 shows that

these data are consistent with having critical exponents z = 1 ≃ ν, as is expected for the Ising

universality class.

E.9 Numerical simulation of Kibble-Zurek dynamics

We numerically model the dynamics of the system using matrix product states and employ a

variant of a time evolving block decimation (TEBD) algorithm to propagate the state. We use

a state update that allows us to exactly include the effect of interaction between atoms that
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are separated by less than ℓ = 7 sites. Interactions beyond this range are neglected. To this

end, we use a Trotterization for the unitary that propagates the system from a time tk to a

time tk+1 = tk +∆t as

U(tk → tk+1) ≈
N−ℓ∏
p=1

exp (−ihp(tk)∆t) , (E.8)

where

hp(tk) =
1

ℓ

ℓ−1∑
j=0

(
Ω(tk)

2
σxp+j −∆(tk)np+j

)

+
ℓ−2∑
i=0

ℓ−1∑
j=i+1

1

ℓ− (j − i)
Vi,jnp+inp+j

(E.9)

for 1 < p < N − ℓ, and h1 and hN−ℓ are similar, but with appropriately adjusted coefficients.

We simulate the evolution according to the same pulse shape as applied in the experiment,

with a time step of ∆t = 0.15 ns and a bond dimension of 128. A comparison between the nu-

merically simulated dynamics and the experimental results for different interaction strengths

is shown in Fig. 8.4. As described section E.5, deviations of the individual correlation func-

tions from an exponentially decaying period-N density wave lead to systematic effects that

dominate the uncertainty in the determination of the values presented in Fig. 8.4b of Chap-

ter 8. The comparison between experimental and numerical results is susceptible to multiple

effects, including finite-size effects [328], accuracy of the approximate numerical methods used,

experimental imperfections, and data fitting, which contribute to the observed discrepancy.

E.10 Chiral clock models

QPTs in the Rydberg Hamiltonian, Eq. (8.1) of Chapter 8, involving Zn (n ≥ 3) translational

symmetry breaking along one spatial direction are expected to be in the universality class of

the extensively-studied Zn chiral clock models [329, 148, 147, 330, 163, 331, 332]. To eluci-
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date this connection, let us focus on n = 3 and consider the case when V1 ≫ |Ω|, |∆|, that is,

nearest-neighbor interactions are strong enough to effectively preclude two neighboring atoms

from simultaneously being in the Rydberg state. Since the van der Waals interactions decay

rapidly as Vx = C6/x
6, we neglect couplings beyond the third-nearest neighbor by approximat-

ing Vx ≈ 0 for x ≥ 3, leading to a truncated model of the form:

HRyd =

N∑
i=1

Ω

2
(|gi⟩⟨ri|+ |ri⟩⟨gi|)−∆ni + V2nini+2, (E.10)

supplemented with the constraint ni ni+1 = 0.

The Hamiltonian (E.10) can be mapped to a system of hard-core bosons, where no more

than one boson can occupy a single site. This follows upon identifying the state where the

atom at site i is in the internal state |r⟩ (|g⟩) with the presence (absence) of a boson. Defining

the bosonic annihilation and number operators, bi and ni = b†ibi, respectively, we obtain

Hb =
N∑
i=1

Ω

2
(b†i + bi)−∆ni + V2 nini+2, (E.11)

together with ni ni+1 = 0. This model (often referred to as the U − V model) was shown by

Refs. [121, 120] to exhibit a phase transition in the universality class of the three-state chiral

clock model (CCM), over a set of parameters.

The Zn CCM is a simple extension of the transverse-field Ising model in which each spin

is promoted to have n > 2 states. However, instead of extending the symmetry from Z2 to

Sn, which would result in the n-state Potts model [333], the interactions are constructed to

be invariant under Zn transformations. With n = 3, the three-state CCM is defined by the
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Hamiltonian [331, 332]

Hccm = −f
N∑
j=1

τ †j e
−iϕ − J

N−1∑
j=1

σ†j σj+1 e
−i θ + h.c. (E.12)

acting on a one-dimensional chain of N spins. The three-state spin operators τi and σi, which

can be represented as

τ =

1 0 0
0 ω 0
0 0 ω2

 , σ =

0 1 0
0 0 1
1 0 0

 , (E.13)

act locally on the site i, and each satisfy

τ3 = σ3 = 1; σ τ = ω τ σ ; ω ≡ exp (2π i/3) . (E.14)

Here, ϕ and θ define two chiral interaction phases: for describing spatially ordered phases, we

need ϕ = 0, whereupon time-reversal and spatial-parity are both symmetries of the Hamilto-

nian but a purely spatial chirality is still present. Note that HRyd does not break time-reversal

symmetry, necessitating the choice of ϕ = 0 in the quantum clock model (E.12). However,

with both ϕ and θ nonzero, time-reversal and spatial-parity (inversion) symmetries are individ-

ually broken, but their product is preserved.

As depicted in Fig. 8.4a, a generic state in the Hilbert space of the Z3 CCM can be mapped

to one of three states of a clock according to the eigenvalue 1, ω, or ω2 of the operator σ at

each site. Consequently, there can be two domain walls in the system that differ in their en-

ergies, depending upon whether the clock rotates clockwise or counterclockwise upon cross-

ing the wall. With ϕ = 0 and θ ̸= 0, these have different energies, 2J sin(π/6 − θ) and

2J sin(π/6 + θ), and are thus inequivalent, leading to a chirality in the system that is absent

for ϕ = θ = 0.
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On setting both ϕ = θ = 0, Hccm reduces to the Hamiltonian for the three-state Potts

model which possesses a larger symmetry, S3; the concomitant order–disorder phase transition

has critical exponents z = 1, ν = 5/6 [334, 335, 333], and accordingly µ ≈ 0.45. Note that

these exponents are fundamentally distinct from those of the Z3 CCM, namely, z ≈ 1.33, ν ≈

0.71, yielding µ ≈ 0.37. The Rydberg Hamiltonian described in Chapter 8 contains a point

along the phase boundary for which the condition of ϕ = θ = 0 is fulfilled, and with fine tuned

pulses it may be possible to explore the critical properties of the three-state Potts model.

For n = 4, the transitions of both the Potts and the achiral clock model are in the Ashkin-

Teller universality class [336, 337]. The critical exponents of the four-state Potts model are

z = 1, ν = 2/3 (implying µ = 0.40), whereas the four-state achiral clock model is equivalent

to two uncoupled Ising systems with z = 1, ν = 1. With a nonzero chirality, however, it

is believed that there is no direct transition from the ordered to the disordered phase in the

four-state CCM as an intermediate gapless incommensurate phase always intervenes [148, 163,

338].
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s s

Table E.1: Pulse parameters for QKZM sweeps. For different blockade radii RB/a, we list the initial
and final detunings ∆0 and ∆f of the sweeps, and the minimum and maximum sweep speeds, smin and
smax, applied.
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F
Supplementary information for Chapter 9

F.1 2D atom rearrangement

Atoms are rearranged using an additional set of dynamically moving tweezers, which are over-

laid on top of the SLM tweezer array. These movable tweezers are generated by a separate

809-nm laser source (DBR from Photodigm and tapered amplifier from MOGLabs), and are

steered with a pair of independently-controlled crossed acousto-optic deflectors (AODs) (AA

Opto Electronic DTSX-400). Both AODs are driven by an arbitrary waveform which is gen-

erated in real time using our home-built waveform generation software and an arbitrary wave-

form generator (AWG) (M4i.6631-x8 by Spectrum Instrumentation). Dynamically changing

281



the RF frequency allows for continuous steering of beam positions, and multi-frequency wave-

forms allow for multiple moving tweezers to be created in parallel [24].

While many 2D sorting protocols have been described previously [25, 339, 340, 32, 184], we

implement a novel protocol which is designed to leverage parallel movement of multiple atoms

simultaneously. More specifically, we create a row of moving traps which scans upwards along

the SLM tweezer array to move one atom within each column up in parallel. This is accom-

plished by scanning a single frequency component on the vertical AOD to move from the bot-

tom to the top of the SLM array, during which individual frequency components are turned

on and off within the horizontal AOD to create and remove tweezers at the corresponding

columns. This protocol is designed for SLM tweezer arrays in which traps are grouped into

columns and rows. While this does constrain the possible geometries, most lattice geometries

of interest can still be defined on a subset of points along fixed columns and rows.

F.2 Rearrangement algorithm

Here we detail the rearrangement algorithm, which is illustrated in Figure F.1. It operates

on an underlying rectangular grid of rows and columns, where the SLM traps correspond to

vertices of the grid. We pre-program a set of ‘target traps’ that we aim to fill.

Pre-sorting: We begin by ensuring that each column contains a sufficient number of atoms

to fill the target traps in that column. In each experimental cycle, due to the random load-

ing throughout the array, some columns may contain excess atoms while other columns may

lack a sufficient number of atoms. Accordingly, we apply a ‘pre-sorting’ procedure in which

we move atoms between columns. To fill a deficient column j, we take atoms from whichever

side of j has a larger surplus. We identify which atoms to take by finding the nearest atoms

from the surplus side which are in rows for which column j has an empty trap. We then per-
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Figure F.1: Rearrangement protocol. a. Sample sequence of individual rearrangement steps. There are
two pre-sorting moves (1, 2). Move (3) is the single ejection move. Moves (4-6) consist of parallel verti-
cal sorting within each column, including both upward and downwards move. The upper panel illustrates
the frequency spectrum of the waveform in the vertical and horizontal AODs during these moves, with the
underlying grid corresponding to the calibrated frequencies which map to SLM array rows and columns. b.
Spectrograms representing the horizontal and vertical AOD waveforms over the duration of a single ver-
tical frequency scan during a realistic rearrangement procedure for a 26×13 array. The heat-maps show
frequency spectra of the AOD waveforms over small time intervals during the scan.

form parallel horizontal sorting to move these atoms into the empty traps of j (not all surplus

atoms need to be from the same source column).

If the one-side surplus is insufficient to fill column j, then we move as many surplus atoms

as possible from this one side and leave j deficient. We then proceed to the next deficient col-

umn, and cycle through until all columns have sufficient atoms. In typical randomly loaded

arrays, this process takes a small number of atom moves compared to the total number of

moves needed for sorting. This specific algorithm can fail to properly distribute atoms be-

tween columns due to lack of available atoms, but these failures are rare and do not limit the

experimental capabilities.

Ejection: After pre-sorting, we eject excess atoms in parallel by scanning the vertical AOD

frequency downward, beginning at a row in which we want to pick up an atom, and ending

below the bottom row of the array. In each downward scan, we eject a single atom from each

column containing excess atoms; we repeat this process until all excess atoms are ejected.
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Parallel sorting within columns: After pre-sorting and ejection, each column has the correct

number of atoms to fill all of its target traps by moving atoms up/down within the column.

We now proceed to shuffle the ith-highest loaded atoms to the ith-highest target traps. As the

atoms cannot move through each other, in a single vertical scan atoms are moved as close as

possible to their target locations, reaching their targets unless they are blocked by another

atom. We repeat upward/downward scans until all atoms reach their target locations.

F.3 Rearrangement parameters and results

When using moving tweezers to pick up and drop off atoms in the SLM traps, the moving

tweezers ramp on/off over 15 µs while positioned to overlap with the corresponding SLM trap.

The moving tweezers are approximately twice as deep as the static traps, and move atoms be-

tween SLM traps with a speed of 75 µm/ms. Typical rearrangement protocols take a total of

50-100 ms to implement in practice, depending on the size of the target array and the random

initial loading. Alignment of the AOD traps onto the SLM array is pre-calibrated by measur-

ing both trap arrays on a monitor CMOS camera and tuning the AOD frequencies to match

positions with traps from the SLM array.

A single round of rearrangement results in typical filling fractions of ∼ 98.5% across all

target traps in the system. This is limited primarily by the finite vacuum-limited lifetime

(∼ 10 s) and the duration of the rearrangment procedure. To increase filling fractions, we

perform a second round of rearrangement (having skipped ejection in the first round to keep

excess atoms for the second round). Since the second round of rearrangement only needs to

correct for a small number of defects, it requires far fewer moves and can be performed more

quickly, resulting in less background loss. With this approach, we achieve filling fractions of

∼ 99.2% over more than 200 sites, with a total experimental cycle time of 400 ms.
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F.4 Rydberg laser system

Our Rydberg laser system is an upgraded version of a previous setup [182]. The 420-nm laser

is a frequency-doubled Ti:Sapphire laser (M Squared, 15-W pump). We stabilize the laser fre-

quency by locking the fundamental to an upgraded ultra-low expansion (ULE) reference cavity

(notched cylinder design from Stable Laser Systems), with finesse F = 30, 000 at 840 nm. The

1013-nm laser source is an external-cavity diode laser (Toptica DL Pro), which is locked to

the same reference cavity (F = 50, 000 at 1013 nm). To suppress high-frequency phase noise

from this diode laser, we use the transmitted light through the cavity, which is filtered by the

narrow cavity transmission spectrum (30 kHz linewidth) [293]. This filtered light is used to

injection-lock another laser diode, whose output is subsequently amplified to 10 W by a fiber

amplifier (Azur Light Systems).

Using beam shaping optics to homogeneously illuminate the atom array with both Rydberg

lasers, we achieve single-photon Rabi frequencies of (Ω420,Ω1013) = 2π × (160, 50) MHz. We

operate with an intermediate state detuning δ = 2π × 1 GHz, resulting in two-photon Rabi

frequency Ω = Ω420Ω1013/2δ ∼ 2π × 4 MHz. Small inhomogeneities in the Rydberg beams

result in Rabi frequency variations of ∼ 2% RMS and ∼ 6% peak-to-peak across the array.

With these conditions, we estimate an off-resonant scattering rate of 1/(20 µs) for atoms in |g⟩

and 1/(150 µs) for atoms in |r⟩ at peak power.

F.5 Rydberg pulses

After initializing our atoms in the ground state |g⟩, the tweezer traps are turned off for a short

time (<5 µs) during which we apply a Rydberg pulse. The pulse consists of a time-dependent

Rabi frequency Ω(t), time-dependent detuning ∆(t), and a relative instantaneous phase ϕ(t).
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This is implemented by controlling the amplitude, frequency, and phase of the 420-nm laser

using a tandem AOM system, similar to what is described previously [182].

F.5.1 Quasi-adiabatic Sweeps

To prepare many-body ground states with high fidelity, we use an optimized quasi-adiabatic

pulse shape (Fig. 9.2a). The coupling Ω(t) is initially ramped on linearly at large fixed nega-

tive detuning, held constant during the detuning sweep ∆(t), and finally ramped down linearly

at large fixed positive detuning. The detuning sweep ∆(t) consists of a cubic spline interpola-

tion between five points: initial detuning, final detuning, an inflection point where the slope

reaches a minimum, and two additional points that define the duration of the slow part of the

sweep. The sweep used for finding perfect checkerboard ground state probabilities (Fig. 9.2e)

was obtained by optimizing the parameters of the spline cubic sweep to maximize the cor-

relation length on a 12×12 (144 atoms) array. The sweep used in detection of the star and

striated phases was optimized based on maximizing their respective order parameters. In par-

ticular, the inflection point was chosen to be near the position of the minimum gap in these

sweeps in order to maximize adiabaticity.

F.5.2 Linear sweeps

To probe the phase transition into the checkerboard phase (Fig. 9.3), we use variable-endpoint

linear detuning sweeps in which Ω is abruptly turned off after reaching the endpoint. This

ensures that projective readout happens immediately after the end of the linear sweep in-

stead of allowing time for further dynamics, and is essential for keeping the system within

the quantum Kibble-Zurek regime. Linear sweeps are done from ∆ = −16 to 14 MHz (∆/Ω =

-3.7 to 3.3) at sweep rates s = 15, 21, 30, 42, 60, 85, and 120 MHz/µs. Data for locating the
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quantum critical point (Fig. F.4a) is taken from the slowest of these sweeps (s = 15 MHz/µs)

to remain as close as possible to the ground state. For mapping out the 2D phase diagram

(Fig. 9.4), we use the same variable-endpoint linear sweeps at fixed sweep rate s = 12 MHz /

µs, except that Ω is ramped down over 200 ns after reaching the endpoint.

F.6 State detection

At the end of the Rydberg pulse, we detect the state of atoms by whether or not they are re-

captured in our optical tweezers. Atoms in |g⟩ are recaptured and detected with fidelity 99%,

limited by the finite temperature of the atoms and collisions with background gas particles in

the vacuum chamber.

Atoms excited to the Rydberg state are detected as a loss signal due to the repulsive poten-

tial of the optical tweezers on |r⟩. However, the finite Rydberg state lifetime[48] (∼ 80 µs for

70S1/2) leads to a probability of ∼ 15% for |r⟩ atoms to decay to |g⟩ and be recaptured by the

optical tweezers. In our previous work [182], we increased tweezer trap depths immediately fol-

lowing the Rydberg pulse to enhance the loss signal for atoms in |r⟩. In 2D, this approach is

less effective because atoms which drift away from their initial traps can still be recaptured in

a large 3D trapping structure created by out-of-plane interference of tweezers.

Following an approach similar to what has been previously demonstrated [34], we increase

the Rydberg detection fidelity using a strong microwave (MW) pulse to enhance the loss of

atoms in |r⟩ while leaving atoms in |g⟩ unaffected. The MW source (Stanford Research Sys-

tems SG384) is frequency-tripled to 6.9 GHz and amplified to 3 W (Minicircuits, ZVE-3W-

183+). The MW pulse, containing both 6.9 GHz and harmonics, is applied on the atoms using

a microwave horn for 100 ns. When applying a Rydberg π-pulse immediately followed by the

MW pulse, we observe loss probabilities of 98.6(4)%. Since this measurement includes both
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Figure F.2: Characterizing microwave-enhanced Rydberg detection fidelity. The effect of strong
microwave (MW) pulses on Rydberg atoms is measured by preparing atoms in |g⟩, exciting to |r⟩ with a
Rydberg π-pulse, and then applying the MW pulse before de-exciting residual Rydberg atoms with a final
Rydberg π-pulse. (The entire sequence occurs while tweezers are briefly turned off.) a. Broad resonances
are observed with varying microwave frequency, corresponding to transitions from |r⟩ = |70S⟩ to other Ry-
dberg states. Note that the transition to |69P ⟩ and |70P ⟩ are in the range of 10 − 12 GHz, and over this
entire range there is strong transfer out of |r⟩. Other resonances might be due to multi-photon effects. b.
With fixed 6.9-GHz MW frequency and varying pulse time, there is a rapid transfer out of the Rydberg state
on the timescale of several nanoseconds. Over short time-scales, there may be coherent oscillations which
return population back to |r⟩, so a 100 ns pulse is used for enhancement of loss signal of |r⟩ in the experi-
ment.
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Figure F.3: Coarse-grained local staggered magnetization. a. Examples of Rydberg populations ni
after a faster (top) and slower (bottom) linear sweep. b. Corresponding coarse-grained local staggered mag-
netizations mi clearly show larger extents of antiferromagnetically ordered domains (dark blue or dark red)
for the slower sweep (bottom) compared to for the faster sweep (top), as expected from the Kibble-Zurek
mechanism. c. Isotropic correlation functions G(2)

m for the corresponding coarse-grained local staggered mag-
netizations after a faster (top) or a slower (bottom). d. As a function of radial distance, correlations G(2)

m

decay exponentially with a length scale corresponding to the correlation length ξ. The two decay curves
correspond to faster (orange) and slower (blue) sweeps.

error in the π-pulse as well as detection errors, we apply a second Rydberg π-pulse after the

MW pulse, which transfers most of the remaining ground state population into the Rydberg

state. In this configuration, we observe 99.1(4)% loss probability, which is our best estimate

for our Rydberg detection fidelity (Fig. F.2). We find that the loss signal is enhanced by the

presence of both MW fundamental and harmonic frequencies.

F.7 Coarse-grained local staggered magnetization

We define the coarse-grained local staggered magnetization for a site i with column and row

indices a and b, respectively, as:

mi =
(−1)a+b

Ni

∑
⟨j,i⟩

(ni − nj)

where j is summed over nearest neighbors of site i and Ni is the number of such nearest neigh-

bors (4 in the bulk, 3 along the edges, or 2 on the corners). The value of mi ranges from −1
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to 1, with the extremal values corresponding to the two possible perfect antiferromagnetic

orderings locally on site i and its nearest neighbors (Fig. F.3a,b). The two-site correlation

function for mi can then be defined as an average over experiment repetitions G(2)
m (k, l) =

1
N(k,l)

∑
i,j(⟨mimj⟩ − ⟨mi⟩⟨mj⟩), where the sum is over all pairs of sites i, j separated by a

relative lattice distance of x = (k, l) sites and normalized by the number of such pairs N(k,l)

(Fig. F.3c). We obtain the correlation length ξ by fitting an exponential decay to the radially

averaged G
(2)
m (k, l) (Fig. F.3d). The coarse-grained local staggered magnetization mi is defined

such that the corresponding G(2)
m (k, l) is isotropic (Fig. F.3c), which makes for natural radial

averaging. This radial average captures correlations across the entire array better than purely

horizontal or vertical correlation lengths ξH and ξV , which are more sensitive to edge effects.

F.8 Determination of the quantum critical point

To accurately determine the location of the quantum critical point ∆c for the transition into

the checkerboard phase, we measure mean Rydberg excitation ⟨n⟩ vs. detuning ∆ for a slow

linear sweep with sweep rate s = 15 MHz/µs (Fig. F.4a). To smoothen the measured curve,

we fit a polynomial for ⟨n⟩ vs. ∆ and take its numerical derivative to identify the peak of the

susceptibility χ as the critical point[126] (Fig. F.4b).

Small oscillations in ⟨n⟩ result from the linear sweep not being perfectly adiabatic. To

minimize the effect of this on our fitting, we use the lowest-degree polynomial (cubic) whose

derivative has a peak, and choose a fit window in which the reduced chi-squared metric in-

dicates a good fit. Several fit windows around ∆/Ω = 0 to 2 give good cubic fits, and we

average results from each of these windows to obtain ∆c/Ω = 1.12(4).

We also numerically extract the critical point for a system with numerically-tractable di-

mensions of 10×10. Using the density-matrix renormalization group (DMRG) algorithm, we
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Figure F.4: Extracting the quantum critical point. a. The mean Rydberg excitation density ⟨n⟩ vs. de-
tuning ∆/Ω on a 16×16 array. The data is fitted within a window (dashed lines) to a cubic polynomial (red
curve) as a means of smoothening the data. b. The peak in the numerical derivative of the fitted data (red
curve) corresponds to the critical point ∆c/Ω = 1.12(4) (red shaded regions show uncertainty ranges, ob-
tained from varying fit windows). In contrast, the point-by-point slope of the data (gray) is too noisy to
be useful. c. Order parameter F̃(π, π) for the checkerboard phase vs. ∆/Ω measured on a 16×16 array
with the value of the critical point from b. superimposed (red line), showing the clear growth of the order
parameter after the critical point. d. DMRG simulations of ⟨n⟩ vs. ∆/Ω on a 10×10 array. For compari-
son against the experimental fitting procedure, the data from numerics is also fitted to a cubic polynomial
within the indicated window (dashed lines). e. The point-by-point slope of the numerical data (blue curve)
has a peak at ∆c/Ω = 1.18 (blue dashed line), in good agreement with the results (red dashed line) from
both the numerical derivative of the cubic fit on the same data (red curve) and the result of the experiment.
f. DMRG simulation of F̃(π, π) vs. ∆/Ω, with the exact quantum critical point from numerics shown (red
line).
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evaluate ⟨n⟩ as a function of detuning ∆, and then take the derivative to obtain a peak of the

susceptibility at ∆c/Ω = 1.18 (Fig. F.4c,d). To corroborate the validity of our experimental

fitting procedure, we also fit cubic polynomials to the DMRG data and find that the extracted

critical point is close to the exact numerical value (Fig. F.4d). This numerical estimate of the

critical point for a 10×10 array is consistent with the experimental result on a larger 16 × 16

array. Moreover, our experiments on arrays of different sizes show that ∆c/Ω does not vary

significantly between 12× 12, 14× 14, and 16× 16 arrays (Fig. F.5b).

F.9 Data collapse for universal scaling

Optimizing the universal collapse of rescaled correlation length ξ̃ vs. rescaled detuning ∆̃ re-

quires defining a measure of the distance between rescaled curves for different sweep rates si.

Given ξ̃
(i)
j and ∆̃

(i)
j , where the index i corresponds to sweep rate si and j labels sequential

data points along a given curve, we define a distance [341]

D =

√
1

N

∑
i

∑
i′ ̸=i

∑
j

∣∣∣ξ̃(i′)j − f (i)
(
∆̃

(i′)
j

)∣∣∣2. (F.1)

The function f (i)(∆̃) is the linear interpolation of ξ̃(i)j vs. ∆̃
(i)
j , while N is the total number

of terms in the three nested sums. The sum over j only includes points that fall within the

domain of overlap of all data sets, avoiding the problem of linear interpolation beyond the do-

main of any single data set. Defined in this way, the collapse distance D measures all possible

permutations of how far each rescaled correlation growth curve is from curves corresponding

to other sweep rates.

Applied to our experimental data, D is a function of both the location of the critical point

∆c and the critical exponent ν (Fig. F.5a). Using the independently measured ∆c/Ω = 1.12(4),
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Figure F.5: Optimization of data collapse. a. Distance D between rescaled correlation length ξ̃ vs. ∆̃
curves depends on both the location of the quantum critical point location ∆c/Ω and on the correlation
length critical exponent ν. The independently determined ∆c/Ω (blue line, with uncertainty range in gray)
and the experimentally extracted value of ν (dashed red line, with uncertainty range corresponding to the
red shaded region) are marked on the plot. b. Our determination of ν (red) from data collapse around the
independently determined ∆c/Ω (blue) is consistent across arrays of different sizes. c-e. Data collapse is
clearly better at the experimentally determined value (ν = 0.62) as compared to the mean-field (ν = 0.5)
or the (1+1)D (ν = 1) values. The horizontal extent of the data corresponds to the region of overlap of all
rescaled data sets.
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we obtain ν = 0.62(4) for optimal data collapse, and illustrate in particular the better collapse

for this value than for other values of ν (Fig. F.5c-e). The quoted uncertainty is dominated by

the corresponding uncertainty of the extracted ∆c/Ω, rather than by the precision of finding

the minimum of D for a given ∆c/Ω. Our experiments give consistent values of ∆c/Ω and ν

for systems of size 12×12, 14×14, and 16×16 (Fig. F.5b).

F.10 Order parameters for many-body phases

We construct order parameters to identify each phase using the Fourier transform to quan-

tify the amplitude of the observed density-wave ordering. We define the symmetrized Fourier

transform F̃(k1, k2) = ⟨F(k1, k2) + F(k2, k1)⟩/2 to take into account the C4 rotation symmetry

between possible ground-state orderings for some phases. For the star phase, the Fourier am-

plitude F̃(π, π/2) is a good order parameter because ordering at k = (π, π/2) is unique to this

phase. The striated phase, on the other hand, shares its Fourier peaks at k = (π, 0) and (0, π)

with the star phase, and its peak at k = (π, π) with the checkerboard phase; hence, none of

these peaks alone can serve as an order parameter. We therefore construct an order parameter

for the striated phase to be F̃(0, π) − F̃(π/2, π), which is nonzero in the striated phase and

zero in both checkerboard and star. Similarly, the checkerboard shares its k = (π, π) peak

with the striated phase, so we construct F̃(π, π)− F̃(0, π) as an order parameter which is zero

in the striated phase and nonzero only in checkerboard.

F.11 Numerical simulations of the 2D phase diagram

We numerically compute the many-body ground states at different points in the (∆/Ω, Rb/a)

phase diagram using the density-matrix renormalization group (DMRG) algorithm [246, 318],

which operates in the space of the so-called matrix product state (MPS) ansätze. While origi-
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nally developed for one-dimensional systems, DMRG can also be extended to two dimensions

by representing the 2D system as a winding 1D lattice [342], albeit with long-range interac-

tions. A major limitation to two-dimensional DMRG is that the number of states required to

faithfully represent the ground-state wavefunction has to be increased exponentially with the

width of the system in order to maintain a constant accuracy. For our calculations, we employ

a maximum bond dimension of 1600, which allows us to accurately simulate 10× 10 square ar-

rays [186]. We also impose open boundary conditions in both directions and truncate the van

der Waals interactions so as to retain up to third-nearest-neighbor couplings. The numerical

convergence criterion is set by the truncation error, and the system is regarded to be well-

converged to its true ground state once this error drops below a threshold of 10−7. In practice,

this was typically found to be achieved after O(102) successive sweeps.

Since the dimensions of the systems studied in Figure 9.4, (13× 13 (experimentally) and

9× 9 (numerically), are both of the form (4n + 1)× (4n + 1), the two phase diagrams are

expected to be similar. In particular, both these system sizes are compatible with the com-

mensurate ordering patterns of the crystalline phases observed in this work, and can host all

three phases (at the appropriate Rb/a) with the same boundary conditions. Likewise, for ex-

traction of the QCP, we use a 10×10 array as it is the largest numerically accessible square

lattice comparable to the 16×16 array used in our study of the quantum phase transition.

F.12 Mean-field wavefunction for the striated phase

To understand the origin of the striated phase, it is instructive to start from a simplified model

in which we assume that nearest-neighbor sites are perfectly blockaded. Since we always work

in a regime where Rb/a > 1, this model should also capture the essential physics of the full

Rydberg Hamiltonian.
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In the classical limit of Ω = 0, the perfect checkerboard state has an energy per site of

−∆/2 + V (
√
2a) + V (2a), with V (x) being the interaction between sites at a distance x,

whereas the corresponding energy for the star-ordered state is −∆/4 (neglecting interactions

for x > 2a). Accordingly, there is a phase transition between the checkerboard and star phases

when ∆ = 4[V (
√
2a)+V (2a)]. On the other hand, for the same density of Rydberg excitations,

the striated phase has a classical energy per site of −∆/4 + V (2a)/2, which is always greater

than that of the star phase; hence, striated ordering never appears in the classical limit.

At finite Ω, however, the striated phase emerges due to a competition between the third-

nearest-neighbor interactions and the second-order energy shift upon dressing a ground state

atom off-resonantly with the Rydberg state. We can thus model the ground state of the stri-

ated phase as a product state, where (approximately) 1/2 of the atoms are in the ground

state, 1/4 of the atoms are in the Rydberg state, and the remaining 1/4 are in the ground

state with a weak coherent admixture of the Rydberg state. A general mean-field ansatz for a

many-body wavefunction of this form is given by

|Ψstr(a1, a2)⟩ =
⊗
i∈A1

(cos a1|g⟩i + sin a1|r⟩i) (F.2)

⊗
i∈A2

(cos a2|g⟩i + sin a2|r⟩i)
⊗
j∈B

|g⟩j,

where A1 and A2 represent the two sublattices of the (bipartite) A sublattice, and a1,2 are

variational parameters. If a1 = a2, then our trial wavefunction simply represents a checker-

board state, but if a1 ̸= a2, this state is not of the checkerboard type, and leads to the striated

phase.

Based on this ansatz, we can now explicitly see how the striated phase may become ener-

getically favorable in the presence of a nonzero Ω. Consider the atoms on the partially excited
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sublattice to be in the superposition |g⟩ + [Ω/{4V (
√
2a) − ∆}]|r⟩; this describes the state of

the atoms on the (1, 1) sublattice in the notation of Fig. 9.5. The net energy per site of the

system is then

−∆

4
+
V (2a)

2
− Ω2

4 (4V (
√
2a)−∆)

+
Ω2 V (

√
2a)

2 (4V (
√
2a)−∆)2

where the third and fourth terms are the second-order energy shift and mean-field interaction

shift, respectively. From this expression, we observe that if the energy gained from the dress-

ing (these last two terms) is larger than V (2a)/2, then the striated phase prevails over the

star phase.

F.13 Dynamical probe of the striated phase

We prepare striated ordering using an optimized cubic spline sweep along Rb/a = 1.47, ending

at ∆/Ω = 2.35. Immediately after this sweep, the system is quenched to detuning ∆q and

relative laser phase ϕq. We quench at a lower Rabi frequency Ωq = Ω/4 ≈ 2π × 1 MHz to

improve the resolution of this interaction spectroscopy. For the chosen lattice spacing, the

interaction energy between diagonal excitations is 2π × 5.3 MHz. The reference phase for the

atoms ϕ = 0 is set by the instantaneous phase of the Rydberg coupling laser at the end of the

sweep into striated ordering. In the Bloch sphere picture, ϕ = 0 corresponds to the +x axis,

so the wavefunctions on (0,0) and (1,1) sublattices correspond to vectors pointing mostly up

or mostly down with a small projection of each along the +x axis. In the same Bloch sphere

picture, quenching at ϕq = π/2 or −π/2 corresponds to rotations around the +y or −y axes

(Fig. 9.5a).

To resolve the local response of the system, we use high-order correlators which are ex-

tracted from single-shot site-resolved readout. In particular, we define an operator Ô(d)
i on the
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eight atoms surrounding site i. This operator projects the neighboring atoms into configura-

tions in which all four nearest atoms are in |g⟩ and exactly d of the diagonal neighbors are in

|r⟩. Specifically, the operator Ô(d)
i decomposes into a projector Âi on the four nearest neigh-

boring atoms and B̂
(d)
i on the four diagonal neighbors, according to Ô(d)

i = ÂiB̂
(d)
i . Defining

n̄i = |g⟩i⟨g| and ni = |r⟩i⟨r|, the nearest neighbor projector is written as Âi =
∏

⟨j,i⟩ n̄j , where

⟨.⟩ denotes nearest neighbors. The projector B̂(d)
i sums over all configurations of the diagonal

neighbors (indexed k1, k2, k3, k4) with d excitations:

B̂
(4)
i = nk1nk2nk3nk4 (F.3)

B̂
(3)
i = n̄k1nk2nk3nk4 + nk1 n̄k2nk3nk4 + . . . (F.4)

B̂
(2)
i = n̄k1 n̄k2nk3nk4 + n̄k1nk2 n̄k3nk4 + . . . (F.5)

These operators are used to construct the conditional Rydberg density

P (d) =

∑
i⟨niÔ

(d)
i ⟩∑

i⟨Ô
(d)
i ⟩

which measures the probability of Rydberg excitation on site i surrounded by neighboring-

atom configurations for which Ô(d)
i = 1.

To quantify coherences, we measure these conditional probabilities on their corresponding

resonances, after a fixed quench with variable quench phase ϕq. For a single particle driven by

the Hamiltonian H = Ω(cosϕqσx + sinϕqσy)/2 + ∆σz/2 for time τ , the resulting Heisenberg

evolution is given by σ′z = U †σzU , where U = e−iHτ . The resulting operator can be expressed
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as

σ′z = Ω̃ sin 2α(−σx sinϕq + σy cosϕq) (F.6)

+ 2∆̃Ω̃ sin2 α(σx cosϕq + σy sinϕq) (F.7)

+ (cos2 α− (1− 2∆̃2) sin2 α)σz (F.8)

where ∆̃ = ∆/
√
∆2 +Ω2, Ω̃ = Ω/

√
∆2 +Ω2, and α = 1

2τ
√
∆2 +Ω2.

We fit the conditional probabilites P (0) and P (4) as a function of ϕq (Fig. 9.5d,e), taking ∆

as the effective detuning from interaction-shifted resonance, and measuring ⟨σ′z⟩ as a function

of ϕq to extract the Bloch vector components ⟨σx⟩, ⟨σy⟩, ⟨σz⟩ on the two respective sublattices.

For the (1,1) sublattice response, we model the evolution averaged over random detunings,

due to ∼ 15% fluctuations of the interaction shifts associated with thermal fluctuations in

atomic positions, which broaden and weaken the spectroscopic response. For both sublattices

we also include fluctuations in the calibrated pulse area (∼ 10% due to low power used). The

extracted fit values are σ(0,0)x,y,z = −0.82(6), 0.25(2),−0.32(4), and σ
(1,1)
x,y,z = −0.46(4), 0.01(1), 0.91(5).
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G
Supplementary information for Chapter 10

G.1 Experimental setup and details

We initialize a sorted array of atoms in a desired geometry and optically pump the atoms into

the stretched state |5S1/2, F = 2,mF = −2⟩. The atoms are then illuminated by two Ryd-

berg laser beams at 1013nm and 420nm, with single-photon Rabi frequencies of Ω1013/(2π) ≈

50MHz and Ω420/(2π) ≈ 160MHz and a detuning from the 6P3/2 intermediate state of

δ/(2π) ≈ 1GHz. Using an arbitrary waveform generator (AWG) connected to an acousto-

optic modulator (AOM), we control the intensity, frequency, and phase of the 420-nm light

arbitrarily. We apply the 420-nm light such that the two-photon detuning ∆ starts at a large
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negative value, and sweep to large positive values using a cubic time profile. For each geome-

try, we optimize the sweep parameters to maximize the state preparation fidelity, as measured

by the contrast between Rydberg populations on sublattices A and B. See [31] for a detailed,

up-to-date characterization of our experimental apparatus and adiabatic state preparation in

two-dimensional arrays.

G.2 Thermalization mechanisms and fixed-detuning quenches

G.2.1 Derivation of effective Hamiltonian

The Rydberg blockade mechanism arises in the limit of strong nearest-neighbor interactions,

V0 ≫ Ω, such that the many-body Hilbert space is split into disconnected sectors distin-

guished by the total number of nearest-neighbor excitations [129]. In this section we employ

Schrieffer-Wolff (SW) perturbation theory to derive an effective Hamiltonian in the sector of

zero nearest-neighbor excitations starting from the Rydberg Hamiltonian, defined in Eq. (10.1)

in Chapter 10. The effective Hamiltonian is obtained from an expansion in the small parame-

ter Ω/V0 up to second order. We describe the main steps of the expansion, applicable in any

lattice geometry. The subleading terms in the effective Hamiltonian provide important in-

sights into the physical processes that facilitate thermalization of the system at short timescales

and will be used in Section G.2.3 to justify the expression for the empirical decay rate of scars

defined in Eq. (10.2) of Chapter 10.

The first step of the SW transformation consists of the splitting of the full Hamiltonian into

the dominant part (H0) and the perturbation (Q) so that H = H0 +Q. We consider the limit

where the nearest-neighbor interaction strength V0 is the dominant energy scale compared

to Rabi frequency Ω, detuning ∆, and longer-range interactions. This naturally leads to the
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following splitting:

H0 = V0
∑
⟨ij⟩

ninj , Q =
Ω

2

∑
i

σxi −∆
∑
i

ni +
V0
2

∑
i,j>NN

ninj
(dij/a)6

, (G.1)

where dij/a is the distance between sites i and j normalized by the nearest-neighbor spacing a,

and the last term sums over all sites i, j with dij/a > 1 (i.e. beyond nearest neighbors), with

the factor of 1/2 accounting for double-counting of pairs.

The unperturbed Hamiltonian H0 effectively counts the total number of nearest-neighbor

excitations in the system. We further split the perturbation Q into the sum of generalized lad-

der operators Tm, defined so that [H0, Tm] = mV0Tm, with m being an integer. Physically,

this commutation rule implies that the operator Tm increases energy by mV0 when applied

to an eigenstate of H0. For the Rydberg Hamiltonian, the integer m identifies the number of

nearest-neighbor excitations that are either created, if m > 0, or annihilated, if m < 0, by

the application of Tm to an eigenstate of H0. The detuning as well as the longer range interac-

tions commute with the dominant term in the Hamiltonian H0 and therefore, contribute only

to the T0 operator,

T0 =
Ω

2

∑
i

PD,0
i σxi −∆

∑
i

ni +
V0
2

∑
i,j>NN

ninj
(dij/a)6

. (G.2)

The remaining ladder operators Tm ̸=0 originate from the action of the (Ω/2)σx term,

Tm =
Ω

2

∑
i

PD,m
i σ+i for m = 1, . . . , D with T−m = T †

m, (G.3)

where D is the number of nearest neighbors for the given lattice and calligraphic operators

PD,m
i are defined as projectors onto the subspace where m nearest neighbors of site i are si-
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multaneously excited. If the Rydberg atom at site i is flipped in this subspace, the energy of

the state measured with respect to H0 will change proportionally to the number of excited

nearest neighbors m, as desired.

The SW transformation of order l is a rotation of the Hamiltonian, H(l) = U†
l HUl that

eliminates all off-diagonal (in the unperturbed eigenbasis) operators up to O(Ωl+1/V l
0 ). The

generator of the SW transformation at order l = 1 can be written as U1 = exp(−
∑

m ̸=0
Tm
mV0

).

Higher-order generators have a more complicated form, containing nested commutators of the

generalized ladder operators. The rotated Hamiltonians H(l) are truncated at O(Ωl+1/V l
0 ) and

therefore, the equalities below are defined up to the truncation order. The first-order Hamilto-

nian is,

H(1) = H0 + T0 = V0
∑
⟨ij⟩

ninj +
Ω

2

∑
i

PD,0
i σxi −∆

∑
i

ni +
V0
2

∑
i,j>NN

ninj
(dij/a)6

. (G.4)

The first term H0 = V0
∑

⟨ij⟩ ninj contributes a constant that is equal to zero, as we restrict to

the so-called ‘Rydberg-blockaded’ Hilbert space in which no two neighboring sites are simulta-

neously excited. The Hamiltonian (G.4) is an effective Hamiltonian in the Rydberg-blockaded

Hilbert space. In particular, the projector PD,0
i,j that dresses the spin-flip operator σx ensures

that Rydberg excitations obey the blockade condition, leading to the presence of a kinetic con-

straint in the dynamics. Equation (G.4) is equivalent to the “PXP-model” [131, 189] but in

the presence of detuning and long-range interactions.

To probe additional thermalization processes that stem from virtual excitations that violate

Rydberg blockade, we consider the effective Hamiltonian with terms up to second order,

H(2) = H(1) +

D∑
m=1

[Tm, T−m]

mV0
= H(1) +

Ω2

4V0

∑
i

D∑
m=1

1

m
PD,m
i σzi −

∑
⟨ij⟩

PD,0
i,j (σ+i σ

−
j + H.c.)

 .

(G.5)
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Where the first term in parenthesis corresponds to multi-site interactions and the second term

describes kinetically constrained hopping of Rydberg excitations between nearest-neighbor

sites i, j provided that all neighbors of these two sites are in the |g⟩ state.

Collecting all terms together we obtain the final expression for the effective Hamiltonian:

H(2) =
Ω

2

∑
i

PD,0
i σxi −∆

∑
i

ni+
V0
2

∑
i,j>NN

ninj
(dij/a)6

+
Ω2

4V0

∑
i

D∑
m=1

1

m
PD,m
i σzi −

∑
⟨ij⟩

PD,0
i,j (σ+i σ

−
j + H.c.)

 .

(G.6)

Previous theoretical studies have predominantly focused on the long-lived oscillations from

|AF⟩-type initial states in the pure PXP-model that is given by the first term in H(2). The

presence of quantum many-body scars in this Hamiltonian, discussed in one-dimensional chains [189]

and generic bipartite two-dimensional lattices [214, 343], leads to long intrinsic decay timescales

of the oscillations of local observables. It is thus reasonable to assume that the decay rates

seen in experiments (and numerics of the full Rydberg Hamiltonian) are caused by the re-

maining terms in Eq. (G.5) that describe deviations from the PXP model, as such deforma-

tions are observed to generally increase thermalization rates [189, 213]. The derivation of the

second-order Hamiltonian H(2) for the Rydberg-blockaded Hilbert space demonstrates that

the following microscopic mechanisms dominate deviations from the PXP-model: (i) detuning

that is controlled experimentally by the parameter ∆, (ii) longer-range interactions that have

overall magnitude scaling with V0, but strongly depend on the geometry of the lattice, and

(iii) higher-order corrections that scale as Ω2/4V0. These terms will be used in Section G.2.3

to justify the phenomenological model for thermalization rate used in Chapter 10 (see also

Eq. (G.10)).
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G.2.2 Optimal fixed global detuning for suppressing long-range interac-

tions

In this section we show that there is an astute choice of detuning ∆q such that the detrimen-

tal effect of long-range interaction terms is partially mitigated. As discussed in the previous

section and in Chapter 10, we find empirically for fixed-detuning quenches that deviations

from the pure PXP Hamiltonian limit the lifetime of the scars we observe. This motivates

the rationale for quenching to small positive values of ∆q as opposed to ∆q = 0, as the long-

range interactions are always positive and so can be partially compensated by a fixed detun-

ing. Mathematically, the optimal value of detuning can be deduced from rewriting the second

and third terms in Eq. (G.6) via the spin operator Sz
i = (1/2)σzi such that ni = Sz

i + 1/2,

giving

−∆
∑
i

ni +
V0
2

∑
i,j>NN

ninj
(dij/a)6

=
1

2

∑
i,j>NN

VijS
z
i S

z
j +

∑
i

Sz
i

−∆+
1

2

∑
i,j>NN

Vij

 , (G.7)

where dij/a is the distance between sites i and j normalized by the nearest-neighbor spacing a.

We observe that terms proportional to Sz
i cancel when

∆ = ∆q,opt =
1

2

∑
i,j>NN

Vij =
V0
2

∑
i,j>NN

1

(dij/a)6
, (G.8)

resulting in

H(2)
∣∣∣
∆=∆q,opt

=
Ω

2

∑
i

σxi
∏

i,j=NN
Pj +

1

2

∑
i,j>NN

VijS
z
i S

z
j +

Ω2

4V0

∑
i

[Many-body terms]. (G.9)
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with the [Many-body terms] described in Eq. G.6. This Hamiltonian is qualitatively similar

to that in Eq. (G.6), but with smaller long-range interactions Sz
i S

z
j instead of the native ninj

interactions, due to the adopted choice of ∆q,opt. The long-range interactions are dominated

by the contribution from next-nearest-neighbor (NNN) atoms (as Vij ∝ 1/d6ij), and due to

the bipartite nature of the lattices studied here, the NNN of the ith atom belong to the same

sublattice as the ith atom and thus have the same population evolution in time. For these rea-

sons, the mean-field contribution from long-range interactions of the form
∑

i,j>NN VijS
z
i S

z
j is

roughly 1/4 the mean-field contribution of
∑

i,j>NN Vijninj , and thereby reduces the deviation

from the pure PXP Hamiltonian.

We emphasize that calculating the optimal value ∆q,opt according to Eq. (G.8) requires only

knowledge of V0 and dij/a. For example, the sum in Eq. G.8 gives ∆q,opt/V0 ≈ 0.153, 0.33, 0.0173

for a honeycomb lattice, a square lattice, and a one-dimensional chain respectively. For lat-

tices where different sublattice sites are not equivalent, e.g. Lieb and decorated honeycomb

lattices, we calculate ∆q,opt for both sublattices and take the average.

In Fig. G.1 we plot experimental measurements of scar decay rate 1/τ under quenches to

different fixed detunings ∆0 on a 162-atom honeycomb lattice. We find that the smallest de-

cay rate is achieved at ∆ ≈ 0.13 V0, close to the value of ∆q,opt ≈ 0.153 V0 for the honeycomb

lattice calculated from Eq. (G.8).

G.2.3 Independent measurement of decay mechanisms

In this section we explain the expression used to describe scar decay mechanisms, and then

independently corroborate the phenomenological parameters α and β from the plane fit using

different experimental measurements.

In Chapter 10 we used the following phenomenological expression to describe the decay rate
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Figure G.1: Optimal fixed detuning during a fixed-detuning quench. Quenching from antiferromag-
netic state |AF1⟩ to various fixed detunings ∆0 on a 162-atom honeycomb lattice with V0/2π = 17.1
MHz and Ω/2π = 4.3 MHz. The optimal fixed detuning on the honeycomb lattice is calculated to be
∆q,opt = 1/2

∑
i,j>NN Vij ≈ 0.153 V0. An optimum is experimentally observed here close to ∆0 ≈ 0.13 V0,

consistent with expectations from Eq. (G.8).

of collective oscillations:

1

τ
= α

(
1

2π

∑
NN

Ω2

4V0

)
+ β

(
1

2π

∑
NNN

Vij

)
+

1

τ0
, (G.10)

where α, β, and τ0 are determined from the fit to the data. Physically this expression encodes

the interplay of two different mechanisms that govern the behavior of 1/τ and can be under-

stood from the effective Hamiltonian (G.6) derived in Sec. G.2.1. The leading term in the ef-

fective Hamiltonian (G.6), the PXP model, leads to long-lived oscillations with significantly

longer decay time than observed for the full Rydberg Hamiltonian, both in 1D [189, 211]

and 2D [343]. After fixing the detuning to ∆q,opt we arrive at the effective Hamiltonian in

Eq. (G.9), describing the PXP model perturbed by the presence of (a) hopping processes of

Rydberg excitations via virtual processes that involve violation of Rydberg blockade, thus

being suppressed as Ω2/V0 at large V0 and (b) longer-range interactions that scale as V0, dom-

inated by next-nearest-neighbors (NNN). Assuming that these two terms act as independent

decay mechanisms, one expects two separate contributions to the decay rate that are functions

of Ω2/V0 and V0 respectively, reflected by the phenomenological expression (G.10).
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In order to independently measure the coefficient α, we measure the scar lifetime for differ-

ent values of Rabi frequency Ω, while keeping V0 fixed in a 9-atom chain, thereby only chang-

ing the Ω2/(4V0) term. We observe a linear dependence up to the point where Ω/V0 ≈ 0.5, be-

yond which we see a strong increase of the decay rate, as the Rydberg blockade breaks down

and higher-order perturbations in Ω/V0 become significant. To independently determine the

value of β, we measure the scar lifetime for zigzag-shaped chains of atoms, keeping the NN

spacing constant while changing the NNN spacing (Fig. G.2B), thereby only changing the

NNN interaction term.

The two independent procedures described above result in values α = 0.79(15) and β =

0.58(7), which are consistent with the values extracted from the two-dimensional fit in Fig. 10.2

(α = 0.72(12), β = 0.58(5)) from Chapter 10. We also perform numerical simulations of the

quenches in Fig. G.2 to corroborate our observations and explore imperfections of our phe-

nomenological model. Numerical simulations of the decay rate (plotted in Fig. G.2A) agree

well with the experimental data in the intermediate range of Ω. However, the fine-grained the-

oretical curve in Fig. G.2B reveals a significant curvature for low NNN interactions, deviating

from the naive linear prediction and suggesting that the phenomenological expression (G.10)

is an oversimplification and that the effective β can depend on the probed range of interaction

strength. We further speculate that these oversimplifications could be more dramatic in two-

dimensional lattices, where e.g. the square lattice only has a small range of V0 which balances

the contributions from imperfect blockade and NNN interactions. Future work could explore

deviations from Eq. G.10 and perhaps devise clever ways to suppress these decay channels.

For Fig. 10.2 in Chapter 10, we also include data on lattices (Lieb, decorated honeycomb,

edge-imbalanced decorated honeycomb) whose different sublattices have different imperfect

blockade and NNN corrections. In these geometries, for the x- and y-axis values on the plane
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Figure G.2: Independent measurement of decay parameters α and β. (A) Measured decay rate as
a function of coupling to blockade-violating states ∼ Ω2/(4V0), obtained by measuring at different Rabi
frequencies Ω during the quench on one-dimensional 9-atom chains with a fixed V0/(2π) = 5.9MHz. The
linear fit (dashed line) is performed on the first 8 points, which correspond to Ω/V0 < 0.5. (B) Measured
decay rate as a function of next-to-nearest-neighbor interactions. We prepare 9-atom chains with a variable
staggering angle between neighboring sites, keeping the nearest-neighbor interaction constant at V0/(2π) =
17.1 MHz (insets). All error bars are given by fit uncertainties. The values for α and β are consistent with
the fit in Fig. 10.2 of Chapter 10 within error bars.

fit, we calculate which sublattice has the faster decay rate as given by Eq. G.10, and use those

values of NN imperfect blockade and NNN interactions as the x and y values in the plot.

G.3 Experimental data on enhancement of scars by periodic driving

G.3.1 Definition of subharmonic weight

In this section we describe the Fourier transform and normalization procedures for calculating

S(ω). We use the in-phase component of the Fourier transform, and because the sublattice

population imbalance I(t) = ⟨n⟩A − ⟨n⟩B oscillates about a small, finite offset, we subtract the

time-averaged imbalance I, giving

S̃(ω) =
2

T

T∫
0

dt
[
I(t)− I

]
cos(ωt), (G.11)

where T is the longest measured quench time. Akin to the definition in [216], we then normal-
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ize by the total integrated intensity, giving

|S(ω)|2 = |S̃(ω)|2

2
∫∞
0 |S̃(ω′)|2 dω′ (T/2π)

. (G.12)

Finally, since we take a Fourier transform over a finite window T , to ensure the subhar-

monic weight is consistently defined and properly normalized, we then calculate |S(ω)|2 for

a perfect subharmonic response I(t) = cos [(ωm/2)t] and normalize such that |S(ωm/2)|2 = 1

for this perfect subharmonic response. These normalizations yield the |S(ω)|2 that we plot

throughout this work. In this way, the subharmonic weight |S(ωm/2)|2 has a maximum of 1

which is achieved for a perfect cosine response in-phase with the drive. The intensity of the

complex Fourier transform yields the same qualitative result but is broader by a factor of ≈ 2

in the frequency domain due to the finite width of time window T used in Fourier transforma-

tion.

G.3.2 Robustness of subharmonic response as a function of system size

In this section we describe the behavior of the subharmonic response as a function of the sys-

tem size. A key signature of time-crystalline behavior is that the subharmonic response be-

comes more rigid as the system size increases [209, 344].

Figure G.3 plots |S(ω)|2 as a function of modulation frequency ωm for one-dimensional

chains of 3 - 17 atoms. For the 3-atom chain, a discernible subharmonic response is not ob-

served. For the 5-atom chain, a subharmonic response is observed with ωm ≈ 2× the nat-

ural oscillation frequency, but at larger or smaller ωm the response splits into two separate

peaks. For the 7-atom chain, the subharmonic response persists over a wider region of ωm and

with larger peak amplitude, but at sufficiently large or small ωm the response again splits into

two peaks. Finally, for chains with 9 atoms and beyond, a stable subharmonic response is ob-
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Figure G.3: System-size dependence of the subharmonic response. Fourier transform intensity |S(ω)|2
of ⟨n⟩A − ⟨n⟩B traces for a chain of varying system size. A prominent subharmonic feature emerges and
becomes more robust as the number of atoms in the chain increases, signifying that the subharmonic re-
sponse is a many-body effect. All data here is a chain with V0/2π = 51 MHz, and with drive parameters
∆m = ∆0 = 0.55 Ω.

served, with large response amplitude and no discernible splitting of the central peak.

To summarize these results quantitatively, in Fig. 10.4D of Chapter 10 we plot the subhar-

monic rigidity, which evaluates the robustness of the subharmonic response over a range of

modulation frequencies and is defined as
∑

ωm
|Sωm(ω = ωm/2)|2 for ωm = 0.75, 0.85, ..., 1.75 Ω.

We attribute the small decrease in rigidity for the larger chains to a reduction in fidelity of the

state preparation into one of the classical |AF⟩ orderings. In addition to the chain data pre-

sented here, in Chapter 10 we also plot the measured subharmonic rigidity for a honeycomb

lattice with sizes ranging from 9 to 200 atoms.

G.3.3 Signatures of a 4th subharmonic response

In this section we report signatures of a 4th subharmonic response. Figure G.4A plots ⟨n⟩A −

⟨n⟩B in the presence of two different drives with modulation frequencies of ωm = 1.83 Ω and
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Figure G.4: Signatures of a 4th subharmonic response. (A) ⟨n⟩A − ⟨n⟩B in the presence of two dif-
ferent drives with modulation frequencies of ωm = 1.83 Ω and 2.13 Ω, resulting in responses at a 4th sub-
harmonic of ωfit = 0.458(4) Ω and 0.534(2) Ω, respectively. Data is on a 9-atom chain with V0/2π = 32
MHz and drive parameters ∆m = 1.75 Ω and ∆0 = 0, which is a different drive parameter regime than
those used in investigating a 2nd subharmonic response. (B) ⟨n⟩A − ⟨n⟩B data for modulation frequencies
from 1.51 Ω to 2.61 Ω with same parameters as A. (C) Fourier transform intensity |S(ω)|2 of data in B,
showing signatures of a 4th subharmonic response (dotted white line) while seemingly not as robust as the
2nd subharmonic response focused on in this work.

2.13 Ω, resulting in responses at a 4th subharmonic of ωfit = 0.458(4) Ω and 0.534(2) Ω, re-

spectively. Here, the quantum state synchronously returns to itself every four drive periods of

∆q(t), as seen by comparing ⟨n⟩A − ⟨n⟩B with the ∆q(t) profile (gray curve).

In Fig. G.4B we then explore this 4th subharmonic response by plotting the time dynam-

ics ⟨n⟩A − ⟨n⟩B for modulation frequencies from 1.51 Ω to 2.61 Ω, and in Fig. G.4C plot its

associated Fourier transform intensity |S(ω)|2. In panel C we observe signatures of a 4th sub-

harmonic response persisting from modulation frequencies ωm of approximately 1.8 Ω to 2.2 Ω,

seemingly less robust than the 2nd subharmonic response that is the main focus of this work.

A stronger 4th subharmonic response may exist in other drive parameter regimes or lattice

configurations (we did not search widely).

G.3.4 Dependence of subharmonic response on the initial state

In this section we demonstrate the strong dependence of the quantum dynamics on the choice

of initial state, for quenches to both fixed detunings and time-dependent detunings. Such
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markedly different behavior and thermalization time for different initial states can be viewed

as a key signature of quantum scarring.

First we present our measurement results for quenches with a static, optimal positive de-

tuning. We plot the sublattice populations over time for an initially prepared |AF⟩ state (also

referred to as |Z2⟩ in one dimension [189]) and an initially prepared |ggg...⟩ state, for a dec-

orated honeycomb (Fig. G.5) and for a one-dimensional chain (Fig. G.6). In both the two-

dimensional and one-dimensional systems, the sublattice populations of the |ggg...⟩ state

quickly equilibrate, whereas the |AF⟩ state exhibits long-lived, periodic many-body revivals.

These observations experimentally confirm the initial-state dependence characteristic of quan-

tum scarring in one and two dimensions.

In Fig. G.6A we explore the relationship between the parametric drive and quantum scar-

ring by plotting the response of the |AF⟩ and |ggg . . .⟩ states with and without a drive. For

the |AF⟩ state, the drive prolongs the sublattice oscillations and locks their oscillation fre-

quency to half the drive frequency. In contrast, the sublattice populations of the |ggg . . .⟩

state still quickly equilibrate under the drive and exhibit small oscillations at the drive fre-

quency (harmonic response). In Figure G.6B we explore these distinct responses over a range

of modulation frequencies by plotting the Fourier transform intensity of the sublattice dynam-

ics. In Fig. 10.4B of Chapter 10 and other figures we plot |S(ω)|2 = |SA−B(ω)|2, but this

quantity is not informative for the |ggg . . .⟩ state as it approaches zero in the thermodynamic

limit. Accordingly, in Fig. G.6B we plot the average Fourier transform intensity of the individ-

ual sublattices, (|SA(ω)|2 + |SB(ω)|2)/2, for both the initial |AF⟩ state and |ggg . . .⟩ state. We

find the |AF⟩ initial state exhibits a strong subharmonic response and also a weak harmonic

response (which disappears for |SA−B(ω)|2), whereas the |ggg . . .⟩ initial state shows a har-

monic response but no detectable subharmonic response. These observations suggest that the
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Figure G.5: Initial-state dependence on dynamics. Plotted here are fixed detuning quenches in a two-
dimensional lattice (54-atom decorated honeycomb with V0/2π = 9.1 MHz and Ω/2π = 4.2 MHz). With
a |ggg...⟩ initial state (left) the sublattice populations quickly equilibrate. With an |AF1⟩ initial state (right)
the sublattice populations oscillate and equilibrate at a significantly slower rate, whose rate is dominated by
imperfect blockade and NNN interactions as explored in Chapter 10.

subharmonic stabilization observed here is intertwined with the scarring behavior itself, and

is distinct from conventional time crystals by this dramatic initial-state dependence even for

short times / small systems.
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Figure G.6: Response to drive for different initial states. (A) (Left panels) Fixed detuning quench for
|AF⟩ (top) and |ggg . . .⟩ (bottom) initial states, showing an initial-state dependence to the ensuing dynam-
ics and equilibration time. (Right panels) Time-dependent quench for |AF⟩ (top) and |ggg . . .⟩ (bottom)
initial states. The |AF⟩ state scars are prolonged and the individual sublattice response is synchronously
locked to half the drive frequency, whereas the sublattice populations of the |ggg . . .⟩ state show small os-
cillations at the drive frequency (harmonic response). (B) Fourier transform intensity of the individual sub-
lattices |SA(ω)|2 and |SB(ω)|2, averaged together. The |AF⟩ initial state (top) shows a strong subharmonic
response and also a weak harmonic response (which disappears for |SA−B(ω)|2 as plotted in Fig. 10.4B of
Chapter 10). The |ggg . . .⟩ initial state (bottom) shows a harmonic response but no detectable signatures of
a subharmonic response.
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G.3.5 Subharmonic response with square pulse modulation

In this section we demonstrate the robustness of the scar enhancement with respect to the

pulse shape, here specifically for square pulses of ∆(t), as shown in Figure G.7A. Figure G.7B

plots the dynamics of ⟨n⟩A − ⟨n⟩B with a fixed detuning ∆q = ∆q,opt = 0.5 Ω (top) and a

time-dependent detuning ∆q(t) = ∆0 +∆m (2Θ [cos(ωmt)]− 1) (bottom), where Θ is the Heav-

iside Theta Function. As with the cosine drive, the square pulse modulation increases the scar

lifetime by a factor of five, from τfixed = 0.33(2)µs to τdrive = 1.72(11)µs, and changes the

oscillation frequency to be half the drive frequency of ωm = 1.24Ω. In Figure G.7C we plot

the fitted oscillation frequency and change in lifetime from driving as a function of the drive

frequency, again finding a robust subharmonic locking to ωm/2 and accompanying lifetime in-

crease, for a one-dimensional chain and a honeycomb lattice. Note that the chain in Fig. G.7C

has V0/2π = 120 MHz, different than the V0/2π = 51 MHz used in Fig. 10.3C of Chapter 10

and resulting in the different change in driven lifetime. We do not find a significant difference

between the behavior of the system to cosine vs square driving, and focus on cosine driving

throughout this work for consistency.

G.3.6 Rationale and robustness for choice of drive parameters ∆m and ∆0

In this section we discuss the choice of modulation amplitude ∆m and offset ∆0. Largely,

these values were chosen empirically, in what was observed (experimentally and numerically)

to be a robust phase space.

Similar to the discussion in Section G.4.3, preliminary hypotheses suggested that the driven

stability arises in part from having extremal values of ∆(t) at times when the antiferromag-

netic |AF⟩ states arise, stabilizing these states as they have maximal excitation number in
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Figure G.7: Subharmonic locking with square pulse modulation. (A) Pulse sequence with square pulse
drive. (B) Scar dynamics during a quench to a fixed optimal detuning (bare), and a time-dependent de-
tuning (drive) with modulation frequency ωm = 1.24 Ω. The drive increases the scar lifetime and changes
its frequency to ωm/2. (C) Scar lifetime and response frequency as a function of ωm, showing a lifetime
increase and subharmonic locking.

the blockaded subspace. Our naive hypothesis was further that we desire a cosine profile that

gives ∆(t) ≈ 0 at times between the revival of the |AF⟩ states, in order to not disrupt the scar

evolution. To satisfy these conditions, we chose values of roughly ∆m = ∆0 and then further

optimized empirically, which seemed to be close to an optimum in the various lattices and V0

we measured experimentally. For the idealized PXP Hamiltonian, we find that ωm = 1.33 Ω

and ∆m = 2∆0 = Ω appears to give oscillations which persist to hundreds of cycles. We spec-

ulate that good values for the full Rydberg Hamiltonian near ∆m = ∆0 instead of ∆m = 2∆0

could be a consequence of the static field of the long-range interactions, requiring a larger ∆0

to impose a static offset akin to ∆q,opt. We further speculate that there is an interplay be-

tween the time-dependent component of the detuning with the time-dependent component of

the long-range interactions.

In Fig. G.8 we plot the ⟨n⟩A − ⟨n⟩B dynamics and associated Fourier transform for a one-

dimensional chain as a function of modulation amplitude ∆m, at fixed offset ∆0 = 0.5 Ω. We

observe a robust subharmonic response across a wide range of ∆m, with an optimal ∆m ≈

0.7 Ω.

317



0 1 2
Time (¹s)

0

0.4

0.8

1.2

M
od

ul
at

io
n 

am
p

lit
ud

e 
¢
m
=­

0 0.2 0.4 0.6 0.8 1 1.2
!=­

!=!m=2

-0.4 -0.2 0 0.2 0.4

­
n
®
A ¡

­
n
®
B

0 0.2 0.4 0.6 0.8

jS(!)j2 normalizedA B

Figure G.8: Subharmonic stabilization as a function of modulation amplitude ∆m. (A) Dynamics
of sublattice population difference after quench as a function of modulation frequency, measured on a 9-
atom chain with nearest-neighbor interaction strength V0/2π = 120 MHz = 28 Ω/2π, detuning offset
∆0 = 0.5 Ω, and modulation frequency ωm = 1.28 Ω. The ∆0 we choose here is commensurate with the
optimal fixed-detuning quench ∆q,opt on this lattice, so the ∆m = 0 line corresponds to data for optimal
undriven scars on this lattice. (B) Fourier transform intensity |S(ω)|2 of data in A. Upon applying drive
amplitude ∆m ≈ 0.3 Ω, the scar lifetime dramatically increases and exhibits a rigid subharmonic response at
ω = ωm/2 = 0.64 Ω, independent of drive amplitude, before degrading at drive amplitude ∆m ≈ 1.3 Ω.

G.4 Theoretical investigations of driven scars

G.4.1 Growth of entanglement entropy under drive

The numerical data shown in Fig. G.9 demonstrates the effects of the drive to the growth of

bipartite entanglement entropy in the Rydberg atom chain, and therefore, provides a direct

probe of the thermalization rate of the system. In Fig. G.9A we compare the growth of en-

tropy in quenches with no detuning, optimal static detuning, and dynamical detuning, for a

50-atom chain with open boundaries. We observe that the growth of entropy in the case of

the dynamical detuning is much slower compared to the cases of static and zero detuning, il-

lustrating the qualitative difference between the driven and static systems. The large system

size ensures that the entropy dynamics are not affected by finite size effects for the time pe-

riod shown. The simulation is performed by applying the time-dependent variational principle

318



on matrix product states [315, 345]. The time step of the simulation is dt = 0.002, the trunca-

tion error is ϵT = 5 · 10−9 and the integration is performed using a fourth-order method. The

long-range interactions are truncated for distances longer than four sites.

Figure G.9B shows the dependence of bipartite entanglement entropy growth on the fre-

quency of the drive for a 24-atom chain with open boundaries. The calculation is performed

using second-order Trotterized time evolution with time step dt = 0.001 applied to the full

wave function. The slope of the entropy growth achieves a minimum value at ωm ≈ 1.225 Ω,

similar to the optimal ωm observed experimentally in Fig. 10.3C of Chapter 10 for the 9-atom

chain.

G.4.2 Stabilization of pure PXP

Figure G.10 demonstrates that the dynamics of the idealized PXP model,

HPXP(t) =
∑
i

(
Ω

2
Pi−1σ

x
i Pi+1 −∆(t)ni

)
, (G.13)

are also stabilized by the cosine drive. We use a Krylov method to evolve a 22-atom chain

with periodic boundary conditions in the blockaded Hilbert space. Both the slow growth of

bipartite entanglement entropy and the slow decay of sublattice excitation revivals provide ev-

idence for a suppression of thermalization mechanisms in the driven system. This result also

illustrates that the effect of time-dependent detuning cannot be simply attributed to the can-

cellation of the long-range interactions as the drive is able to further suppress thermalization

of the idealized PXP model.

319



��� ��� ��� ���
���

���

���

���

���

� ��� ���
���
���
���
���

��� ��� ��� ��� ��� ��� ��� ���
���
���
���
���
���
���
���

1.0

1.2

1.4

1.6

A B

�(t) = 0
<latexit sha1_base64="WJFYJq5koSyCmJYZSS+6S6flg5I="></latexit><latexit sha1_base64="WJFYJq5koSyCmJYZSS+6S6flg5I="></latexit><latexit sha1_base64="WJFYJq5koSyCmJYZSS+6S6flg5I="></latexit><latexit sha1_base64="WJFYJq5koSyCmJYZSS+6S6flg5I="></latexit>

�(t) = �0 +�m cos!mt
<latexit sha1_base64="Y7goxtglGqa5fynhE5Tk6C9i+d0="></latexit><latexit sha1_base64="Y7goxtglGqa5fynhE5Tk6C9i+d0="></latexit><latexit sha1_base64="Y7goxtglGqa5fynhE5Tk6C9i+d0="></latexit><latexit sha1_base64="Y7goxtglGqa5fynhE5Tk6C9i+d0="></latexit>

�(t) = �q,opt
<latexit sha1_base64="4H95T7B6LNSZDMng3KRfmP4hHsk="></latexit><latexit sha1_base64="4H95T7B6LNSZDMng3KRfmP4hHsk="></latexit><latexit sha1_base64="4H95T7B6LNSZDMng3KRfmP4hHsk="></latexit><latexit sha1_base64="4H95T7B6LNSZDMng3KRfmP4hHsk="></latexit>

!m
<latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM="></latexit><latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM=">AAADBXicbZLLihNBFIYr7W0cbzO6dFMYBBcSukXQ5aAblyOYmUASwqnq050idaOqWg2h1+7d6iu4G2brc/gEvobVSRZWkgMNf3+nDufKrBQ+5PmfXnbj5q3bd47uHt+7/+Dho5PTxxfeNI7jkBtp3IiBRyk0DoMIEkfWISgm8ZIt3nf+y8/ovDD6U1hanCqotagEhxDRaGIU1jBTs5N+PsjXRvdFsRV9srXz2Wnv76Q0vFGoA5fg/bjIbZiuwAXBJbbHk8ajBb6AGsdRalDop6t1wS19HklJK+PipwNd0/8jVqC8XyoWXyoIc7/r6+Ah37gJ1dvpSmjbBNR8k6hqJA2Gdt3TUjjkQS6jAO5ErJXyOTjgIc4oyVI7sHPBv7YHc+/Crg2/R7sWXjJWCl2nPqbS/81Ykk4sxgXrOFET12cFTwPi/mVLD44sgV/ALyNNYbkuN2WVNLCDmIMFhjaeRrF7CPvi4tWgyAfFx9f9s3fbIzkiT8kz8oIU5A05Ix/IORkSTiT5Tn6Qn9m37Fd2lV1vnma9bcwTklj2+x93xP9o</latexit><latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM="></latexit><latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM="></latexit>

!m
<latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM="></latexit><latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM="></latexit><latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM="></latexit><latexit sha1_base64="XEeJ82qI+6hilr2260frw4Vo+wM="></latexit>

Figure G.9: Entanglement entropy dynamics of the Rydberg chain for a half-chain bipartition. The
parameters of the system are V0/2π = 51 MHz, Ω/2π = 4.2 MHz. The time-dependent detuning ampli-
tudes are ∆0 = 0.55Ω, ∆m = 0.55Ω. (A) Comparison of entanglement dynamics with harmonic detuning,
optimal time-independent detuning ∆q,opt, and zero detuning reveals more than two-fold decrease in rate of
entanglement growth due to presence of the drive. Data is shown for a 50-atom chain. The detuning param-
eters are ∆q,opt = 0.0173 V0 and ωm = 1.2 Ω. (B) Dependence of entanglement growth on the frequency
of the drive for a 24-atom chain reveals an optimal modulation frequency that corresponds to the slowest
rate of entanglement spreading. Inset: Time averaged entropy Sent =

1
T

∫ T

0
dt Sent for T = 1.5 µs shows a

clear minimum around ωm/Ω ≈ 1.225.

G.4.3 Analysis of pulsed model

Here we detail the pulsed model of scar stabilization presented in Chapter 10, corresponding

to a simplified model (we assume infinitely sharp detuning pulses and idealized PXP interac-

tions) that qualitatively reproduces key experimental observations of extended lifetime and

subharmonic locking from scar states, as well as strong initial-state dependence of the phe-

nomenon. We note that the combined concepts of pulsed Floquet driving and Rydberg atoms

has been explored theoretically, although in regimes distant from the work here [346, 220, 347,

348].

The pulsed model is given by the Hamiltonian

H(t) = HPXP + θN
∑
n∈Z

δ(t− nτ−), (G.14)

which consists of τ -periodic delta-function ‘kicks’ of the detuning N =
∑

i ni with amplitude

θ, on top of the PXP Hamiltonian. This can be thought of as an idealized, limiting case of
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Figure G.10: Stabilization of pure PXP model under drive (numerics). (Top) Sublattice excitation
probability for undriven (left) and driven (right) PXP model. (Bottom) Entanglement entropy across mid-
way bipartition for undriven (left) and driven (right) PXP model. Numerics are calculated for a 22-atom
chain with periodic boundary conditions and the timescale is set by Ω/2π = 4.2 MHz. “Bare” is a con-
ventional quench to ∆ = 0 and “Drive” is a quench to ∆ = ∆0 + ∆m cos (ωmt), with drive parameters
∆0 = 0.5 Ω, ∆m = 1.0 Ω, and ωm = 1.33 Ω. These plots show that the cosine drive allows to delay the on-
set of thermalization even for the “idealized” PXP model, which describes perfect nearest-neighbor blockade
(V0 = ∞) with no long-range interactions.

the experimental driving where the detuning is applied instantaneously once per period. This

time-dependent Hamiltonian generates the Floquet unitary

UF (θ, τ) = e−iθNe−iτHPXP , (G.15)

which comprises of two parts: evolution under HPXP for time τ , and then an application of

N for an angle θ. For a fine-tuned evolution time τc ≈ 0.755 × 2π Ω−1 the first step e−iτcHPXP

acts like an approximate spin-flip between the |AF1⟩ and |AF2⟩ product states, but otherwise

generically serves to generate entanglement for initial states.

The Floquet unitary, parameterized by (θ, τ), harbors a special point θ = π. There the

drive reverses dynamics generated by HPXP perfectly after two driving periods. Specifically,

the PXP Hamiltonian has a particle-hole symmetry under e−iπN , i.e. e−iπNHPXPeiπN =
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Figure G.11: State-dependent subharmonic revivals in the pulsed drive model. (A) Many-body re-
vivals under Floquet unitary UF for τ = τc and varying ε = π − θ for a L = 14 chain with periodic boundary
conditions. Revivals were calculated by taking the average of | ⟨AF|UF (π+ε, τ)

2n|AF⟩|2 for n = 1, 2, ..., 100.
(B) Here, we depict the dependence of subharmonic weight on the rotation angle τ under HPXP and the de-
viation ε from the perfect echo point θ = π, calculated for N = 400 driving periods. We see oscillations
persist to larger ε for τ near τc.

−HPXP (because σzi σxi σzi = −σxi ). As such, the application of PXP during the first driving

period is exactly undone during the second driving period, i.e. U2
F = I. This is essentially a

many-body echo, and produces perfect subharmonic revivals for all initial states for any value

of τ . However, we find that away from the θ = π point where such an echo is no longer per-

fect, the |AF1⟩ and |AF2⟩ states nevertheless still exhibit substantial many-body revivals for a

wide range of deviations ε = θ − π, at fixed τ = τc. Indeed as can be seen in (Fig. G.11), there

is a plateau of stability for θ near π for which the oscillations from the |AF1⟩ states persist

beyond 100s of Floquet periods.

The pulsed model also displays subharmonic locking, notably for the |AF⟩ initial states but

not others like |ggg · · · ⟩ (Fig. G.11B). To probe the dependence on τ and ε, we compute the

weight of subharmonic response in the power spectrum of ⟨n(t)⟩A − ⟨n(t)⟩B, defined in Chap-

ter 10 and references [216, 215]. Numerical results show that robust oscillations for |AF⟩ per-

sist until very late times (100-1000s of Floquet periods), for a wide range of τ near τc.
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To explain the origin of this wide window of stability, we rewrite the Floquet unitary as

UF (θ, τ) = e−iεNX = e−iε
∑

⟨ij⟩ σ
z
i σ

z
jX,

X ≡ e−iπNe−iτHPXP . (G.16)

Here, we make two important conceptual observations. First, the operator X is the Floquet

unitary at the special point θ = π, and as such it squares to one, i.e. X2 = I. Second, we

notice that since we operate within the blockaded subspace,
∑

⟨ij⟩ ninj = 0, we can rewrite∑
i ni =

∑
⟨ij⟩ σ

z
i σ

z
j + const., justifying the second equality up to an irrelevant global phase.

This Floquet unitary is of the form studied in the context of discrete time crystals (DTC)

where conventionally X is a global spin-flip
∏

i σ
x
i [209, 208, 349]. Importantly, however, X

in our case is not a product of simple on-site operators but instead generates entangled dy-

namics.

However, X’s action implements an approximate global spin flip between the product states

|AF1⟩ and |AF2⟩ when τ = τc, as a result of the special quantum scarring properties that

HPXP possesses. Furthermore, N serves to stabilize these states, as they are contained within

the two dimensional blockaded ground state manifold of ε
∑

⟨ij⟩ σ
z
i σ

z
j which is separated from

the rest of the spectrum by a constant gap ε. Thus, loosely speaking, these two product states

simply oscillate between one another (at stroboscopic times). The robustness of the subhar-

monic response across a wide parameter range is likely a result of the gap, which protects the

oscillations against additional generic small perturbations to the drive (as long as they still re-

spect the time-translation symmetry, i.e. the drive is still Floquet in nature) [344, 218]. Note

that such analysis does not carry over to other initial product states, and so we do not expect

robust many-body revivals from them.
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The pulsed model also provides an avenue by which to understand the microstate plot in

Fig. 10.3D in Chapter 10, which focuses on a 1D chain as we similarly do so below. The plot

shows that driving induces stable oscillations between two states which have large populations

in the antiferromagnetic states, but also acquires a signficant amplitude in other microstates.

Empirically, we observe that these additional microstates tend to have large values of N , and

are hence microstates that have smallest energy difference from the |AF⟩ states as measured

by ε
∑

⟨ij⟩ σ
z
i σ

z
j . The pulsed model also predicts this behavior (Fig. G.12).

The interesting behavior of the pulsed model presented above warrants future, more de-

tailed theoretical analysis. We emphasize however that many open questions remain, includ-

ing: the role of significant next-nearest-neighbor interactions, the observed frequency range of

locking (Fig. 10.4B of Chapter 10), the multi-peak structure seen in the driven lifetime of the

edge-imbalanced decorated honeycomb (Fig. 10.3C of Chapter 10), and the 4th subharmonic

response (Section G.3.3). Furthermore, although the pulsed model reproduces key phenomeno-

logical aspects, the precise connection between the pulsed driving and continuous driving im-

plemented experimentally is left for future work.
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Figure G.12: Numerical simulations of microstate population dynamics. We plot the microstate dis-
tribution for (top) cosine driving (∆0 = ∆m = 0.55Ω) and (bottom) pulsed driving (ε = 0.5) at driving
frequency ωm = 1.15Ω for the 1D L = 9 chain. The states are ordered by their Hamming distance from
the |AF1⟩ state. The right and left columns depict a decomposition into microstates of the two symmetric
and anti-symmetric superpositions of the two Floquet eigenstates with largest overlap with |AF1⟩, |AF2⟩
states respectively. Dynamics (center column) appear to be largely explained by these two eigenstates, as
can be seen from the agreement between microstate populations at stroboscopic times. We note that the
microstates populated at stroboscopic times, for both the simulations involving cosine and pulsed driving,
are in qualitative agreement with those observed for the experimental protocol, as shown in Fig. 10.4D of
Chapter 10.
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G.5 Tabulation of system and drive parameters used in Chapter 10

Figure Lattice Geometry parameters Quench / drive parameters
Ω/2π = 4.2 MHz

Fig. 10.1B,C Honeycomb 85 atoms, V0/2π = 9.1 MHz ∆0 = ∆q,opt = 0.15 V0

Fig. 10.2 Chain 9 atoms, V0 = varied ∆0 = ∆q,opt = 0.017 V0

Fig. 10.2 Square 49 atoms, V0 = varied ∆0 = ∆q,opt = 0.33 V0

Fig. 10.2 Honeycomb 85 atoms, V0 = varied ∆0 = ∆q,opt = 0.15 V0

Fig. 10.2 Lieb 129 atoms, V0/2π = 9.1 MHz ∆0 = ∆q,opt = 0.20 V0

Fig. 10.2 Dec. hon.a 54 atoms, V0 = varied ∆0 = ∆q,opt = 0.10 V0

Fig. 10.2 EIDHb 66 atoms, V0 = varied ∆0 = ∆q,opt = 0.10 V0

Fig. 10.3B Chain bare 9 atoms, V0/2π = 120 MHz ∆0 = ∆q,opt = 0.50 Ω

Fig. 10.3B Chain drive Same as bare ωm = 1.24 Ω, ∆0 = 0.85 Ω, ∆m = 0.98 Ω

Fig. 10.3C Chain 9 atoms, V0/2π = 51 MHz ωm = varied, ∆0 = 0.55 Ω, ∆m = 0.55 Ω

Fig. 10.3C Honeycomb 41 atoms, V0/2π = 24 MHz ωm = varied, ∆0 = 0.87 Ω, ∆m = 0.87 Ω

Fig. 10.3C EIDHb 66 atoms, V0/2π = 29 MHz ωm = varied, ∆0 = 0.78 Ω, ∆m = 0.98 Ω

Fig. 10.3D Chain bare 9 atoms, V0/2π = 51 MHz ∆0 = ∆q,opt = 0.21 Ω

Fig. 10.3D Chain drive Same as bare ωm = 1.15 Ω, ∆0 = 0.55 Ω, ∆m = 0.55 Ω

Fig. 10.3E Chain bare 16 atoms, V0/2π = 51 MHz ∆0 = ∆q,opt = 0.21 Ω

Fig. 10.3E Chain drive Same as bare ωm = 1.20 Ω, ∆0 = 0.55 Ω, ∆m = 0.55 Ω

Fig. 10.4A,B Chain 9 atoms, V0/2π = 51 MHz ωm = varied, ∆0 = 0.55 Ω, ∆m = 0.55 Ω

Fig. 10.4C Chain 9 atoms, V0/2π = varied ωm = varied, ∆0 = 0.55 Ω, ∆m = 0.55 Ω

Fig. 10.4C Honeycomb 41 atoms, V0/2π = varied ωm = varied, ∆0 = 0.87 Ω, ∆m = 0.87 Ω

Fig. 10.4D Chain 3 - 17 atoms, V0/2π = 51 MHz ωm = varied, ∆0 = 0.55 Ω, ∆m = 0.55 Ω

Fig. 10.4D Honeycomb 9 - 200 atoms, V0/2π = 17 MHz ωm = varied, ∆0 = 0.87 Ω, ∆m = 0.87 Ω

Table G.1: Tabulation of system and drive parameters used in Chapter 10. aDec. hon. stands for
decorated honeycomb. bEIDH stands for edge-imbalanced decorated honeycomb. Varied indicates that this
parameter is varied in the plot.
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G.6 Tabulation of 51-dimensional Hilbert space from Figure 10.3D

Index Microstate Index Microstate Index Microstate
1 1 0 1 0 1 0 1 0 1 18 0 0 1 0 1 0 0 0 0 35 0 0 1 0 0 1 0 0 0
2 1 0 0 0 1 0 1 0 1 19 0 0 0 1 0 0 1 0 1 36 0 0 0 0 0 0 0 0 0
3 1 0 1 0 1 0 1 0 0 20 0 1 0 0 1 0 0 0 1 37 0 0 1 0 0 1 0 1 0
4 1 0 1 0 0 0 1 0 1 21 0 1 0 0 0 0 1 0 1 38 0 1 0 1 0 0 0 0 1
5 0 0 1 0 1 0 0 0 1 22 0 1 0 0 1 0 1 0 0 39 1 0 0 1 0 1 0 0 0
6 1 0 0 0 0 0 1 0 1 23 0 0 1 0 0 1 0 0 1 40 1 0 0 1 0 0 0 1 0
7 0 0 1 0 1 0 1 0 0 24 1 0 0 0 0 1 0 0 1 41 0 1 0 0 1 0 0 1 0
8 1 0 0 0 1 0 0 0 1 25 0 0 0 0 1 0 0 0 0 42 0 0 0 0 0 0 0 1 0
9 1 0 1 0 0 0 1 0 0 26 1 0 0 0 0 0 0 0 0 43 0 0 0 1 0 0 0 0 0
10 0 0 0 0 1 0 1 0 1 27 0 0 0 0 0 0 1 0 0 44 0 1 0 1 0 1 0 0 1
11 0 1 0 0 1 0 1 0 1 28 1 0 1 0 0 1 0 1 0 45 0 0 0 0 0 1 0 1 0
12 1 0 1 0 0 1 0 0 1 29 1 0 0 1 0 1 0 0 1 46 0 1 0 0 0 0 0 1 0
13 1 0 0 0 0 0 0 0 1 30 0 0 0 0 1 0 0 1 0 47 0 1 0 0 0 1 0 0 0
14 1 0 0 0 0 0 1 0 0 31 0 1 0 0 0 0 0 0 1 48 0 0 0 1 0 1 0 0 0
15 1 0 0 0 1 0 0 0 0 32 1 0 0 1 0 0 0 0 0 49 0 1 0 0 0 1 0 1 0
16 0 0 1 0 0 0 1 0 0 33 0 0 1 0 0 0 0 1 0 50 0 1 0 1 0 1 0 0 0
17 0 0 0 0 0 0 1 0 1 34 1 0 0 0 0 1 0 0 0 51 0 1 0 1 0 1 0 1 0

Table G.2: Tabulation of microstates in Fig. 10.3D. For the 9-atom chain, the 29-dimensional Hilbert
space is first reduced to 89 states by discarding states that violate the Rydberg blockade constraint, giving
rise to the so-called “constrained Hilbert space”. The Hilbert space dimension is then further reduced from
89 to 51 by grouping left-right symmetric pairs of microstates. Finally, the microstates are ordered by nA −
nB , or equivalently by Hamming distance from |AF1⟩, and within a given cluster of nA−nB , states are then
ordered by nA + nB (although this ordering is still not completely unique). “0” represents ground state |g⟩
and “1” represents Rydberg state |r⟩.
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H
Supplementary information for Chapter 11

H.1 Experimental system

Our experiments make use of the second generation of the atom array setup, described pre-

viously in [31]. In our experiments, atoms are excited to Rydberg states using a two-photon

excitation scheme, consisting of a 420 nm laser from the ground state 5S1/2 to the intermedi-

ate state 6P3/2, and a 1013 nm laser from the intermediate state to the Rydberg state 70S1/2.

Details of both laser systems are presented in Chapter 3.

In the present work, we tune the lasers to have a detuning of δ = 2π × −450 MHz from

the intermediate 6P3/2 state, where the 420 nm laser is red-detuned from the intermediate
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state. The 1013 nm laser is always applied at maximum optical power (∼ 3 W total on the

atoms), and results in a single-photon Rabi frequency Ω1013 = 2π × 50 MHz. The 420 nm

laser power varies depending on the protocol. During the quasi-adiabatic preparation of the

dimer phase, we apply the 420 nm light at low power, which reduces the two-photon Rabi fre-

quency and therefore increases the blockade radius to the target Rb/a = 2.4. This low power

setting consists of a total of ∼ 0.5 mW on the atoms, with a single-photon Rabi frequency

Ω420 = 2π × 25 MHz. During the quasi-adiabatic preparation, we therefore have a two-photon

Rabi frequency of Ω = Ω420Ω1013/2δ = 2π × 1.4 MHz (details of Ω(t) and ∆(t) used for

state preparation are reported in Fig. H.1). Under these conditions, we estimate the rate of

off-resonant scattering from |g⟩ due to the 420 nm laser to be ∼ 1/(150 µs), and the decay

rate of |r⟩ to be 1/(80 µs) (including radiative decay, blackbody stimulated transitions, and

off-resonant scattering from the 1013 nm laser). State detection fidelity for both ground state

and Rydberg atoms is 99% [31].

Figure H.1: Quasi-adiabatic state preparation. Ω(t) and ∆(t) used for state preparation. To probe the
phase diagram at different ∆, we stop the cubic sweep at different endpoints and correspondingly turn off
Ω.

To measure the X operator, following the dimer phase preparation, we apply short quenches

at significantly higher blue power. This high power setting consists of a maximum power of ∼

100 mW on the atoms, corresponding to a single-photon Rabi frequency Ω420 = 2π × 360 MHz.

The corresponding two-photon Rabi frequency is Ω = 2π × 20 MHz, and Rb/a = 1.53. In

this configuration, the 420 nm laser introduces a substantially larger light shift on the Ryd-
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berg transition of 2π × 36 MHz. To avoid systematic offsets in the effective detuning from

resonance, we separately calibrate the resonance condition at both low power and high power.

The 420 nm laser amplitude is controlled using a double-pass AOM with a rise time of ∼

10 ns. In the ideal model for the quench, the optimal quench time would be τ = 4π/(3Ω
√
3) =

19 ns for the high-power Rabi frequency. However, the 10 ns rise time extends the necessary

quench time to the experimentally optimized ∼ 30 ns. We note that during the rise time, the

laser power is increasing to its maximum value, leading to deviations from the ideal model for

the quench; this may contribute to a reduction in the measured value of X−string parities.

Throughout this work, measurements of Z and X parities are averaged over identical loops,

including reflection and rotation symmetries, across the system. However, loops which touch

the edge of the system are excluded to avoid boundary effects. Error bars are calculated as

the standard error of the mean as σ(P )/
√
R, where R is the number of repetitions and σ(P )

is the standard deviation of the parity P , which is the average over all identical loops for each

repetition.

H.2 Basis rotation for X and Z parity loops

The basis rotation used to measure X parity loops is applied with a reduced blockade radius

which, in the ideal limit, removes interactions between separate triangles while maintaining

a hard blockade constraint on Rydberg excitations within single triangles. The rotation can

therefore be understood by its action on individual fully-blockaded triangles. The Hilbert

space for each triangle is four-dimensional, allowing for either zero Rydberg excitations, or

one Rydberg excitation on any of the three links. Taking as the basis states, the

Hamiltonian for the quench in the limit of perfect intra-triangle blockade is described by the

following matrix:
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H =
Ω

2


0 −i −i −i
i 0 0 0
i 0 0 0
i 0 0 0

 (H.1)

The basis rotation shown in Fig. 11.3C of Chapter 11, which relates X and Z parity under

evolution through this quench Hamiltonian (H.1), was proven in Ref. [193] by direct compu-

tation. Here we provide an alternative derivation. Firstly, we note that the Z operator acting

on the upper two edges of a triangle ( ) and the X operator acting on the lower edge of a

triangle ( ), defined in Figs.11.2 and 11.3 of Chapter 11, are given by:

=


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (H.2)

=


0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

 (H.3)

The X and Z parity operators can be mutually diagonalized by changing to an appropriate

symmetrized basis:

Basis state

|0⟩ = + +1 -1

|1⟩ = + -1 +1

|2⟩ = − +1 +1

|3⟩ = − -1 -1

In this basis, the quench Hamiltonian (H.1) is expressed as:

H =
Ω

2


0 i −i 0
−i 0 −i 0
i i 0 0
0 0 0 0

 (H.4)
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This Hamiltonian generates cyclic permutations among the basis states |0⟩, |1⟩, and |2⟩,

while leaving |3⟩ invariant. The permutation |0⟩ → |1⟩ → |2⟩ → |0⟩ maps the eigen-

value to the eigenvalue for each initial state. Moreover, the invariant state |3⟩ has both

= = −1, so it automatically satisfies the target eigenvalue mapping. Thus, after an

appropriate evolution time corresponding to a single cyclic permutation (τ = 4π
3
√
3Ω

), all

eigenvalues have been mapped to eigenvalues, which is diagonal in the measurement basis.

Formally, this can be expressed as:

= eiHτ e−iHτ (H.5)

We further note that this relationship holds also for parity operators defined on other sides of

the triangle, e.g., = eiHτ e−iHτ . Large X parity strings or loops can be decomposed in

terms of their action on individual triangles, and since the basis rotation acts on each triangle

individually, this extends the mapping from X strings to corresponding dual Z strings in the

rotated basis, as illustrated in Fig. H.2.

Figure H.2: Dual Z and X loops. Examples of dual Z loops (dashed lines) to closed X loops (solid wig-
gly lines).

332



H.3 Supplemental experimental data

H.3.1 Mean Rydberg density and boundary effects

After preparing the dimer phase for ∆/Ω ∼ 4, we observe a Rydberg excitation density in

the bulk of ⟨n⟩ ∼ 1/4. The sites close to the boundary of the system, however, are domi-

nated by edge effects. In Fig. H.3, we show the Rydberg excitation density site-by-site, and

demonstrate that the edge effects only permeate two to three layers into the bulk before the

⟨n⟩ ∼ 1/4 plateau is reached. In arrays with a topological defect, the hole forms an inner

boundary and similarly induces edge effects (Fig. H.3C,D). These observations allow us to de-

termine the minimum system sizes that may be used such that the physics of the system is

not dominated by boundary effects, resulting in our choice of the 219-atom arrays used in this

work.

A B

C D

Figure H.3: Site-by-site mean Rydberg density. We measure the mean Rydberg excitation density ⟨n⟩
site-by-site in the dimer phase with ∆/Ω = 4 for both full arrays (A) as well as arrays with a hole (C).
(B,D) We then plot the corresponding mean density layer-by-layer as a cross-section from the edge into the
bulk, showing that within the outer two to three layers, the bulk settles into the ⟨n⟩ ∼ 1/4 phase.
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H.3.2 Lack of spatial order within spin-liquid phase

The lack of spatial order in the spin-liquid phase is a key feature that separates this phase

from possible nearby solid phases. At the simplest level, spatial order can be assessed by look-

ing at individual projective measurements of the atomic states in the ensemble. We show

three examples of such snapshots in Fig. H.4, where the measured states of individual atoms

are represented as small circles on the links of the kagome lattice, filled or unfilled indicating

a Rydberg state or a ground state, respectively. In the mapping to a monomer-dimer model,

we can alternatively consider the vertices of the kagome lattice in terms of how many adjacent

Rydberg excitations (dimers) are present. In practice, vertices can have zero attached dimers

(so-called monomers), a single attached dimer (corresponding to an ideal dimer covering), or

more attached dimers (violating the long-range blockade constraint). In Fig. H.4, we addi-

tionally color each vertex according to the number of such attached dimers. The widespread

abundance of vertices connected to a single dimer (Fig. 11.1E and snapshots from Fig. H.4)

signifies occupation of the dimer phase.

A B C

Figure H.4: Snapshots in the dimer phase. Three sample experimental realizations within the dimer
phase at ∆/Ω = 4.3. The binarized atom readout is shown by small circles on the links of the kagome
lattice, with open circles denoting |g⟩ and filled circles denoting |r⟩. Vertices of the kagome lattice (large
circles) are colored according to the number of adjacent atoms in |r⟩ to visually accentuate which parts of
the system are properly covered with dimers.

Moreover, spatial correlations can be used to look for solid-type spatial order (Fig. H.5).
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Figure H.5: Density correlations between individual Rydberg excitations. We directly measure the
Rydberg density-density correlator ⟨ninj⟩ − ⟨ni⟩⟨nj⟩ between a central atom and all other atoms in the
system. We observe anticorrelations between the central atom and the other two atoms in the same triangle,
as well as with atoms in the adjacent triangles, given by the choice of blockade radius Rb. Longer range
correlations vanish. This data was taken at ∆/Ω = 4.3.

We measure Rydberg density-density correlations on the atomic array and find non-vanishing

correlations for atoms within a single triangle or between adjacent triangles, with vanishing

correlations over longer distances. This observation confirms the lack of spatial order in the

dimer phase we prepare.

H.3.3 Phase dependence of quench

The quench which induces the basis rotation for measuring X parity is implemented by rapidly

switching the laser detuning to ∆q = 0 following the preparation of the dimer phase, and si-

multaneously changing the phase of the laser field by π/2. This choice of phase approximately

maximizes the X parity signal, as measured by applying the same quench duration but with

variable phase (Fig. H.6A).

The phase change can be understood by interpreting it as evolution under
∑

i ni for time ϕ,

followed by a fixed-phase quench. Since the quench ultimately measures coherences between

different components of the wavefunction, this phase change only matters insofar as it changes

the relative phases between components. We note here that coherences between perfect dimer
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coverings will be unchanged by the phase change, since all perfect dimer coverings have the

same number of Rydberg excitations. A wavefunction which is the superposition of all perfect

dimer coverings, then, would be insensitive to the choice of phase for the quench. However, in

our system there is a finite density of both monomers and vertices with two attached dimers.

An X loop crossing through a monomer creates a double-dimer at that vertex, and these types

of component pairs are additionally included in our X parity measurements. Since the coupled

states with a monomer and a double-dimer have different numbers of Rydberg excitations,

these coherences are phase-sensitive. Comparing the measured X parity for ϕ = π/2 and

ϕ = 0 as we scan across the phase diagram (Fig. H.6B), we find that the first has larger am-

plitude and extends more strongly into the trivial phase, consistent with the expectation from

theoretical calculations [193].

H.3.4 Z parity measurements with improved state preparation

All data shown in Chapter 11 is taken with intermediate detuning δ = 2π × −450 MHz (see

Sec. H.1) for the two-photon Rydberg excitation. This choice is to enable our largest dynamic

range of Rabi frequencies, which is crucial for being able to perform state preparation at low

Ω and then apply the quench at large Ω with reduced blockade radius. Larger intermediate

Figure H.6: Phase dependence of quench. (A) After preparing the dimer phase at ∆/Ω = 4, we quench
for the pre-calibrated time τ with a variable quench phase and measure the resulting X loop parity around
a single hexagon. (B) For fixed quench phase ϕ = π/2 or ϕ = 0, we measure the X parity after the pre-
calibrated quench time as a function of the final detuning of the cubic sweep. The data for ϕ = π/2 is
reproduced from Fig. 11.3F of Chapter 11.
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detuning would require performing state preparation at an even lower initial Rabi frequency,

where we observe worse results. However, the small intermediate detuning introduces stronger

decoherence due to increased spontaneous emission from the intermediate state. To supple-

ment these results, we additionally perform state-preparation and measure Z parity at an in-

creased intermediate detuning of δ = 2π × 1 GHz. To further optimize this state preparation,

we use a larger Rabi frequency Ω = 2π × 1.7 MHz and a smaller lattice spacing a = 3.7 µm,

which should improve adiabaticity during the preparation. In this configuration, we indeed ob-

serve larger Z loop parities (Fig. H.7), but we cannot measure corresponding X loop parities.

This highlights that the large dynamical range required for the measurement of the X oper-

ator is one of the main technical challenges of this experimental work. At the same time, it

shows that with more available laser power for Rydberg excitation, the quality of state prepa-

ration can be improved by working at this increased intermediate detuning and higher Rabi

frequencies (and with smaller lattice spacings to achieve the same blockade radius).

Figure H.7: Z loop parity with improved state preparation. We measure Z on closed loops with a
larger intermediate state detuning for the two-photon Rydberg excitation to reduce spontaneous emission
rates, and with a larger Rabi frequency during the state preparation. We observe larger parities than in the
comparable Fig. 11.2 of Chapter 11.
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H.3.5 Correlations between parity loops

String operators are used in this work to assess long-range topological order. However, the

large loops which are studied can be decomposed into the product of smaller loops around

sub-regions: for example, X loops can be decomposed into the product of enclosed hexagons.

To demonstrate that the parity measured on large loops is indeed indicative of long-range or-

der, rather than emerging from the ordering of each hexagon individually, we extract correla-

tions between the separate parity loops which comprise larger loops.

We first study parity loops which enclose adjacent hexagons of the kagome lattice. The min-

imal such X parity loop is exactly equal to the product of the parity around the two enclosed

hexagons. The connected correlator of the parity around these two inner hexagons is

G
(2)
X = ⟨

1 2
⟩ − ⟨

1
⟩⟨

2
⟩ (H.6)

Similarly, Z loops which enclose two hexagons decompose into the product of Z parity around

the two hexagons, multiplied additionally by the parity around the central interior vertex

(which should always be -1 in a dimer covering). We define the analogous two-hexagon con-

nected correlator for Z as

G
(2)
Z = ⟨

1 2
⟩ − ⟨

1
⟩⟨

2
⟩ (H.7)

Higher-order connected correlations between three adjacent hexagons which form a triangle

further highlight nonlocal correlations in this system. We define the connected three-point
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correlator [350] which subtracts away contributions from underlying two-point correlations as

G
(3)
X = ⟨

1 2 3
⟩ −G

(2)
X,12⟨

3
⟩ −G

(2)
X,23⟨

1
⟩ −G

(2)
X,31⟨

2
⟩ − ⟨

1
⟩⟨

2
⟩⟨

3
⟩

(H.8)

where G(2)
X,ij is the connected correlator for hexagons i, j. Third order connected correlators for

Z parity are analogously defined.

As shown in Fig. H.8, we observe nonzero two-hexagon and three-hexagon connected corre-

lations within the dimer phase region, indicating that the parity measured on double-hexagon

and triple-hexagon loops does not emerge from independently determined parity around each

interior subregion, but instead emerges due to nontrivial correlations over longer length scales.

Figure H.8: Correlations between parity loops. We measure two-point and three-point connected cor-
relations between parity around adjacent hexagons. (A) Z parity correlations between loops which enclose
pairs and triplets of adjacent hexagons. (B) X parity correlations between pairs and triplets of adjacent
hexagons.

H.3.6 Quasiparticle excitations

Within the dimer-monomer model, quasiparticle excitations of two types are created by the

application of open X and Z strings: these are the electric (e) and magnetic (m) anyons, re-

spectively. Open X strings create monomers (or double-dimers) at their endpoints, and thus

e-anyons are identified as defects in the dimer covering. Open Z strings on the other hand im-

part a relative phase between various dimer configurations, corresponding to m-anyons. To un-
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derstand m-anyons, we first note that all dimer coverings in the QSL superposition are related

to one another by the application of properly chosen closed X loops (first row of Fig. H.9).

An open Z string applied to the QSL state, then, results in different dimer coverings acquiring

± phase factors according to the number of dimers crossed by the string. Whenever two dimer

configurations are related by a closed X loop which encloses one of the endpoints of the Z

string, they acquire opposite signs (Fig. H.9). After the application of the open Z string, then,

⟨X⟩ is inverted for any closed loop around one endpoint of the Z string, analogous to how ⟨Z⟩

around the endpoint of an open X string (a defect) is inverted. Since open Z strings termi-

nate in the hexagons of the kagome lattice, we associate the resulting magnetic (m) anyons as

living on these hexagons, and the X parity around hexagons therefore detects the presence of

m-anyon excitations.

In Fig. H.10 we report the Z and X loop parities rescaled with area and perimeter law for

different values of ∆ in the relevant range of detunings. We observe that the excellent perime-

ter law scaling of X reported in Fig. 11.4I of Chapter 11 extends over the entire range of

∆. For Z instead we find that the initial approximate area law scaling converges towards a

perimeter law for large loops.

We can shed light on the scaling behavior observed in the experiment by comparing it with

the expected scaling from theory. Let us first note that the generic equilibrium expectation

Figure H.9: Magnetic anyons. The dimer states contained in |ψQSL⟩ are connected to each other by the
application of X on closed loops. When an open Z string acts on the superposition, the dimer states con-
nected by an open loop that encloses one end of the string (X1) acquire opposite signs. The m-anyons
generated at the endpoints of the string are then detected by X loops that enclose one of them, e.g.
⟨X1⟩ = −1, while ⟨X2⟩ = +1 is unperturbed.
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Figure H.10: Scaling of Z and X parities with the loop size. We calculate the rescaled parities
⟨Z⟩1/area (B), ⟨Z⟩1/perim (C) and ⟨X⟩1/perim (D) for the different loop sizes in (A). While for the X op-
erator we observe a very good perimeter law scaling on the entire range of detunings, for Z we observe an
approximate area law scaling for small loop sizes that finally converges towards a perimeter law scaling.

for both string operators is a perimeter law scaling [245]. This can be seen as a consequence

of the mutual statistics of e- and m- anyons: since there will be virtual fluctuations of both

anyons, these will induce correlations∗ for anyons of the other type, leading to a perimeter law.

This generic expectation of a perimeter law is well-known in the (lattice) gauge theory commu-

nity, and can be related to the phenomenon of string breaking [351]. Experimentally, we ob-

serve a perimeter law for X-loops and an (approximate) area law for Z-loops (with substantial

deviations for larger loop sizes). This can be understood by noting that we enter the QSL-like

state from the trivial phase, which can be interpreted as a condensate of e-anyons (i.e., both

closed and open X-strings give nonzero correlations): the perimeter law for closed X strings is

thus already present in the trivial phase and naturally persists into the QSL-like state (while

correlations for the open X-strings vanish). In contrast, the Z-correlations are absent in the

trivial phase proximate to the QSL: these are only developed at the quantum critical point,

and since we sweep through this at a finite rate, the Z-loop correlations are only developed

over a characteristic length scale, implying an area law. Numerically, we indeed confirm that

Z-loop correlations are significantly enhanced upon increasing preparation time (see Sec. H.4),
∗To clarify this further, we note that the monomers (and double-dimers) visible in the experimen-

tal snapshots need not to directly correspond to physical excitations, since the ground state will have
so-called ‘virtual’ fluctuations when it is not in an idealized fixed-point state. These can be interpreted
as correlated e-anyons. In contrast, in an ideal Z2 spin liquid, physical e-anyons will be uncorrelated—
since this is a defining property of the deconfined phase where e-anyons move independently at suffi-
ciently large distances.
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consistent with our observations in Fig. H.7. We note that this imperfect generation of Z-loop

correlations can be equivalently interpreted as generating a density of e-anyon excitations. Dy-

namically inducing the onset of a QSL and possible meta-stable states are rich phenomena

which deserve further detailed study.

H.3.7 Additional data for arrays with nontrivial topology

The distinction between two distinct topological sectors can be better understood by looking

at the transition graphs between pairs of dimer states [352]. These are built by superimpos-

ing two dimer coverings and removing the overlapping dimers (Fig. H.11). The dimer states

belong to opposite topological sectors if the remaining dimers form an odd number of closed

loops around the hole, indicating the set of non-local moves required to transform one into the

other.

Figure H.11: Distinction between topological sectors. To determine if the three dimer coverings
|D1⟩,|D2⟩ and |D3⟩ belong to the same or opposite topological sectors, we build the transitions graphs
|D1⟩ ∪ |D2⟩ and |D2⟩ ∪ |D3⟩. In the latter we see that the dimers form a closed loop around the hole,
highlighting that the two states belong to opposite sectors.

To demonstrate that the removal of three atoms at the center of the array creates an actual
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inner boundary, we measure the Z and X operators on strings with both endpoints on the

inner or outer boundaries (Fig. H.12). In the relevant range of detunings (3.3 ≲ ∆/Ω ≲ 4.5)

we measure a finite ⟨Z⟩ and a vanishing ⟨X⟩ in both cases, indicating that the central hole

also generates an effective boundary. This also confirms that the boundaries that are naturally

created in our system are of the m-type, i.e. m-anyons localize on it (hence the finite ⟨Z⟩)

[193].

Figure H.12: Boundary-to-boundary string operators. We measure the Z (A) and X (B) operators on
open strings connecting two points on the outer (C,D) or inner (E,F) boundaries of the array. Observing
the same features for both, we confirm that the small central hole does indeed create an effective inner
boundary.

H.4 Numerical studies

Below, we report on numerical studies of the Rydberg atom array. We first discuss the zero

temperature equilibrium phase diagram, established using density-matrix-renormalization-

group (DMRG). Next, we directly simulate the quasi-adiabatic sweep, using both exact diag-
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onalization and dynamical DMRG calculations. To minimize boundary effects due to limita-

tions of numerically accessible system sizes, these calculations are performed on a torus (exact

diagonalization) or on an infinite cylinder (DMRG).

H.4.1 Ground state phase diagram

To a first approximation, the Hamiltonian in Chapter 11 can be described by an effective

‘PXP’ model [189]

HPXP =
∑
i

(
Ω

2
Pσxi P −∆ni

)
. (H.9)

Here, P is a projector onto |g⟩ for all sites within the blockade radius Rb of the site i. This

model approximates the the Rydberg Hamiltonian by treating all pairwise interaction energies

as either infinite, if within the blockade radius, or zero if beyond. For Rb = 2.4a (as in Chap-

ter 11), this corresponds to blockading the first three interaction distances. In Ref. [193], it

was shown that this ‘blockade model’ hosts a Z2 spin liquid for 1.5 ≲ ∆/Ω ≲ 2.

To include the full van der Waals interactions, we incorporate V (r) = Ω(Rb/r)
6 in the mi-

croscopic model within a truncation distance Rtrunc (beyond which V (r) = 0), with Rb =

2.4a. On a technical note, we replace the very strong nearest-neighbor repulsion V (a)/Ω =

(Rb/a)
6 ≈ 191 by V (a) = +∞ by working in an effectively constrained model where any tri-

angle can host at most one dimer. The DMRG [246, 318] simulations on cylinder geometries

[342] were performed using the Tensor Network Python (TeNPy) package developed by Jo-

hannes Hauschild and Frank Pollmann [247]. A bond dimension χ = 1000 was sufficient to

guarantee convergence for the systems and parameters considered.

For intermediate truncation distances, we find a spin liquid in the ground state phase dia-

gram. In particular, taking Rtrunc =
√
7a ≈ 2.65a, we include four nearest neighbor interac-

tions (i.e., one more than the blockade model): every site is coupled to 10 other sites. The re-
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sulting phase diagram is shown in Fig. H.13(A–C). This is obtained using the DMRG method

applied to an infinitely-long cylinder XC-8 (see Ref. [193] for details about cylinder geometries

of the kagome lattice). The presence of a spin liquid is determined based on the behavior of

the string observables, as in the experiment. Moreover, we observe topologically degenerate

ground states on the cylinder [193].

However, we find that the spin liquid is destabilized upon including even longer range inter-

actions: for Rtrunc =
√
7a we find a spin liquid for 3.4 ≲ ∆/Ω ≲ 3.62, for Rtrunc = 4a we find

that this has shrunken down to 3.45 ≲ ∆/Ω ≲ 3.52, and for Rtrunc = 6a there is no intervening

spin liquid. Fig. H.13(D–F) shows a direct first order phase transition at ∆/Ω ≈ 3.47 from

the trivial phase to a valence bond solid (VBS). These results are summarized in Fig. H.14.

We note that these conclusions are strictly valid for the Hamiltonian in eq. (11.1) of Chap-

ter 11 and might be affected by additional terms, associated, e.g., with multi-body Rydberg

interactions. Moreover, other modified ruby lattice geometries still support a ground state
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Figure H.13: Ground state phase diagram of the link-kagome model for two truncation distances.
All data is for the van der Waals model with blockade radius Rb = 2.4a on an XC-8 cylinder. (A–C) For
truncation distance Rtrunc =

√
7a, we observe a spin liquid (gray shaded area) in between the trivial phase

and valence bond solid (VBS). In particular, it is characterized by a large entanglement plateau (S is the en-
tanglement entropy upon bipartitioning the cylinder and ξ is the correlation length), vanishing of the BFFM
string order parameters (darker lines correspond to larger strings) and nonzero loop variables (⟨Z⟩circ and
⟨X⟩circ) around the circumference—the signs of the latter label topologically degenerate ground states, as
explained in Ref. [193]. (D–F) By increasing the truncation distance to Rtrunc = 6a, the intermediate spin
liquid has vanished: there is now a direct first order transition from the trivial phase to a VBS.
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Figure H.14: Ground state phase diagram of the link-kagome model. Upon including all V (r) ∼ 1/r6

interactions (represented by the gray dashed line), we find that there is a direct phase transition from the
trivial disordered phase to a crystalline-symmetry-breaking valence bond solid (VBS). However, the model
is very close to a spin liquid phase: in fact, if we truncate the interactions to a distance Rtrunc, we see that
a Z2 spin liquid can arise in the ground state phase diagram (black dots denote phase transitions obtained
via DMRG on the XC-8 cylinder). It is conceivable that dynamical state preparation is not sensitive to the
longer-range couplings which destabilize the spin liquid; indeed, in Fig. H.16 we confirm that finite-time
state preparation gives a state with properties characteristic of a spin liquid.

spin liquid phase even in the presence of these long range interactions [193]. At the same time,

we find that quasi-adiabatic state preparation used in the experiment is far more robust to

these effects. In particular, as we will now show, such state preparation avoids the first order

transition to the VBS and instead results in a state reflecting correlations characteristic of a

quantum spin liquid.

H.4.2 Numerical simulations of dynamical state preparation

The detuning ramps, ∆(t), which are employed to generate various states, are motivated by

the adiabatic principle. For sufficiently slow ramps, the system follows the instantaneous

ground state adiabatically [353]. In practice, finite coherence times limit the maximum evolu-

tion times, and require faster-than-adiabatic sweeps. This is expected to induce non-adiabatic

processes, in particular close to the critical point, where the finite size gap is minimal [127,

146, 145].

To develop an understanding for the quantum many-body states that are generated in such

quasi-adiabatic sweeps, we numerically solve the corresponding Schödinger equation to ob-
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tain the wavefunction |ψ(t)⟩ = U(t)|ψ(0)⟩. We first discuss results from exact numerics on

small system sizes of 36 atoms on a torus with 3 × 2 unit cells, using the simplified PXP-

model (eq. (H.9)). Fig. H.15A shows the excitation spectrum of the instantaneous Hamilto-

nian throughout the sweep. Even though the system size is relatively small, the spectrum

distinguishes a disordered region with a unique ground state at ∆/Ω ≲ 1.5, and a region

whose ground state physics is governed by the dimer covering configurations at ∆/Ω ≳ 1.5.

Note that the small system size does not allow to distinguish a spin liquid phase from a VBS

phase in this second regime. The color of each individual instantaneous energy eigenvalue in

Fig. H.15A reflects the population of the wavefunction in the corresponding instantaneous

eigenstate, |⟨En|ψ(t)⟩|2. We observe that non-adiabatic processes lead to finite population in

states with energy ∼ ∆ outside the dimer covering subspace. This corresponds to the creation

of pairs of monomers, consistent with the experimentally observed generation of a finite den-

sity of e-anyons. For the sweep profile shown in the inset, the total population in the dimer

A B

Figure H.15: Dynamical state preparation in PXP model. (A) Lowest instantaneous eigenstates of the
Hamiltonian in (H.9) for 36 atoms on a torus. Colors indicate the populations of the state generated in the
real time quench dynamics with Hamiltonian parameters given in the inset (data is shown for total sweep
time T = 60/Ω0). (B) Decomposition of the ground state and the dynamically generated state at the end
of the parameter sweep (∆/Ω0 = 5) over all dimer covering configurations for various sweep durations T .
The total population in the dimer covering sector is

∑
i∈D |ci|2 = 0.27, 0.60, 0.82 for Ω0T = 30, 60, 120,

respectively. For the ground state at ∆/Ω = 5 the population in the dimer covering sector is 0.89. The
inset shows the phase of each amplitude. For comparison, the experimental state preparation occurs over
Ω0T = 18.
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covering subspace, D, at the end of the sweep is
∑

i∈D |⟨i|ψ(T )⟩|2 ≈ 0.27, 0.60, 0.82 for total

sweep times Ω0T = 30, 60, 120 respectively, showing that the defect density can be controlled

and reduced by decreasing the sweep rate. In Fig. H.15B, we resolve the state |ψ(t)⟩ within

D at the end of the detuning sweep. At this point, the instantaneous ground state consists of

a superposition of a subset of dimer covering configurations, akin to a VBS state. Neverthe-

less, the projection of the dynamically prepared state |ψ(t)⟩ onto D consists of a superposition

of all dimer coverings with nearly equal modulus and phase. This indicates that the system

cannot resolve the slow dynamics within the dimer covering subspace during these finite-time

sweeps, and instead “freezes” into a state that shares the essential features of the spin liquid

state. This is consistent with our experimental observation of QSL characteristics in the dy-
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Figure H.16: Dynamical state preparation in the van der Waals model. Results are for the XC-4 cylin-
der for Rb = 2.4a. The two rows correspond to two different truncation distances, as shown. For each
panel, we show both the ground state result (blue dashed, obtained by DMRG) as well as the dynamical
state preparation using the protocol in Fig. H.1 (red solid, obtained by time-dependent DMRG; lighter solid
line is for a sweep at half the speed). For the shorter truncation distance, the ground state hosts a spin liq-
uid (blue shaded region). The diagonal loop around a hexagon is denoted by ⟨Z⟩hex; the off-diagonal loop
by ⟨X⟩hex. The BFFM order parameters are evaluated for the open strings that correspond to half of these
closed loops. Despite being short strings, due to the small system size, they already show a clear signature
of a spin liquid where they both approximately vanish. Note that the ground state data for Rtrunc =

√
7a

has a vanishing ⟨Z⟩BFFM, even in the VBS phase: this is a finite-size artefact where the VBS phase con-
sists of local resonances around the circumference. As a check, we also directly calculated the two-point
correlator ⟨ninj⟩ − ⟨ni⟩⟨nj⟩, which clearly shows the VBS order in the ground state, yet these correlations
vanish in the time-evolved states (not shown). We conclude that dynamic state preparation is not sensitive
to Rtrunc, and the resulting state has properties which are similar to those of the ground state spin liquid
(at Rtrunc =

√
7a) albeit smeared out over a larger region.
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namically prepared states over a relatively large parameter range, without any signatures of a

VBS.

To further corroborate this picture, we also performed dynamical DMRG calculations for

state preparation in the realistic model with van der Waals (1/r6) interactions using the ma-

trix product operator-based approach developed in Ref. [248]. We consider the infinitely-long

XC-4 cylinder. As for the XC-8 results reported above, there is an intermediate spin liquid

between the trivial phase and VBS phase for small truncation distance Rtrunc =
√
7a: this

ground state data is shown as the dashed blue lines in the top row of Fig. H.16 (the shaded

region highlights the intermediate spin liquid). For larger truncation distance Rtrunc =
√
12a,

the spin liquid is replaced by a direct first order phase transition (blue dashed lines in bottom

row of Fig. H.16). The dynamical state preparation data is shown as a solid red line: dark

solid lines corresponds to the same protocol as the experimental data (see Fig. H.1); light solid

line is twice as slow as the experiment.

The results in Fig. H.16 imply a few salient points. Firstly, as far as dynamical state prepa-

ration is concerned, the results for the two truncation distances are very similar: the state

preparation seems insensitive to longer-range interactions destroying the intermediate spin

liquid in the ground state. Secondly, in both cases, the properties of the time-evolved state

are qualitatively very similar to those of the ground state for Rtrunc =
√
7a in the spin liq-

uid regime. The two main differences are: (a) the spin liquid-like state is spread out over a

larger region and shifted to the right (minimum of the BFFM order parameters is achieved

near ∆/Ω ≈ 5) , and (b) the observables are slightly suppressed compared to their equilib-

rium values. With regard to the latter, we observe that the state which was prepared twice

as slowly (light red line) gives improved results, in agreement with experimental observations,

Fig. H.7. This is consistent with the picture that already emerged from the dynamical simu-
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Figure H.17: Comparison between experimental results and numerical simulations of dynamical
state preparation. The experimental data (A,C,E) is reproduced from Figs. 11.1 and 11.4 of Chapter 11,
while in (B,D,F) we show the results of the time-dependent DMRG simulations for Rtrunc =

√
7a, per-

formed on the infinitely-long cylinder with a seven-atom-long circumference (XC-4).

lations for the PXP model in Fig. H.15: even if the ground state is not a spin liquid due to a

first order transition to a VBS phase, the dynamically prepared state effectively exhibits spin

liquid-like properties, presumably due to the freezing-out of m-anyons (which would need to

condense to form the VBS phase). Figure H.17 demonstrates that the results of these dynam-

ical simulations, despite different system sizes and geometry used, are in a good qualitative

agreement with experimental observations.
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I
Supplementary information for Chapter 12

I.1 State initialization

We measure our state preparation fidelity by microwave spectroscopy. At our given magnetic

field of 1.5 G, the transition frequencies from individual Zeeman sublevels of the 87Rb |F = 2⟩

ground state to the sublevels of the |F = 1⟩ ground state are resolvable. We compare the mi-

crowave spectrum after coarse pumping into all sublevels of |F = 2⟩ to the spectrum after

pumping specifically into |F = 2,mF = −2⟩, as shown in Section 2.8. In the latter measure-

ment, peaks corresponding to initial population in magnetic sublevels other than |mF = −2⟩

are nearly completely eliminated. We bound their remaining size to produce our estimate that
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the initial state preparation has fidelity > 99.5%. To reach this fidelity, we aligned the optical

pumping laser to the magnetic field with reasonable care but without special fine tuning. How-

ever, we took great care to optimize the polarization purity to drive only σ− transitions on

the |F = 2⟩ → |F ′ = 2⟩ D2 transition. We performed this optimization by directly measuring

the atom signal while tuning the polarization.

I.2 Characterizing state detection fidelity

The Rydberg pulse that couples the ground state |g⟩ to the Rydberg state |r⟩ is applied within

a time window τ during which the optical tweezers are briefly turned off. Atoms that are left

in |g⟩ at the end of the pulse are recaptured by the optical tweezers, whereas those left in |r⟩

are repelled by the tweezers and lost. We characterize this detection scheme by the ground

state detection fidelity fg (the probability for an atom left in |g⟩ to be recaptured) and fr (the

probability for an atom left in |r⟩ to be lost).

The ground state detection fidelity fg for a given sequence in which the tweezers are turned

off for time τ is estimated by leaving the Rydberg lasers off and measuring the loss probability

due to just the trap-off period. For short trap-off times τ < 4 µs, the loss probability is < 1%

so that fg > 0.99. Longer trap-off times reduce this fidelity.

The Rydberg detection fidelity fr is characterized by the assumption that our single atom

Rabi oscillation contrast is limited only by detection fidelity and finite coherence. This as-

sumption is reasonable due to independent measurements which confirm our state prepara-

tion fidelity to be > 99.5%. From our fitted Rabi oscillations, we extract the amplitude at

time t = 0 to estimate the maximum possible loss signal which is typically 96(1)%. We as-

sociate the remaining 4% with detection error, such that the Rydberg detection fidelity is

fr = 0.96(1). This is consistent with careful analysis of the loss mechanism described in [53].
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I.3 Rydberg laser alignment onto atoms

We ensure consistent, centered alignment of each Rydberg excitation laser by picking off a

small portion of the beam as it is coming to a focus and redirecting it onto a reference CCD

camera (see Fig. 12.1b). We first identify the location on the CCD camera that corresponds

to optimal alignment onto the atoms. This is done by systematically displacing the beam to

several different positions, and at each position measuring the intensity on the atoms through

a measurement of the light shift on the microwave transition from |5S1/2, F = 2,mF = −2⟩ to

|5S1/2, F = 1,mF = −1⟩. We fit these measurements, along with their corresponding positions

on the CCD, to extract the optimal position. This procedure takes 5 minutes. We then keep

the beam aligned onto this position on the camera by feeding back to a computer controlled

mirror located one focal length before the final focusing lens. This realignment takes < 5 sec-

onds and is performed every 2 minutes. This alignment procedure is used on both beams.

I.4 Stabilizing the electric field environment with an ultraviolet LED

We observe drifts in the resonance frequency of the transition to the Rydberg 70S state on the

scale of several MHz. We attribute these drifts to fluctuations in the electric field induced by

charges on the surface of the glass cell which is 8 mm away from the atoms. We find exper-

imentally that shining 365 nm ultraviolet light on the glass cell stabilizes the Rydberg reso-

nance frequency. The most stable configuration is reached by applying the UV light for most

of the experimental sequence; it is turned off only for a short window encompassing the Ryd-

berg pulses. With this configuration, we can bound electric-field induced fluctuations on the

Rydberg resonance to < 50 kHz.

353



I.5 Single-atom phase gate

We implement our single-atom phase gate with an independent 809 nm laser that is focused

onto a single atom and shifts the energy of the atomic ground state |g⟩ by 2π × 5 MHz. The

laser is focused to a waist of 4 µm through a microscope objective positioned opposite to the

primary microscope objective which produces the optical tweezers. The phase shift beam path

is aligned counter-propagating to the path of the optical tweezer that traps the addressed

atom.

The beam waist was chosen to be large enough such that the atomic light shift was insen-

sitive to small temperature-induced position fluctuations of the atom. At the same time, the

waist was chosen to be small enough to enable negligible crosstalk (< 2%) between two atoms

separated by 5.7 µm.

I.6 Numerical model for single atoms

The numerical model is implemented using the Python package QuTiP [354]. It includes the

following three effects:

1. A static but random Doppler shift in each iteration of the experiment. At 10 µK, in a

counter-propagating beam configuration with wavelengths 420 nm and 1013 nm, the

random Doppler shift follows a Gaussian distribution of width 2π × 43.5 kHz.

2. Off-resonant scattering from the intermediate state |e⟩ = |6P3/2, F = 3,mF = −3⟩,

to which both |g⟩ and |r⟩ are off-resonantly coupled by the 420 nm and 1013 nm lasers,

respectively. The single-atom Rabi frequencies are (ΩB,ΩR) ≃ 2π × (54, 40) MHz, and

the intermediate detuning is ∆ ≃ 2π × 540 MHz.
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We experimentally probe the decay channels of |e⟩ by preparing atoms in |g⟩ and then

applying only the 420 nm light for varying amounts of time. After the 420 nm light is

applied at the usual power and detuning, we perform microwave spectroscopy between

the |F = 1⟩ and |F = 2⟩ ground state manifolds to determine the final atomic pop-

ulations. We estimate that population leaves the Zeeman sublevel |g⟩ = |5S1/2, F =

2,mF = −2⟩ with a 1/e timescale of ∼ 150 µs. We further estimate that population

enters the |F = 1⟩ manifold on a timescale of ∼ 600 µs.

The optical scattering rate induced by the blue laser at the known detuning and power,

along with the known 6P3/2 lifetime of 115 ns, leads to an estimated scattering timescale

of 45 µs, which is significantly faster than the timescale at which population leaves |g⟩.

The dominant decay channel from |e⟩, then, is back into |g⟩.

We therefore make the simplification in the numerical model that scattering events from

|e⟩ return population to |g⟩. This process is modeled by Lindblad operators √
γB|g⟩ ⟨g|

and √
γR|g⟩ ⟨r|, corresponding to scattering events from the ground state |g⟩ or the Ryd-

berg state |r⟩. The simulated timescales are γB = 1/(45 µs) and γR = 1/(80 µs).

3. Finite lifetime of the Rydberg state |r⟩. The total effective lifetime of 146 µs is com-

posed of two decay channels: (1) blackbody stimulated transitions at 300 K to neighbor-

ing Rydberg states at a timescale of 230 µs and (2) radiative decay of the Rydberg state

to low principal quantum number levels at a timescale of 410 µs [48].

The simplified numerical model treats blackbody stimulated transitions as decay events

into a new Rydberg state |r′⟩ which is dark to the laser field. Additionally, the model

accounts for radiative decay into a dark ground state |g′⟩.

The numerical results are additionally rescaled to account for the independently calibrated
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detection fidelities.

I.7 Definition of |W ⟩ state

For experiments with two interacting atoms (as described in Figures 12.3 and 12.4 of Chap-

ter 12), the two atoms are coupled homogeneously by the same laser field to the Rydberg

state. Strictly speaking, the Hamiltonian is given by

H =
ℏ
2

∑
i=1,2

[
Ωeikxi |ri⟩ ⟨gi|+ h.c

]
+ U |rr⟩ ⟨rr|

The parameter Ω (taken to be real) is fixed by the laser intensities (which we assume here

to be stable), and the parameter k is fixed by the combined wavevector of the two counter-

propagating lasers. The parameters xi describe the position of the two atoms along the array

axis. In the Rydberg blockade regime where U/ℏ ≫ Ω, we project out the doubly excited

state |rr⟩ such that the only allowed levels are |gg⟩, |gr⟩, and |rg⟩. We therefore rewrite the

Hamiltonian as

H =
ℏΩ
2

(
eikx1 |rg⟩ ⟨gg|+ eikx2 |gr⟩ ⟨gg|+ h.c

)
(I.1)

=
ℏ
√
2Ω

2
(|W ⟩ ⟨gg|+ |gg⟩ ⟨W |) (I.2)

where we have defined

|W ⟩ = 1√
2

(
eikx1 |rg⟩+ eikx2 |gr⟩

)
(I.3)

In Chapter 12, we work in the rotating frame in which the excited state |r⟩ incorporates

these position-dependent phase factors. Strictly speaking, however, the definition of |W ⟩ de-
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pends on the position of the atoms.

At the finite atomic temperature of 10 µK, the atomic position along the array has a ran-

dom Gaussian distribution of width ∼ 200 nm. The relative phase eik(x2−x1) may therefore

reach appreciable values. We choose to not include these factors in our calculation of entan-

gled state fidelity since they are fixed relative to the excitation laser system and do not emerge

in measurements. Moreover, additional pulses that map Rydberg excitations down to other

ground states may effectively erase these phase factors [268].

I.8 Extracting off-diagonal matrix elements of density operator

We consider an initial two-atom state ρ0 that has the same measured populations as |W ⟩ =

1√
2
(|gr⟩+ |rg⟩) but unknown off-diagonal elements. Then ρ0 can in general be expressed as

ρ0 =
1

2
(|gr⟩ ⟨gr|+ |rg⟩ ⟨rg|) + (α|gr⟩ ⟨rg|+ h.c.) (I.4)

with off-diagonal coherence |α| ≤ 1/2. We aim to measure α, and in doing so to measure the

entanglement fidelity of the two-atom system.

We consider the following protocol to determine α. First, we apply a local phase shift oper-

ation that acts only on the left atom. This is achieved by a tightly focused laser which intro-

duces a light shift on the ground state of the left atom. In the presence of this laser, |gr⟩ is

shifted by δ whereas |rg⟩ is unshifted. After time t, the two states have accumulated dynami-

cal phases |gr⟩ → eiδt|gr⟩ and |rg⟩ → |rg⟩.

This operation transforms the density matrix from ρ0 to ρϕ where

ρϕ =
1

2
(|gr⟩ ⟨gr|+ |rg⟩ ⟨rg|) + (αeiδt|gr⟩ ⟨rg|+ h.c.) (I.5)
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Note that if the state ρ0 is a statistical mixture of |gr⟩ and |rg⟩ (that is, α = 0), this phase

shift operation does not change the density matrix.

We can rewrite ρϕ from eq. (I.5) in the basis of the symmetric state |W ⟩ = 1√
2
(|gr⟩ + |rg⟩)

and the orthogonal state |D⟩ = 1√
2
(|gr⟩ − |rg⟩):

ρϕ =

(
1

2
+ α cos(δt)

)
|W ⟩ ⟨W |+

(
1

2
− α cos(δt)

)
|D⟩ ⟨D|+ [(−iα sin(δt)) |W ⟩ ⟨D|+ h.c.] (I.6)

Finally, a global resonant π-pulse at the enhanced Rabi frequency
√
2Ω maps |W ⟩ → |gg⟩.

The probability to end in |gg⟩ is therefore the probability to be in |W ⟩ after the phase shift

operation. Therefore

Pgg(t) =
1

2
+ α cos(δt) = 2α cos2(δt/2) +

(
1

2
− α

)
(I.7)

The amplitude of the oscillation of Pgg(t) as a function of t therefore provides a direct mea-

surement of α.

While this derivation holds only for an initial density matrix of the form given in eq. (I.4),

a more general result can be found by considering the unitaries associated with the local phase

shift, Z(1)
ϕ , and the π-pulse, XW

π . In the basis |gg⟩, |gr⟩, |rg⟩, |rr⟩, the operators are given by:

Z
(1)
ϕ =


eiδt 0 0 0
0 eiδt 0 0
0 0 1 0
0 0 0 1

 XW
π =


0 i√

2
i√
2

0
i√
2

1
2 −1

2 0
i√
2

−1
2

1
2 0

0 0 0 1

 (I.8)

For an arbitrary initial density matrix ρ, the final density matrix is ρ′ = UρU † where U is
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the combined unitary U = XW
π Z

(1)
ϕ . The final probability to measure |gg⟩ is then

Pgg(t) = ρ′gg,gg =
1

2

(
ρgr,rge

iδt + ρrg,gre
−iδt
)
+ C (I.9)

where the constant C is independent of the phase accumulation time t. Since ρgr,rg = ρ∗rg,gr =

αeiθ for some real amplitude α and angle θ, we have

Pgg(t) = α cos(δt+ θ) + C (I.10)

We therefore see that for any initial density matrix, the amplitude of the oscillation of Pgg(t)

as a function of t gives a direct measurement of the off-diagonal coherence between |gr⟩ and

|rg⟩.

I.9 Prospects for near-term improved coherence and readout

We consider near-term achievable coherence based on a realistic improved laser system with 10

times the power on each transition while maintaining low phase noise. This will increase our

single-photon Rabi frequencies to ΩB = 2π × 171 MHz (ΩR = 2π × 126 MHz). Balancing off-

resonant scattering with the finite lifetime of the Rydberg state, we estimate that an optimal

intermediate detuning in this configuration will be ∆ = 2π × 3.6 GHz, resulting in a two-

photon Rabi frequency of Ω = 2π × 3 MHz with a combined coherence time of 92 µs. In the

absence of intensity fluctuations, this would result in Ωτ = 276, or equivalently a π-pulse

fidelity of 0.998. In the same configuration, two atoms within the Rydberg blockade can be

excited to the |W ⟩ state at the enhanced Rabi frequency in 118 ns with a fidelity of 0.999 (up

to the breakdown of the blockade which can be reduced below 0.001 for reasonable separations

between atoms).

359



For improving readout, we consider an approach involving the rapid mapping of Rydberg

states to a secondary long-lived ground state. Without invoking a second Rydberg laser sys-

tem, this mapping could be achieved by a coherent transfer from |g⟩ to a second ground state

|g′⟩ followed by a π-pulse to map |r⟩ to |g⟩. The first pulse can be performed by a Raman

laser system in < 0.5 µs (a π-pulse at 1 MHz, which has previously been achieved [54]), and

the second pulse can be performed in 0.17 µs (a π-pulse at 3 MHz). Combined, the mapping

can be performed with fidelity better than 0.99. Finally, state readout within the ground state

manifold can be routinely accomplished with fidelity > 0.995 by pushing out |F = 2⟩ atoms

with cycling light on the |F = 2⟩ → |F ′ = 3⟩ transition.
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J
Supplementary information for Chapter 13

J.1 Experimental setup

The Rydberg excitations are enabled by a two-color laser system at 420nm and 1013nm wave-

length. The 420nm light is derived from a frequency-doubled titanium sapphire laser (M

Squared SolsTiS 4000 PSX F) locked to an ultrastable reference cavity (by Stable Laser Sys-

tems). The 1013nm light is obtained from a high-power fiber amplifier (ALS-IR-1015-10-A-SP

by Azur Light Systems). The seed light is derived from a Fabry-Pérot laser diode injection

locked to an external cavity diode laser (CEL002 by MOGLabs) stabilized to the same refer-

ence cavity and filtered by the cavity transmission [293]. The detuning of both Rydberg lasers
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to the intermediate state
∣∣6P3/2, F = 3,mF = −3

〉
is approximately 2π × 2GHz. The individ-

ual Rabi frequencies of the two Rydberg lasers are Ω420/(2π) ≈ 174MHz and Ω1013/(2π) ≈

115MHz. This gives a two-photon Rabi frequency of Ω = Ω420Ω1013/(2∆) ≈ 2π × 5MHz.

We define the local phases of each atom’s states |0⟩ and |1⟩ in the reference frame associated

with the local phases of Rydberg excitation lasers, such that the two GHZ components have a

relative phase ϕ = 0 after state preparation.

To drive the optimal control pulses, we modulate the 420nm Rydberg laser with an acousto-

optic modulator (AOM) driven by an arbitrary waveform generator (AWG, M4i.6631-x8 by

Spectrum). We correct the nonlinear response of the AOM to the drive amplitude by a feed-

forward approach to obtain the target output intensity pattern. Furthermore, the AOM effi-

ciency changes with changing frequency, which we compensate by feeding forward onto the

waveform amplitude to suppress the intensity variations with frequency. In addition, the light

shift on the Rydberg transition from the 420nm laser can be as large as 2π × 4MHz. While

the pulse intensity changes, this light shift changes, modifying the detuning profile. We there-

fore correct the frequency profile as a function of the pulse intensity to compensate this shift.

These steps ensure that the experimentally applied pulse is a faithful representation of the

desired profile.

The local addressing beam patterns are generated by two AODs (DTSX400-800 by AA

Opto-electronic), each driven by multiple frequencies obtained from an arbitrary waveform

generator (M4i.6631-x8 by Spectrum).

J.2 Optimal control

Optimal control was originally developed as a tool to harness chemical reactions to obtain

the largest amount of desired products with given resources, and then introduced in quantum
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information processing as a standard way of designing quantum protocols and quantum de-

vices [355–358] as well as in manipulating quantum many-body systems to exploit complex

phenomena [359–367, 288]. Quantum optimal control theory identifies the optimal shape of a

time-dependent control pulse to drive a quantum many-body system to accomplish given task,

e.g. state preparation or quantum gate implementation. The quality of the transformation is

certified by a Figure of Merit (FoM) that can be calculated or measured, e.g. the fidelity of

the final state with respect to the target one, the final occupation, or the energy.

In this work, the optimization is achieved through RedCRAB, the remote version of the

dressed Chopped RAndom Basis (dCRAB) optimal control via a cloud server [359, 366, 288].

Within the optimization, control fields such as the Rabi coupling Ω(t) are adjusted as Ω(t) =

Ω0(t) + f(t), where Ω0(t) is an initial guess function obtained from physical intuition or exist-

ing suboptimal solutions. The correcting function f(t) is expanded by randomized basis func-

tions. In this work, we chose a truncated Fourier basis. Thus, f(t) = Γ(t)
∑nc

k=1[Ak sin(ωkt) +

Bk cos(ωkt)], where ωk = 2π(k+ rk)/τ are randomized Fourier frequencies with rk ∈ [−0.5, 0.5],

τ is the final time, and Γ(t) is a fixed scaling function to keep the values at initial and final

times unchanged, i.e., Γ(0) = Γ(τ) = 0. The optimization task is then translated into a

search for the optimal combination of {Ak, Bk} with a given rk to maximize the fidelity be-

tween the target state and the time evolved state at τ . It can be solved by iteratively updat-

ing {Ak, Bk} using a standard Nelder-Mead algorithm [368]. In the basic version of the CRAB

algorithm, all rk are fixed and the local control landscape is explored for all nc frequencies si-

multaneously. This leads to a restriction in the number of frequencies that can be efficiently

optimised. Using the dressed CRAB (dCRAB) algorithm, only one Fourier frequency ωk is op-

timised at a time. We then move on to ωk+1 after a certain number of iterations of the CRAB

routine. This enables the method to include an arbitrarily large number of Fourier compo-
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Figure J.1: RedCRAB optimization loop. The remote dCRAB server generates and transmits a trial set of
controls to the user, who evaluates the corresponding performance in terms of a FoM and sends the feed-
back information to the server, concluding one iteration loop. In the next loop, the server tends to generate
an improved set of controls based on previous feedback information. The optimization continues until it
converges. The FoM evaluation can be achieved either by numerical calculation (open-loop optimization) or
experimental measurement (closed-loop optimization).

nents and deriving the solutions without – whenever no other constraints are present – being

trapped by local optima [287].

In the RedCRAB optimization, the server generates and transmits a trial set of controls to

the client user, who will then evaluate the corresponding FoM and communicates the feedback

information to the server finishing one iteration loop (Fig. J.1). The optimization continues

iteratively and the optimal set of controls, as well as the corresponding FoM are derived. In

the RedCRAB optimization, the user can either evaluate the FoM by numerical calculation,

namely open-loop optimization, or by experimental measurement, which is called closed-loop

optimization. In this work, open-loop optimization was carried out only. The resulting con-

trols could later serve as the initial guess for a future closed-loop optimization. This last step

would ensure that the resulting controls are robust, since all unknown or not modelled experi-
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Figure J.2: Optimal control pulse diagrams. Shown are the Rabi frequency (top) and detuning profiles
(bottom) for the different system sizes investigated here.

mental defects and perturbations would automatically be corrected for.

For the open-loop optimization of the pulse, we constrained the preparation time to 1.1µs

and allowed the detuning ∆/(2π) to vary between −20MHz and 20MHz, while Ω/(2π) could

vary between 0 − 5MHz. The resulting pulses are shown in Fig. J.2. While shorter pulses

can work sufficiently well for smaller system sizes, we use an equal pulse duration for all N for

better comparability. We find that the optimized pulses for larger systems appear smoother

than for smaller system sizes, where the pulses bear less resemblance to an adiabatic protocol.

However, the adiabaticity does not improve for larger system sizes, owing to the shrinking

energy gaps.

J.3 Optimal control dynamics

To gain insight into the timescales required to prepare a GHZ state in our setup, we can com-

pare our optimal control protocol with a minimal quantum circuit consisting of a series of

two-qubit gates that would achieve the same task. In this circuit, a Bell pair is created in the

first layer p = 1 in the middle of the array using the Rydberg blockade, which for our maximal

coupling strength of Ω/(2π) = 5MHz takes 100ns/
√
2. The entanglement can be spread to
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Figure J.3: Comparison of ramping profile fidelities. Comparison of linear ramps (blue) to optimized adia-
batic ramps (orange) for N = 12 as a function of the total ramp time T . The optimal control pulse used in
the experiment takes T = 1.1 µs and achieves a higher fidelity than either the linear ramp or the optimized
adiabatic ramp.

the two atoms adjacent to this Bell pair by simultaneously applying a pair of local π pulses

of 100ns to those sites, corresponding to controlled rotations. A sequence of such gate layers

p = 2, ..., 10, including operations on qubit pairs and the free evolution of other qubits, leads

to the same GHZ state we prepare. This gate sequence requires approximately 1µs, which is

within 10% of the total evolution time required in our optimal control sequence, which builds

up the entanglement in parallel. Furthermore, the fidelity of each layer of such a circuit effec-

tively acting on all N = 20 qubits needs to be higher than 0.94 to achieve the 20-qubit GHZ

fidelity demonstrated in this work.

It is interesting to compare this required evolution time with a parameter ramp that tries

to adiabatically connect the initial state to the GHZ state. To this end, we parametrize the

detuning and Rabi frequency as ∆(s) = (1 − s)∆0 + s∆1 and Ω(s) = Ωmax[1 − cos12(πs)]

respectively. A naïve (unoptimized) linear ramp of the detuning corresponds to choosing s =

t/T . Alternatively, one can adjust the local ramp speed to minimize diabatic transitions, for
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Figure J.4: Dynamics of an optimized 20-atom GHZ state preparation. A, Optimized control parameters
Ω(t) and ∆(t) for N = 20 atoms. B, Energy eigenvalues of instantaneous eigenstates of the Hamiltonian
relative to the ground state energy. The population in each energy eigenstate is color coded on a logarith-
mic scale. Light gray points correspond to populations smaller than 0.01. C, Probability in each instanta-
neous eigenstate as the initial state evolves under the time-dependent Hamiltonian. The probability is domi-
nated by the ground state and a few excited states. The time evolution is computed by exact numerical inte-
gration of Schrödinger’s equation, and 100 lowest energy eigenstates are obtained by using Krylov subspace
method algorithms. For computational efficiency, we only consider the even parity sector of the Hamiltonian
with no more than three nearest neighboring Rydberg excitations owing to the Rydberg blockade.

example by choosing s(t) minimizing

D =

(
ds

dt

)2∑
n>0

|⟨En(s)|∂sH(s)|E0(s)⟩|2

(En(s)− E0(s))2

during a ramp of duration T . Here |En(s)⟩ are the instantaneous eigenstates of the Hamilto-

nian H(s) specified by the parameters Ω(s) and ∆(s), with |E0(s)⟩ denoting the instantaneous

ground state. In Figure J.3, we show the results of numerical simulations using both the linear

sweep and a sweep that minimizes the strength of diabatic processes quantified by D. Both

sweep profiles require larger total evolution time T than the optimal control pulse to reach

similar fidelities.
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To understand the origin of the speedup through optimal control, we numerically simulate

the corresponding evolution and analyze the population of the instantaneous energy eigen-

states (Fig. J.4). The optimal control dynamics can be divided into three different regions:

(I) A fast initial quench, (II) a slow quench, and (III) a fast final quench. Even though the

change in the Hamiltonian parameters in region (I) is rather rapid, the system remains mostly

in the instantaneous ground state, with negligible populations of the exited states, since the

energy gap is large. In contrast, in region (II) the parameters change slows down, reflecting

the fact that the energy gap becomes minimal. Unlike the adiabatic case however, one can

observe nontrivial population dynamics, with a temporary population of excited states. Im-

portantly, the optimal control finds a path in the parameter space such that the population is

mostly recaptured in the ground state at the end of region (II). Finally, in region (III) the gap

is large again and the system parameters are quickly changed to correct also for higher order

contributions. This suggests that it actively uses diabatic transitions that go beyond the adia-

batic principle. This mechanism is related to the recently discussed speedup in the context of

the quantum approximate optimization algorithm (QAOA) [197, 198].

J.4 Quantifying detection

The many-body dynamics involving coherent excitation to Rydberg states occurs during a

few-microsecond time window in which the optical tweezers are turned off. After the coherent

dynamics, the tweezers are turned back on, and atoms in the ground state |0⟩ are recaptured.

However, there is a small but finite chance of losing these atoms. To quantify this error, we

perform the GHZ state preparation experiment while disabling the 420nm Rydberg pulse.

This keeps all atoms in state |0⟩, and we measure the loss probability to find a 0.9937(1) de-

tection fidelity.
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Figure J.5: Quantifying detection errors. A, Measurement of the recaptured Rydberg atoms in the ground
state (blue points) and in the F = 1 ground-state manifold (orange points) as a function of the tweezer
depth upon recapture. B, Recaptured populations in all ground state levels. The intersection with the hori-
zontal axis gives an estimate of the atoms that were not excited to the Rydberg state, bounding the π pulse
fidelity.

Atoms in state |1⟩ on the other hand have a small chance of being misidentified as being in

state |0⟩, as these atoms can decay prematurely from the Rydberg state to the ground state

and get recaptured by the tweezers. This error probability can be measured by preparing

atoms at sufficiently large distances as to be non-interacting and applying a calibrated π pulse

to transfer all atoms to |1⟩ and measure the probability of recapturing them. However, part

of this signal is given by the π pulse infidelity, i.e. a small fraction of atoms which did not get

excited to |1⟩ in the first place.

To quantify the π pulse fidelity, we note that a Rydberg atom that decays and is recap-

tured can decay either into the F = 2 or F = 1 ground states with branching ratios α and

β, respectively (α + β = 1). Our initial optical pumping of atoms into |0⟩ has high fidelity

> 0.998, measured using microwave spectroscopy on different sublevels of the F = 2 man-

ifold. Thus, the final population of F = 1 atoms should be given only by Rydberg atom

decay/recapture events. Following a π pulse to excite all atoms to the Rydberg state, the

final measured population in F = 1 is p1 = p × β, where p is the total decay and recap-

ture probability of a Rydberg atom. Meanwhile, the final measured population in F = 2 is

p2 = p × α + ϵ, which includes both decay events from Rydberg atoms as well as residual
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population ϵ left from an imperfect π pulse. Experimentally, we separately measure the total

recaptured ground state population (p1 + p2), as well as the F = 1 population p1 only (by a

resonant push-out of F = 2 atoms). We additionally can vary the overall recapture probability

p by changing the depth of the tweezers that we recapture atoms in, which changes the repul-

sive force exerted by the optical tweezers on Rydberg atoms [53]. We measure p1 and (p1 + p2)

at four different total recapture probabilities to extract the π pulse infidelity as ϵ = 0.006(3)

(Fig. J.5). From these measurements, we conclude a Rydberg detection fidelity of 0.9773(42).

Detection errors of |0⟩ can be mitigated by implementing ground-state cooling in the tweez-

ers [95, 43], which reduces the probability of loss after releasing the atoms. The detection

fidelity of |1⟩ can be improved by using Rydberg states with a longer radiative lifetime, ac-

tively ionizing the Rydberg atoms by electric or optical fields, or by pulling them away from

the trapping region with electric field gradients.

J.5 Accounting for detection imperfections

The small imperfections in state detection of single qubits leads to a prominent effect on the

analysis of large systems. The probability for a single detection error is sufficiently low that

multiple errors per chain are very unlikely, and we observe that the reduction in probability of

observing the correct GHZ pattern is dominated by these errors, as opposed to excitations of

the system (Fig. J.6A). This conclusion is further confirmed by noting that near-ideal correla-

tions extend across the entire system (Fig. J.7).

To properly infer the obtained fidelities, we account for these imperfections using the follow-

ing procedure:

Coherences: The coherences are extracted from the amplitude of parity oscillations. Each

point in the parity oscillation is analyzed from the measured distribution of the number of ex-

370



0

0.1

0.2

0.3

0.4

P
ro

b
ab

ili
ty

Inferred
Inferred + sim. errors
Raw

0 5 10 15 20
Number of excitations

0

0.1

0.2

0.3

-20 -10 0 10 20
Staggered magnetization

0

0.1

0.2

0.3

0.4

P
ro

b
ab

ili
ty

0 1 2 3
Probability (%)

P
at

te
rn

A B C

Figure J.6: Inference of parity and populations. A, Histogram of observed patterns after preparing a 20-
atom GHZ state. Open circles denote atoms in |0⟩ and filled circles denote atoms in state |1⟩. Blue domains
mark regions where a single detection error has likely occurred, since such patterns are energetically costly
at large positive detuning of the Rydberg laser. Red domains mark true domain walls, where the antiferro-
magnetic order is broken. Following the correct GHZ patterns, the 14 most observed patterns are consistent
with a single detection error. B, Distribution of number of excitations measured for two different times of
the parity oscillation for a 20-atom array, with the upper (lower) plot at ϕ = 0 (ϕ = π/20) of phase ac-
cumulation per atom, showing a net positive (negative) parity. Blue bars show directly measured values,
orange bars show the statistically inferred parent distribution, and red bars denote the parent distribution
after adding simulated errors to compare to the raw data. C, Staggered magnetization Mn extracted from
the measurement of GHZ populations for 20 atoms. The vertically split bars with different shading denote
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citations in the system. We encode this measured probability distribution in the vector W,

where Wn is the probability to observe exactly n excitations in the system (0 ≤ n ≤ N). The

true probability distribution of excitation numbers, prior to the effect of detection errors, is

denoted V. Detection errors transform this distribution according to a matrix M , where Mmn

encodes the probability that a state with n excitations will be detected as having m excita-

tions. Each matrix element is calculated using combinatoric arguments from the measured

detection fidelities. We determine the true distribution V as the one that minimizes the cost

function |MV − W|2. (Fig. J.6B). This procedure is similar to applying the inverse matrix

M−1 to the measured distribution W, but is more robust in the presence of statistical noise

on the measured distribution. Error bars on the inferred values are evaluated by random sam-

pling of detection fidelities, given our measured values and uncertainties.

Populations: We carry out a similar procedure for the population data; however, we are

interested in assessing the probability of two particular target states, which are defined not

only by their number of excitations but also by their staggered magnetizations Mn =
∑N

i=1(−1)i⟨σ(i)z ⟩.

Our procedure therefore operates by grouping all possible microstates according to their com-

mon staggered magnetization and number of excitations (Fig. J.6C). For N particles, there

are in general (N/2 + 1)2 such groups. As before, we denote the raw measured distribution

with respect to these groups as W. We construct a detection error matrix M that redistributes

populations between groups according to the measured detection error rates. We optimize

over all possible true distributions to find the inferred distribution V that minimizes the cost

function |MV−W|2. Following this procedure, we sum the populations in the two groups that

uniquely define the two target GHZ components with a staggered magnetization of ±N , and

N/2 excitations.
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J.6 Bounding the GHZ state coherence

We expand an experimental GHZ-like density matrix in the following form

ρ = α1 |AN ⟩⟨AN |+ α2

∣∣AN

〉〈
AN

∣∣+ (β |AN ⟩
〈
AN

∣∣+ β∗
∣∣AN

〉
⟨AN |

)
+ ρ′ (J.1)

where |AN ⟩ = |0101 · · · ⟩ and
∣∣AN

〉
= |1010 · · · ⟩ are the target GHZ components, αi charac-

terizes the diagonal populations in these states (0 ≤ αi ≤ 1), β characterizes the off-diagonal

coherence between these states (0 ≤ |β| ≤ 1/2), and ρ′ contains all other parts of the density

matrix. The GHZ fidelity of state ρ is given by:

F = ⟨GHZN | ρ |GHZN ⟩ = α1 + α2

2
+ Re(β) (J.2)

To measure the coherence |β|, we implement a staggered magnetic field to which the target

GHZ state is maximally sensitive:

Hst =
ℏδ
2

N∑
i=1

(−1)iσ(i)z (J.3)

Applying Hst to the system for time T results in unitary phase accumulation U(T ) =

exp (−iHstT/ℏ). We then apply a unitary U to the system and measure in the computational

basis. From repeated measurements, we calculate the expectation value of the global par-

ity operator P =
∏

i σ
(i)
z as a function of the phase accumulation time T . Denote the time-

dependent expectation value E(T ), where −1 ≤ E(T ) ≤ 1.

We show that if E(T ) has a frequency component that oscillates at a frequency of Nδ, then

the amplitude of this frequency component sets a lower bound for |β|. Importantly, this holds

373



for any unitary U used to detect the phase accumulation.

Proof: The expectation value E(T ) can be written explicitly as the expectation value of

the time-evolved observable P → U †(T )U†PUU(T ). In particular,

E(T ) = Tr[ρU †(T )U†PUU(T )] =
∑
n

⟨n| ρU †(T )U†PUU(T ) |n⟩ (J.4)

where |n⟩ labels all computational basis states. Since the phase accumulation Hamiltonian

Hst is diagonal in the computational basis, the basis states |n⟩ are eigenvectors of U(T ) with

eigenvalues denoting the phase accumulation. Specifically,

Hst |n⟩ =
ℏδ
2
Mn |n⟩ ⇒ U(T ) |n⟩ = e−iδTMn/2 |n⟩ (J.5)

where Mn is the staggered magnetization of state |n⟩ defined earlier. The staggered magneti-

zation of the state |AN ⟩ is maximal: MAN
= N , and the staggered magnetization of

∣∣AN

〉
is

minimal: MAN
= −N . Note that all other computational basis states have strictly smaller

staggered magnetizations. Inserting an identity operator in Eq. (4):

E(T ) =
∑
n,m

⟨n| ρ |m⟩⟨m|U(T )†U†PUU(T ) |n⟩ =
∑
n,m

e−iδT (Mn−Mm)/2 ⟨n| ρ |m⟩⟨m| U†PU |n⟩

(J.6)

The highest frequency component comes from the states with maximally separated stag-

gered magnetization, |n⟩ = |An⟩ and |m⟩ =
∣∣An

〉
. Separating out this frequency component as

F (T ), we obtain:

F (T ) = 2Re
[
e−iNδT ⟨AN | ρ

∣∣AN

〉〈
AN

∣∣U†PU |AN ⟩
]
= 2Re

[
βe−iNδT

〈
AN

∣∣U†PU |AN ⟩
]

(J.7)
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Figure J.8: Parity signal measured as a function of the time the operation Ux is applied. The total time
includes delays in the AOM response and the finite laser pulse rise time.

We note that the parity matrix element is bounded as 0 ≤
∣∣⟨AN |U†PU|AN ⟩

∣∣ ≤ 1. Fur-

thermore, the matrix element is real-valued and positive for the unitary U considered in the

experiment. Fitting F (T ) to an oscillation with amplitude C ≥ 0 and phase ϕ according to

F (T ) = C cos(NδT − ϕ), we produce our lower bound for the off-diagonal coherence β:

|β| ≥ C/2; arg(β) = ϕ (J.8)

J.7 Parity detection

The ideal observable to measure GHZ phase is the parity Px =
∏

i σ
(i)
x . However, the pres-

ence of Rydberg interactions and the Rydberg blockade prevents us from rotating all qubits

such that we can measure in this basis. Instead, in this work we generate a unitary Ux =

exp
(
−iΩt/2

∑
i σ

(i)
x − iHintt/ℏ

)
by resonantly driving all atoms in the presence of these in-

teractions given by Hint for a fixed, optimized time (Fig. J.8), and subsequently measure the

parity P =
∏

i σ
(i)
z in the computational basis. The finite duration of the unitary Ux incurs

a small amount of additional infidelity, owing both to dephasing and an additional laser scat-
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tering. However, we estimate that this effect should only lead to small losses in fidelity on the

percent level.

While it is not obvious that the parity observable used here is suitable, we can understand

the parity oscillations in the picture of weakly interacting spin-1 particles defined on dimers

of neighboring pairs of sites. For two adjacent sites, we can define eigenstates of a spin-1 Sz

operator as |◦•⟩ = |−⟩, |◦◦⟩ = |0⟩, and |•◦⟩ = |+⟩. In this notation, the antiferromagnetic GHZ

state we prepare is given by a ferromagnetic GHZ state in the spin-1 basis:

|GHZN ⟩ = 1√
2
(|+++ · · · ⟩+ |− − − · · · ⟩) (J.9)

We must express all operations on the GHZ state in this new notation. In particular, the

transverse field of the form ℏΩ/2
∑

i σ
(i)
x applied to individual atoms gets transformed to an

operation ℏΩ/
√
2
∑

j S
(j)
x on all dimers. Furthermore, the staggered field ℏδ/2

∑
i(−1)iσ

(i)
z we

apply to individual atoms to rotate the GHZ phase is equivalent to an operation of the form

ℏδ
∑

j S
(j)
z acting on individual dimers.

The parity operator in the single-qubit basis P =
∏

i σ
(i)
z can be transformed into the dimer

basis as

P =
∏
j

(
− |+⟩⟨+|j − |−⟩⟨−|j + |0⟩⟨0|j

)
(J.10)

by noting that the three dimer states are eigenstates of P, i.e. P |±⟩ = − |±⟩ and P |0⟩ = |0⟩.

Assuming we begin from a GHZ state, applying a rotation on all dimers for a duration

given by Ωt = π/
√
2 saturates the difference in P between GHZ states of opposite phase. This

shows that such a protocol would be optimal if the dimer approximation were exact. However,

interactions between dimers cannot be neglected. In particular, the Rydberg blockade sup-

presses configurations of the form |· · · −+ · · · ⟩ owing to the strong nearest-neighbor interac-
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tion V , and neighboring dimers of the same type such as |· · · ± ± · · · ⟩ have a weak interaction

given by the next-to-nearest neighbor interaction strength V2 = V/26. We can thus express

the interactions in the system as

Hint

ℏ
=

N/2−1∑
j=1

V2 |+⟩⟨+|j |+⟩⟨+|j+1 + V2 |−⟩⟨−|j |−⟩⟨−|j+1 + V |−⟩⟨−|j |+⟩⟨+|j+1 (J.11)

An exact simulation of the dimer rotation under the interaction Hamiltonian (11) shows that

both these interaction effects reduce the parity contrast by a small amount. In the recently

discussed context of quantum many-body scars [157, 189, 213, 211], these effects of residual

interactions lead of small deviations from a stable periodic trajectory through phase space.

J.8 Staggered field calibration

To apply the staggered field (3), we address each of the even sites in the array with a focused

off-resonant laser beam at 420nm. However, the unitary in question requires a staggered field

with opposite sign on every site. We compensate for the missing acquired phase on the sites

in between the addressed ones by shifting the phase of the Rydberg laser, through a change

in phase of the radio-frequency drive of the AOM. The intensity of each addressing beam is

measured by applying a spin-echo sequence with an addressing pulse of variable duration to

determine the light shift on the Rydberg transition. We correct for inhomogeneous intensities

so that all atoms are subject to the same light shift.

We measure and calibrate the staggered field by measuring the effect of the field on each

atom individually. To do so, we alternately rearrange the atoms to form different subsets of

the 20-atom system that are sufficiently far apart to avoid interactions between them. In this

configuration, every atom is then subject to a π/2 rotation about the x-axis, followed by the
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Figure J.9: Phase accumulation measured on an array of 20 sites. The left panel demonstrates application
of a negative staggered field by applying local addressing beams on the odd sites in the array. The right
panel shows a positive staggered field by instead applying local addressing beams on the even sites in the
array. Phase is accumulated on each site at a rate of 2π × 3.8 MHz.

System size N 4 8 12 16 20
Raw populations 0.893(6) 0.797(8) 0.695(9) 0.629(12) 0.585(14)

Inferred 0.946(10) 0.892(17) 0.824(21) 0.791(29) 0.782(32)
Raw coherence 0.710(12) 0.516(11) 0.371(10) 0.282(11) 0.211(11)

Inferred 0.759(11) 0.598(16) 0.462(19) 0.373(19) 0.301(18)
Raw fidelity 0.801(7) 0.657(7) 0.533(7) 0.455(8) 0.398(9)

Inferred 0.852(7) 0.745(12) 0.643(14) 0.582(17) 0.542(18)

Table J.1: Measured GHZ data for all system sizes. Errors denote 68% confidence intervals.

staggered field for variable duration, then a π/2 rotation about the y-axis, to distinguish pos-

itive from negative phase evolution. With an additional π rotation about the y-axis, we per-

form a spin echo to mitigate effects of dephasing. The outcome of this protocol is shown in

Fig. J.9 and demonstrates the implementation of the staggered magnetic field. By switching

the local addressing beams to the opposite set of alternating sites, we switch the sign of the

staggered field, enabling the measurement of both positive and negative phase accumulation.
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J.9 Measured GHZ fidelities

For each system size N , we measure the GHZ populations and the GHZ coherence by parity

oscillations (Figs. 13.2 and 13.3 of Chapter 13). From the raw measurements, we infer the true

GHZ fidelity using the maximum likelihood procedure discussed in Section J.5. All measured

values are shown in table J.1. Error bars on raw populations represent a 68% confidence in-

terval for the measured value. Error bars on the raw coherences are fit uncertainties from the

parity oscillations. Error bars on the inferred values include propagation of the uncertainty in

the estimation of the detection fidelities.

J.10 Experimental imperfections

We identify a number of experimental imperfections that to varying degrees can limit the co-

herent control of our atomic system.

1. Atomic temperature: The atom temperature of ∼ 10µK leads to fluctuating Doppler

shifts in the addressing lasers of order ∼ 2π × 43 kHz, as well as fluctuations in atomic

position that leads to variation in Rydberg interactions strengths. These fluctuations

are included in the simulations shown in Fig. 13.3 of Chapter 13. These effects can be

dramatically reduced by improved atomic cooling, most notably by sideband cooling

within the optical tweezers to the motional ground state [95, 43].

2. Laser scattering: The two-photon excitation scheme to our chosen Rydberg state

leads to off-resonant scattering from the intermediate state, 6P3/2. This scattering rate

has a timescale of 50− 100µs for the two laser fields, and can be reduced by higher laser

powers and further detuning from the intermediate state.
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3. Rydberg state lifetime: The 70S Rydberg state has an estimated lifetime of 150 µs [48],

limited both by radiative decay and blackbody-stimulated transitions. This effect could

be mitigated by selecting a higher Rydberg state with a longer lifetime or by cryogenic

cooling of the blackbody environment.

Additional error sources that may limit our coherence properties include laser phase noise,

which can be mitigated by better laser sources and stabilization schemes, and fluctuations in

local addressing beam intensities and positions, which can be addressed by active feedback on

the beam positions and improved thermal and mechanical stability of the setup. Simulations

predict that we could go beyond the system sizes studied here. While GHZ states of N = 24

could be within reach with current parameters, generation of even larger GHZ states should

be feasible with the additional technical improvements discussed above.

J.11 Ground-state qubit encoding

The GHZ state parity could be more easily detected and manipulated if the qubits were en-

coded in a basis of hyperfine sublevels of the electronic ground state. In particular, one can

consider two alternative qubit states |0̃⟩ = |5S1/2, F = 1,mF = −1⟩ and |1̃⟩ = |5S1/2, F =

2,mF = −2⟩. Rotations between these states are possible through stimulated Raman transi-

tions or microwave driving, and the interactions are introduced by coupling |1̃⟩ to a Rydberg

level |r⟩. This type of hyperfine encoding has been employed in multiple experiments with

cold Rydberg atoms [110, 111, 289]. To prepare GHZ states in this basis, all atoms can be ini-

tialized in |1̃⟩ and the system transferred to the state |1̃r1̃r · · · ⟩ + |r1̃r1̃ · · · ⟩ using the method

described in this work. A ground-state qubit π pulse followed by a π pulse on the Rydberg

transition transforms the state into |0̃1̃0̃1̃ · · · ⟩+|1̃0̃1̃0̃ · · · ⟩, enabling the long-lived storage of en-

tanglement. Additionally, local qubit rotations can flip the state of every other site to prepare
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the canonical form of the GHZ state, |0̃0̃0̃ · · · ⟩ + |1̃1̃1̃ · · · ⟩, which can achieve entanglement-

enhanced metrological sensitivity to homogeneous external fields [273]. Incorporating this type

of hyperfine qubit encoding with Rydberg qubit control will be important for realizing quan-

tum gates and deeper quantum circuits in future experiments.
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K
Supplementary information for Chapter 14

We drive transitions between our qubit states using a 795 nm Raman laser which is 2π ×

100 GHz red-detuned from the 5S1/2 to 5P1/2 transition. We couple the laser into a fiber-

based Mach-Zehnder intensity modulator (Jenoptik AM785) which is DC biased around mini-

mum transmission. The modulator is driven at half the qubit frequency (ω01 = 2π×6.83 GHz),

resulting in sidebands at ±2π × 3.42 GHz, while the carrier and higher order sidebands are

strongly suppressed. This approach is passively stable on the timescale of one day without any

active feedback, in contrast with other approaches to generate sidebands through phase mod-

ulation and then separate suppression of the carrier mode with free space optical cavities or
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interferometers∗.

The Raman laser is aligned along the array of atoms (co-aligned with the 8.5 G bias mag-

netic field) and is σ+ polarized, such that the two sidebands coherently drive π transitions be-

tween the F = 1 and F = 2 ground state manifolds with a Rabi frequency of Ω = 2π×250 kHz.

The Raman drive light induces a differential light shift of 2π × 20 kHz on the qubit transition;

we adjust the drive frequency of the intensity modulator to correct for this light shift when we

apply a Raman pulse.

K.1 Optical pumping into |0⟩

We optically pump atoms into |0⟩ = |5S1/2, F = 1,mF = 0⟩ using a Raman-assisted pump-

ing scheme with an 8.5 G magnetic field. The procedure is described in Section 4.7. We repeat

the optical pumping cycle 70 times over a duration of 300 µs to achieve a |0⟩ preparation fi-

delity of 99.3(1)%.

K.2 Rydberg laser system

We couple atoms from |1⟩ = |5S1/2, F = 2,mF = 0⟩ to |r⟩ = |70S1/2,mJ = −1/2⟩ through a

two-color laser system at 420 nm and 1013 nm, described in [182]. The lasers are polarized to

drive σ− and σ+ transitions, respectively, through the intermediate state |6P3/2⟩. In previous

experiments using |5S1/2, F = 2,mF = −2⟩ as the ground state level, selection rules ensured

that only a single intermediate sublevel within |6P3/2⟩ and only a single Rydberg state could

be coupled. Additionally, the combined two-photon transition was magnetically insensitive.

Coupling from |1⟩ = |5S1/2, F = 2,mF = 0⟩ to Rydberg states, as in these experiments,

adds a few complications. Firstly, multiple intermediate states are coupled and both |70S1/2,mJ =

∗Note: an improved Raman driving scheme is presented in Chapter 4.
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±1/2⟩ sublevels within the Rydberg manifold can be reached. This requires working at a

higher magnetic field to spectrally separate the mJ = ±1/2 Rydberg levels. In these exper-

iments, we work at a magnetic field of 8.5 G such that the splitting between mJ = ±1/2 is

2π × 23.8 MHz. The matrix element is also reduced in the coupling from |1⟩ to |r⟩ while the

laser scattering rate stays the same; additionally, the transition is now magnetically sensitive.

Nonetheless, this scheme benefits from high-quality qubit states |0⟩ and |1⟩ within the ground

state manifold which can be easily coupled with a Raman laser system and which preserve co-

herence in optical tweezers. We note that the sensitivity to electric fields is unchanged in this

scheme, but we can bound drifting or fluctuating electric fields in that the Ryberg resonance

varies by < 50 kHz [293].

K.3 Constructing quantum circuits from native single-qubit gates

All pulse sequences shown in Chapter 14 are decomposed into pre-calibrated single-qubit gates

(and, where indicated, global multi-qubit gates). The two single-qubit gates are X(π/4), im-

plemented globally on all qubits simultaneously, and Z(π), implemented by a light shift from

a laser focused onto a single atom. In practice, the local Z(π) gates are applied to one atom

from each cluster at the same time (i.e., the left atom of each cluster or the middle of each

cluster).

K.3.1 Initializing computational basis states

For two qubits, we initialize all four computational basis states using global X(π/2) pulses

(consisting of two sequential X(π/4) gates) and local Z(π) gates on the left atom only (top

qubit in each circuit). The |00⟩ state requires no pulses to prepare, and the |11⟩ state requires

only a global X(π) gate. We prepare |01⟩ as follows:
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|0⟩ X(π/2) Z(π) X(π/2) |0⟩

|0⟩ X(π/2) X(π/2) |1⟩

and |10⟩ according to

|0⟩ X(π/2) Z(π) X(3π/2) |1⟩

|0⟩ X(π/2) X(3π/2) |0⟩

For three qubits, we initialize the eight computational basis states again using global X(π/2)

pulses and local Z(π) pulses which can be applied to any of the three atoms. |000⟩ and |111⟩

can again be prepared with either no operation or with a global X(π) gate, respectively. Other

states have one atom in |1⟩ and the other two in |0⟩, or vice versa. We illustrate how both

configurations are prepared by showing two examples. First, |100⟩:

|0⟩ X(π/2) Z(π) X(3π/2) |1⟩

|0⟩ X(π/2) X(3π/2) |0⟩

|0⟩ X(π/2) X(3π/2) |0⟩

Next, we consider preparation of |110⟩, which requires instead local addressing on the right-

most atom.

|0⟩ X(π/2) X(π/2) |1⟩

|0⟩ X(π/2) X(π/2) |1⟩

|0⟩ X(π/2) Z(π) X(π/2) |0⟩
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K.3.2 Local X(π/2) for CNOT gate

To convert the CZ gate to the CNOT gate, we apply a local X(π/2) before and after the gate

to the target atom. We implement this as follows:

X(π/4) Z(π) X(π/4) = Z(π)

X(π/4) X(π/4) = X(π/2)

This circuit applies a local X(π/2) on the right atom; while it additionally applies a Z(π)

gate on the left atom, this circuit is only applied in a context in which the left atom is in

a computational basis state |0⟩ or |1⟩, in which case the Z(π) gate only introduces a global

phase and therefore plays no role. In general, applying additional Z(π) gates could be used to

cancel the effect on the left atom, but this was not necessary for these experiments.

K.3.3 Local Hadamard for Toffoli implementation

To convert the CCZ gate to a Toffoli gate, we apply a local rotation on the target (middle)

qubit before and after the CCZ pulse. The simplest method to accomplish this given our na-

tive gate set is to apply a global X(π/4), followed by a local Z(π) on the middle qubit, and

then a global X(3π/4).

X(π/4) X(3π/4) X(π)

X(π/4) Z(π) X(3π/4) = H

X(π/4) X(3π/4) X(π)

On each edge qubit, the net effect is simply a X(π) gate. On the middle qubit, this se-

quence constitutes a Hadamard gate (defined along a different axis than the typical defini-
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tion), where

H =
1√
2

(
1 i
−i −1

)
(K.1)

K.4 Design of two-qubit CZ gate

In this section we provide a detailed theoretical discussion of the two-qubit gate realized in

the experiment. The desired unitary operation maps the computational basis states as follows:

|00⟩ → |00⟩
|01⟩ → |01⟩
|10⟩ → |10⟩
|11⟩ → |11⟩eiπ (K.2)

Up to a global gauge choice (i.e. global rotation of the qubits), this is equivalent to the fol-

lowing gate

|00⟩ → |00⟩
|01⟩ → |01⟩eiϕ1

|10⟩ → |10⟩eiϕ1

|11⟩ → |11⟩ei(2ϕ1+π) (K.3)

where ϕ1 is arbitrary.

To realize such a gate we drive both atoms globally and homogeneously with a laser that

couples state |1⟩ to the Rydberg state |r⟩. This can be achieved via a single laser field or by a

two-photon process. The Hamiltonian governing the dynamics of a pair of atoms is given by

H =
2∑

i=1

1

2
(Ω|1⟩i ⟨r|+Ω∗|r⟩i ⟨1|)−∆|r⟩i ⟨r|+ V |r⟩1 ⟨r| ⊗ |r⟩2 ⟨r|
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where ∆ is the detuning of the excitation laser from the transition frequency between states

|1⟩ and |r⟩, and Ω is the corresponding Rabi frequency. The interaction strength between two

atoms in Rydberg states is given by V . In the following analysis we first assume that V ≫

|Ω|, |∆|, which can be realized by trapping the atoms sufficiently close to each other. This so-

called Rydberg-blockade regime simplifies the following discussion, but is not crucial for the

realization of the gate.

The dynamics of the system decouples into a few simple sectors:

(i) The state |00⟩ doesn’t evolve.

(ii) If one of the atoms is in |0⟩, only the other system evolves. The dynamics is thus equiv-

alent to that of a two level system (TLS) with states |1⟩ = |a1⟩ and |r⟩ = |b1⟩ and Hamiltonian

H1 =
1

2
(Ω|a1⟩ ⟨b1|+Ω∗|b1⟩ ⟨a1|)−∆|b1⟩ ⟨b1| .

(iii) If both atoms are initially in state |1⟩, then the dynamics is again equivalent to that of

an effective single TLS, formed by the states |11⟩ = |a2⟩ and 1√
2
(|r, 1⟩ + |1, r⟩) = |b2⟩, with

Hamiltontian

H2 =

√
2

2
(Ω|a2⟩ ⟨b2|+Ω∗|b2⟩ ⟨a2|)−∆|b2⟩ ⟨b2| .

This assumes a perfect Rydberg blockade, equivalent to V → ∞. We stress again that this

assumption simplifies the analysis but is not necessary to realize our proposed gate.

The controlled-phase gate can be constructed from two identical global pulses of the Ryd-

berg laser field, with equal duration τ and detuning ∆, along with a phase jump by ξ in be-

tween. Each pulse changes the state of the atoms according to the unitary U = exp(−iHτ).

The change of the laser phase between pulses, Ω → Ωeiξ, effectively corresponds to driving the

system around a different axis on the Bloch sphere.
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Let us examine how the four computational basis states evolve under the action of U , which

describes the effect of both laser pulses combined. First we note that U|00⟩ = |00⟩. Thus the

unitary U maps the state |00⟩ as expected for the CZ gate.

Next, let us consider the evolution of state |11⟩. We choose the length of each pulse τ such

that a system prepared in state |11⟩ undergoes a complete, detuned Rabi oscillation and re-

turns to the state |11⟩ already after the first single pulse; that is, U |11⟩ = eiϕ2/2|11⟩. This is

guaranteed by the choice

τ = 2π/
√

∆2 + 2Ω2. (K.4)

The second pulse also leads to a complete, detuned Rabi cycle about a different axis, but re-

sults in the same accumulated phase. In total, we find U|11⟩ = eiϕ2 |11⟩. The dynamical phase

accumulated by this process is given by ϕ2 = 2π × 2∆/
√
∆2 + 2Ω2.

Finally, let us consider the evolution of the states |01⟩ and |10⟩. In each case, this is also

described by a detuned Rabi oscillation. However, due to the mismatch between the effective

Rabi frequencies in H1 and H2, the state |10⟩ (|01⟩) does not return to itself after the time

τ but a superposition state is created: U |10⟩ = cos(α)|10⟩ + sin(β)eiγ |r0⟩, and U |01⟩ =

cos(α)|01⟩ + sin(β)eiγ |0r⟩. The real coefficients α, β and γ are determined by the choice of

Ω, ∆ and τ , and can easily be calculated (we omit explicit expressions here for compactness).

Crucially, by a proper choice of the phase jump between the two pulses, ξ, one can always

guarantee that the system returns to the state |10⟩ (|01⟩) after the second pulse. This can be

calculated to be

e−iξ =
−
√
y2 + 1 cos

(
1
2s
√
y2 + 1

)
+ iy sin

(
1
2s
√
y2 + 1

)
√
y2 + 1 cos

(
1
2s
√
y2 + 1

)
+ iy sin

(
1
2s
√
y2 + 1

) (K.5)
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where we use the short hand notation y = ∆/Ω and s = Ωτ . With this choice of the phase

we thus have U|10⟩ = e−iϕ1 |10⟩ and U|01⟩ = e−iϕ1 |01⟩. The acquired dynamical phase can be

calculated using straightforward algebra, and is a function of ∆/Ω, τΩ and ξ. Since we fixed τ

in equation (K.4), and ξ in (K.5), ϕ1 is actually solely determined by the dimensionless quan-

tity ∆/Ω. Note that also ϕ2 is only a function of ∆/Ω. However, the functional dependence is

different, and we can find a choice for ∆/Ω such that eiϕ2 = ei(2ϕ1+π) (see Fig. 14.2 of Chap-

ter 14). With this choice, we obtain exactly the gate given in (K.3) which is equivalent to the

controlled-phase gate (K.2) (up to trivial single qubit rotations). For completeness we give the

corresponding numerical values of the relevant parameters:

∆/Ω = 0.377371 (K.6)
ξ = 3.90242 (K.7)
Ωτ = 4.29268 (K.8)

Finally, we note that this construction can be generalized to multi-qubit controlled phase

gates in fully blockaded systems with more than two atoms.

K.4.1 Accounting for imperfect blockade

The above analysis is based on the perfect blockade mechanism. Finite blockade interactions

(and other experimental imperfections, such as coupling to other Rydberg states) can be ac-

counted for, and lead only to an effective renormalization of the parameters given in (K.6). To

see this, note that a finite value of V only affects the dynamics if the system is initially in the

state |11⟩. Instead of being restricted to the two states |a2⟩ = |11⟩ and |b2⟩ = |1r⟩ + |r1⟩, a
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third state |c2⟩ = |rr⟩ has to be considered, and H2 is replaced by

H2 =

√
2

2
(Ω|a2⟩ ⟨b2|+Ω|b2⟩ ⟨c2|+Ω∗|c2⟩ ⟨b2|+Ω∗|b2⟩ ⟨a2|)

−∆|b2⟩ ⟨b2|+ (V − 2∆)|c2⟩ ⟨c2| . (K.9)

For V ≫ |∆|, |Ω|, the effect for finite blockade simply reduces to the two-level system {|a2⟩, |b2⟩}

where ∆ is renormalized by an amount Ω2/(2V ). Even for small V > 0 and a given ∆, we can

always choose Ω and τ such that the system initialized in the state |a2⟩ returns after the first

pulse. Thus finite blockade simply replaces the complete Rabi oscillation in the fully block-

aded regime, by a slightly more complicated, but still closed path in a two-dimensional Hilbert

space. The analysis of the dynamics of the other computational basis states is unaffected by

the finite value of V . It is thus straightforward to ensure that a system initially in the state

|10⟩ returns to |10⟩ for each choice of V and ∆. This allows one to use ∆ as a control knob for

the relative dynamical phases acquired by |11⟩ and |10⟩, and thus realize a CZ gate.

K.5 Experimental calibration of CZ gate

The CZ gate requires two laser pulses with a relative phase shift between them. The detun-

ing of the two pulses ∆ is determined relative to the experimentally calibrated Rydberg res-

onance by numerical calculations. The pulse time and the phase jump between pulses both

require experimental calibration due to perturbations in timing and phase asssociated with

an AOM-based control system. The pulse time τ is calibrated first by preparing both atoms

in the qubit pair in |1⟩ and driving at detuning ∆ to the Rydberg state. We observe detuned

Rabi oscillations to the symmetrically excited state |W ⟩ = 1√
2
(|1r⟩ + |r1⟩) and extract the

pulse time at which the population returns fully to |11⟩.
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After fixing τ , we prepare only single isolated atoms in |1⟩ and we drive two pulses of length

τ with a variable relative phase. By identifying the phase for which the single atom returns

fully to |1⟩ by the end of the sequence, we fix the relative phase ξ.

Finally, we calibrate the global phase shift necessary to convert the CZ gate (with single-

particle phase ϕ) into the canonical form:

CZ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (K.10)

We implement this phase correction by applying the global 420 nm laser for a fixed time in

the absence of the 1013 nm Rydberg light; this avoids any resonant Rydberg excitation and

instead only adds a phase shift. To calibrate the phase correction, we apply the Bell state se-

quence in which we attempt to prepare the Bell state |Φ+⟩ and then we apply an additional

X(π/2) rotation to both qubits. If our phase correction is optimal, we should prepare the

state |Ψ+⟩, which we can measure in populations. We vary the global phase correction to max-

imize the measured populations in |Ψ+⟩ at the end of this sequence.

K.6 Preparation of Bell state using CZ gate and π/4 pulse

Our global implementation of the CZ gate enables the preparation of Bell states with no local

addressing. The protocol is most naturally understood by describing the two-qubit system in

the Bell basis:

|Ψ±⟩ =
1√
2
(|01⟩ ± |10⟩) (K.11)

|Φ±⟩ =
1√
2
(|00⟩ ± |11⟩) (K.12)
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We prepare the system in |00⟩, and after a global X(π/2) pulse, we prepare the state

|ψ1⟩ =
1

2
(|00⟩ − i|01⟩ − i|10⟩ − |11⟩) (K.13)

The controlled-phase gate creates the state

|ψ2⟩ = CZ|ψ1⟩ =
1

2
(|00⟩+ i|01⟩+ i|10⟩+ |11⟩) (K.14)

=
1√
2
(|Φ+⟩+ i|Ψ+⟩) (K.15)

The states |Φ+⟩ and |Ψ+⟩ are both within the triplet manifold of the two qubits and are cou-

pled resonantly by a global drive field to form an effective two level system with twice the

single-particle Rabi frequency. A π/2 pulse within this effective two-level system corresponds

to a π/4 pulse at the single-particle Rabi frequency, and maps:

|ψ2⟩ =
1√
2
(|Φ+⟩+ i|Ψ+⟩) → |ψ3⟩ = |Φ+⟩ (K.16)

K.7 Implementation of CCZ gate

We implement the controlled-controlled-phase (CCZ) gate in the regime in which nearest

neighbors are constrained by the Rydberg blockade, but next-nearest neighbors have only

weak interactions. In light of this, the CCZ gate that we aim to implement is motivated by

the fact that both edge atoms can simultaneously blockade the middle (target) atom. In par-

ticular, we consider the following scheme to implement CCZ that involves local excitation to

Rydberg states:

1. Apply a π pulse on both edge atoms, transferring all of their population in |1⟩ to |r⟩.
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hand side. The direct implementation of the CZ gate (region I) includes an extra phase shift on both qubits.
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IV). b) The full pulse sequence for preparing Bell states begins with both atoms in |0⟩ and a global X(π/2)
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gate, along with global phase shifts coming from the light shift of the 420 nm laser. A global X(π) pulse
flips the qubit states, at which point the same 420 nm pulses are applied but now in the absence of 1013
nm light. This negates the effect of light shifts in the first portion of the CZ gate implementation. Then,
an additional short pulse of the 420 nm laser adds an additional phase correction to turn the CZ gate into
the canonical CZ gate. A subsequent global X(π/4) pulse prepares the two atoms in the Bell state |Φ+⟩.
A final 420 nm laser pulse can be used to add dynamical phase to this Bell state, which can be detected by
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populations.
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Figure K.2: Optimal control pulse for CCZ implementation. Time variation of Rydberg Rabi frequency
and detuning to approximately implement the CCZ gate with numerically simulated fidelity 97.6%.
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2. Apply a 2π pulse on the center atom, exciting from |1⟩ to |r⟩ and back to |1⟩, accumu-

lating a π phase shift only if neither edge atom is blockading this central atom and the

atom is in |1⟩.

3. Apply another π pulse on the edge atoms to return any population from |r⟩ to |1⟩.

Such a protocol realizes the following unitary:

CCZ =



1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1


(K.17)

This unitary is equivalent to the canonical controlled-controlled-phase gate, denoted CCZ =

1− 2|111⟩⟨111| up to local rotations:

CCZ

X(π)

CCZ

Z(π) X(π)

=

X(π) Z(π) X(π)

In the absence of local excitation to Rydberg states, we find that global Rydberg coupling

can still approximately realize this unitary. Since different input configurations evolve accord-

ing to dynamics of few-level systems with different coupling frequencies, it is challenging to

design a single analytic global pulse to control all input configurations properly. For example,

the |001⟩ state couples to |00r⟩ as a two-level system with Rabi frequency Ω. The |011⟩ state

couples to 1√
2
(|01r⟩ + |0r1⟩) with Rabi frequency

√
2Ω. The |111⟩ state couples both to |1r1⟩

with Rabi frequency Ω, and also couples to 1√
2
(|r11⟩ + |11r⟩ with Rabi frequency

√
2Ω (which

then couples to |r1r⟩). The systems are further complicated by the finite next-nearest neigh-
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bor interaction between edge atoms.

To find a global pulse that works on all input configurations, we use the RedCRAB optimal

control algorithm [287, 288] to optimize an amplitude and frequency profile for the coupling

field. The optimized pulse, shown in Fig. K.2, has duration of 1.2 µs and achieves a numeri-

cally simulated gate fidelity of 97.6%.

Future experimental implementations with colder atoms could achieve higher gate fidelities

by designing gate timings to intentionally cancel the effect of the unwanted phase accumu-

lation between next-nearest neighbors. Alternatively, few-qubit gates could be implemented

with all atoms in the fully blockaded regime by bringing atoms closer together or by exciting

to higher Rydberg states.

K.8 Echo procedure for CZ and CCZ

The Rydberg pulse which implements the CZ or the CCZ gate includes both a 1013 nm laser

field and a 420 nm laser field, the latter of which adds a differential light shift to the qubit

levels of ∼ 2π × 3 MHz. To correct for the phase accumulated due to this light shift, after the

CZ gate we apply a qubit X(π) rotation on all atoms and then apply the same 420 nm pulse

used for the CZ gate, but this time in the absence of 1013 nm light. The single particle phase

ϕ (eq. (14.1) of Chapter 14) inherent in the design of the CZ protocol is separately corrected

by an additional short pulse of the 420 nm laser. The full detailed pulse sequence is shown in

Fig. K.1.

K.9 State readout through atom loss

Our primary technique for state readout is to apply a resonant laser pulse that heats atoms

in |1⟩ (in F = 2, more generally) out of the tweezers, after which we take a fluorescence im-

396



00 01 10 11

Output

00

01

10

11
In

p
ut

0.2

1.0

93.3

2.6

0.8

0.2

3.2

94.4

1.7

96.4

1.5

1.3

97.3

2.4

2.0

1.7

CNOT with pushout (A)

CC CC CC CC

Output

00

01

10

11

In
p

ut

97.7

96.9

96.2

96.5

1.3

1.5

1.2

1.3

1.0

1.5

2.3

1.9

0.1

0.1

0.3

0.3

Without pushout (B)

000 001 010 011 100 101 110 111

Output

000

001

010

011

100

101

110

111

In
p

ut

0.0

0.8

0.1

1.0

1.1

91.6

0.9

2.1

0.2

0.1

1.4

0.0

6.0

1.4

90.3

0.4

0.1

1.4

0.0

0.7

1.2

4.3

0.8

93.3

1.3

0.0

0.1

0.1

90.4

0.2

5.9

2.1

0.1

6.7

0.9

90.3

0.1

2.1

0.1

0.3

6.7

0.1

87.4

1.1

0.0

0.0

1.7

0.0

1.4

88.9

0.3

6.9

0.1

0.4

0.0

1.9

90.3

2.1

9.8

0.1

1.3

0.0

0.4

0.0

Toffoli with pushout (A)

CCC CCC CCC CCC CCC CCC CCC CCC

Output

000

001

010

011

100

101

110

111

In
p

ut

82.8

92.5

83.1

93.0

92.9

95.5

92.2

96.2

5.4

1.0

5.3

0.6

3.9

1.1

3.3

0.7

1.7

2.0

1.6

2.1

1.6

2.7

2.5

2.3

0.2

0.1

0.3

0.1

0.5

0.2

0.5

0.1

5.3

3.9

5.3

3.6

0.9

0.5

1.4

0.6

4.1

0.1

3.8

0.2

0.0

0.0

0.1

0.0

0.5

0.5

0.4

0.5

0.1

0.0

0.1

0.1

0.1

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Without pushout (B)

0

50

100

O
ut

co
m

e 
P

ro
b

ab
ili

ty
 (%

)

Figure K.3: Here we show full measurement statistics for the CNOT and Toffoli truth tables. In both situa-
tions, for each input computational basis state, we measure the probability distribution (shown in percentage
points) of different output configurations both with and without the pushout pulse which removes |1⟩ pop-
ulation, corresponding to the A matrix and B matrix, respectively. The output distribution of the A matrix
is mainly associated with qubit levels |0⟩ and |1⟩ according to whether the atom is present or absent. How-
ever, this approach overestimates population in |1⟩ since leftover population in the Rydberg state and losses
due to other processes lead to the same measurement outcome as |1⟩. To distinguish this effect, we mea-
sure without the pushout pulse (bottom row) to assess how much population is left in the computational
subspace (C), rather than lost into the Rydberg state and therefore out of the computational subspace (C).
Comparing these two measurements provides a lower bound on the true atomic populations in the |0⟩ and
|1⟩ qubit states.

age of remaining atoms in |0⟩. This method correctly identifies atoms in |0⟩, but can mistake

atoms that were lost through background loss processes or by residual Rydberg excitation for

atoms in |1⟩, leading to an overestimation of the population in |1⟩. For any measurements in-

volving Rydberg excitation, we therefore collect measurement statistics both with and without

the pushout pulse, which provides an upper bound on how much leakage out of the qubit sub-

space occurred, and therefore also gives a lower bound on the true population in |1⟩.

We illustrate this procedure in the context of two-qubit experiments. Let us denote the two

types of measurements as A (in which we apply the pushout of |1⟩ atoms) and B (in which we
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disable the pushout). For each measurement procedure, we obtain statistics of observing the

four two-qubit states, consisting of ‘lost’ or ‘present’ for each qubit. The A vector associates

these as |0⟩ and |1⟩, so Aij (for i, j ∈ {0, 1}) denotes the probability of identifying the left and

right atom in 0, 1 through the simple loss/presence analysis. However, the atoms can be not

only in the qubit states 0, 1 but they can also be lost from the trap or in the Rydberg state,

which in both cases will be detected as ‘lost’. Let us denote C as the computational subspace

containing |0⟩ and |1⟩, and denote C as anything outside this subspace (including Rydberg

population or loss). The B vector measures whether the atoms are in C (either |0⟩ or |1⟩), or

not (C), so is denoted Bij where i, j ∈ {C,C}.

Both Aij and Bij can be explicitly expressed in terms of the underlying atomic populations

pαβ, where α, β ∈ {0, 1, C}, as follows;

A00 = p00 (K.18)
A01 = p01 + p0C (K.19)
A10 = p10 + pC0 (K.20)
A11 = p11 + p1C + pC1 + pCC (K.21)

BCC = p00 + p01 + p10 + p11 (K.22)
BCC = p0C + p1C (K.23)
BCC = pC0 + pC1 (K.24)
BCC = pCC (K.25)

Measuring Aij and Bij , we can now solve for the atomic populations of interest: p00, p01, p10, p11.

p00 = A00 (K.26)
p01 = A01 −BCC + p1C (K.27)
p10 = A10 −BCC + pC1 (K.28)
p11 = A11 −BCC −BCC −BCC + (p0C + pC0) (K.29)
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Since all probabilities are non-negative and BCC+BCC+BCC = 1−BCC , we have our lower

bounds for the true populations:

p00 = A00 (K.30)
p01 ≥ A01 −BCC (K.31)
p10 ≥ A10 −BCC (K.32)
p11 ≥ A11 − (1−BCC) (K.33)

This is the analysis carried out for the Bell state populations, the CNOT truth table, and

the Toffoli truth table (extended to three qubits). For the truth tables, the analysis is carried

out for each measurement configuration (corresponding to a different input computational

basis state) separately, shown as the rows in the matrices of Fig. K.3.

K.10 Correcting for state preparation and measurement errors

We consider the problem of correcting a measured fidelity for state preparation and measure-

ment (SPAM) errors. We denote P as the probability to correctly initialize and measure all

qubits; generally, P = (1 − ϵ)N for single-particle SPAM error rate of ϵ. The measured fidelity

is related to the ‘corrected fidelity’ according to:

F = P ×Fc + (1− P )×F false (K.34)

Here F false denotes the false contribution to the measured fidelity signal in cases in which

SPAM errors occur. The main subtlety in performing this correction is properly evaluating

the potential false contribution F false.

Experimentally, the SPAM error is ϵ = 1.2(1)% per qubit, consisting of two effects: first, the

optical pumping into |0⟩ has an error probability of 0.7(1)%, constituting a state preparation
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error. Second, there is a small chance that an atom can be lost due to a background collision

either before or after the Bell state circuit is performed. Loss before the circuit contributes

as a state preparation error; loss after the circuit but prior to the readout fluorescence image

contributes as a measurement error. The total background loss contribution is 0.5(1)% error

per atom.

K.10.1 Bell state fidelity

The total probability that no errors occur on either of two qubits is P = 97.6(2)%. Equation

(K.34) holds for both the population measurement and the parity oscillation measurement sep-

arately. The population measurement explicitly only counts lower bounds on the population

of atoms within the qubit subspace (Section K.9). Therefore, in cases where an atom is lost

there is no false contribution to the measured fidelity. However, our measured fidelity does

not distinguish between atoms pumped into magnetic sublevels outside of the qubit subspace.

We estimate that in cases when one of the two atoms are prepared in an incorrect magnetic

sublevel (1.4(2)% probability), there can be a false contribution of F false = 1 − cos2(7π/8) ≈

15% (calculated by evaluating the quantum circuit in Fig. 14.3a of Chapter 14 with one atom

not participating). The lower bound on the measured probablilities p00 + p11 ≥ 95.8(3)%

therefore set a lower bound on the corrected populations: pc00 + pc11 ≥ 97.9(4)%.

On the other hand, the parity oscillation amplitude receives no false contribution from

cases when an atom is prepared in the wrong sublevel or is lost, because this error is inde-

pendent of the accumulated phase and therefore does not oscillate as a function of the phase

accumulation time. The false contribution is therefore F false = 0. In this case, the coherence

C (given by the amplitude of the parity oscillation) is related to the corrected coherence by

C = P × Cc. Since C = 94.2(4)%, we obtain a corrected coherence of Cc = 96.5(4)%. The
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total SPAM-corrected Bell state fidelity, then, is Fc = 1
2(p

c
00 + pc11 + Cc) ≥ 97.2(3)%.

K.10.2 CNOT truth table

We measure the truth table by performing the CNOT gate on each computational basis state.

The basis states are prepared with finite fidelity, as measured and shown in Fig. 14.3e of

Chapter 14. For each basis state, we wish to assess how the finite output fidelity in the tar-

get state compares to the finite initialization fidelity to determine how well the gate performs

on this input state. We establish a probability Pij of no SPAM error occurring for each mea-

surement setting (where ij denotes the setting in which we initialize the computational basis

state |ij⟩). Additionally, we measure a lower bound on the output probability in the target

state, Fij .

We now consider false contributions to the measured fidelity. When an error involving

atom loss occurs, there is no false contribution to fidelity since fidelity only measures atom

population within the qubit subspace. Alternatively, in cases when the wrong computational

basis state is prepared, then F false is bounded above by the largest unwanted element of the

truth table, or < 4%. The total false contribution therefore is (1−P )×F false < (3%)× (4%) ≲

0.1%. This contribution is below our measurement resolution and we do not account for it.

The corrected fidelity is therefore just given by Fc
ij = Fmeas

ij /Pij . The average corrected truth

table fidelity, given by the average of Fc
ij , is therefore Fc

CNOT ≥ 96.5% (see Table K.1).

K.10.3 Toffoli truth table

We perform the same analysis to evaluate the corrected Toffoli truth table fidelity as for the

CNOT truth table. The average corrected truth table fidelity is Fc
Toff ≥ 87.0% (see Table

K.1).
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Raw outcomes Lower bound Corrected
Bell state populations 97.6% 95.8% 97.9%
Bell state coherences 94.2% 94.2% 96.5%
Bell state fidelity 95.9% 95.0% 97.2%

CNOT: Input 00 97.3% 95.0% 96.5%
01 96.4% 94.9% 97.9%
10 93.3% 93.3% 96.3%
11 94.4% 93.1% 95.4%

CNOT Truth table 95.4% 94.1% 96.5%

Toffoli: Input 000 90.3% 73.1% 75.1%
001 88.9% 82.6% 86.2%
010 87.4% 73.0% 76.0%
011 90.3% 86.7% 90.0%
100 90.4% 84.3% 87.4%
101 91.6% 91.6% 95.7%
110 90.3% 87.0% 90.5%
111 93.3% 91.0% 95.0%

Toffoli Truth table 90.3% 83.7% 87.0%

Table K.1: Summary of measurement results. Raw outcomes correspond to simple assignment of atom
presence to qubit state 0 or 1. The lower bound comes from subtracting a conservative upper bound esti-
mate on how much leakage out of the qubit subspace there may be, as determined by a separate measure-
ment in which we do not push out |1⟩ atoms. The corrected column shows the fidelities corrected for SPAM
errors.
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Figure K.4: Limited tomography of Toffoli gate. The raw target probabilities average to 88.0(3)%.
Since four of the measurement configurations are precisely global X(π) gates applied to the other four in-
put states, we can compare these output distributions to properly account for leftover Rydberg population,
similar to the procedure discussed in Section K.9. We establish the limited tomography fidelity is therefore
F ≥ 81.5(5)%. Corrected for SPAM errors, the fidelity is ≥ 86.2(6)%.

K.11 Limited tomography of Toffoli gate

The truth table of the Toffoli gate provides a representation of the magnitude of the matrix

elements of the gate expressed in the logical basis. However, the measured populations carry

no information about the relative phases between the different entries. Performing a similar

procedure as the truth table but rotating the Toffoli gate to act on the X-basis instead of

the Z-basis makes it possible to recover some information about these phases. A restricted

version of such a procedure has been used before as a way to characterize the fidelity of the

Toffoli gate [300], and has been dubbed “Limited Tomography”. The procedure consists of

initializing all the computational basis states in the Z-basis, and then applying an X(±π/2)

rotation to all qubits before and after a Toffoli gate. The sign is chosen to be X(+π/2) when

the target qubit is initialized in |0⟩ and X(−π/2) when the target qubit is initialized in |1⟩.
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|q0⟩ X(±π/2) • X(±π/2) 




|q1⟩ X(±π/2) X(±π/2) 




|q2⟩ X(±π/2) • X(±π/2) 




Conditioning the sign of the rotation on the state of the target qubit enforces that the target

qubit is always in the same state |+⟩y prior to the action of the Toffoli gate itself.

The Toffoli gate implemented in our system, which includes an echo pulse that acts as a

global X(π) gate (see Fig. 14.4 of Chapter 14), is described ideally by the unitary matrix:

TIdeal =



0 0 0 0 0 i 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −i
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0


, (K.35)

Performing the limited tomography procedure on this unitary should result in the following

output truth table:

Lim[TIdeal] =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0


, (K.36)

where each row shows the target output probabilities for a given input state. However, if

the Toffoli gate is allowed to deviate from the ideal unitary by arbitrary phases ϕj according

to
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a) b)

Figure K.5: Parallel gate implementation in a contiguous chain of atoms. (a) Local addressing lasers can
shift the frequency of the Rydberg transition from |1⟩ to |r⟩ by δ without changing the |0⟩ ↔ |1⟩ frequency.
(b) The local addressing lasers are focused onto a subset of qubits on which we aim to perform parallel
multi-qubit gates. The global Rydberg coupling laser is tuned to the light-shifted resonance, so that only
the locally addressed atoms are coupled to the Rydberg state for gate implementation.

Tϕ =



0 0 0 0 0 ieiϕ1 0 0
0 0 0 0 0 0 eiϕ2 0
0 0 0 0 0 0 0 −ieiϕ3

0 0 0 0 eiϕ4 0 0 0
0 0 0 eiϕ5 0 0 0 0
0 0 −eiϕ6 0 0 0 0 0
0 eiϕ7 0 0 0 0 0 0

−eiϕ8 0 0 0 0 0 0 0


, (K.37)

then the limited tomography truth table reflects this phase deviation. In particular, each

truth table matrix element in which the limited tomography should produce unity will instead

result in a peak probability of |18
∑

j e
iϕj |2. The average fidelity of the limited tomography

truth table therefore reflects how close the phases on the Toffoli unitary are to their ideal val-

ues, and can only reach unity if each phase is correct. Our measured limited tomograpy truth

table is shown in Fig. K.4.

It is worth noting that the limited tomography protocol only makes use of four of the eight

X-basis input states, as seen by the fact that the target qubit is always initialized in |+⟩. This

makes four out of the eight measurements equivalent to the other four up to a global X(π) ro-

tation at the end. Comparing these two sets of measurements gives a constraint on the proba-

bility of leakage out of the qubit subspace, similarly to the approach described in Section K.9.
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K.12 Parallel gate implementation in a contiguous array

The experiments performed here involve parallel multi-qubit gate implementation on sepa-

rated pairs of atoms, where the inter-pair interaction is negligible. However, one can extend

this protocol to parallel gate implementation in a contiguous chain of atoms, as illustrated in

Fig. K.5. We consider an additional local addressing laser system which can address an arbi-

trary subset of atoms, using for example an acousto-optic deflector. Specifically, one can se-

lect a wavelength for this laser such that the imparted light shift affects the |0⟩ and |1⟩ states

equally, but differently from the Rydberg state |r⟩. In such a case, the light shift from this

new local addressing laser does not apply any qubit manipulations, but instead simply shifts

the effective Rydberg resonance. Near-infrared wavelengths tuned far from any ground state

optical transition (λ ≳ 820 nm) are suitable for Rubidium.

With such a system, we could illuminate all pairs of adjacent atoms on which we intend to

perform two-qubit gates, and then by tuning the Rydberg laser to the light-shifted resonance

we would perform the multi-qubit gate on all pairs in parallel. The only constraint is that

there must be sufficient space between addressed pairs such that the interaction (cross-talk)

between them is negligible in a particular layer of gate implementation.
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L
Bessel function identities

In this chapter, we derive several Bessel function identities which are relevant for the evalua-

tion of various protocols for converting phase modulation to amplitude modulation for Raman

laser driving.

L.1 Destructive interference of pure phase modulation

The Bessel function identities that describe destructive interference in Raman driving with a

phase modulated laser can be easily derived from the Jacobi-Anger expansion:

eiβ sinωt =
∞∑

n=−∞
Jn(β)e

inωt (L.1)
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Taking the magnitude squared of both sides, we find:

1 =
∑
m,n

Jn(β)Jm(β)ei(m−n)ωt (L.2)

Regrouping the sum in terms of indices n and k = m− n, we find:

1 =
∞∑

k=−∞
eikωt

[ ∞∑
n=−∞

Jn(β)Jn+k(β)

]
(L.3)

Since the left hand side is time independent, the coefficients of the time dependent terms eikωt

must vanish for any k ̸= 0:
∞∑

n=−∞
Jn(β)Jn+k(β) = 0 (L.4)

Since these sums represent amplitude modulation at frequency kω, this tautologically says

that pure phase modulation has no amplitude modulation.

L.2 Quadratic phase shifts

Claim:

Jk(2z sinϕ) = (−i)keikϕ
∞∑

n=−∞
Jn(z)Jn+k(z)e

2inϕ (L.5)

Proof : We begin using the Jacobi-Anger expansion, treating β = 2z sinϕ as the modulation

depth.

ei(2z sinϕ)(sin θ) =
∞∑

n=−∞
Jn(2z sinϕ)e

inθ (L.6)
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Alternatively, instead of expanding the left hand side using Jacobi-Anger, we could also multi-

ply the two sine functions, recalling the trigonometric identity:

sin(x) sin(y) =
1

2
(cos(x− y)− cos(x+ y)) . (L.7)

Plugging this in, we obtain:

ei(2z sinϕ)(sin θ) =
(
eiz cos(ϕ−θ)

)(
e−iz cos(ϕ+θ)

)
(L.8)

We are now graced with the opportunity to apply the Jacobi-Anger expansion twice, once for

each term on the right-hand side. Setting this expression equal to the right-hand side of equa-

tion (L.6), we obtain:

( ∞∑
n=−∞

inJn(z)e
in(ϕ−θ)

)( ∞∑
m=−∞

imJm(−z)eim(ϕ+θ)

)
=

∞∑
k=−∞

Jk(2z sinϕ)e
ikθ (L.9)

Expanding the left hand side as a sum over indices n,m:

∑
n,m

in+mJn(z)Jm(−z)ei(n+m)ϕei(m−n)θ =
∞∑

k=−∞
Jk(2z sinϕ)e

ikθ (L.10)

We will now rewrite the left hand side with a change in indexing, using n and k′ ≡ m− n, and

regroup terms to pull the k′ sum to be the outer sum:

∞∑
k′=−∞

eik
′θ

[
ik

′
eik

′ϕ
∞∑

n=−∞
i2nJn(z)Jn+k′(−z)e2inϕ

]
=

∞∑
k=−∞

[Jk(2z sinϕ)] e
ikθ (L.11)
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Recalling that Jn+k(−z) = (−1)n+kJn+k(z), and using that i2n = (−1)n, we simplify:

∞∑
k′=−∞

eik
′θ

[
(−i)k′eik′ϕ

∞∑
n=−∞

Jn(z)Jn+k′(z)e
2inϕ

]
=

∞∑
k=−∞

[Jk(2z sinϕ)] e
ikθ (L.12)

In both sides of the equation, we have an outer sum over k (or k′), with orthogonal func-

tions eikθ. We therefore must require that the coefficients are all equal for corresponding k =

k′. Rewriting the equality between coefficients:

Jk(2z sinϕ) = (−i)keikϕ
∞∑

n=−∞
Jn(z)Jn+k(z)e

2inϕ (L.13)

L.3 Even sidebands

We can now use (L.13) to prove identities regarding a field with only the even sidebands. We

first consider the total power in a beam with only the even-index sidebands:

Claim:

T ≡
∑

n even
Jn(β)

2 =
1

2
(1 + J0(2β)) (L.14)

Proof: We find that the sum over even sidebands is quite similar to a sum over all side-

bands, but with a minus sign on the odd sidebands. To see this,

∞∑
n=−∞

(−1)nJn(β)
2 =

∑
n even

Jn(β)
2 −

∑
n odd

Jn(β)
2 (L.15)

Recalling that the sum of the power in all sidebands must be unity, we know that

∑
n odd

Jn(β)
2 = 1−

∑
n even

Jn(β)
2 (L.16)
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Plugging this into equation (L.15), we have:

∞∑
n=−∞

(−1)nJn(β)
2 = −1 + 2

∑
n even

Jn(β)
2 (L.17)

= −1 + 2T (L.18)

The left hand side now happens to be in a very similar form to the right hand side of equation

(L.13). In particular, we now write (L.13) with k = 0, ϕ = π/2, and z = β:

J0(2β) =
∞∑

n=−∞
(−1)nJn(β)

2 (L.19)

Inserting this result into eq. (L.18), we solve for T :

T =
1

2
(1 + J0(2β)) (L.20)

Claim: Now we can apply a similar technique to prove another identity related to the situa-

tion of even sidebands: ∑
n even

Jn(β)Jn+2(β) =
1

2
J2(2β) (L.21)

Proof: We begin by directly applying the quadratic dispersion identity (L.13) with k =

2, ϕ = π/2, and z = β:

J2(2β) =
∞∑

n=−∞
(−1)nJn(β)Jn+2(β) (L.22)

Again separating in terms of even and odd terms:

J2(2β) =
∑

n even
Jn(β)Jn+2(β)−

∑
n odd

Jn(β)Jn+2(β) (L.23)
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Recalling that the sum over all pairs of sidebands is identically 0, we know that

∑
n odd

Jn(β)Jn+2(β) = −
∑

n even
Jn(β)Jn+2(β) (L.24)

We now plug this result in and find:

∑
n even

Jn(β)Jn+2(β) =
1

2
J2(2β) (L.25)
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